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Preface

Creating systems with multiple autonomous vehicles places severe demands on the
design of cooperative control schemes and communication strategies. In last years,
several approaches have been proposed in the literature. Most of them solve the
vehicle coordination problem assuming some kind of communications between team
members. Communications are used either to obtain information about neighbors'
velocities or relative positions, or to acquire the control law to apply. In the former
case, the control computation is decentralized and the later the control is central-
ized. However, communications make the group sensitive to failure, or restrict the
applicability of the controllers to teams of friendly robots.

This dissertation is a step forward toward the design of sensor-based decentralized
architectures for stabilization of unmanned vehicles moving in formation. The archi-
tecture consists of two main components: (i) a model-based vision system, and (ii)
a control algorithm. The model-based vision system can recognize and relatively lo-
calize neighbor robots using �ducial markers on a truncated octagon shape mounted
on each vehicle. It is composed of three main components: image acquisition and
processing, robot identi�cation, and pose estimation.

The control algorithm uses vision information to stabilize a group of mobile robots
in formation. Two main stabilization problems are addressed: stabilization in leader-
follower and in two-leader-follower formations. Several control strategies using rela-
tive pose between a robot and its designated leader or leaders are presented. These
strategies ensure asymptotic coordinated motion using di�erent information levels to
implement the controllers.

The �rst strategy is a partial state feedback nonlinear approach that requires full
knowledge of leader's velocities and accelerations. The second strategy is a robust
partial state feedback nonlinear approach that requires knowledge of the rate of change
of the relative position error. Finally, the third strategy is an output feedback approach
that uses high-gain observers to estimate the derivative of the unmanned vehicles'
relative position. In consequence, this last algorithm only requires knowledge of

v



the leader-follower relative distance and bearing angle. Both data are computed
using measurements from a single camera, eliminating sensitivity to information �ow
between vehicles. Furthermore, because the leader's exact trajectory is uncertain,
this approach can be applied to both the problem of tracking a given trajectory
maintaining a desired formation shape or to pursuit-evasion problems, where the
evader trajectory is assumed unknown. This is a distinctive aspect of this vision-
based architecture with respect to the current state-of-the-art.

Lyapunov's stability theory-based analysis and numerical simulations in a realistic
tridimensional environment show the stability properties of the control approaches.

Finally, we describe our ongoing implementation on virtual and real platforms and
show simulation results to verify the validity of the designed methodologies.
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Chapter 1

Motivation

1.1 Introduction
In the last decade, cooperative multi-robot systems have been increasingly being
considered as a mean of performing complex tasks within dynamic environments.
These complex and extremely diverse tasks include applications such as automated
transportation, spacecraft interferometry, surveillance, mapping, border patrol, search
and rescue, disaster relief, unmanned air combat, multi-targeting and multi-platform
operations, military battle systems, highway and air transportation systems, mobile
sensor networks, and wireless surveillance. The main reason for engaging multi-
robot systems in collective behavior is their expected outperformance over single-
robot systems in size, cost, �exibility, and fault tolerance [43, 90].

The design of multi-robot formations was initially inspired by the emergent self-
organization from social interaction observed in nature. For example, bees, birds,
�sh, wildebeests, and human beings �ock or swarm in particular directions [120], see
Figure 1.1. Moreover, it is well-known that aircraft formations �y in a 'V' to decrease
drag, save energy, and increase safety, Figure 1.2.

As Camazine et al. pointed out [13]:

�Self-organization is a process in which pattern at the global level of a
system emerges solely from numerous interactions among the lower-level
components of the system. Moreover, the rules specifying interactions
among the system's components are executed using only local informa-
tion, without reference to the global pattern. In short, the pattern is
an emergent property of the system, rather than a property imposed on
the system by an external ordering in�uence ... pattern is a particular,

2



Bats - T.K. Hor iuchi - http://www.isr.umd.edu/Labs/CSSL/horiuchilab/lab.html

Desert locusts – D. Grünbaum
Ants – C.  Anderson 

http://www2.isye.gatech.edu/~car l/

Figure 1.1: Bats, locusts, and ants.
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http://www.sky-flash.com

Figure 1.2: Aircraft formations.

4



organized arrangement of object in space or time.�

Single individuals may use relatively simple behavioral rules to generate structures
and patterns at the collective level that are more complex than the components and
processes from which they emerge. For instance, in the mid-40s Walter, Wiener and
Shannon observed complex social behavior in the interaction between simple turtle
robots equipped with light and touch sensors [14, 112].

Therefore, to understand self-organization and use it in a productive fashion, two
main questions have to be answered: The �rst question is related to the problem
of how global behaviors can be fostered using local and relatively simple rules. The
second question is related to the problem of which sensing capability needs each
individual.

Regarding to the �rst question, studies on �ocking and herding mechanisms in-
dicate that they emerge as a combination of a desire to stay in the group and yet
simultaneously keep a minimum separation distance from other members of the �ock
[96]. In [52], Tu and Toner prove that this combination has to be complemented
with motion, by proving that group alignment is not possible in �ocks and herds
with local perception in the absence of movement. According to recent models from
theoretical physics [51, 137], a key factor is the density of animals in the group. If
this density increases, a rapid transition occurs from disordered movement of indi-
viduals to highly aligned collective motion. Two of the most signi�cant advances
in collective motion and synchronization are the models conceived by Vicsek et al.
[137] and the Kuramoto [63, 64, 111]. Vicsek designed a discrete-time and stochastic
model that analyzes with simple interactions the emergence of di�erent behavior pat-
terns. Kuramoto's model was originally developed for oscillator synchronization, it is
a continuous-time and deterministic approach very suitable for analysis of collective
behavior emergence without noise.

Regarding to the second question, nature also give guidelines on which and how
many sensors are necessary to achieve coordinate behavior. For example, bats sense
their surroundings using ultrasound. Birds, mammals, and most insects use vision as
their main sensor. In Figure 1.2, the pilot can maintain formation by knowing the
relative distance, heading, and bearing between airplanes.

In summary, it can be stressed that members of �ocks of birds or schools of �sh do
not use explicit communication but local sensing, usually vision, in order to maintain
a coherent formation or a coordinated motion, even when they have to move around
obstacles or avoid predators. This dissertation �nds its main motivation in solving the
local control problem using vision-based sensing, showing that a stable local behavior
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Figure 1.3: Typical formation shapes: (a) line, (b) column, (c) diamond, (d) wedge
[4].

can be achieved and maintained without using communications.

1.2 Formations
Intuitively, a formation is a group of agents maintaining a determined relationship.
The two most important characteristics of a formation are its shape and its position.
The most common formation shapes are line, column, diamond, and wedge [4], as
shown in Figure 1.3.

Common de�nitions of formation positions are unit-center referenced, leader refer-
enced, and neighbor referenced [4]. In a unit-center-referenced position, all the robots
maintain a relative position to a center point given by the average of the coordi-
nates px and py of each member of the formation. In a leader-referenced position
the robots maintain a relative position with respect to a leader robot. Finally, in
a neighbor-referenced position, each robot maintains a position relative to one other
predetermined robot. Figure 1.4 depicts these three types of formation position de�-
nitions.
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Figure 1.4: Formation positions: (a) unit-center-referenced, (b) leader-referenced, (c)
neighbor-referenced [4].

Types of formations
There exist several types of formations. Here we resume some of the more relevant
to our work.

Flocking

The earliest application of arti�cial formation behavior starts with the pioneering
work of Craig Reynolds [115]. In his work, the author addresses the problem of
simulating �ocks of birds and schools of �sh with a simple egocentric behavioral
model. This model consists of collision avoidance, velocity matching, and formation
keeping components. Also, three heuristic rules are de�ned:

• cohesion rule - aim of keeping proximity to nearby �ock-mates,

• separation rule - desire of collision avoidance,

• alignment rule - intention of velocity matching with neighbors.

These three rules are inherently local and give to each member the possibility of
navigating using only its sensing capabilities. From a mathematical point of view,
they allow to pose the �ocking problem as a decentralized control problem. Moreover,
the superposition of these three rules results in all agents moving in a loose (as
opposite to rigid) formation, with a common heading while avoiding collisions [128,
129].
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The work of Reynolds led to the creation of the �rst computer animated �ocking.
Several �lms and video have been produced using �ocking, such as �Stanley and Stella
in: Breaking the Ice� (1987), �Batman Returns� (1992), �Cli�hanger� (1993), �The
Lion King� (1994), �From Dusk Till Dawn� (1996), �The Hunchback of Notre Dame�
(1996), and �Finding Nemo� (2003).

Behavior-based formation

The main idea of behavior-based formations is to integrate several goal oriented be-
haviors with a given arbiter that chooses between them. It is a highly decentralized
reactive framework. In [4] for example, the authors de�ne two steps for formation
maintenance: (i) determination of the robot's position in formation; and (ii) gener-
ation of motor commands to direct the robot toward the correct location. A global
arbiter gives priorities to each behavior depending on environmental conditions.

The method performs well in simulations and experiments, but it lacks mathe-
matical analysis of convergence and robustness.

Leader-following formation

Leader following can be centralized or decentralized. When a decentralized approach
is used, each robot can drive itself keeping a desired distance to some of its neighbors.
This scheme typically has one leader which takes care of the assignment of followers'
relative positions and of the global mission objective, for instance, obstacle avoidance
[33, 34, 125].

The major weakness of single-leader architectures is that they have a single point
of failure [73]. Therefore, stability properties of these architectures under changes of
leaders is a major concern. Some attempts have been made in this �eld. For instance,
in [27, 28], the architecture has a high level layer that detects leader failures and rede-
�nes the formation control graph according to some given strategy. Failures include
robot malfunctioning, communication errors (in communication-based formations),
and information �ow breaches.

Virtual structure

Virtual structure approaches describe the entire formation as one single rigid body or
pattern. In [3], for example, a virtual structure or pattern formation is de�ned as the
problem of coordination a group of robots to get into and maintain a formation with

8



a certain shape such as a wedge or a line, assuming the existence of a communication
channel between the central unit and the individual robots.

These approaches are centralized and, consequently, they are very susceptible to
operation errors.

1.3 Related work
Creating systems with multiple autonomous vehicles working together to achieve a
common mission within a changing environment places severe demands on the de-
sign of decision-making supervisors, cooperative control schemes, and communication
strategies. Research on multi-vehicle system coordination has been focused both on
centralized and decentralized control strategies. Centralized control strategies have
the advantage of being able to reach a global optimum solution for tasks such as path
planning and recon�guration [8, 12, 108, 143]. However, centralized algorithms be-
come infeasible when the number of vehicles and constraints increase, preventing their
implementation in real-time. On the other hand, decentralized control approaches
only require local information and can e�ectively achieve multi-vehicle coordination
behaviors as the ones observed in nature [28, 27, 63, 72, 73, 88].

Many approaches for solving multi-robot coordination reduce the general control
problem to a single-agent control one by assuming that global communication of some
coordination information is available. However, a coordination mechanism that does
not rely on global communication ensures �exibility and mission safety, because ref-
erence trajectories and mission objectives should not be shared among all agents but
to some leaders [20]. Of course, this poses the challenge of designing new formation
control paradigms, robust and computationally simple, that can perform well in the
presence of uncertainty in leaders' current and future states.

Other authors have addressed the coordination problem of multiple unmanned
vehicles using optimization techniques [10]. Contributions in this area include work
focused on autonomous distributed sensing tasks [25], decentralized optimization-
based control algorithms [41], optimal motion planning [9], and formation recon�g-
uration planning [143]. More recently, the use of model predictive control (MPC)
or receding-horizon control (RHC) is becoming popular in the multi-robot system
literature [12, 36, 46, 68, 105]. Generally speaking, MPC algorithms rely on the
optimization of a predicted model response with respect to the system input to deter-
mine the best input changes for a given state. Either hard constraints (that cannot
be violated) or soft constraints (that can be violated but with some penalty) can be
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incorporated into the optimization problem, giving to MPC a potential advantage
over passive state feedback control laws. However, there are possible disadvantages
to be considered. For instance, in its traditional use for process control, the primary
disadvantage of MPC is the need of a good model of the plant, but such model is
not always available. In robotics applications, the foremost disadvantage is the com-
putational cost, negligible for slow-moving systems in the process industry, but very
important in real-time applications. In [105], a path-space iteration (PSI) algorithm
is designed to solve the motion coordination problem. In this work, the authors
present centralized and decentralized algorithms based on an MPC/PSI formulation
to solve nonholonomic multi-robot coordination problems in dynamic, unknown en-
vironments.

Chen et al. [20, 18, 19] develop a decentralized control architecture that employs
local sensor information and an internal model approach [60, 61] to handle uncertain-
ties in the leader reference trajectory. The information needed to implement the con-
troller is relative position and velocity between a robot and its leader. This approach
uses system immersion to model the known leader's movements and communications
to acquire leader's heading. Leader velocities are piecewise linear functions of time
over �nite intervals of variable length. Inter-vehicle collision avoidance is assured by
con�ning vehicles to speci�c sectors during transients.

In the last few years, some vision-based motion coordination algorithms have been
developed in the literature. In [138], authors design a formation control algorithm
based on omni-directional visual servoing and motion segmentation. Vision-based for-
mation controllers are described in [26]. The algorithms use input-output lineariza-
tion and require the estimation of leader-follower relative angle and leader's linear
and angular velocities. Two algorithms are described for image-based leader-follower
formation control, one is based on feedback linearization and the other combines
Luenberger observers with a linear controller. In [85], the authors give a su�cient
condition for observability using a vision-based centralized controller. The control
law is based on input-output feedback linearization and assumes that the robots have
omni-directional cameras and that the leader can transmit the velocity control to
each follower and estimate their states with an extended Kalman �lter.

Another vision-based formation controller has been recently developed in [88, 89].
This distributed coordination approach is based on nearest-neighbor interactions,
assuming that robots move with constant linear speed and achieve �ocking after a
given time. In general, �ocking algorithms do not maintain a strict formation shape.
Such formation maintenance is critical in applications such as cooperative payload
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transport [126], cooperative object pushing [50], and distributed sensor deployment
when robots move forming certain geometric pattern [142].

In this dissertation, we present di�erent approaches for solving a multi-robot co-
ordination problem using monocular vision. The �rst part of the dissertation presents
an arti�cial vision system for pose estimation using �ducial marks [103, 104]. The
second part presents several vision-based formation control algorithms for leader fol-
lowing and two-leaders following architectures [106, 102, 101]. The �rst two are state
feedback-based controllers that require total or partial knowledge of the state vari-
ables, respectively. The third is a robust output feedback decentralized controller
based only on monocular vision information about the relative motion between a
robot and its designated leader or leaders. A high-gain observer is used to esti-
mate the derivatives of the measurements. This last algorithm eliminates the need
of inter-vehicle communications which increases the reliability of the overall system,
making this approach suitable for pursuit-evasion problems, when the pursued is an
unfriendly robot. Finally, we also describe our ongoing implementation on virtual
and real platforms.

1.4 Outline
The rest of the dissertation is organized as follows. In Chapter 2, we review some
de�nitions on graph theory and robot formations that are used on the main two chap-
ters of this dissertation. Chapter 3 resumes four nonlinear estimation algorithms and
compare their properties through simple examples. Chapter 4 presents the imple-
mentation of real and virtual vision systems for robot identi�cation and localization.
Chapter 5 describes and analyzes vision-based decentralized formation control algo-
rithms. Finally, we present our concluding remarks and future work in Chapter 6.
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1.5 Statement of contributions
This dissertation is a step forward toward the design of sensor-based decentralized
architectures for stabilization of unmanned vehicles moving in formation. The con-
tributions can be divided into two main parts:

• A vision system for robot identi�cation and localization.

• A set of robust vision-based formation controllers.

The vision system, composed of image acquisition and processing, robot identi�ca-
tion, and pose estimation, can recognize and relatively localize neighbor robots using
�ducial markers.

The set of robust vision-based formation controllers allows to maintain relative
distance and bearing in leader-follower and two-leader-follower formations. These
controllers ensure asymptotic coordinated motion coordination using di�erent infor-
mation and sensing levels.

To the author's knowledge, the whole architecture is the �rst framework that ap-
plies a realistic sensor system and control algorithms to the formation control problem
with guaranteed stability and without communications.
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Chapter 2

Multi-robot formations

In this Chapter, some basic concepts relevant to multi-robot formations are summa-
rized. We brie�y review the dynamical model of the robot and the polar relationship
between a leader and its follower, that is, the basic cell of a formation. We resume
some tools for formation characterization using graph theory and the formal de�ni-
tion of a formation. The reader is referred to the bibliography for a more detailed
treatment [35, 133].

2.1 Mathematical model of the robots
Let us consider a multi-robot system composed of Na agents, as the ones shown
in Figure 2.1, modelled as unicycle-like vehicles1 Σi moving on the plane, with the
dynamic model of the ith robot given by [20]

ẋi (t) = vi (t) cos θi (t) ,

ẏi (t) = vi (t) sin θi (t) ,

θ̇i (t) = ωi (t) , (2.1)
miv̇i (t) = Fi (t) ,

Jiω̇i (t) = Ti (t) ,

where qi (t) = [xi (t) , yi (t) , θi (t)]
T ∈ SE (2), is the con�guration vector with respect

to an inertial reference frame, (xi, yi) ∈ R2 denotes the position in Cartesian coor-
dinates and is the intersection of the axis of symmetry with the driving wheels axis,
θi ∈ S = (−π, π] is the heading angle, ui (t) := [vi (t) , ωi (t)]

T ∈ Ui ⊆ R2, vi (t),
1Note that other mathematical models can be adapted to this framework.
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Figure 2.1: Unicycle-type robots. (a) ERSP Scorpion (Evolution Robotics), (b)
Marhes TXT platform.

ωi (t) are the linear and the angular velocities, respectively, Ui is a compact set of
admissible velocities containing the origin, and Fi (t), Ti (t) ∈ R are the admissible
control signals. Without lost of generality, we assume that all sets Ui are equal, then

U = Ui := {(vi, ωi)| |vi| ≤ vmax, |ωi| ≤ ωmax} ,

and that the masses and inertia moments are equal to one mi = Ji = 1, with i =

1, . . . , Na.
As can be seen in Figure 2.1, a monocular camera is mounted on each robot. In

an ERSP Scorpion robot, the camera is mounted on the intersection of the axis of
symmetry with the driving wheels axis, see Figure 2.1a. In a Marhes TXT platform,
the camera is mounted d units ahead on the axis of symmetry, see Figure 2.1b.

2.1.1 Leader-follower polar model
Let the Euclidean distance `ik (t) ∈ R≥0 and the angles αik (t), θik (t) ∈ S = (−π, π]

between robots i and k be de�ned as

`ik (t) =

√
(xi (t)− xc

k (t))2 + (yi (t)− yc
k (t))2, (2.2)

αik (t) = ζik (t)− θi (t) , (2.3)
θik (t) = θi (t)− θk (t) , (2.4)

14



where ζik (t) = atan2 (yi (t)− yc
k (t) , xi (t)− xc

k (t)), and xc
k (t) = xk (t) + d cos θk (t),

yc
k (t) = yk (t) + d sin θk (t) are the coordinates of the camera, as shown in Figure 2.2.
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Figure 2.2: Formation geometry.

Then, assuming that both robots are described by the model (2.1), the leader-
follower system can be described in polar form by the set of equations



ẋi (t)

ẏi (t)

θ̇i (t)
˙̀
ik (t)

α̇ik (t)

θ̇ik (t)




=




cos θi 0

sin θi 0

0 1

cosαik 0

− sin αik

`ik
−1

0 1




ui (t)+




0 0

0 0

0 0

− cos (αik + θik) −d sin (αik + θik)
sin(αik+θik)

`ij
−d cos(αik+θik)

`ik

0 −1




uk (t) .

(2.5)
As mentioned, each agent is equipped with a vision sensor and a pan controller,

as shown in Figure 2.2. Then, the measured variables are given by

θt (t) = arctan

(−xc (t)

zc (t)

)
,

αik (t) = θt (t)− θm (t) ,

θik (t) = θp (t) + θm (t) .
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2.2 Graph theory
Graph theory provides a convenient framework for modeling multi-vehicle coordina-
tion problems. Particularly, it is very powerful to generalize individual properties to
group properties [133]. For example, graphs have been used to capture the intercon-
nection topology [37, 97], describe control structure [28, 27], test constraint feasibility
[125], characterize information �ow [40], and analyze error propagation [133]. Graphs
can be undirected to model position constraints [37, 97], or directed to describe in-
formation �ow [40] or leader following inter-agent control speci�cations [34, 127, 132]

In this Section, we resume some concepts from graph theory, the reader is referred
to the literature for a detailed treatment [35, 96, 133].

A directed graph G is a pair (V , E) of the set of vertices V ∈ {1, . . . , N} and
directed edges E ∈ V ×V . An edge (i, j) ∈ E is an ordered pair of distinct vertices in
V that it is said to be incoming with respect to the head j and outgoing with respect
to the tail i. The in degree of a vertex is de�ned as the number of edges that have
this vertex as head. If i, j ∈ V and (i, j) ∈ E , then i and j are said to be adjacent, or
neighbors, and are denoted by i ∼ j. The adjacency matrix A (G) = {aij} of a graph
G is a matrix with nonzero elements such that aij 6= 0 ⇔ i ∼ j. The set of neighbors
of node i is de�ned by

Ni := {j ∈ V\ {i}| aij 6= 0} . (2.6)

The number of neighbors of each vertex is its valence. A path of length rp from vertex
i ∈ V to vertex j ∈ V is a sequence of rp+1 distinct vertices, v1 = i, . . . , vk, . . . , vrp+1 =

j, such that for all k ∈ [1, rp], (vk, vk+1) ∈ E . A weak path of length rp from vertex
i ∈ V to vertex j ∈ V is a sequence of rp+1 distinct vertices, v1 = i, . . . , vk, . . . , vrp+1 =

j, such that for all k ∈ [1, rp], (vk, vk+1) ∈ E or (vk+1, vk) ∈ E . A directed graph G
is weakly connected or simply connected if any two vertices can be joined with a
weak path. The distance between two vertices i and j in a graph G is the length of
the shortest path between both vertices. The diameter of a graph is the maximum
distance between two distinct vertices.

The incidence matrix B (Gσ) of a graph G with orientation σ, Gσ, is a matrix
whose rows and columns are indexed by the vertices and edges of G, respectively,
such that the (i, j) entry of B (Gσ) is equal to 1 if edge (i, j) is incoming to vertex i,
−1 if edge (i, j) is out coming from vertex i, and 0 otherwise.

The symmetric matrix de�ned as

L (G) = B (Gσ)B (Gσ)T
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is called the Laplacian of G and is independent of the choice of orientation σ. For a
connected graph, L has a single zero eigenvalue and the associated eigenvector is the
n-dimensional vector of ones, 1n.

A cycle is a connected graph where each vertex is incident with one incoming and
one outgoing edge. An acyclic graph is a graph with no cycles.

Let pi = (px
i , p

y
i ) ∈ R2 denote the position of robot i, and ri > 0 denote the

interaction range between agent i and the other robots. A spherical neighborhood (or
shell) of radius ri around pi is de�ned as

B (pi, ri) :=
{
q ∈ R2 : ‖q − pi‖ ≤ ri

}
.

Let us de�ne p = col (pi) ∈ R2n, where n = |V| is the number of nodes of graph G,
and r = col (ri). We refer to the pair (p, r) as a cluster with con�guration p and
vector of radii r. A spatial adjacency matrix A (p) = [aij (p)] induced by a cluster is
given by

aij (p) =

{
1, if pj ∈ B (pi, ri) , j 6= i

0, otherwise.

The spatial adjacency matrix A (p) de�nes a spatially induced graph or net G (p). A
node i ∈ V with a spherical neighborhood de�ne a neighboring graph Ni as

Ni (p) := {j ∈ V : aij (p) > 0} . (2.7)

An α-lattice [96] is a con�guration p satisfying the set of constraints

‖pj − pi‖ = d, ∀j ∈ Ni (p) .

A quasi α-lattice [96] is a con�guration p satisfying the set of inequality constraints

−δ ≤ ‖pj − pi‖ − d ≤ δ, ∀ (i, j) ∈ E (p) .

2.3 Formal de�nition of formation
Now, it is possible to give a formal de�nition of formation [133]:

De�nition 2.3.1 (Formation). A formation is a network of vehicles interconnected
via their controller speci�cations that dictate the relationship each agent must main-
tain with respect to its leader or leaders. The interconnections between agents are
modeled as edges in an acyclic directed graph, labeled by a given relationship.
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Using the robot model presented in (2.5), the relationship between two robots
could be distance and bearing angle or just distance. In the former case, the in-
degree of the follower is one. Whereas in the latter case, the in-degree of the follower
becomes two.

De�nition 2.3.2 (Formation Control Graph). A formation control graph G =

(V , E ,S) is a directed acyclic graph consisting of the following:

• A �nite set V = (v1, . . . , vN) of N vertices and a map assigning to each vertex
vk a control system (4.52).

• An edge set E ⊂ V × V encoding leader-follower relationships between agents.
The ordered pair (vi, vk) := eik belongs to E if uk depends on the state of agent
i, qi.

• A collection S = {sk} of node speci�cations de�ning control objectives, or set
points, for each node k :(vi, vk), (vj, vk) ∈ E and for some vi, vj, vk ∈ V.

Remark 2.3.3. Note that j ≡ i when the relationship between robots i and k is given
by distance and bearing.

Remark 2.3.4. Some examples of control objectives are collision avoidance, or main-
tenance of communication or sensing links. In the �rst case, this objective can be
de�ned by the minimum distance two robots should keep. The second and third cases
can be speci�ed by a maximum distance between robots and a given angular range
to be achieved.

The tails of all incoming edges to a vertex k represent leaders of robot k. Vertices
of in-degree zero represent formation leaders. Leader agents have no incoming edges;
because they regulate their behavior such that the formation may achieve some group
objectives, such as navigation avoiding obstacles or tracking reference paths.

Therefore, the formation control problem can be divided into two parts: graph as-
signment and controller design. The �rst problem consists in designing the formation
control graph G and the speci�cation collection S. The second problem consists in
maintaining the formation described by the pair G and S in the presence of constrains,
obstacles, or limited sensing capabilities.

In this dissertation, we assume that G and S are preassigned and mainly focus on
the second problem.
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Chapter 3

Nonlinear estimation

Many control algorithms rely on the basic design assumption of exact knowledge
of the system model and availability of measurements of every state. For example,
the widely used state feedback control techniques [27, 34, 44, 58, 69]. However, in
real applications, measurements acquired with one or several sensors are noisy and
uncertain and some states are not available. For instance, mobile robots carry sensors
such as wheel encoders, inertial units, accelerometers, gyroscopes, and cameras. The
data of all these sensors should be smoothened and/or fused to estimate the real values
of the system variables using estimation �lters [92, 109, 113, 116]. On the other hand,
observers can be used to estimate unavailable variables [58, 70, 93, 122]. In particular,
output di�erentiators play a central role in the estimation of the derivatives of some
states.

Two of the most well-known estimation tools available nowadays are the extended
Kalman �lter (EKF) [23, 86] and the unscented Kalman �lter (UKF) [65, 66, 140, 141].
The EKF relies on a linearization using a Taylor series expansion of a nonlinear sensor
model. Because the linearization is performed using uncertain states, it can produce
the divergence of the �lter.

The UKF performs the linearization process in the Kalman �lter using the un-
scented transform. The unscented transform is a deterministic sampling approach
that propagates through the true non-linear system a set of chosen sample points to
completely describes the true mean and covariance of a Gaussian random variable.
The propagated points can capture the posterior mean and covariance accurately up
to the 3rd order of a Taylor series expansion. The UKF outperforms the EKF in
nonlinear system applications.

Both �lters, rely on an accurate model description of the system. In the last few
years, two state observers have emerged: the high-gain observer (HGO) [1, 2, 55,
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69, 70, 84], and the high-order sliding mode (HOSM) observer [5, 6, 7, 49, 76, 78,
77]. The advantage of both observers is that they do not need an accurate system
model, because they are particularly appropriate to deal with unmodeled dynamics
and perturbations.

The rest of this Chapter is organized as follows. In Section 3.1, we resume basic
concepts on recursive estimation. In Section 3.2, we review the extended Kalman
algorithm and analyze a simple nonlinear example. In Section 3.3, we describe the
unscented Kalman �lter and compare it with the EKF. In Section 3.5, we study the
performance of high-order observers. In Section 3.6, we survey the high-order sliding
model observer and its use as di�erentiator.

3.1 Optimal recursive estimation
Let the state vector be given by x ∈ Rn, and let the system be described by the
non-linear stochastic di�erence equation

xk+1 = f (xk,uk,vk) ,

yk = h (xk,nk) ,
(3.1)

where xk is the unobserved state of the system, uk ∈ Rm is a known exogenous input,
yk ∈ Rp is the observed measurement signal, vk and nk are process and measurement
noise, respectively. Variables vk and nk are assumed independent, white, and with
Gaussian probability distributions p (v) ∼ N (0,Rv) and p (n) ∼ N (0,Rn).

The goal is to estimate the state xk using observations yk. The optimal estimate
in the minimum mean-squared error (MMSE) sense is given by the conditional mean
[140, 141]

x̂k = E
[
xk

∣∣Yk
0

]
, (3.2)

where Yk
0 is the sequence of observations up to time k. In order to solve equation (3.2)

it is necessary the knowledge of the a posteriori density p
(
xk

∣∣Yk
0

)
. The a posteriori

density can be computed using the Bayesian approach

p
(
xk

∣∣Yk
0

)
=
p
(
xk

∣∣Yk−1
0

)
p (yk |xk )

p
(
yk

∣∣Yk−1
0

) , (3.3)

where
p
(
xk

∣∣Yk−1
0

)
=

∫
p (xk |xk−1 ) p

(
xk−1

∣∣Yk−1
0

)
dxk−1, (3.4)
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and the normalizing constant p
(
yk

∣∣Yk−1
0

)
is given by

p
(
yk

∣∣Yk−1
0

)
=

∫
p
(
xk

∣∣Yk−1
0

)
p (yk |xk ) dxk. (3.5)

Equation (3.3) speci�es the current state density as a function of the previous den-
sity and the most recent measurement data. Knowledge of the initial condition
p (x0 |y0 ) = p(y0|x0 )p(x0|y0 )

p(y0)
determines p

(
xk

∣∣Yk
0

)
for all k. State-transition proba-

bility p (xk |xk−1 ) and measurement probability p (yk |xk ) are speci�ed by the state-
space model (3.1) and the densities p (vk), p (nk). However, the multi-dimensional
integrations given by (3.4) and (3.5) cannot not be computed in closed-form for most
systems. As performed in the particle �lter approach, the integral can be approx-
imated by �nite sums by applying Monte-Carlo sampling techniques. These �nite
sums converge to the true solution in the limit.

Assuming that all densities remain Gaussian, then the Bayesian recursion can be
greatly simpli�ed because only the conditional mean x̂k = E

[
xk

∣∣Yk
0

]
and covariance

Pxk
need to be evaluated. This lead to the recursive estimation

x̂−k = E [f (xk−1,uk−1,vk−1)] , (3.6)
Kk = Pxkyk

P−1
ỹkỹk

, (3.7)
ŷ−k = E [h (xk−1,vk−1)] , (3.8)
x̂k = x̂−k +Kk

(
yk − ŷ−k

)
, (3.9)

Pxk
= P−

xk
−KkPỹk

KT
k , (3.10)

where x̂−k and ŷ−k are optimal predictions xk and yk, respectively, Kk is the optimal
gain term, P−

xk
is the prediction of the covariance of xk and Pỹk

is the covariance of
ỹk, with ỹk = yk − ŷ−k .

3.2 The extended Kalman �lter (EKF)
The extended Kalman �lter (EKF) is an estimation algorithm that uses a predictor-
corrector mechanism to estimate the current state of a system with its nonlinear
model and to correct this estimate using any available sensor measurements. The
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EKF approximates the optimal nonlinear terms in equations (3.6) to (3.10) as

x̂−k ≈ f (x̂k−1,uk−1, v̄) ,

Kk ≈ P̂xkyk
P̂−1

ỹkỹk
,

ŷ−k ≈ h (xk−1,uk−1,vk−1) ,

where noise random variables with distributions p (vk), p (nk) are approximated by
their prior mean v̄ = E [v], n̄ = E [n], respectively. The covariances are computed by
linearizing model (3.1) as follows

xk+1 ≈ Akxk + Gkuk + Bkvk,

yk ≈ Ckxk + Dknk,

where

Ak =
∂f (x,uk, v̄)

∂x

∣∣∣∣
xk

, Gk =
∂f (xk,u, v̄)

∂u

∣∣∣∣
uk

, Bk =
∂f (xk,uk,v)

∂v

∣∣∣∣
v̄

,

Ck =
∂h (x, n̄)

∂x

∣∣∣∣
xk

, and Dk =
∂h (xk,n)

∂n

∣∣∣∣
n̄

.

Algorithm 1 resumes the equations for the EKF.

3.2.1 Simulation example
The following model is used through all the examples in the rest of this Chapter. Let
the system be given by

ẋ1 = x2,

ẋ2 = x3
2 + u, (3.11)

y = x1.

It can be easily proved that the feedback law

u = −x3
2 − x1 − x2, (3.12)

stabilizes system (3.11).
Figures 3.1 and 3.2 show results of state estimation using the EKF for model

(3.11), with additive Gaussian noise on the output p (n) ∼ N (0, 3× 10−6). The
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Algorithm 1 Extended Kalman �lter
1: Initialization.

x̂0 = E [x0] , Px0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]
.

2: for k ∈ N do
3: Time update:

x̂−k = f (x̂k−1,uk−1, v̄) ,

P−
xk

= Ak−1Pxk−1
AT

k−1 + BkRvB
T
k .

4: Measurement update:

Kk = P−
xk

CT
k

(
CkP

−
xk

CT
k + DkRnD

T
k

)−1
,

x̂k = x̂−k +Kk

(
yk − h

(
x̂−k , n̄

))
,

Pxk
= (I−KkCk)P

−
xk
,

5: end for
where Rv is the process noise covariance, Rn is the measurement noise covariance,
and

Ak =
∂f (x,uk, v̄)

∂x

∣∣∣∣
x̂k

, Bk =
∂f

(
x̂−k ,uk,v

)

∂v

∣∣∣∣∣
v̄

,

Ck =
∂h (x, n̄)

∂x

∣∣∣∣
x̂k

, Dk =
∂h

(
x̂−k ,n

)

∂n

∣∣∣∣∣
n̄

.

23



0 2 4 6 8 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

real
estimated

real
estimated

x 1(
t)

u(
t)

time [sec]

x 2(
t)

y(
t)

time [sec]

time [sec]time [sec]

Figure 3.1: State estimation with the EKF.

initial state is given by x0 = [x1 (0) , x2 (0)]T = [0.1, 0]T , the �lter is initialized with
expected initial state x̂0 = E [x0] = [0, 0]T , and state covariance Px0 = diag (1, 1).

Figure 3.1 shows state estimation results for model (3.11) using control law (3.12).
Figure 3.2 shows similar results with the control law

u = −x̂3
2 − x̂1 − x̂2. (3.13)

Both �gures show similar behavior due to the fast convergence of the EKF.

3.3 The unscented Kalman �lter (UKF)
The unscented Kalman �lter (UKF) uses the unscented transform (UT) to capture
the mean and covariance estimates with a minimal set of sample points. It provides
3rd order accuracy of the Taylor series expansion of the Gaussian error distribution
for any non-linear system. For non-Gaussian inputs, approximations are accurate to
at least the 2nd order [65, 66, 140, 141].
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Figure 3.2: State estimation and control with the EKF.
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The UT is a deterministic sampling approach that can be summarized as follows
[141]: Let x ∈ Rn be a n-dimensional random variable with mean x̄ and covariance
Px. The propagation of the random variable x through a nonlinear function y = g (x)

can be approximated by 2n+ 1 weighted points χi ∈ Rn, i = 0, . . . , 2n,

χ0 = x̄,

χi = x̄ +
(√

(n+ κ)Px

)
i
, i = 1, . . . , n,

χi = x̄−
(√

(n+ κ)Px

)
i
, i = n+ 1, . . . , 2n,

Wm
0 =

κ

n+ κ
,

W c
0 =

κ

n+ κ
+ a− α2 + β,

W c
i = Wm

i =
1

2 (n+ κ)
, i = 1, . . . , 2n,

where κ = α2 (n+ λ)−n is a scaling parameter, α determines the spread of the sigma
points around x̄ and is usually set to a small positive value, λ is a scaling parameter
of value 0 or 3− n, β is a parameter used to incorporate any prior knowledge about
the distribution of x (β = 2 is optimal for Gaussian distributions),

(√
(n+ κ)Px

)
i

is the ith column of the matrix square root, and Wi is a weight associated with the
ith point.

The sigma points χi are then propagated through the nonlinear function repre-
senting the system

Yi = g (χi) , i = 0, . . . , 2n,

and the mean and covariance for y are approximated using a weighted sample mean
and covariance of the posterior sigma points,

ȳ ≈
2n∑
i=0

Wm
i Yi,

Py ≈
2n∑
i=0

(Yi − ȳ) (Yi − ȳ)T .

The unscented Kalman �lter is a straightforward extension of the UT to recur-
sive estimation of system (3.1). Algorithm 2 resumes UKF equations for parameter
estimation for process and measurement noise purely additive [141].
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Algorithm 2 Unscented Kalman �lter for state estimation.
1: Initialization.

x̂0 = E [x0] , Px0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]
.

2: for k ∈ N do
3: Compute sigma points:

χk−1 =
[
x̂k−1, x̂k−1 ± γ

√
Pk−1

]
.

4: Time update:

χ∗k|k−1 = f (χk−1,uk−1) ,

x̂−k =
2Nx∑
i=0

Wm
i χ

∗
i,k|k−1 ,

P−
k =

2Nx∑
i=0

W c
i

(
χ∗i,k|k−1 − x̂−k

) (
χ∗i,k|k−1 − x̂−k

)T
+ Rv,

χk|k−1 =

[
x̂−k−1, x̂

−
k−1 ± γ

√
P−

k

]
,

Yk|k−1 = h
(
χk|k−1

)
,

ŷ−k =
2Nx∑
i=0

Wm
i Yi,k|k−1 .

5: Measurement update:

Pỹkỹk
=

2n∑
i=0

W c
i

(Yi,k|k−1 − ŷ−k
) (Yi,k|k−1 − ŷ−k

)T
+ Rn,

Pxkyk
=

2n∑
i=0

W c
i

(Xi,k|k−1 − x̂−k
) (Yi,k|k−1 − ŷ−k

)T
,

Kk = Pxkyk
P−1

ỹkỹk
,

x̂k = x̂−k +Kk

(
yk − ŷ−k

)
,

Pxk
= Pxk−1

−KkPỹkỹk
KT

k ,

6: end for
where n is the dimension of the original state xk, γ =

√
n+ λ, Rv is the process noise

covariance, and Rn is the measurement noise covariance.
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Figure 3.3: State estimation with the UKF.

3.3.1 Simulation example
Figures 3.3 and 3.4 show results of state estimation using the UKF for the model
given by equation (3.11), as was presented in Section 3.2.1.

Figure 3.3 shows state estimation results for model (3.11) using control law (3.12).
As can be seen in �gures 3.1 and 3.3, the estimation results are similar except for
smoother estimates using the UKF.

The smoothing e�ect is more clear in the computation of control law (3.13), as
can be seen comparing �gures 3.2 and 3.4. The smoothing e�ect is due to the better
approximation that the UKF does of the nonlinear system function.

28



0 2 4 6 8 10
-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10
-0.2

-0.15

-0.1

-0.05

0

0.05

x(
2)

real
estimated

real
estimated

x 1(
t)

u(
t)

time [sec]

x 2(
t)

y(
t)

time [sec]

time [sec]time [sec]

Figure 3.4: State estimation and control with the UKF.
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3.4 UKF for parameter estimation
An application of the EKF or UKF is learning a nonlinear mapping. This application
is used in Chapter 4 to obtain leader's velocities. Let the mapping be given by

yk = g (xk,w) ,

where w ∈ Rnw corresponds to a set of unknown parameters. The UKF may be used
to estimate the parameters w by writing a new state-space representation

wk+1 = wk + vk,

yk = g (xk,wk) + nk.
(3.14)

This model (3.14) solves the optimization problem [141]

min
w

J (w) = min
w
E

{
k∑

m=1

[ym − g (xm,w)]T [ym − g (xm,w)]

}
. (3.15)

Algorithm 3 resumes the equations of the UKF for parameter estimation.
In this work, we have chosen the innovation covariance Rv,k in Algorithm 3 as

Rv,k = E
[
vkv

T
k

]
= (λ−1

v − 1)Rw, with λv ∈ (0, 1], to provide an exponentially
decaying weighting term as a forgetting factor to allow adaptation to changes in w.

3.4.1 Simulation example
Let the system be given by

ẋ1 = w1x1 + w2x2,

ẋ2 = x3
2 + u, (3.16)

y = 10x1,

where w = [1.5, 1.0]T represents the vector of unknown parameters. The control
u = −x3

2 − 5x1 − 3x2 stabilizes system (3.16), with the closed loop matrix given by

Acl =

[
1.5 1

−5 −3

]
,

then, the eigenvalues of this system are given by λ1 (Acl) = −0.5 and λ2 (Acl) = −1.
Figures 3.5 and 3.6 show results of parameter estimation using the UKF for
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Algorithm 3 Unscented Kalman �lter for parameter estimation.
1: Initialization.

ŵ0 = E [w] , Pw0 = E
[
(w − ŵ0) (w − ŵ0)

T
]
.

2: for k ∈ N do
3: Time update and sigma points computation:

ŵ−
k = ŵk−1,

P−
wk

= Pwk−1
+ Rv,k−1,

Wk|k−1 =
[
ŵ−

k , ŵ
−
k ± γ

√
P−

wk

]
,

Dk|k−1 = g
(
xk,Wk|k−1

)
,

ŷk = g
(
xk, ŵ

−
k

)
.

4: Measurement update:

Pỹkỹk
=

2nw∑
i=0

W c
i

(Di,k|k−1 − ŷk

) (Di,k|k−1 − ŷk

)T
+ Rn,k,

Pwkyk
=

2nw∑
i=0

W c
i

(Wi,k|k−1 − ŵ−
k

) (Di,k|k−1 − ŷk

)T
,

Kk = Pwkyk
P−1

ỹkỹk
,

ŵk = ŵ−
k +Kk (yk − ŷk) ,

Pwk
= P−

wk
−KkPỹkỹk

KT
k ,

5: end for
where nw is the dimension of parameter space, γ =

√
nw + λ, Rv is the process noise

covariance, and Rn is the measurement noise covariance.
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Figure 3.5: Parameter estimation with the UKF.

model (3.16). The �lter is initialized with expected parameter values ŵ0 = E [w0] =

[0.1, 0.1]T , and parameter covariance Pw0 = diag (50, 50).
Figures 3.5 shows that the parameters converge to true values with a noiseless

output signal. Figure 3.6 shows the results of estimating parameters when the output
is corrupted by additive Gaussian noise p (n) ∼ N (0, 3× 10−6). As can be seen,
the parameters exhibit polarization, converging to the values w1 (∞) = 1.4083 and
w2 (∞) = 0.9318. This characteristic is typical in system without enough input
richness.

3.5 High-gain observers (HGO)
In the last years, the combination between high-gain observers and globally bounded
state feedback control has gained the attention of many researchers [2, 55, 69, 70, 84].
This interest is due to robustness properties exhibited by the observer to uncertainties,
unmodeled sensor and actuator dynamics, and to the ability of the observer-controller
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Figure 3.6: Parameter estimation with the UKF and noisy output.
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pair to recover the state feedback controller performance when the gain of the observer
is high enough.

An additional advantage of high-gain observers is the possibility of using the
separation principle to design controllers for a class of nonlinear systems [2, 62]. The
separation principle means that a controller and an observer can be designed in two
steps:

• Design of a globally bounded state feedback controller based on the state vari-
able x that stabilizes the system and meets given speci�cations.

• Development of an output feedback controller by replacing the state x by its
estimate x̂.

The combined observer-controller output feedback preserve the main features of the
controller with the full state available, in spite of the non-correctness of high-gain
observers with any �xed �nite gain values.

One of the main drawbacks of high-gain observers is that they extend the band-
width of the control design to unmodeled fast dynamics. The extended bandwidth
does not present a problem for the actuator and sensor dynamics, preventing that
their dynamics are su�ciently fast relative to the dynamics of the nominal closed-loop
system [84, 70]. However, it is a problem when the observer estimates derivatives of
noisy signals.

In the following, we resume an example from [69] to show some properties of the
design of output feedback controllers using high-gain observers.

Let a second order nonlinear system have the form

ẋ1 = x2,

ẋ2 = φ (x, u) , (3.17)
y = x1.

Let u = γ (x, y) be a locally Lipschitz state feedback control law that stabilizes the
origin x = 0.

Let the high-gain observer be de�ned using only measurements of the output y

˙̂x1 = x̂2 +
α1

ε
(y − x̂1) ,

˙̂x2 = φ0 (x̂, u) +
α1

ε2
(y − x̂1) , (3.18)

u = γ (x̂, y) ,
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where φ0 (x, u) nominal model of the nonlinear function φ (x, u).
To satisfy the conditions of the separation principle in [2], the state feedback

control and the observer must ful�ll the following assumptions [70]:

Assumption 3.5.1. γ (0, 0) = 0, γ (x, y) is a twice-continuously di�erentiable function
over the domain of interest and a globally bounded function of x, and the origin
(x = 0) is an exponentially stable equilibrium point of the closed-loop system

ẋi = xi+1, 1 ≤ i ≤ r − 1,

ẋr = φ (x, γ (x, y)) ,

where r is the relative degree of the system.

Assumption 3.5.2. φ0 (0, 0) = 0, φ0 (x, u) is a twice-continuously di�erentiable func-
tion over the domain of interest and a globally bounded function of x, ε is a positive
constant, and α1 to αr are positive constants chosen such that the roots of

sr + α1s
r−1 + . . .+ αr−1s+ αr = 0

have negative real parts.

It follows from the separation principle that, for su�ciently small ε, the output
feedback controller stabilizes the origin of the closed-loop system and recovers the
performance of the state feedback controller in the sense that the trajectories of x
under output feedback approach those under state feedback as ε tends to zero.

Let the estimation error be given by

x̃ =

[
x̃1

x̃2

]
=

[
x1 − x̂1

x2 − x̂2

]
,

then the error dynamics are

˙̃x1 =− h1x̃1 + x̃2

˙̃x2 =− h2x̃1 + δ (x, x̃)

with δ (x, x̃) = φ (x, γ (x̂))− φ0 (x̂, γ (x̂)). Let the scaled estimation errors be de�ned
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as

η1 =
x̃1

ε
,

η2 = x̃2.

Using the scaled estimation errors, we can de�ne the singularly perturbed system

εη̇1 = −α1η1 + η2,

εη̇2 = −α2η1 + εδ (x, x̃) .
(3.19)

In (3.19), note that small values of ε reduce the e�ects of the error model δ (·),
make η much faster than x, and produce peaking phenomenon given by a response of
the form

1

ε
exp

(
−αt
ε

)
.

This peaking phenomenon can be avoided by saturating the control input

u = sat (γ (x)) .

Finally, the stability analysis is performed over the complete system

ẋ1 = x2,

ẋ2 = φ (x, γ (x̂)) ,

εη̇1 = −α1η1 + η2,

εη̇2 = −α2η1 + εδ (x, x̃) .

Due to the separation principle, the stability analysis can be performed into two parts:

• The stability analysis of the slow motion system (x1, x2), with ε = 0, using an
appropriate Lyapunov function V (x).

• The stability analysis of the fast motion system εη̇ = A0η, withA0 =

[
−α1 1

−α2 0

]
,

using the Lyapunov function W (η) = ηTP0η, with P0 satisfying

P0A0 + AT
0 P0 = −I4.
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3.5.1 Simulation example
Let us consider the nonlinear system system (3.11) and the high-gain observer

˙̂x1 = x̂2 +
2

ε
(y − ŷ) ,

˙̂x2 =
1

ε2
(y − x̂1) ,

ŷ = x̂1.

Figure 3.7 shows simulation results using control law (3.12) and di�erent values
of gain ε. As can be seen, smaller values of ε increase the convergence rate and the
overshoot. This e�ect is clearly noticed in Figure 3.8. The plot at the top right corner
shows that the control input increases signi�cantly when ε decreases. Despite their
short time duration, these large values of the control input may cause closed-loop
instability.

Figure 3.9 shows same results for the case of input saturation

u = sat
(−x̂3

2 − x̂1 − x̂2

)
,

as can be seen, the performance has been improved signi�cantly.
Figure 3.10 shows results with saturated inputs and noise. Because the HGO

increases control bandwidth, the results are notoriously degraded.

3.6 Higher-order sliding mode (HOSM) observers
Sliding mode control has been a key approach to solve problems under heavy uncer-
tainty conditions [70, 121, 135, 136]. To solve these problems, the sliding mode ap-
proach keeps a properly chosen constraint by means of high-frequency control switch-
ing. The main features of the sliding mode approach are insensitivity to external and
internal disturbances, ultimate accuracy and �nite-time transient. Notwithstanding,
the sliding has some restrictions: If the sliding mode surface, or constraint, is de�ned
by an equality s = 0, where s is a system output described by a smooth function,
the standard sliding mode may be implemented only if the relative degree of s is
1. Moreover, high frequency control switching leads to the so-called chattering e�ect
which can be dangerous in real applications.

In recent years, a new generation of controllers based on higher-order sliding-
mode (HOSM) theory has been developed [5, 6, 7, 30, 49, 76, 78]. HOSM generalizes
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Figure 3.7: HGO with exact control law.
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Figure 3.8: HGO behavior with unsaturated inputs.
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Figure 3.9: HGO behavior with saturated inputs.
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Figure 3.10: HGO behavior with saturated inputs and noise.

41



the basic sliding mode idea, acting on higher order time derivatives of the system
deviation from the sliding surface instead of a�ecting the �rst deviation derivative,
as standard sliding modes do.

The rth order sliding mode is determined by the equalities

s = ṡ = s̈ = . . . = s(r−1) = 0,

where s, ṡ, s̈, . . ., s(r−1) are continuous functions. In fact, the sliding mode motions
also satisfy the equality s(r) = 0, but as a result of some averaging process.

In particular, HOSM theory has been applied to solve the di�erentiation problem
in [75, 76]. The problem can be stated as follows: Let input signal f (t) be a function
de�ned on [0,∞) consisting of a bounded Lebesgue-measurable noise with unknown
features and an unknown base signal f0 (t) with the nth derivative having a known
Lipschitz constant L > 0. The problem is to �nd real-time robust estimations of
ḟ0 (t), f̈0 (t), . . ., f (n)

0 (t) which should be exact in the absence of measurement noises.
The di�erentiator based on HOSM designed in [76] can be resumed as

ż0 = v0, v0 = −λ0 |z0 − f (t)|n/(n+1) sign (z0 − f (t)) + z1,

ż1 = v1, v1 = −λ1 |z1 − v0|(n−1)/n sign (z1 − v0) + z2,

... (3.20)
żn−1 = vn−1, vn−1 = −λn−1 |zn−1 − vn−2|1/2 sign (zn−1 − vn−2) + zn,

żn = −λn sign (zn − vn−1) .

The main properties of this di�erentiator are summarized by the following two
theorems and a lemma.

Theorem 3.6.1 ([76]). Given di�erentiator (3.20). If the parameters are properly
chosen, then the following equalities are true in the absence of input noises after a
�nite transient process

z0 = f0 (t) ,

zi = f
(i)
0 (t) , i = 1, . . . , n.

Theorem 3.6.2 ([76]). Let input noise satisfy the inequality |f (t)− f0 (t)| ≤ ε.
Then the following inequalities are established in �nite time for some positive con-
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stants µi, νi depending on the parameters of the di�erentiator
∣∣∣zi − f

(i)
0 (t)

∣∣∣ ≤ µiε
(n−i+1)/(n+1) , i = 0, . . . , n,

∣∣∣vi − f
(i+1)
0 (t)

∣∣∣ = νiε
(n−i)/(n+1) , i = 0, . . . , n− 1.

Lemma 3.6.3 ([94]). Consider the observer (3.20). If
∣∣f (n+1) (t)

∣∣ ≤ kn+1, for all
t <∞, with kn+1 ∈ R≥0, Then the observed variables zi, i = 1, . . . , n, cannot diverge
in �nite time.

There are two main di�erences between observers (3.18) and (3.20): The �rst
di�erence is the �nite-time convergence property of the HOSM observer, in contrast
to the asymptotic convergence property of the HGO observer. This property implies
that the separation principle is no longer necessary. The second di�erence is the
boundedness of the control law. The HOSM observer is bounded by design. However,
the input of the HGO observer might be saturated to avoid peaking phenomenon. It
should be noticed that the only requirements for the implementation of the HOSM
di�erentiator is the boundedness of some higher-order derivative of its input.

3.6.1 Simulation example
Let us consider the nonlinear system system (3.11) and the HOSM (3.20). Figures 3.11
to 3.14 show simulation results with the HOSM. Figure 3.11 shows simulation results
using control law (3.12), and the HOSM observer

˙̂x1 = v1, v1 = x̂2 − λ0 |x̂1 − y|1/2 sign (x̂1 − y) ,

˙̂x2 = −λ1 sign (x̂2 − v1) , (3.21)
ŷ = x̂1

with λ0 = 2.8 and λ1 = 0.75. There exist a tradeo� between convergence and
sensitivity to input noise: the larger the parameters, the faster the convergence and
the higher the sensitivity to input noise and sampling step.

As can be seen in Figure 3.11, the estimated derivative of the output x̂2 presents a
notorious chattering e�ect. This e�ect is smoothened in its integral value x̂1. Conse-
quently, an option to deal with the chattering problem is to computed a higher order
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Figure 3.11: Simulation results with a �rst order HOSM.
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derivative using observer (3.20), that is

˙̂x1 = v1, v1 = −λ0 |x̂1 − y|2/3 sign (x̂1 − y) + x̂1,

˙̂x2 = v2, v2 = −λ1 |x̂2 − v1|1/2 sign (x̂2 − v1) + x̂2, (3.22)
˙̂x3 = −λ3 sign (x̂3 − v2) .

Figure 3.12 shows the results of this di�erentiator with λ0 = 7.5, λ2 = 5.0, and
λ3 = 1.5. Clearly, this version outperforms the previous one.

Figure 3.13 shows results of HOSM (3.22) with measurement noise on the out-
put. As can be seen, the results are similar to the EKF but without using a priori
information about the system.

Figure 3.14 shows results with the control law (3.13), the results are quite satis-
factory.
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Figure 3.12: Simulation results with a second order HOSM.
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Figure 3.13: Simulation results with a second order HOSM and measurement noise.
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Figure 3.14: Closed-loop simulation results with a second order HOSM.

48



Part II

Main Contributions

49



Chapter 4

Mobile robot vision

Localization in mobile robot formations has drawn the attention of many researchers
during the last few years. Traditionally, the control system design relies on measure-
ments from dead reckoning sensors. However, these measurements are completely
unreliable after few meters of navigation due to encoder's low accuracy and drift.

Due to reduced cost and �exibility, the current trend is the design of systems using
a single or a pair of cameras to determine the relative position of a robot with respect
to another robot or object [15, 24, 39, 42, 53, 74, 83, 87]. For example, cameras
can recognize and distinguish between objects of similar shapes, types, and colors, a
task impossible to perform with range or acoustic sensors. Nonetheless, vision-based
control poses new particular challenges. For instance, the controller has to be robust
to camera calibration errors, nonlinearities arising from camera models, and intrinsic
ambiguities of vision sensors.

Localization in mobile robot formations using machine vision is part of what is
known as the visual target tracking problem. This tracking can be realized with a
�xed camera or with a mobile camera. The visual target tracking problem can be
divided into two main components: target detection, or target segmentation, and pose
(distance and orientation) estimation [53].

There are several approaches for target detection in the literature. For example,
in [83], the author presents a method that consists in extracting distinctive features
invariant to image scale and rotation. The recognition process is divided in three
steps: The �rst step is a matching process between individual features and a feature
database of known objects using a fast nearest-neighbor algorithm. The second step
identi�es clusters belonging to a single object through the computation of the Hough
transform. Finally, the third step veri�es consistency of pose parameters using a
least-squares solution. In [117], the method presented in the previous paper is used
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for global localization using landmarks. An alternative approach that uses feature
points is the well-known and very robust SIFT algorithm [83, 87]. This method is
invariant to scale, robust to noise and occlusions, but very computationally intensive.
It takes around 3s to compute features with a Pentium IV, making it inadequate for
online applications.

To cope with this problem, robust target detection is often achieved through the
use of arti�cial �ducial markers. Methods using markers are referred as model-based
pose estimation methods, as classi�ed in [57]. In practice, three-dimensional positions
of features points on the object are measured a priori and stored in a database. Then,
the online detection problem consists in detecting and relating image points with the
a priori selected features in order to compute the pose of the object.

The problem of pose estimation using �ducial markers has been mainly addressed
by tangible augmented reality system applications [24, 29, 67]. The goal of these
methods is to combine virtual 3D representations with the real world for active in-
teraction. In these systems, markers are distributed around a synthetic environment
to help localize and relate the virtual camera position with the real position in the
world. In [42], the author presents a vision-based system for controlling multiple
robot platforms in real time using planar markers and a top-view video camera for
on-line pose estimation. In [16, 17, 38], the authors develop a monocular-camera-
based visual servo tracking controller for a mobile robot subject to nonholonomic
motion constraints. The algorithm de�nes a desired trajectory for the vehicle with a
sequence of prerecorded images of three target points. In [53], the authors present a
visual tracking scheme that detects the target contour using a shape adaptive sum-
of-squared di�erence algorithm. The target velocity is decomposed into a component
caused by the target motion and a component caused by the camera motion. The lat-
ter component is computed using the image Jacobian, allowing an accurate estimation
of the target position in the following image.

There exist few applications of machine vision to the formation control problem.
In [22, 114], follower robots estimate position and orientation of their leaders using a
color-tracking algorithm using o�-the-shelf cameras. Each robot is equipped with a
color pattern consisting of a central purple rectangle and two lateral green rectangles.
The central rectangle provides an estimate of the distance based on measured and real
heights. The di�erence between the perceived heights of the lateral rectangles provides
an estimate of the orientation of the pattern with respect to the observing robot.
This algorithm is not robust to noise or pixel vibrations. In [27, 28], an on-board
catadioptric camera system is used. The omni-directional images obtained are used
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to input data to state observers. In [26, 138, 139], the authors use segmentation from
multiple central views to keep track of which pixels correspond to each leader from
pictures taken with omni-directional cameras. Pose estimation of each leader in the
image plane of the follower is performed by rank constraint on the central panoramic
optical �ow across multiple frames. It is well-know the massive computational power
requirements of this technique. In [88, 89], the authors present an algorithm for
�ocking based on the measurement of time-to-collision and optical �ow each robot
does. In these works there is no stability analysis including the e�ects of measurement
errors and robust methods for image interpretation.

This Chapter presents a vision-based framework for mobile robot detection and
tracking using o�-the-shelf cameras mounted on mobile robots. Target detection
and pose estimation are performed from single frames using �ducial markers as key
elements. The method consists in distributing an octagon shaped structure on the
back part of each robot. These shapes are easy to extract from the images and
posses unique ID codes to facilitate pose estimation. Three pose estimation methods
are programmed and compared: the PRA algorithm [98], Lowe's algorithm [82, 15],
and a modi�ed POSIT algorithm [31, 95]. Finally, a dual Unscented Kalman �lter
(DUKF) is implemented to smooth measured data and estimate unknown leader's
velocities.

The rest of the Chapter is organized as follows: Section 4.1 summarizes the visual
system and the pose estimation problem. Section 4.2 presents the ID detection ap-
proach. Section 4.3 describes our pose estimation algorithm. Section 4.4 reviews the
leader-follower model and the dual unscented Kalman �lter. Section 4.5 shows sim-
ulation results for the di�erent steps involved in this framework. Finally, we present
our concluding remarks and future work in Section 4.6.

4.1 System overview
The visual tracking problem is divided in target detection and pose estimation. Target
detection is related to image processing, whereas pose estimation is related to vision
and nonlinear �ltering.

The detection process is the most time consuming, but it can be simpli�ed by using
�ducial markers. In our vision system, MRVision for mobile robot vision1, markers are
distributed on the back part of each robot on a truncated octagon shaped structure,
as can be seen in Figure 4.1. Each face of this shape has a code that not only identi�es

1http://orqueda.net/research.aspx
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the face, but also its position on the robot, as it is explained in the next Section. The
ink patter is black and white to reduce lighting and camera sensitivity requirements.

Figure 4.1: Scheme of the TXT platform in MPSLab.

The vision library consists of synthetic and real cameras and depends on the vision
library OpenCV [11] and on MPSLab, a motion planning, simulation, and virtual
perception library for simulating systems in 3D environments [99, 100]. Synthetic
cameras are used for tuning and testing purposes, see Figure 4.2, and real cameras are
used with a PC104 for the on-board image capture and processing system. Currently,
Firewire IEEE-1394 and USB 2.0 cameras are supported, in particular, Unibrain's
Fire-I, Point Grey's Bumblebee, and Logitech 3000 cameras, see Figure 4.3.

Figure 4.2: Synthetic camera screen shot.

Vision processing can be divided in the tasks resumed in the �ow chart of Fig-
ure 4.4:

53



Figure 4.3: Logitech 3000 USB camera (bottom-left), PointGrey's Bumblebee (top),
and Unibrain's Fire-I (bottom-right) FireWire IEEE-1394 cameras.

1. Video capture and transformation: Images from several sources with di�erent
formats (YUV, RGB, etc.) are transformed into OpenCV's IplImage RGB
format.

2. Filtering and thresholding: The IplImage image is converted to grayscale. Then,
a thresholding based on a modi�ed Otsu method is performed on the grayscale
image.

3. Point selection/face labeling: A search and identi�cation of each face marker in
the binary image is performed. First, all the contours on the binary image are
extracted. Second, angular changes in each contour close to 90◦ are computed to
determine the square enclosing each marker. After estimating the four corners
of each square, a search for markers is performed. If a valid marker is found,
the corresponding four corners are stored to be used for pose estimation.

4. Pose estimation: Using the algorithms presented in Section 4.3, the position of
the leader robot with respect to the camera position (xc, yc, zc) and the relative
rotation of the leader robot with respect to the camera plane θm are computed,
see �gures 2.2 and 4.5 for the de�nition of the variables.

5. Transformation: The desired values are computed using (xc, yc, zc), θm, and
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the value of the camera pan θp, as

`ij =
√
x2

c + y2
c + z2

c , (4.1)

θt = arctan

(−xc

zc

)
, (4.2)

α12 = θt − θm, (4.3)
θ12 = θp + θm. (4.4)

Labels/points

Video
capture

Filtering/ 
thresholding

Color image

Point selection/ 
face labeling

Binary image

Pose estimation

( ) mccc ZYX θ,,,

ijijij βα ,,�

Transformation

Figure 4.4: Vision processing �ow chart.
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4.2 Marker and ID detection
The steps involved in marker and ID detection processes are:

1. Image capturing.

2. Grayscale conversion.

3. Thresholding.

4. Contour extraction and selection.

5. ID recognition.

Figure 4.6 shows steps 1 to 5 applied to a synthetic image. In the following, we will
resume the main characteristics of these steps.

4.2.1 Image capture
Image capture is performed using standard drivers. MRVision is programmed in C++
and works on Linux and Windows platforms. It can capture images from synthetic
cameras, Firewire IEEE-1394 and USB 2.0 compatible cameras. After capture, the
image is converted to OpenCV's IplImage format [11].

4.2.2 Grayscale conversion
Grayscale conversion is necessary to reduce the amount of data. This conversion is
performed by simply extracting the green channel of the original color image. The use
of just one channel is justi�ed by the low-level of information loss. In Figure 4.7, it can
be seen a comparison of di�erent methods of grayscale conversion. Figure 4.7a shows
the color image, Figure 4.7b, c, and d, show the red, green, blue channel images
respectively. As can be seen, the blue channel image loss the most information.
Figure 4.7e if the mean value image. This image does not justify the computational
burden.

4.2.3 Thresholding: The Otsu method
Thresholding, or bilevel thresholding, segments an image into two brightness regions:
background and object. That is, for a gray level image I (x, y), with m gray levels
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Figure 4.6: Processing sequence of the octagon shape.
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(b) (c)

(a)

(d) (e)

Figure 4.7: Grayscale conversion. (a) Color image, (b) red channel, (c) green channel,
(d) blue channel, and (e) mean value image.
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0, 1, . . . ,m−1, bilevel thresholding is to transform I (x, y) into a binary image Ib (x, y)

by a threshold j, 0 ≤ t ≤ m− 1, such that

Ib (x, y) =

{
0, if I (x, y) ≤ t,

1, if I (x, y) > t.

Traditionally, a �xed thresholding value is used. However, in our application,
lighting variations, di�erent camera properties and environmental conditions make
the selection of this value very di�cult. For this reason, we use a modi�ed version
of the method due to Otsu [21, 56, 107]. This method formulates the threshold
selection problem as a discriminant analysis. The method divides the gray level
image histogram in two groups, A and B, then selects the threshold as the point of
maximum variance between both groups.

Let ni be the number of pixels with a gray level value i and n =
∑m−1

i=0 ni be
the total number of pixels in the image I (x, y). Let Pi = ni

n
be the probability of

occurrence of grey-level i. Let ω1 (j), M1 (j), ω2 (j), M2 (j) be the number of pixels
and the average gray level value in group A and group B, respectively. Then

ω1 (j) =

j∑
i=0

ni, M1 (j) =

∑j
i=0 i · ni

ω1 (j)
,

ω2 (j) =
m−1∑

i=j+1

ni, M2 (j) =

∑m−1
i=j+1 i · ni

ω2 (j)
,

Expressing the average gray level value MT of all pixels in image f (x, y) as

MT =
ω1 (j)M1 (j) + ω2 (j)M2 (j)

ω1 (j) + ω2 (j)
,

the variance between the two groups, denoted as σ2
B (j), is

σ2
B (j) = ω1 (j) [M1 (j)−MT ]2 + ω2 (j) [M2 (j)−MT ]2

=
ω1 (j)ω2 (j) [M1 (j)−M2 (j)]2

ω1 (j) + ω2 (j)
.

The optimal threshold t = t∗ is the value j for which σ2
B (j) is maximum.

The modi�cation of Otsu's method presented in this work consists in dividing the
image in 9 disjoint and 4 overlapped regions. A threshold value is computed for each
region using the Otsu algorithm. Then, the values used are the average threshold
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values of disjoint and overlapped regions.

4.2.4 Contour extraction and selection
Contour extraction from the binary image is performed using the OpenCV imple-
mentation of Suzuki and Abe's method [123]. This method generates a collection of
external contours. Then, just the contours with four strong corners are selected. The
corners are chosen by exploring changes in the derivative of a given contour. When
this change in the derivative is big enough, the point is classi�ed as strong corner
point.

4.2.5 ID recognition
ID recognition is based on an unique code printed on each face of the octagon shape
on the back part of the robot. After having the squares computed with the previous
contour extraction and selection method, the next step is to determine which contours
are related to valid robot codes. To perform this task, �rst a training step creates
a database with square markers of m × n cells, and assigns an ID number to each
marker. This ID number is computed by a binary string whose position number is 1

if the square is �lled and 0 otherwise, as shown in Figure 4.8 for m = 4 and n = 5.

43210 2021202021 ⋅+⋅+⋅+⋅+⋅

98765 2120212021 ⋅+⋅+⋅+⋅+⋅+

1413121110 2020212121 ⋅+⋅+⋅+⋅+⋅+

1918171615 2120212020 ⋅+⋅+⋅+⋅+⋅+

663209=

Figure 4.8: Fiducial marker ID computation.

Second, the identi�cation step consists in recovering each face's ID from the per-
spective transformed image. To explain the method developed in this work, we intro-
duce some basic concepts on Projective Geometry in Appendix A.

To compute the ID we use the cross ratio, an invariant to a projective transfor-
mation [39, 47]. The cross ratio is de�ned as
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Cr (p1, p2; p3, p4) =
d13d24

d14d23

,

where dij is the Euclidean distance between two points pi = [xi
1, x

i
2, x

i
3]

T and pj =[
xj

1, x
j
2, x

j
3

]T , given by

dij =

√√√√
(
xi

1

xi
3

− xj
1

xj
3

)2

+

(
xi

2

xi
3

− xj
2

xj
3

)2

.

Therefore, if qi, i = 1, . . . , 4, denote the projective transformed points pi, i = 1, . . . , 4,
then

Cr (p1, p2; p3, p4) = Cr (q1, q2; q3, q4) .

Using the previous contour analysis, we obtain points qNW , qSW , qNE, and qSE,
see Figure 4.9. The point qc is given by the intersection of the segments sNW,SE =

(qNW , qSE) and sSE,NE = (qSW , qNE), then

qc = (qNW × qSE)× (qSW × qNE) . (4.5)

Points v1 and v2 are called vanishing points, they could be at in�nity and are given
by

v1 = (qSE × qSW )× (qNE × qNW ) ,

v2 = (qNE × qSE)× (qNW × qSW ) .

Transformed points qW , qE, qN , and qS are given by

qW = (qNW × qSW )× (v1 × qc) , (4.6)
qE = (qNE × qSE)× (v1 × qc) , (4.7)
qN = (qNW × qNE)× (v2 × qc) , (4.8)
qS = (qSW × qSE)× (v2 × qc) . (4.9)

Due to the invariability of the cross ratio, a point p = (α, β) belonging to the
�ducial marker on the original space can be univocally mapped into the point q =

(αS, βS) on the collineated space, see Figure 4.9. Let the following invariants be
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Figure 4.9: Projective transformation.

de�ned as

ρα =
1

Cr (pNW , α; pN , pNE)
=

1

Cr (qNW , α; qN , qNE)
=

2 |α|
1 + |α| , (4.10)

ρβ =
1

Cr (pNW , β; pW , pSW )
=

1

Cr (qNW , β; qW , qSW )
=

2 |β|
1 + |β| , (4.11)

where α and β are de�ned with the generation of the ID. Then, the displacement αN ,
αS, βW , and βE from qN , qS, qW , and qE, respectively, can be computed as

αN =

{
dNW,Nρα

dNW,NE−dN,NEρα
, if α ≥ 0,

dN,NEρα

dNW,NE−dNW,Nρα
, if α < 0,

(4.12)

αS =

{
dSW,Sρα

dSW,SE−dS,SEρα
, if α ≥ 0,

dS,SEρα

dSW,SE−dSW,Sρα
, if α < 0,

(4.13)

βW =

{
dNW,W ρβ

dNW,SW−dW,SW ρβ
, if β ≥ 0,

dW,SW ρβ

dNW,SW−dNW,W ρβ
, if β < 0,

(4.14)

βE =

{
dNE,Eρβ

dNE,SE−dE,SEρβ
, if β ≥ 0,

dE,SEρβ

dNE,SE−dNE,Eρβ
, if β < 0.

(4.15)

Finally, any position on the transformed space q is found as intersection of the seg-
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ments sα = (qαN
, qαS

) and sβ = (qβw , qβE
) as

q = (qαN
× qαS

)× (qβW
× qβE

) . (4.16)

In summary, the identi�cation step transforms the center point of each square
region using (4.16) to the collineated space and detect if the square is �lled. Then, the
�ducial marker is obtained using the on-line recovered ID and the database previously
created.

To increase the robustness of the method, several modi�cations have been per-
formed:

• The vertical size of the square is bigger than the horizontal to take into account
lower vertical camera resolutions.

• In the classi�cation of a region as �lled, average or Gaussian �lters are applied
to avoid false readings due to noise.

• The IDs in the database have Hamming distances2 greater or equal than dmin

(dmin = 6 in our application). Then, the marker is classi�ed with a given ID in
the database when its Hamming distance is less than dmin /2 .

4.3 Pose estimation
Pose estimation refers to the issue of obtaining relative position and orientation be-
tween two or more mobile robots using a camera. This Section reviews the camera
models and resumes the key points of the pose estimation methods used in this work.

4.3.1 Camera model
The cameras used in this work are modeled with the well-know pinhole camera model.
This model can be viewed as a box with a hole, or aperture, on one of its sides. This
aperture allows light to enter into the box and re�ect on the opposite side of the box,
where light intensity can be measured, Figure 4.10 shows an schematic representation
[47].

Let pi = [xi, yi, zi, 1]T and cpi = [ cxi,
cyi,

czi, 1]T denote the homogeneous coordi-
nate vectors of a point pi in the world coordinate and the camera systems, respectively.

2The Hamming distance is de�ned as the number of bits which di�er between two binary strings.
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Let the coordinate transformation T between points pi and cpi be given by a rotation
R and a translation t, then

cpi = T pi. (4.17)

where T = [R, t]. The parameters of matrix R and vector t are known as extrinsic
parameters.

Using the pinhole camera model, the homogeneous image coordinate vector mi =

[ui, vi, 1]T of point pi is given by

ui = α
cxi

czi

− α cot θs

cyi

czi

+ u0, vi = − β

sin θs

cyi

czi

+ v0, (4.18)

where θs is the skew angle, α = kf , β = `f are magni�cation parameters, f is the
focal length, and k, ` are scale parameters. Note that k = ` = 1, and θs = 90◦ in an
ideal camera. These parameters are known as intrinsic parameters. From (4.18) and
(4.17), the projection of point pi on the image is given by

mi =
1
czi

Mpi, (4.19)

where M = K
[
R t

]
and K denotes the intrinsic matrix transformation given by

K =



α α cot θs u0

0 − β
sin θs

v0

0 0 1


 . (4.20)

f

Zc

XcYc

V

U

pi = (xi, yi, zi)

mi = (ui, vi)

C

Figure 4.10: Pinhole camera model.

65



The extrinsic matrix transformation can be represented in various forms. The
most common ones are Euler angles, quaternions, and exponential maps [91]. In this
work, we have chosen the exponential map representation; because it only requires
three parameters to describe a rotation R and other three parameters to describe a
translation t.

Let ω = [ωx, ωy, ωz]
T be the rotation axis unity vector, and θ the rotation angle.

Then the rotation matrix can be represented by

R (Ω) = exp (Ωθ) , (4.21)

where Ω is the skew-symmetric matrix

Ω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωz 0


 . (4.22)

Equation (4.21) can be evaluated using Rodrigues' formula [91]

R (Ω) = exp (Ωθ) = I + Ω
sin θ

θ
+ Ω2 (1− cos θ)

θ2
. (4.23)

Therefore, because Euler's theorem says that any orientation R ∈ SO (3) is equiv-
alent to a rotation about a �xed axis ω ∈ R3 through an angle θ ∈ [0, 2π), a given
a rotation matrix can be evaluated by an exponential map. Let R be such rotation
matrix

R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 ,

then
θ = cos−1

(
trace (R)− 1

2

)
.

If R 6= I, then

ω =
1

2 sin θ



r32 − r23

r13 − r31

r21 − r12


 .

If R = I, then θ = 0 and ω can be chosen arbitrarily.
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4.3.2 OpenGL camera model
The main advantage of using a synthetic camera is the possibility of having its in-
ternal parameters perfectly known. OpenGL performs several transformations before
drawing a point on the screen. This Section describes these transformations and
obtains a synthetic intrinsic matrix transformation KOGL.

Let cpi = [ cxi,
cyi,

czi, 1]T denote the homogeneous coordinate vector of a point
pi in the camera system. Let the projection matrix P be de�ned as

P =




2dn

dr−d`
0 dr+d`

dr−d`
0

0 2dn

dt−db

dt+db

dt−db
0

0 0 −df+dn

df−dn
− 2df dn

df−dn

0 0 −1 0



,

where dn, df , d`, dr, dt, and db are the parameters of the OpenGL camera frustum
shown in Figure 4.11 [119]. In this work, we use dr = −d` = w

2
, dt = −db = h

2
, where

w and h are the image width and height, respectively.

)( ndnear

)( fdfar

)( tdtop

)( rdright

)( bdbottom

)(
�

dleft

Figure 4.11: OpenGL camera frustum [119].

Applying the projection matrix to the point in eye coordinates, we obtain the
point expressed in clip coordinates




exi

eyi

ezi

ewi




= P




cxi

cyi

czi

1.0



, (4.24)
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Points in clip coordinates are transformed to normalized device coordinates by



dxi

dyi

dzi


 =




1 / ewi 0 0

0 1 / ewi 0

0 0 1 / ewi







exi

eyi

ezi


 . (4.25)

Finally, points in normalized device coordinates are transformed to windows or image
coordinates using



ui

vi

zi


 =

1

2



w 0 0

0 h 0

0 0 1







dxi

dyi

dzi


 +

1

2



w

h

1


 . (4.26)

Using (4.24), (4.25), (4.26) the OpenGL intrinsic matrix transformation KOGL is given
by

KOGL =




dnw
dr−d`

0 d`w
dr−d`

0

0 dnh
dt−db

dbh
dt−db

0

0 0 − df

df−dn
− df dn

df−dn


 .

Therefore, by simple comparison with (4.20), we can obtain the intrinsic parameters

θ =
π

2
, α =

dnw

dr − d`

, β = − dnh

dt − db

,

u0 =
d`w

dr − d`

, v0 =
dbh

dt − db

.

4.3.3 Pose estimation algorithms
This section summarizes and compares three model-based pose estimation algorithms
from single images:

1. Pose from orthography and scaling with iteration (POSIT) algorithm.

2. Projection ray attraction (PRA) method.

3. Lowe's method.

4.3.3.1 Pose from orthography and scaling with iteration
(POSIT) method

POSIT algorithm assumes that at least four feature points on the object can be de-
tected and matched in the image. Moreover, as every model-based pose estimation
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algorithm, assumes that the geometry of the object is known [31, 32, 95]. The method
is an iterated version of POS (pose from orthography and scaling), which approxi-
mates a perspective projection with a scaled orthographic projection and then �nds
the transformation matrix of the object by solving a set of linear equations.

The algorithm computes point projections on a plane passing through the origin
of the object, as shown in Figure 4.12. Let cpi = [ cxi,

cyi,
czi]

T , i = 1, . . . , N , be
points in the camera coordinate frame. Let R denote the rotation matrix, with

R =



r1

r2

r3


 =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (4.27)

and t the translation vector
t = [tx, ty, tz]

T . (4.28)

f

Zc

V
U

Xc

Yc

C

ip

0m
im

Xo

Yo

Zo

'
ip

Figure 4.12: POSIT projections.
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Let pi, i = 1, . . . , N , be the points cpi in the object coordinate frame. Then

cxi = r1pi + tx, (4.29)
cyi = r2pi + ty, (4.30)
czi = r3pi + tz. (4.31)

The perspective projection of cpi with a simpli�ed internal model of the camera,
θs = π

2
, α = β = f in (4.20), is given by

ui = f
r1pi + tx
r3pi + tz

,

vi = −f r2pi + ty
r3pi + tz

.

These projections can be written

ui =
i0pi + u0

εi + 1
, (4.32)

vi =
j0pi + v0

εi + 1
, (4.33)

with

u0 = f
tx
tz
, v0 = −f ty

tz
, (4.34)

i0 =
f

tz
r1, j0 = − f

tz
r2, (4.35)

εi =
1

tz
r3pi, i = 1, . . . , N. (4.36)

Let u′i = ui (εi + 1) and v
′
i = vi (εi + 1) be the coordinates of the orthographic pro-

jection, then

u
′
i =

f

tz
cxi,

v
′
i = − f

tz
cyi.

From (4.32), (4.33), we have

i0pi = ui (εi + 1)− u0, (4.37)
j0pi = vi (εi + 1)− v0. (4.38)
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When the values εi are known, equations (4.37) and (4.38) form a linear system
of equations in which the unknown are the coordinates i0 and j0. If the values given
to εi are inexact, the solution of POS algorithm is just an approximation. However,
after computing the unknowns r1 and r2, better approximation of εi can be computed
using (4.36).

For each measured image pointmi and corresponding object point pi, i = 1, . . . , N ,
a set of equations (4.37)-(4.38) can be de�ned. Let these N equations be written in
matrix form, then

A

[
iT0

jT
0

]
= Vε, (4.39)

where

A =



pT

1 pT
1

... ...
pT

N pT
N


 ,

and

Vε =




u1 (ε1 + 1)− u0 v1 (ε1 + 1)− v0

... ...
uN (εN + 1)− u0 vN (εN + 1)− v0


 .

Therefore, the solution for i0 and j0 is
[
iT0

jT
0

]
=

(
ATA

)−1
ATVε. (4.40)

Algorithm 4 resumes the implemented POSIT algorithm.

Algorithm 4 POSIT.
1: Initialize εi to some positive value.
2: while ‖εi − εi−1‖ > tol do
3: Compute i0 and j0 using (4.40).
4: i′0 = [i0 (0) , i0 (1) , i0 (2)], j′0 = [j0 (0) , j0 (1) , j0 (2)].
5: tz = f

/√
‖i′0‖ ‖j′0‖ .

6: r1 =
i′0
‖i′0‖ , r2 =

j′0
‖j′0‖ , r3 = r1 × r2.

7: tx = tz
f
i0 (3), ty = − tz

f
j0 (3).

8: for i = 1 to N do
9: εi = 1

tz
r3pi.

10: end for
11: end while
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4.3.3.2 Projection ray attraction (PRA) method

Projection ray attraction (PRA) is a method presented in [98] to recover motion in-
formation from two-dimensional projections of a given three-dimensional point set.
It is divided in two linear estimation parts: depth approximation and pose computa-
tion. In the depth approximation part, feature points in the three-dimensional space
are estimated. In the pose computation part, rotation and translation parameters of
the object are estimated using singular value decomposition (SVD). Both part are
iteratively executed until the result is stable.

The main idea is to state pose estimation as a nonlinear optimization problem
using a simpli�ed camera model: Given a set of image points mi, i = 1, . . . , N , and
three-dimensional feature points pi, referred to the object coordinate frame, or cpi

referred to the camera coordinate frame, the pose estimation problem can be solved
by minimizing the functional

min
R,t,di

F (R, t, di) =
N∑

i=1

‖divi − (Rpi + t)‖2 , (4.41)

where vi, i = 1, . . . , N , are normalized three-dimensional point representations of the
image point mi,

vi =
Mi

‖Mi‖ ,

with

Mi =



ui

vi

f


 = f




cxi /
czi

− cyi /
czi

1


 ,

and di is the depth of the object, with

cpi = [ cxi,
cyi,

czi]
T = divi.

Therefore, the depth approximation part of the algorithm in [98] consists in ap-
proximate the depth by

di = vT
i

cpi. (4.42)

The minimization problem (4.41) is solved by SVD. Let H be de�ned as

H =
1

N

N∑
i=1

∥∥∥(Mi − µM) ( cpi − µp)
T
∥∥∥ ,
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where

µp =
1

N

N∑
i=1

cpi, σ2
p =

1

N

N∑
i=1

‖ cpi − µp‖2 ,

µM =
1

N

N∑
i=1

Mi, and σ2
M =

1

N

N∑
i=1

‖Mi − µM‖2 .

Let the SVD of H be given by
H = UWV T .

Then,

R = USV T ,

t = µM − cRµp,

where
c =

1

σ2
p

trace (WS) .

and S is given by

S =

{
I, if det (H) ≥ 0,

diag (1, 1,−1) , if det (H) < 0,

when rank (H) = 3, or

S =

{
I, if det (U) det (V ) = 1,

diag (1, 1,−1) , if det (U) det (V ) = −1,

when rank (H) 6= 3. See [98] for more details.

4.3.3.3 Lowe's method

This method uses a Newton-type optimization algorithm to estimate the 6 parameter
of the external matrix: three for the translation vector, and three for the rotation
matrix parameterized by an exponential map. The method has the risk of converging
to a false local minimum when the initial values of the unknown parameters are far
from the real ones. To avoid this problem, the optimization problem is augmented
by a stabilization method that incorporates a prior model of parameter uncertainty
range and standard deviation estimation of each image [15, 82].
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As in the previous approaches, we assume that the transformation between two
frames of a point cpi in the camera coordinate frame is a rotation R and a translation
t. The estimated image projections of these points are given by

[
ui

vi

]
=

1
czi

K cpi =
1

r3pi + tz

[
k11 k12

0 k22

][
r1pi + tx

r2pi + ty

]
, (4.43)

where pi and cpi are related by equations (4.17), (4.29) to (4.31).
Let the optimization problem be de�ned as

ϑ = arg min
ϑ

N∑
i=1

∥∥∥mi − m̂i

(
ϑ̂
)∥∥∥

2

, (4.44)

where ϑ is the parameter vector

ϑ = [ωx, ωy, ωz, tx, ty, tz]
T ,

mi, i = 1, . . . , N , are measured image points, and m̂i, i = 1, . . . , N , are estimated
image points

m̂i =
f

r̂3 cqi + t̂z

[
r̂1

cqi + t̂x

−r̂2 cqi − t̂y

]
.

Let the error eN (ϑ) be de�ned as

eN (ϑ) =




u1 − û1

v1 − v̂1

...
uN − ûN

vN − v̂N



∈ R2N . (4.45)

In general, Newton-type methods compute a vector of corrections ∆ϑ based on the
local linearity of (4.44) and error (4.45). Then

ϑτ+1 = ϑτ + ∆ϑ, (4.46)

where τ denotes the iteration index. In particular, in the Levenberg-Marquardt algo-
rithm, the correction ∆ϑ is computed as

∆ϑ = − (
JTJ + λI

)−1
JT eN , (4.47)
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where λ > 0 is an adaptive parameter, J ∈ R2N×6 is the Jacobian matrix, given by

J =



J1

...
JN


 , (4.48)

with

Ji =

[
∂ui

∂ωx

∂ui

∂ωy

∂ui

∂ωz

∂ui

∂tx

∂ui

∂ty

∂ui

∂tz
∂vi

∂ωx

∂vi

∂ωy

∂vi

∂ωz

∂vi

∂tx

∂vi

∂ty

∂vi

∂tz

]
, i = 1, . . . , N.

To compute the derivatives of the estimated projections with respect to tx, ty,
tz, ωx, ωy, and ωz, we need to obtain the derivatives of the rotation matrix R with
respect to these parameters. Using (4.23) and (4.22), we have

R (Ω) = I + c1 (θ) Ω + c2 (θ) Ω2,

with c1 (θ) = sin θ
θ
, c2 (θ) = 1−cos θ

θ2 , and

Ω2 =



− (

ω2
y + ω2

z

)
ωxωy ωxωz

ωxωy − (ω2
x + ω2

z) ωyωz

ωxωz ωyωz − (
ω2

x + ω2
y

)


 .

Then

r1 =
[

1 0 0
]

+ c1 (θ) Ω1 + c2 (θ) Ω2
1, (4.49)

r2 =
[

0 1 0
]

+ c1 (θ) Ω2 + c2 (θ) Ω2
2, (4.50)

r3 =
[

0 0 1
]

+ c1 (θ) Ω3 + c2 (θ) Ω2
3, (4.51)

with

Ω1 =
[

0, −ωz, ωy

]
, Ω2 =

[
ωz, 0, −ωx

]
, Ω3 =

[
−ωy, ωz, 0

]
,

Ω2
1 =

[
− (

ω2
y + ω2

z

)
, ωxωy, ωxωz,

]
,

Ω2
2 =

[
ωxωy, − (ω2

x + ω2
z) , ωyωz

]
,

Ω2
3 =

[
ωxωz, ωyωz, − (

ω2
x + ω2

y

) ]
.
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Using (4.49) to (4.51), we have

∂r1
∂ωx

= c2 [0, ωy, ωz] + c3ωx [0, -ωz, ωy] + c4ωx

[
-ω2

y-ω2
z , ωxωy, ωxωz

]
,

∂r1
∂ωy

= c1 [0, 0, 1] + c2 [-2ωy, ωx, 0] + c3ωy [0, -ωz, ωy] + c4ωy

[
-ω2

y-ω2
z , ωxωy, ωxωz

]
,

∂r1
∂ωz

= c1 [0, -1, 0] + c2 [-2ωz, 0, ωx] + c3ωz [0, -ωz, ωy] + c4ωz

[
-ω2

y-ω2
z , ωxωy, ωxωz

]
,

∂r2
∂ωx

= c1 [0, 0, -1] + c2 [ωy, -2ωx, 0] + c3ωx [ωz, 0, -ωx] + c4ωx

[
ωxωy, -ω2

x-ω2
z , ωyωz

]
,

∂r2
∂ωy

= c2 [ωx, 0, ωz] + c3ωy [ωz, 0, -ωx] + c4ωy

[
ωxωy, -ω2

x-ω2
z , ωyωz

]
,

∂r2
∂ωz

= c1 [1, 0, 0] + c2 [0, -2ωz, ωy] + c3ωz [ωz, 0, -ωx] + c4ωz

[
ωxωy,−ω2

x-ω2
z , ωyωz

]
,

∂r3
∂ωx

= c1 [0, 1, 0] + c2 [ωz, 0, -2ωx] + c3ωx [-ωy, ωz, 0] + c4ωx

[
ωxωz, ωyωz, -ω2

x-ω2
y

]
,

∂r3
∂ωy

= c1 [-1, 0, 0] + c2 [0, ωz, -2ωy] + c3ωy [-ωy, ωz, 0] + c4ωy

[
ωxωz, ωyωz, -ω2

x-ω2
y

]
,

∂r3
∂ωz

= c2 [ωx, ωy, 0] + c3ωz [−ωy, ωz, 0] + c4ωz

[
ωxωz, ωyωz,−ω2

x-ω2
y

]
,

with c3 (θ) = θ cos θ−sin θ
θ3 , c4 (θ) = θ sin θ−2(1−cos θ)

θ4 .
Finally, using (4.43), we have

[
∂ui

∂ωx

∂vi

∂ωx

]
=

1
czi

([
k11 k12

0 k22

][
∂r1

∂ωx

∂r2

∂ωx

]
−

[
ui

vi

]
∂r3
∂ωx

)
pi,

[
∂ui

∂ωy

∂vi

∂ωy

]
=

1
czi

([
k11 k12

0 k22

][
∂r1

∂ωy

∂r2

∂ωy

]
−

[
ui

vi

]
∂r3
∂ωy

)
pi,

[
∂ui

∂ωy

∂vi

∂ωy

]
=

1
czi

([
k11 k12

0 k22

][
∂r1

∂ωz

∂r2

∂ωz

]
−

[
ui

vi

]
∂r3
∂ωz

)
pi,

[
∂ui

∂tx
∂vi

∂tx

]
=

1
czi

[
k11

0

]
,

[
∂ui

∂ty
∂vi

∂ty

]
=

1
czi

[
k12

k22

]
,

[
∂ui

∂tz
∂vi

∂tz

]
= − 1

czi

[
ui

vi

]
.
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4.4 Nonlinear �ltering
In this Section, we resume the leader-follower mathematical model and an estimation
algorithm using a dual unscented Kalman �lter. The �lter is used to smooth measured
variables and to recover leader's velocities.

4.4.1 Mathematical model of the robots
In general, leader-follower controllers require reliable estimates of the leader robot's
speed v1 and angular velocity ω1 by the follower robot. These quantities can be
estimated using an unscented Kalman �lter with the appropriate dynamic model and
measurements from the camera range `12, bearing α12, and relative orientation θ12.
For this reason, let us consider a leader-follower system composed of two unicycle-type
vehicles moving on the plane, with the kinematic model of the ith robot, i = 1, 2,
given by

q̇i (t) =



ẋi (t)

ẏi (t)

θ̇i (t)


 =




cos θi (t) 0

sin θi (t) 0

0 1




[
vi (t)

ωi (t)

]
. (4.52)

where qi (t) = [xi (t) , yi (t) , θi (t)]
T ∈ SE (2) is the con�guration vector, ui (t) =

[vi (t) , ωi (t)]
T ∈ Ui ⊆ R2 is the velocity vector, and Ui is a compact set of admissible

inputs.
Let the Euclidean distance `12 (t) ∈ R≥0 and angles α12 (t), β12 (t) ∈ (−π, π]

between robots 1 (leader) and 2 (follower) be de�ned as

`12 (t) =

√
(x1 (t)− xc

2 (t))2 + (y1 (t)− yc
2 (t))2, (4.53)

α12 (t) = ζ12 (t)− θ1 (t) , (4.54)
θ12 (t) = θ1 (t)− θ2 (t) , (4.55)

where ζ12 (t) = atan2 (y1 − yc
2, x1 − xc

2), and xc
2 (t) = x2 +d cos θ2, yc

2 (t) = y2 +d sin θ2

are the coordinates of the camera, as shown in Figure 2.2.
Then, the leader-follower system can be described in polar form by the set of
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equations



ẋ1 (t)

ẏ1 (t)

θ̇1 (t)
˙̀
12 (t)

α̇12 (t)

θ̇12 (t)




=




cos θ1 0

sin θ1 0

0 1

cosα12 0

− sin α12

`12
−1

0 1




[
v1 (t)

ω1 (t)

]
+




0 0

0 0

0 0

- cos β12 -d sin β12

sin β12

`12
-d cos β12

`12

0 -1




[
v2 (t)

ω2 (t)

]
,

(4.56)

with β12 = α12 + θ12.
Equation (4.56) can be written in discrete form as

{
xk+1 = f (xk,uk,wk) + vk,

yk = h (xk,uk,wk) + nk,
(4.57)

where xk = [x1 (k) , y1 (k) , θ1 (k) , `12 (k) , α12 (k) , β12 (k)]T , uk = [v2 (k) , w2 (k)]T ,
wk = [v1 (k) , w1 (k)]T , random variables vk and nk are process and measurement
noise, respectively, and yk = [`12 (k) , α12 (k) , β12 (k)]T is obtained using measure-
ments from the vision system (xc, yc, zc), θm, and the value of the camera pan θp.
Therefore

`12 =
√
x2

c + y2
c + z2

c , θt = arctan

(−xc

zc

)
,

α12 = θt − θm, θ12 = θp + θm.

4.4.2 Nonlinear observability
In this Section, we present some observability results for system (4.56). In this par-
ticular case, the proof of observability is direct, but it will serve the purpose of being
introductory for more complex systems analyzed in Chapter 2. The supporting theory
for the proofs given in this Section is resumed in Appendix C.

Let model (4.56) be written in a�ne in control form as

Σ :





ẋ (t) =
4∑

i=1

fi (x (t)) ui (t) ,

y (t) = h (x) ,

(4.58)
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with x = [x1, y1, θ1, `12, α12, β12]
T ∈ M ⊆ R2 × R≥0 × S3, M is an appropriate

manifold, y = [`12, α12, β12]
T ∈ R≥0 × S2,

f1 (x) =

[
cos θ1, sin θ1, 0, cosα12, −sinα12

`12

, 0

]T

,

f2 (x) = [0, 0, 1, 0, −1, 1]T ,

f3 (x) =

[
0, 0, 0, − cos β12,

sin β12

`12

, 0

]T

,

f4 (x) =

[
0, 0, 0, −d sin β12, −d cos β12

`12

, −1

]T

,

h (x) = [`12, α12, θ12]
T ,

u1 (t) = v1 (t) , u2 (t) = ω1 (t) , u3 (t) = v2 (t) , u4 (t) = ω2 (t) ,

and we have omitted the dependency with respect to time for brevity.
The observation space O is the span over R of

{
1, `12, α12, θ12,

sinα12

`12

,
sin (α12 + θ12)

`12

,

d cos (α12 + θ12)

`12

, cosα12, cos (α12 + θ12) , d sin (α12 + θ12)

}
.

Then, the observability codistribution dO (x) is given by

dO (x) = span {o1, o2, o3, o4, o5, o6, o7} ,

with

o1 = [0, 0, 0, 1, 0, 0] ,

o2 = [0, 0, 0, 0, sinα12, 0] ,

o3 = [0, 0, 0, 0, sin (α12 + θ12) , sin (α12 + θ12)] ,

o4 = [0, 0, 0, 0, 1, 0] ,

o5 =

[
0, 0, 0,

sinα12

`212

,
cosα12

`12

, 0

]
,

o6 =

[
0, 0, 0,

cos (α12 + θ12)

`212

,
sin (α12 + θ12)

`12

,
sin (α12 + θ12)

`12

]
, and

o7 = [0, 0, 0, 0, 0, 1] .
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It is clear that x1, y1, and θ1 are unobservable. However, dim (dO (x)) = 3 then,
by the observability rank condition theorem, see Appendix C, `12, α12, θ12 are globally
observable.

4.4.3 The dual unscented Kalman �lter (DUKF)
The unscented Kalman �lter (UKF) uses a deterministic sampling approach, the
unscented transform (UT), to capture the mean and covariance estimates with a
minimal set of sample points. When the sampling points are propagated through
the true non-linear system, the UKF can capture the posterior mean and covariance
accurately up to the 3rd order for Taylor series expansion of the Gaussian error
distribution with same order of computational complexity as the EKF that can achieve
only up to �rst-order accuracy. It should also be noted that the of the UKF is the
same order as that of EKF [65, 66, 140, 141].

In this Chapter, we use the dual unscented Kalman �lter (DUKF) [141] described
in Chapter 3. This �lter runs two parallel �lters for state and parameter estimation.
The state estimation �lter considers the parameter known for state updating, whereas
its parameter estimation counterpart considers states known for parameter updating.

In the leader-follower model (4.57) the states are given by the vector xk and the
parameter by vector wk. That is, leader's velocities are considered known for state
estimation and then updated by the parameter estimation �lter, as it is schematically
represented in Figure 4.13. Note that there is no convergence guarantee with the
DUKF.
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Figure 4.13: Dual estimation problem.
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4.5 Simulation results
Figures 4.14-4.16 show identi�cation results for three robots. Figure 4.14 shows
faces detected when the robots are in con�gurations q1 = [1.5, .25, 0.0]T and q2 =

[2.0,−0.45, 0.0]T relative to the follower con�guration. Figure 4.15 and 4.16 show
same results with q1 = [2.5,−0.5, 0.0]T , q2 = [3.5, 0.5, 0.0]T and q1 = [2.5,−0.5, 0.0]T ,
q2 =

[
3.5, 0.5, π

2

]T , respectively. The algorithm performs very well, even with small
surfaces, changes in illumination and increasing distance.

23 42 3
5 1

Figure 4.14: Identi�cations: Robot 1 (left) IDs 2, 3, 4, 5; robot 2 (right) IDs 1, 2, 3.

2 3 4 2 3 4

Figure 4.15: Identi�cations: Robot 1 (right) IDs 2, 3, 4; robot 2 (left) IDs 2, 3, 4.

Figures 4.17 and 4.18 show estimated pose for pure translation and pure rotation
motions using Lowe's algorithm.
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2 3 41 2

Figure 4.16: Identi�cations: Robot 1 (right) IDs 2, 3, 4; robot 2 (left) IDs 1, 2.

Figure 4.17: Pure translation using Lowe's method.

Figure 4.18: Pure rotation using Lowe's method.
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Figures 4.19 to 4.25 show simulations using di�erent pose estimation methods for
pure translation and pure rotation motions. We compared the �nal error and the
number of iterations to achieve convergence for each algorithm. Figure 4.19 shows
the error and number of iteration of PRA algorithm without using information from
previous iterations. Figure 4.20 shows same results using previous information as
starting con�guration. Figure 4.21 shows the error and number of iterations for pure
rotations using a priori information. As can be seen, the number of iteration is
considerably reduced.
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Figure 4.19: Pure translation. Error and number of iterations using PRA method.

Figures 4.22 and 4.23 show the results for pure translation and rotation motions
using Lowe's algorithm. It should be noted that the number of iterations is lower and
the �nal error is smaller than in the previous case.

Figures 4.24 and 4.25 show the results for pure translation and rotation motions
using POSIT algorithm with a priori information. The number of iterations is even
lower than in the previous case, but the �nal error is bigger. A drawback of POSIT
algorithm is that, due to the orthographic approximation, it needs the value of czi

bigger than | cxi| and | cyi| to achieve convergence.
Figures 4.26 to 4.28 show pose estimation results with Lowe's method initialized

with POSIT algorithm. Red skeletons show the estimated positions. The distance
and angle are slightly biased with accuracies around 3% and 5%, respectively. As can
be seen, the estimated pose is very accurate for practical purposes. Figure 4.29 shows
the e�ect of noise on the image. As can be seen, the e�ect reduces the achievable
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Figure 4.20: Pure translation. Error and number of iterations using PRA method
and a priori information.
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Figure 4.21: Pure rotation. Error and number of iterations using PRA method and
a priori information.
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Figure 4.22: Pure translation. Error and number of iterations using Lowe's method.
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Figure 4.23: Pure rotation. Error and number of iterations using Lowe's method.
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Figure 4.24: Pure translation. Error and number of iterations using POSIT algorithm.

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Iteration

E
rr

or

0 5 10 15
0

0.5

1

1.5

2

2.5

3

Iteration

C
ou

nt

Figure 4.25: Pure rotation. Error and number of iterations using POSIT algorithm.
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maximum distance to 3 m.

Figure 4.26: Pose estimation with q1 = [1,−0.25, 0]T , q2 = [2, 0.5, 0]T .

Figure 4.27: Pose estimation with q1 = [2.5,−0.5, 0]T , q2 = [3, 0.5, 0]T .

Figure 4.30 shows the computation time of the vision system. The blue line shows
the time needed to detect a single robot in the �eld of view (roughly 10.7 msec). The
red line shows the time needed to detect 3 robots plus another robot entering in the
�eld of view at t = 1.25 sec.

Figures 4.31 to 4.37 show real, measured, and estimated relative distance `12 and
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Figure 4.28: Pose estimation with q1 = [1.5,−0.5, 0]T , q2 =
[
4, 0.5,−π

2

]T .

bearing α12 using the DUKF. The initial values in the simulation are

x0 = [1.5, 0.25, 0, 1.047, 0.233, 0.232]T ,

Px0 = diag (10, 10, 10) ,

w0 = [0, 0]T ,

Pw0 = diag (500, 0.01) for �gures 4.31 to 4.33, and Pw0 = diag (10, 0.01) for �g-
ures 4.34 to 4.37.

It is assumed that there is a bias in the measured variables given by

n̄ = [−0.0702, 0.0248, 0.0236]T ,

with measurement noise covariance Rn = diag (0.07, 0.03, 0.03).
Figures 4.31 and 4.32 show estimation results with the DUKF in open loop. That

is, referring to Figure 4.13, the real values of v1 and ω1 are sent to the UKF estimator,
and real state values x12 are sent to the optimization block. It can be noticed that
the optimizer fails to obtain the real leader's velocities due to lack of signal richness,
as shown in in Figure 4.32. To improve the richness properties and the convergence, a
Gaussian noise signal with covariance Rn′ = diag (0.0035, 0.015, 0.015) is added to the
measured output vector for the optimization block. The performance is notoriously
increased, as shown in Figure 4.33.

Figures 4.34 to 4.37 show the results of the DUKF working in closed loop. It
should be noticed the accuracy in the state and velocity estimation. The mean square
errors obtained with the estimations are e` = 1.821 × 10−4, eα = 5.730 × 10−5,
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Distance = 3.5 mDistance = 3 m

Distance = 2.5 mDistance = 2 m

Distance = 1.5 mDistance = 1 m

Figure 4.29: Fog e�ect on pose estimation.
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Figure 4.30: Computational load with one robot in the �eld of view (blue line) and
three robots plus another entering at t = 1.25 red line).
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Figure 4.31: Relative distance and bearing estimation using a DUKF.
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Figure 4.32: Velocity estimation using a DUKF.
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Figure 4.33: Velocity estimation using a DUKF with noise injection.

93



eθ = 6.029× 10−6, ev = 3.648× 10−4, and eω = 5.272× 10−7.

4.6 Summary
This Chapter presents an architecture for model-based pose estimation for pairs of
robots in formation. This architecture combines �ducial-based robot following, three
pose estimation algorithms, and nonlinear �ltering.

Comparison between pose estimation approaches shows that POSIT presents the
fastest convergence rate and simplicity. However, it fails to arrive to a correct result
if the value of the coordinate czi of the object is smaller than the values of | cxi|
and/or | cyi| in the camera frame. This problem is not present in the Lowe's or
PRA algorithms. PRA algorithm requires notoriously more iterations to achieve
convergence. On the other hand, PRA is less complex than Lowe's algorithm. Lowe's
algorithm achieves the best results of the three algorithms described here. Its main
problem is its complexity and the need of several iterations to achieve convergence.

Fiducial marker detection performs very well in the simulations in a realistic 3D
environment for distances between 30 cm and 2 m, and angles between −π

2
to π

2
. Pose

estimation algorithms give accurate measurements of relative distance and bearing.
Finally, the implemented dual unscented Kalman �lter notoriously improves measure-
ments and is able to estimate unknown velocities.

The main drawback of the current implementation is on feature detection. The
method is sensitive to noise and change in lighting, but very fast to compute. Future
research will focus results from the dual unscented Kalman �lter with feature point
extraction to increase robustness of the whole framework.
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Figure 4.34: Control, relative distance and bearing estimation using a DUKF.
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Figure 4.35: Control and velocity estimation using a DUKF.
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Figure 4.36: Control, relative distance and bearing estimation using a DUKF with
noise injection.
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Figure 4.37: Control and velocity estimation using a DUKF with noise injection.
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Chapter 5

Vision-based formation control

This Chapter presents several vision-based control strategies for decentralized sta-
bilization of unmanned vehicle (UV) formations. The algorithms are designed to
solve the leader-follower and two leader-follower coordination problems. In the for-
mer case, the robot's node speci�cation is given by the relative distance and bearing
to a leader robot. In the latter case, the robot's node speci�cation is given by the
relative distances to two leader robots.

The algorithms presented in this chapter can be divided into three main categories
depending on the information �ow needed for their implementation. The algorithms
in the �rst category are partial (dynamic) state feedback nonlinear controllers that
require full knowledge of leader's velocities and accelerations. The algorithms in the
second category are robust robust (dynamic) state feedback nonlinear controllers that
requires knowledge of the rate of change of the relative position errors. Finally, the
algorithms in the third category are (dynamic) output feedback approaches that use
observers to estimate the derivative of the unmanned vehicles' relative position. Thus,
the algorithms in the last category only require knowledge of the leader-follower rel-
ative distances and bearings. Both data are computed using measurements from a
single monochrome camera, as shown in Chapter 5, eliminating sensitivity to infor-
mation �ow between vehicles and increasing the reliability of the overall system.

The rest of the Chapter is organized as follows. Section 5.1 introduces the di�erent
mathematical model for the leader and two-leader-follower systems. The problem
statement is given in Section 5.2. Section 5.3 describes and analyzes the three types
of nonlinear formation control algorithms presented in this dissertation. Section 5.4
discusses the implementation of a backstepping algorithm using partial information.
Section 5.5 provides numerical simulations in the realistic 3D environment MPSLab
[99, 100]. A summary in Section 5.6 closes this Chapter.
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Figure 5.1: Leader-follower formation geometry.

5.1 Formation mathematical models
In this Section, we describe two mathematical models and their variations for the
formation control problem. The �rst model is a leader-follower approach and the
second one is a two-leader follower approach. The main purpose of the Section is to
arrive to a common mathematical description that allows the design of controllers
independently of the problem in consideration.

5.1.1 Leader-follower mathematical model revisited
In Section 2.1.1 we describe the leader-follower polar model as follows, repeated here
for clarity

`ik (t) :=

√
(xi (t)− xc

k (t))2 + (yi (t)− yc
k (t))2, (5.1)

αik (t) := ζik (t)− θi (t) , (5.2)
θik (t) := θi (t)− θk (t) , (5.3)
βik (t) := ζik (t)− θk (t) = αik (t) + θik (t) , (5.4)

where `ik (t) ∈ R>0, αik (t), βik (t), θik (t) ∈ S, ζik (t) = atan2 (yi − yc
k, xi − xc

k), and
xc

k (t) = xk (t) + d cos θk (t), yc
k (t) = yk (t) + d sin θk (t) are the coordinates of the

camera, as it is schematized in Figure 5.1
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Let x ∈M ⊆ R≥0 × S2 be de�ned as

x (t) = [x1, x2, x3]
T = [`ik, αik, θik]

T . (5.5)

Taking time derivative of (5.1), (5.2), and (5.3), the relative model in polar form is
given by

ẋ (t) = g (x)uk (t) + gi (x) ui (t) , (5.6)

where

g (x) :=



− cos βik −d sin βik

sin βik

x1
−d cos βik

x1

0 −1


 ,

gi (x) :=




cosx2 0

− sin x2

x1
−1

0 1


 ,

βik := x2 + x3,

and

uk (t) := [vk (t) , ωk (t)]T ,

ui (t) := [vi (t) , ωi (t)]
T ,

are the velocities of the follower and the leader, respectively.

Remark 5.1.1. For this model, we consider the follower's velocity as input, the real
value of the inputs can be computed using backstepping [45, 69, 130].

Let an input transformation be de�ned as
[
vk (t)

ωk (t)

]
=

[
− cos βik x1 sin βik

−1
d
sin βik −x1

d
cos βik

][
v̄k (t)

ω̄k (t)

]
, (5.7)

where
ūk (t) :=

[
v̄k (t)

ω̄k (t)

]
, (5.8)
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is an auxiliary input. Then, system (5.6) takes the form

ẋ (t) = ḡ (x) ūk (t) + gi (x) ui (t) , (5.9)

with

ḡ (x) :=




1 0

0 1
sin βik

d
x1 cos βik

d


 .

Remark 5.1.2. Note that transformation (5.7) is well-de�ned as long as d > 0 and
x1 (t) = `ik (t) ≥ `min > 0, where `min is the minimum distance required between
robots to avoid collision. However, d = 0 in Scorpion robots. This special case is
analyzed in the next Subsection.

5.1.1.1 Second order leader-follower model with d = 0

For the Scorpion robot, d = 0. Then let x ∈M ⊆ R>0 × R2 × S2 be rede�ned as

x (t) = [x1,1, x1,2, x2,1, x2,2, x3,1]
T =

[
`ik, ˙̀

ik, αik, α̇ik, θik

]T

. (5.10)

Note that xi = xi,1, i = 1, . . . , 3, coincide with the de�nition of �rst order model
(5.5). Taking time derivative of (5.10), assuming d = 0, we obtain

ẋ (t) = Ax (t) + g (x∗,1, vk)$k (t) + g0 (x, vk)

+ gv,1 (x, vk)ui (t) + gv,2 (x∗,1) u̇i (t) , (5.11)

where A =

[
blockdiag (A1, A2)

01×4

]
, with Ai =

[
0 1

0 0

]
, i = 1, 2, is in Brunowsky

general form,

g (x∗,1, vk) :=




0 0

− cos βik −vk sin βik

0 0
sin βik

x1,1
−vk cos βik

x1,1

0 −1



,
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g0 (x, vk) :=




0

vkx2,2 sin βik

0

vk
x1,1x2,2 cos βik−x1,2 sin βik

x2
1,1

0



,

gv,1 (x, vk) :=




0 0

−x2,2 sinx2,1 vk sin βik

0 0

−x1,1x2,2 cos x2,1−x1,2 sin x2,1

x2
1,1

vk cos βik

x1,1

0 1



,

gv,2 (x∗,1) :=




0 0

cosx2,1 0

0 0

− sin x2,1

x1,1
−1

0 0



,

and
βik := x2,1 + x3,1.

The control signal takes the special form

$k (t) := [v̇k (t) , ωk (t)]T , (5.12)

and we have used x∗,1 to stress dependency on measurable variables.

Remark 5.1.3. In this case, backstepping has to be applied just to ωk (t), because the
model (5.11) can be used to compute Fk = mkv̇k, according to equation (2.1).

Using a control transformation similar to (5.7), that is,
[
v̇k (t)

ωk (t)

]
=

[
− cos βik x1,1 sin βik

− 1
vk

sin βik −x1,1

vk
cos βik

] [
v̄k (t)

ω̄k (t)

]
, (5.13)

we obtain

ẋ (t) = Ax (t) + ḡ (x∗,1, vk) ūk (t) + g0 (x, vk)

+ gv,1 (x, vk)ui (t) + gv,2 (x∗,1) u̇i (t) , (5.14)
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with ūk (t) = [v̄k (t) ω̄k (t)]T and

ḡ (x∗,1, vk) :=




0 0

1 0

0 0

0 1
1
vk

sin βik
x1,1

vk
cos βik



.

Remark 5.1.4. Note that the transformation (5.13) is de�ned as long as |vk (t)| ≥
vmin > 0 and x1,1 (t) = `ik (t) ≥ `min > 0, where vmin is the minimum speed of the
follower robot, and `min is the minimum distance required between robots to avoid
collision.

5.1.1.2 Second order leader-follower model with d 6= 0

Model (5.11) suggests that the control signals can be computed directly without using
backstepping by higher-order time di�erentiation. Let x ∈ M ⊆ R>0 × R3 × S2 be
de�ned as

x (t) = [x1,1, x1,2, x2,1, x2,2, x3,1, x3,2]
T =

[
`ik, ˙̀

ik, αik, α̇ik, θik, θ̇ik

]T

.

Note that xi = xi,1, i = 1, . . . , 3, coincide with the de�nition of �rst order model
(5.5). Taking time derivative of (5.6) and assuming d 6= 0, we obtain

ẋ (t) = Ax (t) + g (x∗,1) u̇k (t) + g0 (x, uk) + gv (x∗,1) u̇i (t) , (5.15)

where denote all measurable vector components x1,1, x2,1, . . ., A = blockdiag (A1, A2, A3)

is in Brunowsky canonical form,

g (x∗,1) :=




0 0

− cos βik −d sin βik

0 0
sin βik

x1,1
−d cos βik

x1,1

0 0

0 −1




,

βik := x2,1 + x3,1,
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g0 (x, uk) :=




0

vkx3,2 sin βik − dωkx3,2 cos βik + x1,1x2,2 (ωk + x2,2 + x3,2)

0
1

x1,1
[vkx3,2 cos βik + dωkx3,2 sin βik − x1,2 (ωk + 2x2,2 + x3,2)]

0

0




,

gv (x∗,1) :=




0 0

cosx2,1 0

0 0

− sin x2,1

x1,1
−1

0 0

0 1




.

Using a control transformation similar to (5.7), that is,
[
v̇k (t)

ω̇k (t)

]
=

[
− cos βik x1,1 sin βik

−1
d
sin βik −x1,1

d
cos βik

][
v̄k (t)

ω̄k (t)

]
, (5.16)

we obtain

ẋ (t) = Ax (t) + ḡ (x∗,1) ūk (t) + g0 (x, uk) + gv (x∗,1) u̇i (t) , (5.17)

with ūk (t) = [v̄k (t) ω̄k (t)]T and

ḡ (x∗,1) :=




0 0

1 0

0 0

0 1

0 0
1
d
sin βik

x1,1

d
cos βik




.

5.1.2 Two leader-follower mathematical model
The second type of coordination algorithms presented in this dissertation are based
on the relative distances between the follower robot k and two leaders i and j. There-
fore, we have develop similar models for the case of relative measurements shown in
Figure 5.2.
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Figure 5.2: Two leader-follower formation geometry.

Let x (t) ∈M ⊆ R2
≥0 × S4 be de�ned as

x (t) = [x1, x2, x3, x4, x5, x6]
T := [`ik, `jk, αik, αjk, θik, θjk]

T . (5.18)

Then, taking time derivative, we have

ẋ (t) = g (x)uk (t) + gi (x) ui (t) + gj (x)uj (t) , (5.19)

with

g (x) :=




− cos βik −d sin βik

− cos βjk −d sin βjk

sin βik

x1
−d cos βik

x1
sin βjk

x2
−d cos βjk

x2

0 −1

0 −1




,
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gi (x) :=




cosx3 0

0 0

− sin x3

x1
−1

0 0

0 1

0 0




, and gj (x) :=




0 0

cosx4 0

0 0

− sin x4

x2
−1

0 0

0 1




,

βik := x3 + x5,

βjk := x4 + x6.

Let the input transformation be given by
[
vk (t)

ωk (t)

]
=

1

sin δk

[
− sin βjk sin βik

cos βjk

d
− cos βik

d

][
v̄k (t)

ω̄k (t)

]
, (5.20)

with δk := ζjk − ζik = x4 + x6 − x3 − x5. Then, system (5.19) takes the form

ẋ (t) = ḡ (x) ūk (t) + gi (x) ui (t) + gj (x)uj (t) , (5.21)

with

ḡ (x) :=




1 0

0 1

− cos δk

x1 sin δk

1
x1 sin δk

− 1
x2 sin δk

cos δk

x2 sin δk

− cos βjk

d sin δk

cos βik

d sin δk

− cos βjk

d sin δk

cos βik

d sin δk




,

and the auxiliary control input is given by

ūk (t) := [v̄k (t) , ω̄k (t)]T ,

as in the leader-follower case.

Remark 5.1.5. Transformation (5.20) if well-de�ned as long as δk 6= 0 and d > 0. The
case δk = 0 can happen when one of the leading robots obstructs the line of sight of
the follower or when both robots occupy the same point (impossible due to collision).
The former case must be avoided due to the lack of sensor data by switching to a
leader-follower controller.
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5.1.2.1 Second order two-leader-follower model with d = 0

As mentioned, for Scorpion robots d = 0. Then, let x (t) ∈ M ⊆ R2
≥0 × S4 × R4 be

de�ned as

x (t) := [x1,1, x1,2, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, x5,1, x6,1]
T

=
[
`ik, ˙̀

ik, `jk, ˙̀
jk, αik, α̇ik, αjk, α̇jk, θik, θjk

]T

.

Note that xi = xi,1, i = 1, . . . , 6, coincide with the de�nition of �rst order model
(5.18). Taking time derivative of (5.19) assuming that d = 0, we obtain

ẋ (t) = Ax (t) + g (x∗,1, vk)$ (t) + g0 (x, vk)

+ gv,2 (x)Vk,2 (t) + gv,1 (x)Vk,1 (t) , (5.22)

where

A :=

[
blockdiag (A1, . . . , A4) 08×2

02×8 02×2

]
,

g (x∗,1, vk) :=




0 0

− cos βik −vk sin βik

0 0

− cos βjk −vk sin βjk

0 0
sin βik

x1,1
−x1,1vk cos βik

x2
1,1

0 0
sin βjk

x2,1
−x2,1vk cos βjk

x2
2,1

0 −1

0 −1




,
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g0 (x, vk) :=




0

vkx3,2 sin βik

0

vkx4,2 sin βjk

0

vk
x1,1x3,2 cos βik−x1,2 sin βik

x2
1,1

0

vk
x2,1x4,2 cos βjk−x2,2 sin βjk

x2
2,1

02×1




,

gv,1 (x, vk) :=
[
g1

v,1 (x, vk) , g
2
v,1 (x, vk) , g

3
v,1 (x, vk) , g

4
v,1 (x, vk)

]

g1
v,1 (x, vk) :=




0

−x3,2 sinx3,1

03×1

x1,2 sin x3,1−x1,1x3,2 cos x3,1

x2
1,1

04×1



, g2

v,1 (x, vk) :=




0

vk sin βik

03×1

x1,1vk cos βik

x2
1,1

04×1



,

g3
v,1 (x, vk) :=




03×1

−x4,2 sinx4,1

03×1

x2,2 sin x4,1−x2,1x4,2 cos x4,1

x2
2,1

02×1



, g4

v,1 (x, vk) :=




03×1

vk sin βjk

03×1
x2,1vk cos βjk

x2
2,1

02×1



,

gv,2 (x∗,1) :=
[
g1

v,2 (x∗,1) , g2
v,2 (x∗,1) , g3

v,2 (x∗,1) , g4
v,2 (x∗,1)

]
,

g1
v,2 (x∗,1) :=




0

cosx3,1

03×1

− sin x3,1

x1,1

04×1



, g2

v,2 (x∗,1) :=




05×1

−1

04×1


 ,
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g3
v,2 (x∗,1) :=




03×1

cosx4,1

03×1

− sin x4,1

x2,1

02×1



, g4

v,2 (x∗,1) :=




07×1

−1

02×1


 ,

βik := x3,1 + x5,1,

βjk := x4,1 + x6,1,

and

Vk,1 (t) := [vi (t) , ωi (t) , vj (t) , ωj (t)]T ,

Vk,2 (t) := [v̇i (t) , ω̇i (t) , v̇j (t) , ω̇j (t)]T ,
(5.23)

depend on leaders' velocities.
Using a control transformation similar to (5.7), that is,

[
v̇k (t)

ωk (t)

]
=

[
− sin βjk

sin δk

sin βik

sin δk
cos βjk

vk sin δk
− cos βik

vk sin δk

][
v̄k (t)

ω̄k (t)

]
, (5.24)

we obtain

ẋ (t) = Ax (t) + ḡ (x∗,1, vk) ūk (t) + g0 (x, vk)

+ gv,2 (x)Vk,2 (t) + gv,1 (x)Vk,1 (t) , (5.25)

with ūk (t) = [v̄k (t) ω̄k (t)]T and

ḡ (x∗,1, vk) :=




0 0

1 0

0 0

0 1

0 0

− cos δk

x1,1 sin δk

1
x1,1 sin δk

0 0

− 1
x2,1 sin δk

cos δk

x2,1 sin δk

− cos βjk

vk sin δk

cos βik

vk sin δk

− cos βjk

vk sin δk

cos βik

vk sin δk




.
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Remark 5.1.4 also applies to this case.

5.1.2.2 Second order two-leader-follower model with d 6= 0

Let x (t) ∈M ⊆ R2
>0 × S4 × R6 be de�ned as

x (t) := [x1,1, x1,2, x2,1, x2,2, x3,1, x3,2, x4,1, x4,2, x5,1, x5,2, x6,1, x6,2]
T

=
[
`ik, ˙̀

ik, `jk, ˙̀
jk, αik, α̇ik, αjk, α̇jk, θik, θ̇ik, θjk, θ̇jk

]T

As in the previous case, xi = xi,1, i = 1, . . . , 6, coincide with the de�nition of �rst
order model (5.18). Taking time derivative of (5.19), we obtain

ẋ (t) = Ax (t) + g (x∗,1) u̇k (t) + g0 (x, uk)

+ gv,1 (x)Vk,1 (t) + gv,2 (x∗,1)Vk,2 (t) , (5.26)

with u̇k (t) :=

[
v̇k (t)

ω̇k (t)

]
,

g0 (x, uk) :=
[
g1
0 (x, uk) , g

2
0 (x, uk)

]
[
vk (t)

ωk (t)

]
,

g1
0 (x, uk) :=




0

(x3,2 + x5,2) sin βik

0

(x4,2 + x6,2) sin βjk

0
x1,1(x3,2+x5,2) cos βik−x1,2 sin βik

x2
1,1

0
x2,1(x4,2+x6,2) cos βjk−x2,2 sin βjk

x2
2,1

04×1




,
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g2
0 (x, uk) :=




0

−d (x3,2 + x5,2) cos βik

0

−d (x4,2 + x6,2) cos βjk

0
dx1,1(x3,2+x5,2) sin βik+dx1,2 cos βik

x2
1,1

0
dx2,1(x4,2+x6,2) sin βjk+dx2,2 cos βjk

x2
2,1

04×1




,

g (x∗,1) :=




0 0

− cos βik −d sin βik

0 0

− cos βjk −d sin βjk

0 0
sin βik

x1,1
−d cos βik

x1,1

0 0
sin βjk

x2,1
−d cos βjk

x2,1

0 0

0 −1

0 0

0 −1




,

gv,1 (x) :=




0

−x3,2 sinx3,1

03×1

x1,2 sin x3,1−x1,1x3,2 cos x3,1

x2
1,1

06×1

012×1

03×1

−x4,2 sinx4,1

03×1

x2,2 sin x4,1−x2,1x4,2 cos x4,1

x2
2,1

04×1

012×1



,

gv,2 (x) :=




0

cosx3,1

03×1

− sin x3,1

x1,1

06×1

05×1

−1

03×1

1

02×1

03×1

cosx4,1

03×1

− sin x4,1

x2,1

04×1

07×1

−1

03×1

1



,
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and Vk,1 (t), Vk,2 (t) are de�ned by (5.23).
Using a control transformation similar to (5.20), that is,

[
v̇k (t)

ω̇k (t)

]
=

1

sin δk

[
− sin βjk sin βik

cos βjk

d
− cos βik

d

][
v̄k (t)

ω̄k (t)

]
, (5.27)

we obtain

ẋ (t) = Ax (t) + ḡ (x∗,1) ūk (t) + g0 (x, uk)

+ gv,1 (x)Vk,1 (t) + gv,2 (x∗,1)Vk,2 (t) , (5.28)

with ūk (t) = [v̄k (t) ω̄k (t)]T and

ḡ (x∗,1) :=




0 0

1 0

0 0

0 1

0 0

− cos δk

x1,1 sin δk

1
x1,1 sin δk

0 0

− 1
x2,1 sin δk

cos δk

x2,1 sin δk

0 0

− cos βjk

d sin δk

cos βik

d sin δk

0 0

− cos βjk

d sin δk

cos βik

d sin δk




.

5.1.3 Generic model formulation
Analyzing equations (5.14), (5.17), (5.25), and (5.28), a generic model can be de-
signed. Therefore, with adequate function vector de�nitions, it is possible to proof sta-
bility properties and design controllers for the leader-follower and two leader-follower
problems using an uni�ed model. Let x ∈M be adequately de�ned according to each
case. Then

ẋ (t) = Ax (t) + ḡ (x∗,1, vk) ūk (t) + g0 (x, uk) + gv (x)Vk (t) , (5.29)
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• For the second order leader-follower model with d = 0:

g0 (x, uk) = g0 (x, vk) ,

gv (x) = [gv,1 (x, vk) , gv,2 (x∗,1)] ,

Vk (t) =
[
uT

i (t) , u̇T
i (t)

]T
.

• For the second order leader-follower model with d 6= 0:

ḡ (x∗,1, vk) = ḡ (x∗,1) ,

Vk (t) = u̇i (t) .

• For the second order two-leader-follower model with d = 0:

g0 (x, uk) = g0 (x, vk)

gv (x) = [gv,1 (x) , gv,2 (x)] ,

Vk (t) =
[
V T

k,1 (t) , V T
k,2 (t)

]T
.

• For the second order two-leader-follower model with d 6= 0:

ḡ (x∗,1, vk) = ḡ (x∗,1) ,

g0 (x, uk) = g0 (x, uk) ,

gv (x) = [gv,1 (x) , gv,2 (x∗,1)] ,

Vk (t) =
[
V T

k,1 (t) , V T
k,2 (t)

]T
.

5.2 The formation control problem

5.2.1 Leader-follower control problem
As mentioned, leader-follower coordination algorithms are based on the relative dis-
tance and bearing between a robot k and its leader i. Let sk (t) ∈ S ⊆ R≥0×S denote
the node speci�cation for robot k, then

sk (t) = [`ik (t) , αik (t)]T . (5.30)
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Let the tracking error ek (t) ∈ R× S be de�ned as

ek (t) := sd
k (t)− sk (t) , (5.31)

where the superscript 'd' stands for desired value. Let the error in state space form
be de�ned as

e1 (t) = ek (t) ,

e2 (t) = ė1 (t) = ėk (t) .

Taking �rst and second time derivatives of (5.31) and using the generic model (5.29),
it follows

{
ė1 (t) = ṡd

k (t)− ṡk (t) = e2 (t) ,

ė2 (t) = s̈d
k (t)− s̈k = s̈d

k (t)− ḡ0 (x, uk)− ḡv (x)Vk (t)− ūk (t) ,
(5.32)

with

ḡ0 (x, uk) :=

[
[g0 (x, uk)]2
[g0 (x, uk)]4

]
,

and

ḡv (x) :=

[
[gv (x)]2
[gv (x)]4

]
,

where [·]i indicates the i-th row of a matrix or vector.
Assuming that the leader robot i is stably tracking some desired trajectory ud

i (t) :=[
vd

i (t) , ωd
i (t)

]T ∈ R2, such that ui (t), u̇i (t), üi (t) ∈ L∞, the objective is to design a
suitable state-feedback decentralized (dynamic) controller, represented by ūk (t), that
asymptotically regulates the output error ek (t) to an arbitrarily small neighborhood
of the origin B (0; ε), while maintaining the output trajectory sk (t) for t ≥ 0 within
a given set Sk ⊆ R× S of the form

Sk =
{(
s1

k, s
2
k

) ∈ Sk ⊆ R× S : s1
k < s1

k < s̄1
k, s

2
k < s2

k < s̄2
k

}
,

where B (0; ε) is a ball of radius ε around the origin. For the problem to be well
posed, we assume that sk (0) ∈ Sk and sd

k (t) ∈ Sk, for all t ≥ 0.

Remark 5.2.1. Usually Vk (t) is unknown.
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Remark 5.2.2. In the literature, the control speci�cation for the leader-follower prob-
lem is given in terms of the relative bearings ψik (t), γik (t) ∈ S, with

ψik (t) := π + αik (t) , (5.33)
γik (t) := π + βik (t) , (5.34)

as shown in Figure 5.1. However, given the equivalence between angles, we will use the
original angles αik (t) and βik (t) to de�ne the desired position. The main reason for
this choice is to avoid the discontinuity when the speci�cation dictates pure trailing,
that is, ψd

ik = π or αd
ik = 0.

Remark 5.2.3. Considering the dynamical model of the robot (2.1), the equilibrium
point for system (5.11) is given by

x∗ (t) =
[
`dik (t) , 0, αd

ik (t) , 0, 0, v̇d
k (t) , ω̇d

k (t)
]T
,

whereas the equilibrium point for system (5.15) is given by

x∗ (t) =
[
`dik (t) , 0, αd

ik (t) , 0, 0, 0, v̇d
k (t) , ω̇d

k (t)
]T
.

Some pathological situations are excluded, like the leader rotating around the follower
with constant velocity.

5.2.2 Two-leader-follower control problem
The second type of coordination algorithms presented in this dissertation are based
on the relative distances between the follower robot k and two leaders i and j. Let
sk (t) ∈ R2

≥0 denote the speci�cation of robot k, then

sk (t) := [`ik (t) , `jk (t)]T . (5.35)

Let the tracking error ek (t) ∈ R2 be de�ned as

ek (t) := sd
k (t)− sk (t) , (5.36)

and the error in state space be de�ned as

e1 (t) = ek (t) ,

e2 (t) = ė1 (t) = ėk (t) .
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Following the same steps as in the leader-follower case, it follows
{
ė1 (t) = ṡd

k (t)− ṡk (t) = e2 (t) ,

ė2 (t) = s̈d
k (t)− s̈k = s̈d

k (t)− ḡ0 (x, uk)− ḡv (x)Vk (t)− ūk (t) ,
(5.37)

with

ḡ0 (x, uk) :=

[
[g0 (x, uk)]2
[g0 (x, uk)]4

]
,

and

ḡv (x) :=

[
[gv (x)]2
[gv (x)]4

]
.

Assuming that the leader robot i is stably tracking some desired trajectory ud
i (t) :=[

vd
i (t) , ωd

i (t)
]T ∈ R2, such that ui (t), u̇i (t), üi (t) ∈ L∞, and the trajectory of leader

robot j is such that uj (t), u̇j (t), üj (t) ∈ L∞, due to the stability properties of the
leader-follower algorithm (proved in Section 5.3), the objective is to design a suitable
state-feedback decentralized (dynamic) controller, represented by ūk (t), that asymp-
totically regulates the output error ek (t) to an arbitrarily small neighborhood of the
origin B (0; ε), while maintaining the output trajectory sk (t) for t ≥ 0 within a given
set Sk ⊆ R2 of the form

Sk =
{(
s1

k, s
2
k

) ∈ Sk ⊆ R2 : s1
k < s1

k < s̄1
k, s

2
k < s2

k < s̄2
k

}
,

where B (0; ε) is a ball of radius ε around the origin. For the problem to be well
posed, we assume that sk (0) ∈ Sk and sd

k (t) ∈ Sk, for all t ≥ 0.
As can be seen, the similarities in the structure of equations (5.32) and (5.37) and

in problem formulations allow an uni�ed design of di�erent controllers.

Remark 5.2.4. Considering the dynamical model of the robot (2.1), the equilibrium
point for system (5.22) is given by

x∗ (t) =
[
`dik, 0, `djk, 0, αik, 0, αik + θij + δd

k, 0, θi, 2θk − θi, v̇
d
k, ω̇

d
k

]T
,

whereas the equilibrium point for system (5.26) is given by

x∗ (t) =
[
`dik, 0, `djk, 0, αik, 0, αik + θij + δd

k, 0, θi, 0, 2θk − θi, 0, v̇d
k, ω̇

d
k

]T
.
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Some pathological situations are excluded, like the both leaders rotating around the
follower.

5.2.3 Formation dynamics, communication and
sensing models

Let x∗,1 (t) represent the measured variables, with x∗,1 (t) ∈ R × S2 for the leader-
follower problem and x∗,1 (t) ∈ R2×S4 for the two leader-follower problem. Let Vk (t)

be de�ned as the external, possibly unknown, input function of leader(s) velocities.
It should be noted that there exist three information �ow levels in decreasing

order of measurement complexity for the controlled system given by equations (5.32)
and (5.37): The �rst level, the most complex from the point of view of information
�ow, is given by the knowledge of the velocity and acceleration of the leader(s), the
speci�cation and its derivative, that is, Vk (t) and sk (t) and ṡk (t), respectively. This
case, sketched in Figure 5.3 for the leader-follower case, can be solved by using a
partial state feedback controller (PSFB) [121]. Figure 5.4 shows an PSFB controller
including an auxiliary variable-structure controller to reject uncertainties and input
noise.

The second information �ow level requires the knowledge of the speci�cation and
its derivative, sk (t) and ṡk (t), respectively, but considers the velocity and acceleration
of the leader as perturbations, as it is shown in Figure 5.5. This case can be solved
using a robust state feedback controller (RSFB). That is, the controller using a variable
structure auxiliary input.

Finally, the third, and simplest level from the information �ow point of view, only
requires the knowledge of the speci�cation sk (t), as depicted in Figure 5.6. This case
can be solved using an output feedback controller (OFB) and a high-gain observer.

Remark 5.2.5. The last controller can be used for pursuit applications, because it
does not meet any information transmitted to the pursuer (or follower).

In Section 5.3, we describe, analyze, and compare each of the controllers mentioned
previously.

5.3 Formation control algorithms
This Section presents the state feedback controllers for the three information �ow
levels described earlier.
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5.3.1 Partial state feedback formation control (PSFB)
The �rst control law is equivalent to the one originally presented in [34] for �rst-order
dynamics. It assumes full knowledge of all states of robot j and its leader i in (5.32)
and (5.37). The control input is given by

ūk (t) = s̈d
k (t) + 2Kėk (t) +K2ek (t)− ḡ0 (x)− ḡv (x)Vk (t) , (5.38)

where K = diag (k1, k2), k1, k2 ∈ R>0 are positive gain constants. Replacing (5.38)
into (5.32) or (5.37), the error dynamics of the closed-loop system become

ëk (t) + 2Kėk (t) +K2ek (t) = 0. (5.39)

Therefore, because the characteristic equation (5.39) can be made Hurwitz and criti-
cally damped by an adequate choice of k1 and k2, the error ek (t) tends exponentially
to zero as t→∞.

5.3.2 Robust state feedback formation control (RSFB)
This controller assumes that leaders' velocities and accelerations, Vk (t), are unknown.
However, the derivative of edge speci�cation ṡk (t) is perfectly known by measurement
or estimation. Then, let the RSFB control law ūk (t) be designed as

ūk (t) = s̈d
k (t) + 2Kėk (t) +K2ek (t)− ḡ0 (xk) + ūc

k (t) , (5.40)

where ūc
k (t) ∈ R2 is an auxiliary control law de�ned as

ūc
k (t) := β sign (ek (t)) , (5.41)

with β = diag (β1, β2) ∈ R2×2
>0 , a positive control gain matrix. The function sign (·) is

de�ned as usual as

sign (x) :=





1, if x > 0

0, if x = 0

−1, if x < 0.

The following theorem states the stability of the closed-loop system.

Theorem 5.3.1. Control law (5.40) and auxiliary control law (5.41) ensure that the
system (5.29) is asymptotically stable, all its variables are bounded, and the tracking
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error and its derivative tend to zero, that is

ek (t) , ėk (t) → 0 as t→∞. (5.42)

Proof. See Section B.1 in Appendix B.

Remark 5.3.2. Alternatively, we use the function

ūc
k (t) := β tanh (ek (t)/ ε0) , (5.43)

to avoid excessive chattering. Although all the stability proofs are given in terms of
(5.41), systems (5.32) or (5.37) are ISS stable with respect to ūc

k (t). Therefore, it is
possible to attract the system to the stability region by choosing correctly K, β, and
ε0.

5.3.3 Output feedback formation control algorithm (OFB)
In the previous Subsection, a robust state feedback control law was designed that did
not require the knowledge of the leader's speed and acceleration, but the knowledge
of ṡk (t), or x∗,2 (t) = ẋ∗,1 (t), see equation (5.40). In this subsection, the RFSB
controller is extended to an output feedback (OFB) control algorithm by using a
high-gain observer (HGO) to avoid this drawback [1, 2, 69, 70, 84].

Let the unknown vector ṡk (t) be estimated through x∗,2 (t) using the HGO

˙̂x (t) = Ax̂ (t) + ḡ (x∗,1, vk) ūk (t) + g0 (x̂, uk) +H (x∗,1 (t)− x̂∗,1 (t)) , (5.44)

with H = blockdiag (H1, H2, . . .) depends on the problem,

Hi =

[
α1 /ε

α2 /ε2

]
,

where α1, α2 ∈ R>0 are constants, called HGO gains, and ε ∈ R>0 is the HGO
constant. The HGO gains are chosen such that the roots of

s2 + α1s+ α2 = 0,

have negative real parts. The HGO constant has to be designed such that the es-
timated variable x̂∗,2 (t) converges to the real values x∗,2 (t) fast enough to stabi-
lize the whole system. Let the scaled estimation error η (t) be de�ned as η (t) :=
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[η1,1, η1,2, η2,1, η2,2, . . .]
T , with




η∗,1 (t) =

1

ε
(x∗,1 (t)− x̂∗,1 (t)) ,

η∗,2 (t) = x∗,2 (t)− x̂∗,2 (t) .
(5.45)

Using (5.44) and (5.45), the dynamic observer error system is given by
{
εη̇∗,1 (t) = −α1η∗,1 (t) + η∗,22 (t) ,

εη̇∗,2 (t) = −α2η∗,1 (t) + εB [g0 (x, uk)− g0 (x̂, uk) + gv (x)Vk (t)] ,
(5.46)

where B = blockdiag (B1, B2, . . .) depends on the speci�c problem, with

Bi = [0 1] , i = 1, 2, . . . .

The dynamics of the scaled error η (t) can be written in compact form as

εη̇ (t) = A0η (t) + εf (t) , (5.47)

where A0 = blockdiag (a0, a0, . . .), with

a0 =

[
−α1 1

−α2 0

]
,

and
f (t) =

[
0

g1 (x, uk) η2 +Bgv (x)Vk (t)

]
,

with ḡ1 (x, uk) η2 = B [g0 (x, uk)− g0 (x̂, uk)] depends on the problem. If ε → 0 and
dτ = 1

ε
dt in (5.47), then

dη (τ)

dτ
= A0η (τ) . (5.48)

Equation (5.48) is called the boundary layer system.
Let W (η) be a non-negative function for the boundary layer system de�ned as

W (η) = ηTP0η, (5.49)

where P0 is a positive de�nite matrix such that P0A0 + AT
0 P0 = −I, then

dW

dτ
=
dηT

dτ
P0η + ηTP0

dη

dτ
= −‖η‖2 ≤ 0. (5.50)
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Consequently, the boundary layer system has the properties

λmin (P0) ‖η‖2 ≤ W (η) ≤ λmax (P0) ‖η‖2 ,

Ẇ =
∂W

∂η
η̇ ≤ −λω ‖η‖2 , 0 ≤ λω ≤ 1, (5.51)

∥∥∥∥
∂W

∂η

∥∥∥∥ ≤ 2 ‖P0‖ ‖η‖ , ‖P0‖ = λmax (P0) .

From (5.51), it is clear that the origin η (t) = 0 is a globally exponentially stable
equilibrium of (5.48).

Theorem 5.3.3. Let the control law be given by

ūk (t) = s̈d
k (t) + 2K

(
ṡd

k (t)− ŝ2 (t)
)

+K2ek (t)− ḡ0 (x̂, uk) + ūc
k (t) , (5.52)

with the components of ŝ2 (t) extracted from x̂∗,2 (t). Controller (5.52) with the auxil-
iary control law (5.41) asymptotically regulates the output error ek (t) of the combined
system (5.29) with the observer (5.47) to an arbitrarily small neighborhood of the
origin B (0; ε).

Proof. See Chapter B.3 in Appendix B.

Remark 5.3.4. The RSFB controller (5.40) designed in Subsection 5.3.2 is globally
asymptotically stable. Theoretically, the observer error will not cause the system to
become unstable using the OFB controller (5.52). However, the solution for the error
dynamics η (t) (5.46) contains terms of the form 1

ε
e−ωt/ε, for some ω > 0. Note that

η (t) can be very large if ε is small enough, because its amplitude is O
(

1
ε

)
. Then, the

new feedback control design based on HGO has to be saturated to avoid the peaking
phenomenon due to η (t) and prevent over-exceeding the control strength.

5.4 Backstepping
For d = 0, control laws (5.38), (5.40) and (5.52) give the desired input vector

$d
k (t) =

[
v̇d

k (t)

ωd
k (t)

]
= Tc (x∗,1, vk) ūk (t) , (5.53)

with
Tc (x∗,1, vk) =

[
− cos βik x1,1 sin βik

− 1
vk

sin βik −x1,1

vk
cos βik

]
,
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for the second order leader-follower model, and

Tc (x∗,1, vk) :=
1

sin δk

[
− sin βjk sin βik

1
vk

cos βjk − 1
vk

cos βik

]
,

for the second order two-leader-follower model.
However, while v̇d

k (t) is given directly, we need the derivative of ωd
k (t) to implement

the control law of the dynamical system (2.5). This derivative is computed using the
well-known backstepping technique [69, 130, 131] as follows: Let us add and subtract
ḡ∗,2 (x∗,1, vk)ω

d
k (t) to (5.32), with

ḡ∗,2 (x∗,1, vk) =

[
ḡ12 (x∗,1, vk)

ḡ22 (x∗,1, vk)

]

and ωd
k (t) is computed in equation (5.53). Then, using the PSFB controller (5.38),

the error dynamics is

ëk (t) = −2Kėk (t)−K2ek (t)− ḡ∗,2 (x∗,1, vk)
[
ωk (t)− ωd

k (t)
]
.

Using the RSFB controller (5.40), the error dynamics is

ëk (t) = −2Kėk (t)−K2ek (t)− ūc
k (t)

− ḡv (x, vk)Vk (t)− ḡ∗,2 (x∗,1, vk)
[
ωk (t)− ωd

k (t)
]
.

Finally, using the OFB controller (5.52), the error dynamics is

ëk (t) = −2K
(
ṡd

k (t)− ŝ2 (t)
)−K2ek (t)− [ḡ0 (x, vk)− ḡ0 (x̂, uk)]

− ḡv (x, vk)Vk (t)− ūc
k (t)− ḡ∗,2 (x∗,1, vk)

[
ωk (t)− ωd

k (t)
]
.

Following the design procedure described in [69] by adding the term

1

2

[
ωk (t)− ωd

k (t)
]2

to the original Lyapunov function, the system keeps its stability properties. Then,
input ω̇k (t) can be implemented with

ω̇k (t) = ω̇d
k (t)− kz

[
ωk (t)− ωd

k (t)
]
+ rT (t) ḡ∗,2 (x∗,1, vk) , (5.54)
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where kz ∈ R>0 is a design constant. Term ω̇d
k (t) cannot computed in closed form in

the OFB controller, because it depends on unknown variables. Therefore the HGO
is extended with 




˙̂w1 (t) = ŝ2 (t) +
α1

ε

(
ω̇d

k (t)− ŵ1 (t)
)
,

˙̂w2 (t) =
α2

ε2

(
ω̇d

k (t)− ŵ1 (t)
)
,

ˆ̇ωd
k (t) = ŵ2,

(5.55)

to compute the derivative ω̇d
k (t).

5.5 Simulation results
In this Section, we present several simulations to validate and analyze the performance
of the decentralized control algorithms designed herein. All simulations were written
in C++ on a Linux platform using MPSLab1, a motion planning, simulation, and
virtual perception software library designed and programmed by the author of this
dissertation [99, 100].

Figures 5.7 to 5.22 show simulation with the leader-follower and two-leader-follower
controllers considering d = 0 and using backstepping for ω̇k (t). Figures 5.24 to 5.29
show simulations with the leader-follower and two-leader-follower controllers consid-
ering d 6= 0.

In �gures 5.7 to 5.12 we show the results simulating a formation of three robots
using the OFB leader-follower algorithm, with the leader following a straight line
path with constant velocity u` (t) = [1.0m/sec, 0.0 rad/sec]T . Figures 5.13 to 5.18
show the results with the leader following a circular path with constant velocity
u` (t) = [1.0m/sec, 0.3 rad/sec]T .

The robot initial positions are q` (0) = [0, 0, 0]T , q1 (0) = [−2, −1, 0]T , and
q2 (0) = [−2, 1, 0]T , and their initial velocities are equal to 0.01. The controller
parameters are k1 = k2 = β1 = β2 = 5.0, the sampling time is 10msec, the edge
speci�cations are sd

1 =
[
2.0,−3

4
π
]T and sd

2 =
[
2.0, 3

4
π
]T . As can be seen, follower

robots start out of formation. Follower velocities are bounded by |vj (t)| ≤ 1.6 and
|ωj (t)| ≤ 11.5, j = 1, 2, . . .

The decentralized controller is able to drive each robot to the desired relative
distance and desired bearing angle in both cases. Figures 5.7 and 5.13 show robot
trajectories using the OFB controller with ε = 0.001. Figures 5.8, 5.9, 5.14, and 5.15
show the decentralized control inputs and the tracking error of follower 1 using the

1http://orqueda.net/research.aspx
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Figure 5.7: Robot trajectories for a straight line path and d = 0.

three controllers. It should be noted that not only the tracking error but also the
control e�ort degrade with the loss of information. Notwithstanding, the behavior
using the OFB controller is quite satisfactory.

Figures 5.10, 5.11, 5.16, and 5.17 illustrate the e�ects of the selection of the HGO
constant ε on the control input and tracking error, respectively. As ε decreases,
tracking errors decrease and control e�orts increase during the transient response,
when the observer have not converged.

Figures 5.12 and 5.18 show simulations with this three-robot formation in the 3D
simulation environment MPSLab. As it can be seen, the results in the environment
MPSLab are quite remarkable.

Figures 5.19 to 5.22 show a simulation with the OFB scheme with a 7-robot
formation, when the leader follows a circular trajectory. The initial positions of the
robots are q` (0) = [0,−5, 0]T , q1 (0) = [−3,−8, 0]T , q2 (0) = [−3,−2, 0]T , q3 (0) =

[−3,−10, 0]T , q4 (0) = [−3,−6, 0]T , q5 (0) = [−3,−4, 0]T , q6 (0) = [−3, 0, 0]T , and
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Figure 5.8: Velocity comparison between controllers (5.38), (5.40), and (5.52) for a
straight line path and d = 0.
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Figure 5.9: Error comparison between controllers (5.38), (5.40), and (5.52) for a
straight line path and d = 0.
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Figure 5.12: Snake view of a simulation with 3 robots for a straight line path and
d = 0.
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Figure 5.13: Trajectories of the leader robot and two followers for a circular path and
d = 0.
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Figure 5.14: Velocity comparison between controllers (5.38), (5.40), and (5.52) for a
circular path and d = 0.
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Figure 5.15: Output error comparison between controllers (5.38), (5.40), and (5.52)
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Figure 5.16: Control e�ort comparison with ε = 0.1, 0.001 for a circular path and
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Figure 5.18: Snake view of a simulation with 3 robots for a circular path and d = 0.
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Figure 5.19: Trajectories of the robots with d = 0.

their initial velocities are equal to 0.01 m/sec. The formation control graph is de�ned
by the speci�cations shown in Figure 5.23. It should be noted that robots 2, 3, 4,
and 7 use leader-follower algorithm, whereas robots 5 and 6 use two leader-follower
algorithms.

Figures 5.20 and 5.21 show the control inputs and the speci�cation error of robot 5
using a two leader-follower algorithm. Figure 5.22 shows simulations of the OFB
controller with seven-robot formation in the 3D simulation environment MPSLab.
As it can be seen, despite of the lack of knowledge about the leader or leaders state,
the behavior is quite satisfactory using any of the OFB observer/controller pairs.

Figure 5.24 to 5.29 show simulations using d 6= 0. It can be easily seen that
this controller outperforms the previous one for straight line and circular paths. The
main reasons for this better performance are the straight computation of ω̇k (t) and
the smoothing e�ect of the integral term on ωk (t). For d = 0, ωk (t) contains a
variable structure signal. This signal a�ects only ω̇k (t) for d 6= 0.
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Figure 5.20: Velocities of robot 5 using the two-leader algorithm with d = 0.
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Figure 5.21: Output error of robot 5 using the two-leader algorithm with d = 0.
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Figure 5.22: Snake view of a simulation with 7 robots with d = 0.
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Figure 5.23: Speci�cations for 7 robots.
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Figure 5.24: Trajectories of the robots for a straight line path and d 6= 0.
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Figure 5.26: Snake view of a simulation with 7 robots for a straight line path with
d 6= 0.
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Figure 5.27: Trajectories of the robots for a circular path and d 6= 0.
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Figure 5.28: Error comparison for a circular path and d 6= 0.
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Figure 5.29: Snake view of a simulation with 7 robots for a circular path with d 6= 0.
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5.6 Summary
This Chapter presents robust multi-vehicle output feedback decentralized controllers.
Using the main result of this work, an output feedback controller, each robot only
requires a single camera to maintain a speci�ed formation shape. The formation
speci�cation is given by the relative distance and bearing angle between each robot
and its leader. A high gain observer is used to estimate the states of the robot and
its neighbor(s).

A theoretical analysis based on Lyapunov stability theory has been performed to
prove asymptotic stability of the robust state feedback formation controller (Subsec-
tion 5.3.2), and globally uniformly ultimately bounded stability of the output feedback
formation controller (Subsection 5.3.3). Simulations in a realistic 3D environment
veri�ed the formation controller performances.
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Part III

Conclusions
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Chapter 6

Summary and future work

This dissertation presents a framework for vision-based control for multi-vehicle co-
ordination. This framework consists of two main parts: (i) a model-based vision
system, and (ii) vision-based formation control algorithms.

The model-based vision system, presented in Chapter 4, combines �ducial-based
robot identi�cation and pose estimation algorithms. It can estimate relative pose
(distance and angle) between two or more robots from single images. The system is
divided in two main components, image processing and pose estimation. For pose
estimation, three approaches are analyzed and compared: POSIT algorithm, PRA
approach, and Lowe's method. POSIT presents the fastest convergence rate and
highest simplicity. However, it fails to arrive to correct results in speci�c situations.
The PRA algorithm requires more iterations to achieve convergence. But, it is less
complex than Lowe's algorithm. Lowe's algorithm achieves the best results of the
three algorithms described here. Its main problem is its complexity and need of
several iterations to achieve convergence.

The formation control algorithms presented in Chapter 5 are robust vision-based
output feedback decentralized controllers that use relative position between a robot
and its designated leader(s) to de�ne the control law. The term robust is understood
in the sense that the algorithms do not need the knowledge of leader's velocity. Three
di�erent controllers are presented for the cases of leader following and two-leaders fol-
lowing. The �rst controller assumes complete knowledge of relative positions, veloci-
ties, and accelerations. The second controller assumes knowledge of relative positions
and their time-derivatives. Finally, the third controller assumes knowledge of just
relative positions, eliminating the need of inter-vehicle communications and, conse-
quently, increasing the reliability of the overall system. In the last approach, high-gain
observers are used to estimate derivatives from visual data. Stability properties of
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the three approaches are proved using Lyapunov theory. Simulations in a realistic 3D
environment validate the performance of the designed architecture and algorithms.

The deployment of multi-robot systems relies on communication networks oper-
ating in a dynamic and often hostile environment. These systems are expected to
operate autonomously with minimal human intervention, reduced decision-making
time, and limited sensors. Therefore, to help establish correctness and robustness of
coordination algorithms, it is of critical importance the analysis of potential failures
in the execution of coordination algorithms in the presence of dynamic changes in
the communication topology, communication malfunctions, addition and removal of
agents, cuts on communication links, and reduced sensor capabilities. Moreover, a
key issue in multi-vehicle systems is the interplay between control and communica-
tion in the robotic network. Additionally, the e�ects of control interconnections and
information �ow on the stability properties of the group are a major concern.

Future research will focus on the analysis of input-to-state [127, 133] and string
stability [110, 124] properties of the controllers presented in this work. Moreover,
another key problem is the synchronization between systems. A typical example, is
the synchronization between a system and its observer, but, more interestingly, it is
the search of new techniques capable of modelling complex behaviors found in nature,
like �ocking, swarming, or schooling. Future work will address this issue.
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Appendix A

Projective geometry

Euclidean geometry preserves distances and angles after translation and rotation
transformations. However, it is not applicable to represent the imaging process of
a camera because lengths and angles are no longer preserved after perspective trans-
formation. It is necessary another type of geometry to describe the camera trans-
formation process. This type of geometry is known as projective geometry. Projec-
tive geometry allows a larger class of transformation than rotations and translations.
However, fewer measurements, or invariants, are preserved [39, 47].

Points of the real n-dimensional projective space Pn are represented by n + 1-
component real column vectors [x1, . . . , xn+1]

T ∈ Rn+1, with the provision that at
least one coordinate must be non-zero, and that [x1, . . . , xn+1]

T and [λx1, . . . , λxn+1]
T

represent the same point of Pn for all λ 6= 0. The xi are called homogeneous coordinates
for the projective point.

The a�ne space Rn can be embedded isomorphically in Pn by the standard in-
jection [x1, . . . , xn] 7→ [x1, . . . , xn, 1]. A�ne points can be recovered from projective
ones with xn+1 6= 0 by the mapping

[x1, . . . , xn] ∼
[
x1

xn+1

, . . . ,
xn

xn+1

, 1

]
7→

[
x1

xn+1

, . . . ,
xn

xn+1

]
.

A projective point with xn+1 = 0 corresponds to an ideal point at in�nity in the
[x1, . . . , xn] direction in the a�ne space. The invertible transformation T : Pn → Pn

is called a projective transformation, collineation, homography or perspectivity and is
completely determined by n+ 2 point correspondences.

The invariants upon projective transformations are:

• Type: points remain points and lines remain lines.
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• Incidence: when a point lies on a line, it will lie also on a line in the transformed
space.

• Cross ratio: this ratio is de�ned as

Cr (p1, p2; p3, p4) =
d13d24

d14d23

,

where dij is the Euclidean distance between two points pi = [xi
1, x

i
2, x

i
3]

T and
pj =

[
xj

1, x
j
2, x

j
3

]T , given by

dij =

√√√√
(
xi

1

xi
3

− xj
1

xj
3

)2

+

(
xi

2

xi
3

− xj
2

xj
3

)2

,

as can be seen in Figure A.1. Therefore, if qi, i = 1, . . . , 4, denote the projective
transformed points pi, i = 1, . . . , 4, then

Cr (p1, p2; p3, p4) = Cr (q1, q2; q3, q4) .

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure A.1: Cross-ratio invariance.

The points v1 and v2 in Figure A.2 are called vanishing points, they could be at
in�nity and can be computed with the equations

v1 = (pSE × pSW )× (pNE × pNW ) ,

v2 = (pNE × pSE)× (pNW × pSW ) .
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Figure A.2: Vanishing points.
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Appendix B

Proofs of lemmas and theorems

B.1 Proof of Theorem 5.3.1
Proof. Let the �ltered error signal r (t) = [r1 (t) , r2 (t)]T ∈ R2 be de�ned as

r (t) := ėk (t) +Kek (t) , (B.1)

where K = diag (k1, k2), k1, k2 ∈ R>0 are positive gain constants. Di�erentiating
(B.1) with respect to time and using (5.32) or (5.37) yields

ṙ (t) = −ūk (t) + s̈d
k (t)− ḡ0 (x, uk)− ḡv (x)Vk (t) +Ke2 (t) . (B.2)

Substituting (5.40) into (B.2), we have

ṙ (t) = −Kr (t)− ḡv (x)Vk (t)− ūc
k (t) . (B.3)

Let the auxiliary function L (t) be de�ned as

L (t) := −rT (t) [ḡv (x)Vk (t) + ūc
k (t)] . (B.4)

It can be proved that
∫ t

t0
L (τ) dτ < ζb, see Lemma B.2.1 in this Appendix.

Let the function P (t) ∈ R≥0 be de�ned as

P (t) := ζb −
∫ t

t0

L (τ) dτ, (B.5)

where ζb and L (t) are de�ned according to Lemma B.2.1. Based on the non-negativity
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of P (t), let the Lyapunov function candidate V (t) be de�ned as

V (t) :=
1

2
rT (t) r (t) + P (t) . (B.6)

Taking time derivative of (B.6), using (B.3), (B.4), and (B.5), it follows

V̇ (t) =− rT (t)Kr (t) ≤ −k12 ‖r (t)‖2 , (B.7)

with k12 := min (k1, k2). Therefore, V (t) ∈ L∞ ∩ L2, then r (t) and P (t) ∈ L∞ ∩ L2.
From (B.1), it is clear that ek (t), ėk (t) ∈ L∞, and from (B.3), it can be seen that
ṙ (t) ∈ L∞; then V̈ (t) ∈ L∞. Considering that V (t) is lower bounded by ‖r (t)‖2,
by the Barbalat's lemma lim

t→∞
V̇ (t) = 0. This means that limt→∞ k12 ‖r (t)‖2 = 0, or

r (t) → 0 as t→∞ by Rayleigh-Ritz theorem [79]. Since (B.1) is a stable �rst order
di�erential equations driven by r (t), it can be ensured that limt→∞ ek (t) = 0 and
limt→∞ ėk (t) = 0.

B.2 Lemma B.2.1
Lemma B.2.1. Let the auxiliary function L (t) ∈ R be de�ned as

L (t) := −rT (t) [ḡv (t)Vk (t) + ūc
k (t)] . (B.8)

If the control gain β = diag (β1, β2) is selected to satisfy the su�cient condition

β1 > |ḡv (t)Vk (t)|1 +
1

k2

∣∣∣∣
d

dτ
[ḡv (t)Vk (t)]

∣∣∣∣
1

,

β2 > |ḡv (t)Vk (t)|2 +
1

k1

∣∣∣∣
d

dτ
[ḡv (t)Vk (t)]

∣∣∣∣
2

,

where K is given in (B.1) and k12 := min (k1, k2). Then
∫ t

t0

L (τ) dτ < ζb,

where the positive constant ζb ∈ R>0 is de�ned as

ζb :=
∣∣eT

k (t0) ḡv (t0)Vk (t0)
∣∣ + β1 |ek,1 (t0)|+ β2 |ek,2 (t0)| . (B.9)
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Proof. Let PL (t) be de�ned as

PL (t) :=

∫ t

t0

L (τ) dτ, (B.10)

where L (t) is de�ned in (B.8). Substituting (B.1) into (B.10), we have

PL (t) = −
∫ t

t0

deT
k (τ)

dt
gv (τ)Vk (τ) dτ −

∫ t

t0

deT
k (τ)

dt
β sign (ek (τ)) dτ

−
∫ t

t0

eT
k (τ)Kḡv (τ)Vk (τ) dτ −

∫ t

t0

eT
k (τ)Kβ sign (ek (τ)) dτ. (B.11)

Integrating by parts the �rst term on the right-hand side of (B.11), we obtain

PL (t) = eT
k (t0) ḡv (t0)Vk (t0)− eT

k (t) ḡv (t)Vk (t)−
∫ t

t0

deT
k (τ)

dτ
β sign (ek (τ)) dτ

−
∫ t

t0

eT
k (τ)K

{
ḡv (τ)Vk (τ)−K−1 d

dτ
[ḡv (τ)Vk (τ)]

}
dτ

−
∫ t

t0

eT
k (τ)Kβ sign (ek (τ)) dτ.

Since,
∫ t

t0

dx(τ)
dτ

sign (x (τ)) dτ = |x (t)| − |x (t0)|, we have

PL (t) = eT
k (t0) ḡv (t0)Vk (t0) + β1 |ek,1 (t0)|+ β2 |ek,2 (t0)|
− eT

k (t) ḡv (t)Vk (t)− β1 |ek,1 (t)| − β2 |ek,2 (t)|

−
∫ t

t0

eT
k (τ)K

{
ḡv (τ)Vk (τ)−K−1 d

dτ
[ḡv (τ)Vk (τ)] + β sign (ek (τ))

}
dτ

= ζb − eT
k (t) ḡv (t)Vk (t)− β1 |ek,1 (t)| − β2 |ek,2 (t)|

−
∫ t

t0

eT (τ)K

{
ḡv (τ)Vk (τ)−K−1 d

dτ
[ḡv (τ)Vk (τ)] + β sign (e (τ))

}
dτ,

with ζb := eT
k (t0) ḡv (t0)Vk (t0) + β1 |ek,1 (t0)| + β2 |ek,2 (t0)|. As it can be easily seen,

if β is chosen such that

β1 > |ḡv (t)Vk (t)|1 +
1

k2

∣∣∣∣
d

dτ
[ḡv (t)Vk (t)]

∣∣∣∣
1

,

β2 > |ḡv (t)Vk (t)|2 +
1

k1

∣∣∣∣
d

dτ
[ḡv (t)Vk (t)]

∣∣∣∣
2

,
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then the second and third right-hand terms are less than zero. Hence,

PL (t) =

∫ t

t0

L (τ) dτ < ζb.

B.3 Proof of Theorem 5.3.3
Proof. The closed-loop formation tracking error dynamics under the OFB control law
(5.52) is

ṙ (t) = −Kr (t)− 2Kη2 (t)− ḡ1 (x, uk) η2 − gv (x)Vk (t)− ūc
k (t) . (B.12)

We prove that the combined closed loop system (5.47) and (B.12) is asymptotically
stable. The proof is done in three steps: In the �rst step, it is shown that there exists
an invariant set for the closed loop output feedback system based on a composite
Lyapunov function. In the second step, we show that any trajectory will be trapped
into this invariant set in �nite time if the HGO constant ε is chosen small enough.
In the third step, it is demonstrated that this invariant set is globally uniformly
ultimately bounded (GUUB).

Let R = R2 be the region of attraction of system (5.29) with control law (5.52).
Let Dr be a compact set in the interior of R. Let the compact set Dc, which contains
the origin of (B.12), be de�ned by Dc := {r (t) ∈ R|V (t) ≤ c}, where V (t) is de�ned
in (B.6) and c > maxr∈Dr V (t) is a small positive constant. The set Dc is a compact
subset of R and Dr is in the interior of Dc. Let the compact set Dε be de�ned
by Dε := {η (t) ∈ R4|W (t) ≤ ρε2}, where W (t) is given in (5.49), ρ is a positive
constant to be selected later, and ε is the HGO constant. Finally, let the set Σc be
de�ned as Σc := Dc ×Dε ∈ R6.

The derivative of (B.6) for (e (t) , ė (t) , η (t)) ∈ {V (t) = c} × Dε veri�es

V̇ (t) ≤ −k12 ‖r (t)‖ [‖r (t)‖ − σ1 ‖η (t)‖]
≤ −k12µ (µ− L1ε) , (B.13)

with σ1 := σs+2k̄12

k12
, σs := maxx ‖g1 (zk)‖, k̄12 := λmax (K), L1 := σ1

√
ρ

λmin(P0)
, and

µ = minr∈∂Dc {‖r (t)‖}. Note that we dropped the subindex ′k′ in ek (t) for simplicity.
Analyzing the derivative of (5.49) for (e (t) , ė (t) , η (t)) ∈ Dc × {W (t) = ρε2} we
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�nd

Ẇ (t) ≤ −‖η (t)‖2

2ε
(1− 4 ‖P0‖σsε)− ‖η (t)‖

2ε
[‖η (t)‖ − 4 ‖P0‖σvε]

≤ −‖η (t)‖2

2ε
(1− 4 ‖P0‖σsε)− ‖η (t)‖

2

(√
ρ

‖P0‖ − 4 ‖P0‖σv

)
, (B.14)

with σv := maxx,Vk
‖ḡv (x)Vk (t)‖.

Taking ρ = 16σ2
v ‖P0‖3 and ε1 = min

(
1

4σs‖P0‖ ,
µ
L1

)
, for every 0 < ε ≤ ε1, we have

V̇ (t) ≤ 0,

for (e (t) , ė (t) , η (t)) ∈ {V (t) = c} × Dε, and

Ẇ (t) ≤ 0,

for (e (t) , ė (t) , η (t)) ∈ Dc × {W (t) = ρε2}. Therefore, Σc is a positively invariant
set.

Let us show that the trajectory of the system is trapped in this set. The initial
state satisfy (e (0) , ė (0) , η (0)) ∈ Dr×Q, where Q is a compact set such that Q ⊆ R4.
Using (5.45) it can be seen that

‖η(0)‖ ≤ c3
ε
,

where c3 ∈ R>0 is an appropriate constant. Because (e (0) , ė (0)) ∈ Dr, we have

‖e (t)− e (0)‖ ≤ ca2t,

‖ė (t)− ė (0)‖ ≤ cb2t,

‖r (t)− r (0)‖ ≤ c2t,

(B.15)

where cb2, ca2, c2 ∈ R>0 are some positive constants. Therefore, there exists a �nite time
T0, independent of ε, such that (e (t) , ė (t)) ∈ Dr for all t ∈ [0, T0]. In consequence,
when t ∈ [0, T0] and W (η (t)) ≥ ρε2, from (B.14), Ẇ (t) ≤ − 1

2ε
‖η (t)‖2. Then

Ẇ (t) ≤ −µ1

ε
W (t) , (B.16)

with µ1 := 1
2‖P0‖ . The solution for (B.16) is

W (t) ≤ µ2

ε2
exp

(
−µ1

ε
t
)
, (B.17)
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with µ2 := c23 ‖P0‖. As it can be seen from (B.17), limt→∞W (t) = 0. Let Tε be the
time for which W (t) falls below to ρε2, it must satisfy

W (η (Tε)) ≤ µ2

ε2
exp

(
−µ1

ε
Tε

)
≤ ρε2, (B.18)

In consequence, Tε ≥ ε
µ1

ln
(

µ2

ρε4

)
and limε→0 Tε = 0. Then, it is possible to choose ε2

small enough such that Tε = 1
2
T0, for all ε ∈ (0, ε2]. It follows that W (η (Tε)) < ρε2

for all ε ∈ (0, ε2]. Choosing ε∗1 = min (ε1, ε2), the trajectory (e (t) , ė (t) , η (t)) enters
into the invariant set Σc in t ∈ [0, Tε] and remains in Σc, for all t ≥ Tε and every
0 < ε ≤ ε∗1. Moreover, the trajectory (e (t) , ė (t) , η (t)) is bounded by (B.15) and
(B.17), for t ∈ [0, Tε] and ε ∈ (0, ε∗1].

If the initial state satis�es (e (0) , ė (0) , η (0)) ∈ Dr × Q, then the trajectory of
the system will be inside Σc, for all t ≥ Tε and 0 < ε ≤ ε∗1. Because, from (B.17),
limε→0W (η (t)) = 0, it is possible to �nd ε3 = ε3 (δ0) ≤ ε∗1, for any given small value
δ0, such that

‖η (t)‖ ≤ δ0
2
, (B.19)

for t ≥ Tε3 = Tε3 (δ0).
Let the compact sets D1 and D2 be given by

D1 :=
{
(e (t) , ė (t)) ∈ R : ‖r (t)‖2 ≤ 2L1ε

}
, (B.20)

and
D2 := {(e (t) , ė (t)) ∈ R : V (t) ≤ υ (ε)} , (B.21)

with υ (ε) := max‖r‖2<2L1ε {V (t)}. If (e (t) , ė (t)) /∈ D1,

V̇ (t) ≤ −1

2
k12 ‖r (t)‖2 .

Let ε4 = ε4 (δ0) be chosen such that D2 is in the interior of Dc and

D2 ⊂
{

(e (t) , ė (t)) ∈ R : ‖e (t)‖ ≤ 1

4
δ0, ‖ė (t)‖ ≤ 1

4
δ0

}
.

Then for all (e (t) , ė (t)) ∈ Dc, (e (t) , ė (t)) /∈ D2,

V̇ (t) ≤ −1

2
k12 ‖r (t)‖2 .

Therefore, the set Σ1 := D2 × Dε is positively invariant and every trajectory in
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Dc × Dε enters Σ1 in �nite time Tε4 = Tε4 (δ0), for ε ∈ (0, ε4]. Let ε∗2 = min {ε3, ε4}
and T1 = max {Tε3 , Tε4}, therefore

‖e (t)‖+ ‖ė (t)‖+ ‖η (t)‖ ≤ δ0, (B.22)

with δ0 > 0, ε ∈ (0, ε∗2], and t ≥ T1. Then (e (t) , ė (t) , η (t)) is GUUB.
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Appendix C

De�nitions and mathematical
background

This Appendix reviews key de�nitions and theorems for analysis stability of nonlinear
systems. The interested reader is referred to references [48, 54, 58, 59, 69, 71, 80, 81,
91, 93, 118, 122, 134] for more detailed treatment.

C.1 Preliminaries
We consider smooth nonlinear control systems of the general form

Σ :

{
ẋ = f (x, u) ,

y = h (x) ,
(C.1)

where x = [x1, . . . , xn]T are local coordinates for a smooth manifoldM, the functions
f and h are smooth, y = [y1, . . . , yp]

T ∈ Rp is the output vector, C∞, and u =

[u1, . . . , um]T ∈ U ⊆ Rm is an input vector signal, where U is convex and contains the
origin. Admissible input signals are locally essentially bounded, Lebesgue measurable
functions u : [0,∞) 7→ U .

Alternative, we consider smooth a�ne nonlinear control systems of the general
form

Σ :





ẋ = f0 (x) +
m∑

j=1

fj (x)uj,

y = h (x) ,

(C.2)

where f0, . . . , fm are smooth vector �elds on M. If f0 (x) for all x ∈ M, system
(C.2) is called driftless.
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De�nition C.1.1 (Lipschitz condition). A function f : D ⊆ R→ R is called Lip-
schitz continuous or is said to satisfy a Lipschitz condition if there exists a constant
K > 0 such that for all x, y ∈ D

|f (x)− f (y)| ≤ K |x− y| .

The smallest such K is called the Lipschitz constant of the function f . The function
is called locally Lipschitz continuous if for every x ∈ D there exists an neighborhood
U (x) so that f restricted to U is Lipschitz continuous.

De�nition C.1.2 (Analytic function). A function f : D 7→ R is said to be ana-
lytic, denoted Cω, if it is C∞ and for each point x0 ∈ D there exists a neighborhood
B (x0), such that the Taylor series expansion of f at x0 converges to f (x) for all
x ∈ B (x0).

De�nition C.1.3. A continuous function α : [0, a) → [0,∞) is said to be of class K
if it is strictly increasing and α (0) = 0. It is said to be of class K∞ if a = ∞ and
α (r) →∞ as r →∞.

De�nition C.1.4. A continuous function β : [0, a) × [0,∞) → [0,∞) is said to be
of class KL if β (·, t) is of class K for each �xed t ≥ 0 and β (s, t) decreases to 0 as
t→∞ for each �xed s ≥ 0.

De�nition C.1.5 (Coordinate chart). A coordinate chart on a manifold M of
dimension n is a pair (U , φ), where φ is a homeomorphism of U ⊂M onto and open
set of Rn.

De�nition C.1.6 (Vector �eld). Let M be a smooth manifold of dimension n and
denote Tx (M) the tangential space of M. A vector �eld f on M is a mapping
assigning to each point p ∈ M a tangent vector f (p) ∈ Tx (M). A vector �eld f

is smooth if for each p ∈ M there exists a coordinate chart (U , φ) about p and n

real-valued functions f1, . . . , fn de�ned on U such that,

f (p) =
n∑

i=1

fi (p)

(
∂

∂φi

)

q

,

for all q ∈ U .

De�nition C.1.7 (Lie derivative). Let f be a smooth vector �eld on a manifold
M of dimension n and λ a smooth real-valued function on M. The Lie derivative of
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λ along f is a function fλ : M→R, written Lfλ and de�ned as

Lfλ (p) = f (p)λ.

In local coordinates, Lfλ is represented by

Lfh (x1, . . . , xn) =

(
∂λ

∂x1

, . . . ,
∂λ

∂xn

)



f1

...
fn


 .

De�nition C.1.8 (Lie bracket). Let f and g be two smooth vector �elds on a
manifold M of dimension n and λ a smooth real-valued function on M. The Lie
bracket of f and g, denoted [f, g], is a new vector �eld de�ned by

[f, g] (h) (λ) = (LfLgλ) (p)− (LgLfλ) (p) .

The expression of [f, g] in local coordinates is given by the n-vector

[f, g] =
∂g

∂x
f − ∂f

∂x
g.

It is convenient to write
adfg = [f, g] ,

and to think adf as a linear operator.

De�nition C.1.9 (Distribution). Let N be an open subset of Rn. A distribution
∆ is a map which assigns a subspace ∆ (x) of Rn to each x ∈ N . The distribution
generated by a set of d smooth vector �elds f1 (x), . . ., fd (x) de�ned on N , is de�ned
as

∆ (x) = span {f1 (x) , . . . , fd (x)} .

De�nition C.1.10 (Involutive distribution). A distribution ∆ is called involutive
if [f1, f2] ∈ ∆, whenever f1, f2 ∈ ∆ (x).

De�nition C.1.11. A nonsingular d-dimensional distribution ∆ de�ned on an open
set N of Rnis completely integrable if, or each point x ∈ N there exists a neighborhood
B (x), and n−d real-valued smooth functions λ1, . . . , λn−d, de�ned on B (x) such that

span {dλ1, . . . , dλn−d} = ∆⊥,
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on B (x), where ∆⊥ is the annihilator of ∆ and dλi, i = 1, . . . , n− d, is the covector
�eld, called exact di�erential, given by

dλi (x) =
∂λi (x)

∂x
=

(
∂λi

∂x1

, . . . ,
∂λi

∂xn

)
.

Theorem C.1.12 (Frobenius). A nonsingular distribution is completely integrable
if and only if it is involutive.

C.2 Controllability and observability
De�nition C.2.1 (Reachability). Considering system (C.1). A state x1 ∈ M is
called reachable, or accessible, from x0 ∈ M, if there exist a time T and a control
u (t) ∈ U , for all t ∈ [0, T ], which steers the system from x0to x1, with x (t) ∈M for
all t ∈ [0, T ]. The set of points accessible from x0 is denoted by R (x0)

De�nition C.2.2. System (C.1) is said to be controllable at x0 if R (x0) = M and
controllable if R (x) = M for every x ∈M.

De�nition C.2.3. System (C.1) is said to be locally controllable at x0 if for every
neighborhood N (x0), RN (x0) is also a neighborhood of x0. It is said that the system
is locally controllable if it is locally controllable at every x ∈M.

C.2.1 Observability
The observability problem answers the question of when and how it is possible to
reconstruct the internal states from output measurements of the system.

Note that for nonlinear system, observer errors tending exponentially to zero do
not guarantee that the system will be stable. The problem is known as �nite escape
time, which allows solutions to grow unbounded before the estimated states have
converged.

De�nition C.2.4 (Indistinguishability). Two states x1, x2 ∈M are said indistin-
guishable, denoted x1Ix2 for (C.2) if for every admissible input function u the output
function t 7→ y (t, 0, x1, 0), t ≥ 0, of the system for initial state x (0) = x1, and the
output function t 7→ y (t, 0, x2, 0), t ≥ 0, of the system for initial state x (0) = x2, are
identical on their common domain of de�nition.

De�nition C.2.5 (Observability). A system is called observable if x1Ix2 implies
x1 = x2, with x1, x2 ∈M.

181



De�nition C.2.6 (Observation space). The observation space O of system (C.2)
is the linear space over R of the functions Lfk

hj (x), j ∈ [1, p], k = 0, 1, 2, . . ..

Let dO (q) be the involutive observability codistribution de�ned by the observation
space O, with

dO (q) = span {dH (q)|H ∈ O} , q ∈M.

Now, it is possible to state the following theorem:

Theorem C.2.7 (Observability rank condition). Let us consider system (C.2)
with dimM = n. Assume that

dim (dO (x)) = n,

then the system is locally observable at x.

C.3 Input-to-state stability
De�nition C.3.1 (Input-to-state stability). The system (C.1) is said to be input-
to-state stable (ISS) if there exist a class KL function β and a class K function γ

such that for any initial state x (t0) and any bounded input u (t), the solution x (t)

exists for all t ≥ t0 and satis�es

‖x (t)‖ ≤ β (‖x (t0)‖ , t− t0) + γ

(
sup

t0≤τ≤t
‖u (τ)‖

)
.

Theorem C.3.2. Let V : [0,∞)× Rn → R be a continuously di�erentiable function
such that

α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖) ,
∂V

∂t
+
∂V

∂x
f (t, x, u) ≤ −W3 (x) , ∀ ‖x‖ ≥ ρ (‖x‖) > 0,

∀ (t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class
K function, and W3 (x) is a continuous positive de�nite function on Rn. Then, the
system (C.1) is input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.

De�nition C.3.3 (Relative degree). A multivariable nonlinear system of the form
(C.2) has a vector relative degree {r1, . . . , rm} at a point x0 if
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1.
Lfj

Lk
f0
hi (x) = 0,

for all 1 ≤ j ≤ m, for all k < ri − 1, for all 1 ≤ i ≤ m, and for all x in a
neighborhood of x0,

2. the m×m matrix

A (x) =




Lf1L
r1−1
f0

h1 (x) · · · Lf2L
r1−1
f0

h1 (x)

Lf2L
r2−1
f0

h2 (x) · · · Lf2L
r2−1
f0

h2 (x)
... · · · ...

LfmL
rm−1
f0

hm (x) · · · LfmL
rm−1
f0

hm (x)



,

is nonsingular at x = x0.
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Appendix D

Perturbations, relative dynamics and
degrees

D.1 Leader-follower model with uncertain transfor-
mation

It should be noticed that the input transformation (5.7) depends on measured vari-
ables ˆ̀

ik, α̂ik, and θ̂ik. To observe how the error in these variables a�ect the real
controller, let the input transformation be given by

[
vk

ωk

]
=

[
− cos β̂ik

ˆ̀
ik sin β̂ik

−1
d
sin β̂ik − ˆ̀

ik

d
cos β̂ik

] [
v̄k

ω̄k

]
, (D.1)

with β̂ik := α̂ik + θ̂ik for brevity. Then, the dynamics is given by



˙̀
ik

α̇ik

θ̇ik


 =




1 0

0 1
1
d
sin βik

`ik

d
cos βik




[
v̄k

ω̄k

]
+




cosαik 0

− sin αik

`ik
−1

0 1




[
vi

ωi

]

+




cos êβ − 1 ˆ̀
ik sin êβ

− sin êβ

`ik

(
1− ê`

`ik

)
cos êβ − 1

(cos êβ−1) sin βik−cos βik sin êβ

d
(cos êβ − 1) cos βik + sin βik sin êβ




[
v̄k

ω̄k

]
,

(D.2)
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with êβ := βik− β̂ik, ê` := `ik− ˆ̀
ik. Therefore, system (5.9) is perturbed by a term of

the form

δω ≤ κp (|ê`| , |êβ|) (|v̄k|+ |ω̄k|)

The rest of this work will take into account the generic perturbation form, without
looking for an exact expression.

D.2 Internal dynamics
The internal dynamics in equation (5.9) is given by

θ̇ik =
1

d
sin (αik + θik) v̄k +

`ik
d

cos (αik + θik) ω̄k + ωi. (D.3)

From equation (5.9), it can be seen that
[
v̄k

ω̄k

]
=

[
− cosαikvi + ˙̀

ik

sin αik

`ik
vi + ωi + α̇ik

]
.

Then (D.3) is

θ̇ik (t) = −1

d
sin θikvi (t) +

[
1 +

`ik
d

cos (αik + θik)

]
ωi (t)

+
1

d
sin (αik + θik) ˙̀

ik (t) +
`ik
d

cos (αik + θik) α̇ik (t) . (D.4)

The system is said to be of minimum phase if θ̇ik (t) is stable, with ˙̀d
ik (t) = α̇d

ik (t) ≡ 0,
then

θ̇ik (t) = −1

d
sin θikvi (t) +

[
1 +

`ik
d

cos (αik + θik)

]
ωi (t) .

As can be seen, if ωi (t) = 0 and the speed of the leader vi (t) is positive, the
system reduces to

θ̇ik (t) = −1

d
sin θikvi (t) ,

this system is clearly stable except for θd
ik (0) = π. To analyze the e�ect of having a
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negative leader velocity, let ϑik (t) be de�ned as ϑik (t) := θik (t)− π, then

ϑ̇ik (t) =
1

d
sinϑikvi (t) +

[
1− `ik

d
cos (αik + ϑik)

]
ωi (t) .

If ωi (t) = 0 and the speed of the leader vi (t) is negative, the system reduces to

ϑ̇ik (t) = −1

d
sinϑik |vi (t)| ,

then the system is stable except for ϑik (t) = π, that is, θik (t) = 0.
When ωi (t) 6= 0, Chen and Serrani present a relationship between vi (t) and ωi (t)

to guarantee internal dynamic stability [19]. Not such a result has been found for the
two-leader-follower problem.
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