787 research outputs found

    Fundamentals of Earth Observation Policy: Examples for German and European Missions

    Get PDF
    Several European countries have developed their national high resolution earth observation systems. Some of them are operated in close cooperation with industrial partners, others are dual-use missions earmarked to fulfil the needs of national security. In addition, the European Space Agency and the European Commission have initiated the Global Monitoring for Environment and Security (GMES) project. Therein, a fleet of satellites (SENTINELs) will deliver data for European wide information services, augmented by data from national and non-European earth observation systems. This new scenario needs clear guidance and regulations. Besides the principles for operations of earth observation missions – as set out in UN principles on earth observation – the operators of very high resolution missions require clear governmental acts which international users can be served and which data might be restricted in distribution. For national science and the SENTINEL-missions, a policy for free and open access is being developed to guarantee a maximum use of the data. Exemplified on the German national missions and the European GMES scenario, data policies and regulations for existing and new earth observation missions will be explained

    Laplace plane GeoSAR feasibility study: summary of the group design project MSc in astronautics and space engineering 2014-15, Cranfield University

    Get PDF
    Students of the MSc course in Astronautics and Space Engineering 2014-15 at Cranfield University performed a feasibility study of a geosynchronous radar mission for their group project. This report summarises the students' work and their findings. The report consists of an overview and discussion of the technical work of the project and a compilation of the executive summaries which describe the special contributions of each student. The mission studied is a geosynchronous synthetic aperture radar Earth observation mission using the Laplace orbit plane to reduce station-keeping propulsion demand. User applications are drawn from a wide range of sectors (agriculture, meteorology, geohazards, etc.) and are translated into system design requirements. The proposed mission design uses satellites with 13 m diameter antennas and a total electrical power demand of 6 kW. The mission seems feasible, although further study is recommended especially for the areas of _ orbit selection with respect to user requirements, imaging performance and orbit maintenance, _ mass budget (driven largely by the propulsion system), _ user requirements, imaging performance and operational imaging modes, _ opportunities for improved imaging with a constellation

    Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    Get PDF
    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting

    Technology needs of advanced Earth observation spacecraft

    Get PDF
    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Remote Sensing-Based Biomass Estimation

    Get PDF
    Over the past two decades, one of the research topics in which many works have been done is spatial modeling of biomass through synergies between remote sensing, forestry, and ecology. In order to identify satellite-derived indices that have correlation with forest structural parameters that are related with carbon storage inventories and forest monitoring, topics that are useful as environmental tools of public policies to focus areas with high environmental value. In this chapter, we present a review of different models of spatial distribution of biomass and resources based on remote sensing that are widely used. We present a case study that explores the capability of canopy fraction cover and digital canopy height model (DCHM) for modeling the spatial distribution of the aboveground biomass of two forests, dominated by Abies Religiosa and Pinus spp., located in Central Mexico. It also presents a comparison of different spatial models and products, in order to know the methods that achieved the highest accuracy through root-mean-square error. Lastly, this chapter provides concluding remarks on the case study and its perspectives in remote sensing-based biomass estimation

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF

    Data Fusion and Synergy of Active and Passive Remote Sensing; An application for Freeze Thaw Detections

    Full text link
    There has been a recent evolvement in the field of remote sensing after increase of number satellites and sensors data which could be fused to produce new data and products. These efforts are mainly focused on using of simultaneous observations from different platforms with different spatial and temporal resolutions. The research dissertation aims to enhance the synergy use of active and passive microwave observations and examine the results in detection land freeze and thaw (FT) predictions. Freeze thaw cycles particularly in high-latitude regions have a crucial role in many applications such as agriculture, biogeochemical transitions, hydrology and ecosystem studies. The dielectric change between frozen ice and melted water can dramatically affect the brightness temperature (TB) signal when water transits from the liquid to the solid phase which makes satellite-based microwave remote sensing unique for characterizing the surface freeze thaw status. Passive microwave (PMW) sensors with coarse resolution (about 25 km) but more frequent observations (at least twice a day and more frequent in polar regions) have been successfully utilized to define surface state in terms of freeze and thaw in the past. Alternatively, active microwave (AMW) sensors provide much higher spatial resolution (about 100 m or less) though with less temporal resolution (each 12 days). Therefore, an integration of microwave data coming from different sensors may provide a more complete estimation of land freeze thaw state. In this regard, the overarching goal of this research is to explore estimating high spatiotemporal freeze and thaw states using the combination of passive and active microwave observations. To obtain a high temporal resolution TB, this study primarily builds an improved diurnal variation of land surface temperature from integration of infrared sensors. In the next step, a half an hourly diurnal cycle of TB based on fusion of different passive sensors is estimated. It should be mentioned that each instrument has its own footprint, resolution, viewing angle, as well as frequency and consequently their data need to be harmonized in order to be combined. Later, data from an AMW sensor with fine spatial resolution are merged and compared to the corresponding passive data in order to find a relation between TB and backscatter data. Subsequently, PMW TB map can be downscaled to a higher spatial resolution or AMW backscatter timeseries can be generalized to high temporal resolution. Eventually, the final high spatiotemporal resolution TB product is used to examine the freeze thaw state for case studies areas in Northern latitudes

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph

    Proceedings of the Third Spaceborne Imaging Radar Symposium

    Get PDF
    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986
    • …
    corecore