310 research outputs found

    Exploring the Neural Mechanisms of Physics Learning

    Get PDF
    This dissertation presents a series of neuroimaging investigations and achievements that strive to deepen and broaden our understanding of human problem solving and physics learning. Neuroscience conceives of dynamic relationships between behavior, experience, and brain structure and function, but how neural changes enable human learning across classroom instruction remains an open question. At the same time, physics is a challenging area of study in which introductory students regularly struggle to achieve success across university instruction. Research and initiatives in neuroeducation promise a new understanding into the interactions between biology and education, including the neural mechanisms of learning and development. These insights may be particularly useful in understanding how students learn, which is crucial for helping them succeed. Towards this end, we utilize methods in functional magnetic resonance imaging (fMRI), as informed by education theory, research, and practice, to investigate the neural mechanisms of problem solving and learning in students across semester-long University-level introductory physics learning environments. In the first study, we review and synthesize the neuroimaging problem solving literature and perform quantitative coordinate-based meta-analysis on 280 problem solving experiments to characterize the common and dissociable brain networks that underlie human problem solving across different representational contexts. Then, we describe the Understanding the Neural Mechanisms of Physics Learning project, which was designed to study functional brain changes associated with learning and problem solving in undergraduate physics students before and after a semester of introductory physics instruction. We present the development, facilitation, and data acquisition for this longitudinal data collection project. We then perform a sequence of fMRI analyses of these data and characterize the first-time observations of brain networks underlying physics problem solving in students after university physics instruction. We measure sustained and sequential brain activity and functional connectivity during physics problem solving, test brain-behavior relationships between accuracy, difficulty, strategy, and conceptualization of physics ideas, and describe differences in student physics-related brain function linked with dissociations in conceptual approach. The implications of these results to inform effective instructional practices are discussed. Then, we consider how classroom learning impacts the development of student brain function by examining changes in physics problem solving-related brain activity in students before and after they completed a semester-long Modeling Instruction physics course. Our results provide the first neurobiological evidence that physics learning environments drive the functional reorganization of large-scale brain networks in physics students. Through this collection of work, we demonstrate how neuroscience studies of learning can be grounded in educational theory and pedagogy, and provide deep insights into the neural mechanisms by which students learn physics

    Failure Probability Estimation and Detection of Failure Surfaces via Adaptive Sequential Decomposition of the Design Domain

    Full text link
    We propose an algorithm for an optimal adaptive selection of points from the design domain of input random variables that are needed for an accurate estimation of failure probability and the determination of the boundary between safe and failure domains. The method is particularly useful when each evaluation of the performance function g(x) is very expensive and the function can be characterized as either highly nonlinear, noisy, or even discrete-state (e.g., binary). In such cases, only a limited number of calls is feasible, and gradients of g(x) cannot be used. The input design domain is progressively segmented by expanding and adaptively refining mesh-like lock-free geometrical structure. The proposed triangulation-based approach effectively combines the features of simulation and approximation methods. The algorithm performs two independent tasks: (i) the estimation of probabilities through an ingenious combination of deterministic cubature rules and the application of the divergence theorem and (ii) the sequential extension of the experimental design with new points. The sequential selection of points from the design domain for future evaluation of g(x) is carried out through a new learning function, which maximizes instantaneous information gain in terms of the probability classification that corresponds to the local region. The extension may be halted at any time, e.g., when sufficiently accurate estimations are obtained. Due to the use of the exact geometric representation in the input domain, the algorithm is most effective for problems of a low dimension, not exceeding eight. The method can handle random vectors with correlated non-Gaussian marginals. The estimation accuracy can be improved by employing a smooth surrogate model. Finally, we define new factors of global sensitivity to failure based on the entire failure surface weighted by the density of the input random vector.Comment: 42 pages, 24 figure

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    Nlcviz: Tensor Visualization And Defect Detection In Nematic Liquid Crystals

    Get PDF
    Visualization and exploration of nematic liquid crystal (NLC) data is a challenging task due to the multidimensional and multivariate nature of the data. Simulation study of an NLC consists of multiple timesteps, where each timestep computes scalar, vector, and tensor parameters on a geometrical mesh. Scientists developing an understanding of liquid crystal interaction and physics require tools and techniques for effective exploration, visualization, and analysis of these data sets. Traditionally, scientists have used a combination of different tools and techniques like 2D plots, histograms, cut views, etc. for data visualization and analysis. However, such an environment does not provide the required insight into NLC datasets. This thesis addresses two areas of the study of NLC data---understanding of the tensor order field (the Q-tensor) and defect detection in this field. Tensor field understanding is enhanced by using a new glyph (NLCGlyph) based on a new design metric which is closely related to the underlying physical properties of an NLC, described using the Q-tensor. A new defect detection algorithm for 3D unstructured grids based on the orientation change of the director is developed. This method has been used successfully in detecting defects for both structured and unstructured models with varying grid complexity

    Decision support system for form verification of manufactured parts.

    Get PDF
    The form verification of manufactured parts is a process composed of a set of operations that are expensive and yet add no value to the product. Yet, the resources used to inspect the parts add a small but significant amount of noise that can affect the outcome of the process. For this reason, this research provides guidelines to effectively perform the inspection process by suggesting new mathematical models and approaches that can be used for the creation of a decision support system that can assist in the verification of the accuracy of machined parts.This research proposes two approaches to improve the robustness of the mathematical models from the noise induced by the inspection process. The Dynamic Angle Approach (DAA) and the Free Form Orientation approach (FFO) presented here focus on finding the parameters of the axes and origin of the form that counteract the inaccuracies of the inspection equipment.In summary, this research suggests formalized methods for feature extraction, sampling, path planning, and form fitting, although the last mentioned received the most attention. It is believed that this comprehensive, integrated analysis will lead to the development of a decision support system.The proposed approaches and mathematical models were verified using measurements from features that were perfectly aligned with the coordinate system of the inspection equipment and from features that were intentionally misaligned. The results showed that the models were accurate and robust enough to estimate the parameters and zone of error of the form features and they performed better than existing models.The main goal of this research is to develop procedures that are simple to implement but at the same time are robust enough to provide reliable information that help the metrologist to make accurate decisions about the inspected parts. Form features such as spheres, cylinders, cones, frustums, and torus forms are commonly used to design complex parts. However, the procedures to verify most of these form features have not been developed yet by the national standards. Therefore, this research proposes new mathematical models that combine the concepts of analytic geometry and optimization to provide optimal solutions

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop

    Artificial Vision in the Nao Humanoid Robot

    Get PDF
    Projecte Final de Màster UPC realitzat en col.laboració amb l'Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i MatemàtiquesRobocup is an international robotic soccer competition held yearly to promote innovative research and application in robotic intelligence. Nao humanoid robot is the new RoboCup Standard Platform robot. This platform is the new Nao robot designed and manufactured by the french company Aldebaran Robotics. The new robot is an advanced platform for developing new computer vision and robotics methods. This Master Thesis is oriented to the study of some fundamental issues for the artificial vision in the Nao humanoid robots. In particular, color representation models, real-time segmentation techniques, object detection and visual sonar approaches are the computer vision techniques applied to Nao robot in this Master Thesis. Also, Nao’s camera model, mathematical robot kinematic and stereo-vision techniques are studied and developed. This thesis also studies the integration between kinematic model and robot perception model to perform RoboCup soccer games and RoboCup technical challenges. This work is focused in the RoboCup environment but all computer vision and robotics algorithms can be easily extended to another robotics fields

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Fabrication of Carbon and Related Materials/Metal Hybrids and Composites

    Get PDF
    This Special Issue on “Fabrication of Carbon and related materials/ Metal Hybrids and Composites” presents the importance of the development of new composite and hybrid materials in different fields. It consists of 17 articles contributed by authors from different countries all over the world. The articles can be categorized into four classes. The first class of includes articles focusing on the synthesis of carbon fibers, carbon nanotubes, and graphene hybrid and composite materials. The results include the developments of the methodology and know-how of the synthesis and functionalization of the graphene surface of fibers and nanotubes and their effects on binding with the metal matrix. The second class focuses on the synthesis of new polymeric materials based on pitch/polyethylene composites and their electrical and mechanical properties, including the correlations with its microstructures. Additionally, the second class presents the results of articles, including the synthesis of new biocompatible and eco-friendly metal oxide/polymer materials with antibacterial and antimicrobial activities. The third class includes articles focused on the applications of ceramic metal oxides, such as silica and clays in the development of solar cells and in the fabrications of membranes of water treatments and desalinations. The last part of this Special Issue presents results of the articles focused on high-entropy alloys and metal matrix composites and their weldability
    • …
    corecore