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ABSTRACT 
 

The form verification of manufactured parts is a process composed of a set of 

operations that are expensive and yet add no value to the product. Yet, the resources used 

to inspect the parts add a small but significant amount of noise that can affect the 

outcome of the process. For this reason, this research provides guidelines to effectively 

perform the inspection process by suggesting new mathematical models and approaches 

that can be used for the creation of a decision support system that can assist in the 

verification of the accuracy of machined parts. 

The main goal of this research is to develop procedures that are simple to 

implement but at the same time are robust enough to provide reliable information that 

help the metrologist to make accurate decisions about the inspected parts. Form features 

such as spheres, cylinders, cones, frustums, and torus forms are commonly used to design 

complex parts. However, the procedures to verify most of these form features have not 

been developed yet by the national standards. Therefore, this research proposes new 

mathematical models that combine the concepts of analytic geometry and optimization to 

provide optimal solutions. 

This research proposes two approaches to improve the robustness of the 

mathematical models from the noise induced by the inspection process. The Dynamic 

Angle Approach (DAA) and the Free Form Orientation approach (FFO) presented here 

focus on finding the parameters of the axes and origin of the form that counteract the 

inaccuracies of the inspection equipment. 



 xiv

The proposed approaches and mathematical models were verified using 

measurements from features that were perfectly aligned with the coordinate system of the 

inspection equipment and from features that were intentionally misaligned. The results 

showed that the models were accurate and robust enough to estimate the parameters and 

zone of error of the form features and they performed better than existing models. 

In summary, this research suggests formalized methods for feature extraction, 

sampling, path planning, and form fitting, although the last mentioned received the most 

attention. It is believed that this comprehensive, integrated analysis will lead to the 

development of a decision support system. 
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CHAPTER 1 

INTRODUCTION 

 

1 Summary 

The inspection process is a non-value added operation that is necessary to 

determine the quality and good reliability of the parts that are being produced. The form 

verification of machined parts is a type of manufacturing tolerance that focuses on 

evaluating if the surface of the part follows a desired individual geometry. The evaluation 

of this tolerance requires a set of operations for comparing the surface against an ideal 

form in order to determine the form deviations of the part. However, most of the 

operations used to collect the data from the surface are susceptible to random and 

systematic errors (Barry, 1978). For this reason, the present study proposes a 

mathematical methodology for each of the operations of the inspection process to 

determine an accurate procedure that can be used to create a decision support system for 

the form verification of manufactured parts.  

 

1.1 Form Tolerance Verification Process 

The accuracy of the form of manufactured parts is affected by the parameters of 

the manufacturing and inspection processes, such as the machining equipment, cutting 

tools, machining parameters, inspection equipment, the number of sampling points 

inspected, the location of the sampling points, the mathematical model, and the fitting 

algorithm. Although, the inspection process is different than the machining process, the 
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latter has a direct impact on the surface of the part, because the conditions used to 

machine a workpiece leave a unique fingerprint over the surface that affects the 

tolerances (Hocken et al., 1993). Thus, the inspection process must be adaptable 

according to the manufacturing process that creates the part. 

The inspection equipment is one of the most important factors in the inspection 

process since it is the interface that collects the measurements from the part, and its 

accuracy and precision are reflected on each inspected point. An example of the 

inspection equipment is the coordinate measuring machine (CMM) that inspects the part 

by collecting points around the surface in a discrete manner. Although the CMMs are 

highly used in academics and in industry to verify parts, they are affected by random and 

systematic errors that cause them to wrongly estimate the tolerances (Barry, 1978; 

Hocken et al. 1993). The factor sample size also affects the outcome of the process 

because it is used to determine the amount of sampling points that should be inspected 

from the part. If a small sample size is used often, lack of information leads to ineffective 

representation of the geometry of the part. On the other hand, if a higher sample size is 

chosen then more information is available but the inspection time and cost tends to 

increase (Hocken et al., 1993). The location of these sampling points plays a significant 

role in the inspection process because smaller samples sizes that are properly distributed 

over the surface of the part can be more efficient than larger datasets improperly 

distributed. For this reason, the inspection process should require a level of planning 

based on the geometry and the dimensions of the part that can be used to extract as much 

information with the optimal use of resources. 
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The mathematical model is used to determine the deviations of the part by 

comparing the inspected points against an ideal form. The accuracy and robustness of the 

model determines the amount of error contained in the part. Thus, a good model is one 

that produces the smallest error (precision) and the one that estimates the parameters of 

the inspected part closer to the results obtained from the size tolerance (accuracy). The 

estimation of these parameters is performed by a fitting algorithm that uses optimization 

methodology to find the magnitude of the parameters that minimizes the overall error of 

the part. Therefore, if the mathematical model accurately represents the geometry of the 

part then any fitting algorithm can provide precise and accurate results. However, if the 

model is not good enough then powerful fitting algorithms should be used to obtain a 

good solution that is accurate and precise. Therefore, the mathematical models and fitting 

algorithms are very important because a poor selection of these can cause an over- or 

under-estimation of the zone of error, which can be the difference between rejecting or 

accepting a part (Orady et al., 2000). For this reason, it is important to study each one of 

these factors in order to identify the correct factor combination that accurately determines 

the quality of the inspected part.  

 

1.2 Problem Definition 

In industry, there are several computer programs that automate and provide 

decision aid for the inspection process, such as Pro/ETM and PC-DMISTM. Pro/ETM is a 

computer aided design, manufacturing, and inspection (CAD/CAM/CAI) program that 

allows the user to create a solid model of the part, generate the NC sequences, and create 

the inspection path planning, while PC-DMISTM that stands for personal computer-
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dimensional measuring interface standard and is a metrology software that is used to 

evaluate manufacturing tolerances and the quality of the manufactured parts. Although 

these computer programs are very sophisticated at optimizing the inspection process, the 

algorithms and mathematical models that they use are proprietary, thus the parameters 

used to calculate the tolerances are unknown. On the other hand, in metrology literature, 

studies have focused on automated inspection systems, such as the computer aided 

inspection (CAI), which has been defined as the element that closes the loop between the 

design (CAD), the process planning (CAPP), and the manufacturing (CAM) systems 

(Cowling et al., 1989; Anjanappa et al., 1996; Jiang et al., 2002). The focus of these 

papers was to improve and automate the inspection process in general, but not on 

studying and improving the operations that compose the form tolerance verification 

process. 

The form tolerance verification of spheres, cylinders, cones, frustums, and torus 

shapes requires a set of operations to collect data from the part and analyze them, to 

determine the accuracy of the forms. The resources used to collect the data often induce 

errors that have a direct impact on the output of the inspection process. These forms have 

not been studied at any length in the literature. Further, existing mathematical models to 

inspect these shapes are not robust enough to counteract the errors induced by the 

inspection equipment such as the improper alignment of the coordinate system of the part 

with the coordinate system of the inspection equipment. This problem leads to an over- or 

under-estimation of the width of the zone of error and an inappropriate estimation of the 

parameters of the inspected shape.  
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Most studies based on determining the efficiency of the mathematical models and 

fitting algorithms only analyze the width of the zone of error. The only information 

obtained from the width of the zone of error is the variability of the deviations within the 

tolerance zone. Thus, these studies focus only on the precision of the mathematical 

models and fitting algorithm but not on their accuracy.  

 

1.3 Objective 

This thesis aims to study the modules that compose the inspection process and to 

develop new mathematical formulations that can counteract the errors induced while 

inspecting the part. The modules include the developments of: 

1. A feature recognition program of spheres, cylinders, cones, frustums, and 

torus forms from the CAD model. 

2. A path plan that reduces the time of inspection and inaccuracies of the 

inspection equipment by collecting the data points using a vector that is 

normal to the surface of the part.  

3. New mathematical models for spheres, cylinders, cones, frustums, and 

torus forms that are robust and accurate to estimate the parameters of the 

parts. 

4. Two approaches that counteract the axis misalignments and origin offsets 

caused by setting up the part on the inspection equipment.  

5. The development of residuals for the analysis of the data to provide 

information about the accuracy and precision of the existing and proposed 

mathematical models. 
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Therefore, the improvements and developments of each module can be automated 

for the creation of a decision support system.  

 

1.4 Contributions 

The principal contribution of this thesis is the development of new mathematical 

models and approaches for inspection of complex forms such as spheres, cylinders, 

cones, and torus forms. This is evidenced by the lack of standards in the inspection of 

these forms. A second important contribution is the development of methodology to 

compensate for errors caused by axis misalignments and/to Limacon approximation. The 

Limacon approximation has been used by Samuel et al. (2003) for circles; Kanada (1995) 

and Samuel et al. (2003) for spheres; Shunmugam (1987), Prakasvudhisarn (2002), and 

Prakasvudhisarn et al. (2004) for cones; and Aguirre Cruz (2003), Aguirre Cruz et al. 

(2005) for torus forms. These models are accurate as long as the origin of the CMM is 

properly transformed to the position of the geometric origin of the part. If both origins are 

not in the same position, then the performance of the models will decrease. According to 

Chetwynd (1979) the resolution of the approximation depends of the relation between the 

distance from the origin of the inspection equipment to the geometrical origin of the part 

and the ideal radius of the circular shape. This means that if the distance between the 

origins is smaller then the performance of the approximation will increase. This thesis 

proposes an approach called the dynamic angle approach (DAA) that focuses on 

improving the performance of this approximation by mathematically reducing the 

distance between origins regardless of the starting location of the two origins. 

Furthermore, the present research proposes a new approach called the free form 
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orientation approach (FFO) that uses the principles of the dynamic angle approach and 

the flatness model to counteract the effect of the errors induced by the CMM. 



 8

 

CHAPTER 2 

LITERATURE REVIEW 

 

2 Summary 

The literature review of this research is divided in seven sections, beginning with 

Decision Support System (DSS) that focuses on the studies that provided details about 

the history and guidelines that measure the efficiency of a good decision support system. 

At the same time, this section focuses on the studies that incorporated the decision 

support system principles on the tolerance verification process, such as the Computer 

Aided Inspection (CAI). The second section, Geometric Modeling (GM), studies the 

different techniques used to represent solids and surfaces on the 3-Dimensional 

environment, focusing on the Boundary Representation, also known as B-rep, which is 

one of the techniques most used in the literature. The third section is Feature Recognition 

(FR), which looks at the algorithms and procedures used to extract features of CAD 

models. The fourth section deals with the Coordinate Measuring Machine (CMM), which 

is the most common equipment used for inspecting tolerances of manufactured parts in 

industry. Form tolerance inspection is the fifth section focusing on a survey of previous 

studies on spherical, conical, and torus form feature inspection. The last two sections 

present Sampling Strategies and Fitting algorithms. The former focuses on the different 

sampling sequences that capture information from manufactured parts; while the latter 

aims to explain the mathematical algorithms used in previous studies for the calculation 

of the form tolerance.  
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2.1 Decision Support Systems 

A decision support system (DSS) is an interactive computational tool used to 

assist users in the decision making process. The DSS manages and analyzes data using 

logical and mathematical algorithms; in addition, the system is able to present reliable 

information through a Graphic User Interface (GUI) (Sprague, 1980; Alter, 1977).  

The DDS is the result of the development of two systems, Electronic Data 

Processing “EDP” and Management Information System “MIS”. The scope of the EDP 

was mainly to handle the performance measures at the bottom part of the organization, as 

well as storage and data processing, (Sprague, 1980). As time passed by, the needs of 

managing the information in a broad way became an issue for the EDP. For that reason a 

new platform with a superior scope was developed, called Management Information 

System. The goal of MIS was to regulate the flow of information from the operational 

levels to the managers, as well as to assist middle managers to present to top executives 

reliable and specific information about the behavior of the company. Although MIS 

introduced great advances in knowledge and technology, it was not powerful enough to 

assist top managers in the decision making process. This was the reason that triggered the 

development of a new system called Decision Support Systems, built using the EDP and 

MIS principles. The new aspect of these systems was the introduction of an interactive 

interface and advanced mathematical models capable of analyzing and displaying 

information to support the decision making process. The interaction capability upgraded 

this system into a more flexible, adaptable and multi-scenario platform, allowing the user 

to understand the problem and to determine the performance of different “what if” 

scenarios (Sprague, 1980; Fang, 2003a).  
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The study of Decision Support Systems was too broad in the sense that it involved 

both managerial subjects and advanced engineering topics. Alter (1978, 2002) studied 

these systems in a deep manner, focusing more on the managerial aspects and the man-

machine interface; from the development of elements and characteristics to the 

implementation and improvements of the system. He found that an efficient DSS has to 

“Give Answers” and “Ask for Answers.” “Give Answers” means that the system should 

be able to answer specific questions from the user in an accurate and precise manner; and 

“Ask for Answers” means that the system has to have enough resources such as menus, 

toolbars, and textboxes, to ask the user for specific data to generate the customized 

reports that the user requires.  

Alter (1977) mentioned that DSS should be a better responsive system rather than 

an interactive system; where responsiveness is defined as a combination of power, to 

answer the most important questions; accessibility, to provide answers in the time given; 

and flexibility, to adapt to changing situations. Therefore, the best systems should be 

capable enough to understand, analyze and present data in the most robust way to 

facilitate the decision making process.  

A decision system as any other system requires some kind of input or data that in 

fact is the output of another system; these data are evaluated and transformed into a 

desired output or useful information. Specifically, the data are samples collected from a 

particular system that have no meaning and cannot be used to make inferences about that 

system until some process of pattern recognition and analysis is applied to it. Once the 

data are processed, it becomes valuable information that shows patterns, relations and 

interaction between variables. However not all the data are good enough to be 
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transformed into valuable information. The quality of the data is crucial because it will 

affect the output of the system.  

The DSS have several stages that help to process data and generate information, 

such as classifying the data, applying mathematical algorithms, and presenting 

information to the user. In literature, many authors have studied each of these; some 

focused on studying better ways to handle the data using advanced databases; others 

studied applying accurate algorithms to look for patterns and extract as much information 

as possible. Further studies were developed on better man-machine interfaces, as well as 

on decision support systems as a managerial tool. 

The design and application of DSS depends on the industries in which it is 

applied, and the dimension of the problem to be studied. The dimension of the system 

depends on the amount of variables and modules that the system has; if the number of 

variables increases then more powerful database algorithms are needed to process the 

data and to manage the information provided to the user. For example, Bohanec, et al. 

(2004) studied hierarchical multi-attribute decision models, which is a technique used to 

classify a large amount of data based on the value of the input variables. A good example 

of this technique is the process that a university follows to accept or reject applications of 

prospective students. The information of these applications is introduced into the 

computer and the information contained in it is evaluated and classified according to the 

standards of that school. However, the user or person in charge of the system can interact 

with the program and decide whether or not that person is accepted. This technique 

reduces the processing time for a large amount of data by classifying it according to a 

hierarchy (Meystel, 2003). 
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Using a different technique, Ferguson, et al. (1969) developed a decision system 

to schedule jobs in a production line, where the goal of the system was to generate an 

optimal and feasible schedule for all jobs, based on the simulated problems of a 

manufacturing environment and user interactions. However, this type of system can be 

very complex since the production environment has many variables that affect the 

production process. The production planner should be very organized and pay attention to 

all changes in the environment to manage well the system and to keep it updated and 

accurate. Pillai (1990) create a similar system for an automated wafer process, where the 

main decision system was created from small systems that manage different departments 

of the factory, such as cost, material handling system, yield, process, equipment 

utilization, among others. These modules allowed the systems to decompose and 

classified the data according to a hierarchy, evaluating the risk of each proposed decision, 

in order to provide the user with the decision that benefits all parts of the company. 

In a similar way, as the principles of the decision support systems are applied to 

the production process, these can also be applied to develop systems capable of solving 

the common but complex problems in the metrology area, such as the number of sample 

points and the sampling strategy needed to capture the deviations from a machined part.  

 

2.1.1 Computer Aided Inspection (CAI) 

The inspection process is composed of a set of repetitive activities that determine 

the quality of machined parts. As mentioned before, the inspection process does not add 

any value to the product, since it is only for verifying that the machined parts are within 

the specified tolerances. For this reason, it is important to reduce the inspection time. One 
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way to solve this problem is through the use of automated operations that will aid the user 

to speed up the process and accurately determine the integrity of the part. Computer aided 

inspection (CAI) is a buzzword that describes the inspection process as a system that uses 

the computer to automate operations. Many authors have defined computer aided 

inspection (CAI) as the bridge that closes the loop between computer aided design 

(CAD), computer aided process planning (CAPP), and computer aided manufacturing 

(CAM) (Cowling et al., 1989; Anjanappa et al., 1996; and Jiang et al., 2002). This means 

that the gap between the conceptual world (design) and the real world (manufacturing) is 

filled by the inspection process because it measures the machined part and compares its 

measurements against those dimensions required by the conceptual world. The 

differences between these two worlds are analyzed by an expert system that sends the 

feedback to the manufacturing processes in order to make the preventive or reactive 

changes, such as correcting the parameters of the manufacturing process, checking if the 

tool is still in good condition, checking the dimensions of the workpiece, and verifying 

the alignment of the workpiece, among others. The main advantage of the automated 

inspection is the time and cost that will be saved because all feedback analysis will be 

done by powerful mathematical algorithms that will detect the problems of the 

manufacturing processes (Anjanappa et al., 1996). 

In the literature, there is an extensive collection of articles that focus on the 

computer aided inspection (CAI) systems Examples of these researches include, 

ElMaraghy et al. (1987) who developed an expert system for modeling and inspection 

planning using artificial intelligence techniques; Cowling et al. (1989) proposed an 

interface between the CAD system and the coordinate measuring machine, in which the 
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measured points were used to create a “reformed model” based on Bezier curves that was 

compared against the CAD model to verify the quality of the part; Anjanappa et al. 

(1996) developed a data analyzer to evaluate the results obtained from the inspection 

process and to recognize patterns in the residuals in order to determine the cause of the 

defective part; Moroni et al. (1998) created an automated inspection system for non-

rotational parts. The system focused on reading the CAD file, extracting the form 

features, creating the sampling plan, and generating the necessary NC code to inspect the 

part; and Jiang et al. (2002) proposed a statistical tool to determine the number of 

measuring points needed to determine the quality of the part, which was based on the 

features contained on the CAD model. Professional software such as ProETM and 

PCDMISTM focus on providing tools to automate the inspection process, however, as 

mentioned before the algorithms that they used are proprietary. Thus it is not possible to 

access the procedures that they use to execute the subroutines. 

ElMaraghy et al. (1987) created an expert system for inspecting rotational and 

prismatic parts by using artificial intelligence techniques. The system consisted of 

modeling, feature recognition, and inspection planning blocks. The modeling block was 

used to analyze the features contained in the CAD file in order to establish relationships 

between the features contained in the part, and between manufacturing processes, 

geometric tolerances, and the features. The features were extracted from the CAD file 

using feature recognition algorithms. Then the features were clustered according to the 

tolerances that were required for inspection of the features. The author mentioned that the 

coordinate measuring machine software did not have subroutines to calculate some of the 

3-Dimensional tolerances. Therefore he used a combination of 2-Dimensional tolerances 
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to inspect the surfaces. In addition, the author used the same analysis for other surfaces 

since it was found that the 2-D analysis was faster and more efficient than the 3-D 

analysis. The inspection of the features was defined by the inspection planning block 

based on a set of principles: first, the features were divided into CMM features which can 

be measured using the CMM while the non CMM feature have to be measured using a 

different technique. Second, the inspected part was positioned on the measuring table of 

the CMM where the accessibility of each feature was verified. Third, the features that 

needed datum verification were identified. Fourth and fifth, selecting the proper probe for 

each feature, and clustering all features that were measured with the same probe so that 

all are measured together. The process was repeated until all features were measured. 

Then the part is reoriented on the measuring table and the remaining features are 

measured until all are inspected. The set of principles was coded in a logic programming 

language called Prolog, which stored the rules and artificial intelligence algorithm. The 

author mentioned that the efficiency of the system depended in great part on the selection 

of features that served as datums for others, because these determine the plan of action 

and the inspection order.  

Cowling et al. (1989) proposed an interface between the CAD system and the 

coordinate measuring machine, in which the measured points were used to create a 

“reformed model” based on Bezier curves that was compared against the CAD model to 

verify the quality of the part. The author defined a model for each of the computer aided 

systems, “original CAD model” for CAD, “physical model” for CAM, and “reformed 

model” for CAI. The last model was created using the data points collected with the 

CMM, which were interconnected using Bezier rational square segments and B-spline 
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curves. At the same time, the Bezier and B-spline curves were translated and rotated in 

order to correct some of the errors induced by the measuring table and the inspection 

instrument. The edges of the “reformed model” were reshaped according to the “original 

CAD model,” thus, the sharp or curve edges of the part were inspected thoroughly in 

order to help the fitting algorithms to properly fit the data points into the shape of the 

CAD model. The interface was verified by simulating the measurements of the CMM and 

fitting them into the CAD model to obtain the “reformed model.” Results from this test 

showed that the differences between the CAD and the reformed model represented the 

manufacturing errors, which were identified in terms of geometric features. It is 

important to notice that the differences between the CAD and the reformed model are 

equal to the manufacturing errors plus the errors due to the inspection process. The author 

did not recognize the errors due to inspection which can make the interface not very 

reliable since it could provide false alarms on the machining process.  

Anjanappa et al. (1996) developed a data analyzer to evaluate the results obtained 

from the inspection process and to recognize patterns in the residuals in order to 

determine the cause for the defective part. The author proposed a computer aided 

inspection data analyzer (CAIDA) that focused on analyzing the residuals from parts that 

were nonconforming, in order to determine the cause of the errors and to elaborate the 

corrective actions. The system was created to recognize problems of prismatic parts such 

as slots, pockets, holes, and boundaries. The prismatic parts were created using a milling 

process which was analyzed in order to create the knowledge base that will recognize the 

cause of the errors. The author classified the milling process errors under four types: 

cutting tool errors (size, runout, wear, and deflection), machine errors (positioning, and 
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thermal), fixture errors (part/fixture location, and chip control), and miscellaneous errors 

(stock size, workpiece deflection, and chatter). The errors were analyzed separately and 

combined, since errors can happen one at a time or with more than one present on a 

machined part. The data analyzer was tested by designing prismatic parts using the 

software Cadkey. The modeled parts were exported to a flexible manufacturing cell using 

the IGES exchange file. The features of the parts were extracted using an intelligent 

feature extractor that generated the process plan including the NC codes and the 

machining parameters. A CNC milling center was used to machine the two parts using 

aluminum alloy 6061 T6. The two parts were machined with known errors in order to 

verify whether the data analyzer was able to capture those inaccuracies. The two parts 

were inspected using a touch probe mounted on a coordinate measuring machine. Results 

from this experiment showed that the data analyzer was able to recognize the tool size 

error, tool runout, fixturing error, and boundary error. However the analyzer was not able 

to recognize tool wear since it was found that the magnitude of these errors was too small 

compared to the resolution of the CMM.  

Moroni et al. (1998) created an automated inspection system for non-rotational 

parts. The system focused on reading the CAD file, extracting the form features, creating 

the sampling plan, and generating the necessary NC code to inspect the part. The 

proposed system was written in C++ and used the ACIS kernel to represent the solid parts 

by its boundary. Firstly, the author defined all non-rotational form features in terms of the 

boundary representation entities and other features. The system was able to recognize the 

following features: through hole, blind hole, hole, face list, through pocket, blind pocket, 

pocket, through slot, blind slot, slot, through step, blind step, step, round boss, non round 
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boss, surface, parent form feature, and form feature. The system interface allowed the 

user to choose either the entities or the features that had to be inspected. The system 

checked for the accessibility of the features and determined the geometrical and 

topological entities that created the feature. The interface was not completely automated 

since the user had control over the selection of the features. However, the author found 

that the user interaction was a plus in the system, since it allowed selecting of the features 

that the user needed instead of spending time on verifying all features contained in the 

part. 

 

2.2 Geometric Modeling 

The Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) 

systems are important elements in the development and growth of the technological 

advances in many industries. The integration of the computer into the design and 

manufacturing areas has allowed engineers to design and create products in a virtual 

environment, in which products can be tested under different virtual scenarios which will 

guarantee that the product will meet customer requirements and that it will be functional. 

In addition, the virtual designs can be exported as a set of instructions that are 

understandable by the machining processes, which perform the material removal 

operations under a set of optimized parameters established in the design phase. Therefore, 

once that the part leaves the production area, it is assumed that it has all quality 

characteristics and that the part will meet customer specifications. Unfortunately, there 

are several causes of variability that disrupt the performance of the ideal world. For this 

reason, there are a significant number of studies performed in the design and 
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manufacturing areas that range from providing better design tools, to the development of 

decision support systems to accurately inspect the form error of parts, which is the goal of 

this research.  

The geometric modeling is considered an important part of the CAD/CAM 

systems, since it is a way to represent geometric objects in a virtual environment, where 

physical properties and surface characteristics are embedded to the designed objects with 

the purpose of determining the best way to design and manufacture the object (Zeid, 

1991). Geometric modeling can be considered an art since there are multiple ways in 

which one part can be designed. Thus, geometric modeling programs can represent an 

object in three different types, such as wireframes, surfaces, and solids. In the present 

study, the form tolerance evaluation is performed by extracting the form features of a 

modeled part, with the purpose of comparing the measured object against the CAD model 

in order to determine if the part is out of tolerance. Out of three types of geometric 

modeling, the solid modeling will be a great approach to represent the parts, since it 

stores more information from the designed object than the wireframe and surface models, 

which will simplify the feature recognition process, as is mentioned in the next lines. 

Although, solid modeling is the focus of this study, the wireframes and surface models 

are briefly discussed.  

 

2.2.1 Wireframe modeling 

The wireframe models are created by emulating the shape of the object using a 

virtual frame of wires, which are bent according to the edges and curvature of the desired 

design (Zeid, 1991; Coulibaly, 1998). The wireframe models uses points, lines, arcs, 
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circles, conics, and curves, to reconstruct the shape of the object. The advantages of this 

type of models are that they are simple and do not require much time and computer 

memory to run. However, the models are not very friendly to the human eye since they 

become difficult to interpret as the complexity of the design increases. The models can be 

constructed with a set of analytic entities such as points, lines, arcs, circles, fillets, 

chamfers, and conics. If the design is more complex it can be built based on synthetic 

entities, such as cubic spline, B-spline, beta-spline, nu-spline, and Bezier curves. Figure 1 

shows an example of a wireframe model.  

Figure 1. Parts created using wireframe modeling, a sphere on the left and a block with a 
slot on the right. 

 

2.2.2 Surface modeling 

The surface models are more complete than the wireframe models, since they 

include more information about the connections of objects. The surface models represent 

the designed part using a set of artificial lines called mesh, which break the design into a 

network of interconnected patches (Zeid, 1991). The advantages of the surface models 

are that the models can be used for volume and mass property calculation, finite element 

modeling, NC path generation, cross sectioning, and interference detections; also the 

appearance of the surface models is more realistic than the wireframe models. A 
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disadvantage of these models is that the mesh will consume a significant amount of 

computer memory, since more information is needed to represent the object and this type 

of modeling does not have material properties such as density (Coulibaly et al., 1998). 

The surface models are constructed by analytical entities, such as plane surface, ruled 

surface, surface of revolution, and tabulated cylinder, and synthetic entities, such as 

bicubic Hermit spline surface, B-spline surface, rectangular and triangular Bezier 

patches, rectangular and triangular Coons patches, and Gordon surface. An example of a 

surface model is seen in Figure 2. 

 

Figure 2. Parts created using surface modeling, a sphere on the left, and a block with a 
slot on the left. 

 

2.2.3 Solid modeling 

The solid modeling, also called volumetric modeling, is a modeling tool that 

represents designs in an unambiguous way, since it organizes and records the location of 

every entity in space, whether it is located inside, outside, or on the object because of 

spatial addressability. The wireframes and surface models are less powerful than the solid 

models, since they do not have the spatial addressability property and they only store the 

dimensions of the entities also called geometrical information. On the contrary, solid 

models have many advantages, such as the spatial addressability property, the models 
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contain all physical properties for volume, weight, and inertia calculations, NURBS 

(Non-uniform rational B-spline) technology can be implemented in the model, and they 

store the dimension of the entities called geometrical information, as well as the relation 

between the entities also called topological information, (Zeid, 1991; Coulibaly et al., 

1998; Ismail et al., 2005). The difference between geometry and topology is presented in 

Figures 3 and 4, which show an example between two parts that have the same geometry 

but a different topology, and parts with the same topology but a different geometry, 

respectively.  

 

Figure 3. A part with the same geometry but a different topology. (Adapter from Zeid, 
1991) 
 

 
Figure 4. A part with the same topology but a different geometry. (Adapter from Zeid, 

1991) 
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The solid models, due to their properties and characteristics, are used for mass 

property calculations, finite element modeling, computer aided process planning, and 

machine vision. The solid models are constructed based on solid entities called 

primitives, such as block, cylinder, cone, sphere, wedge, and torus; where the first four 

primitives are the most used since almost all of the mechanical designs can be 

represented using these shapes (Zeid, 1991). These primitives are mathematically 

combined to represent an object using the set theory by means of the Boolean operations, 

such as union, intersection, and difference, as shown in Figure 5. 

 

Figure 5. Parts created using solid modeling, a sphere on the right, and a block with a slot 
on the left. 

 

The designs obtained from solid modeling are not unique since one design can be 

created using different procedures, which is reasonable since the Boolean operations 

possess the commutative property. Hence, there are nine procedures used to create solid 

models, starting with half spaces, boundary representation (B-rep), constructive solid 

geometry (CSG), sweeping, analytic solid modeling, cell decomposition, spatial 

enumeration, octree, encoding, and primitive instancing. The boundary representation is 

one of the most used procedures to generate solid models, which is one of the reasons 
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that this research will use the boundary representation procedures to extract form features 

from CAD files.  

 

2.2.3.1 Boundary Representation 

The boundary representation also known in the literature as “B-rep,” is a way to 

define solids by their boundary based on topological entities such as faces, edges, and 

vertices (Ismail et al., 2005). The entities are bonded together which allow them to 

generate unique surfaces, where the inside or outside of the surface is recognized 

according to the position and orientation of its normal vector (Zeid, 1991). The main 

advantage of the boundary representation (B-rep) modeling is the fact that the solids are 

stored using geometrical and topological information, which allows the model to be 

tested as a physical object. The geometrical information of a solid model is obtained by 

applying Euclidian calculations in order to obtain surfaces, curves, and point coordinates, 

while the topological information is provided by the Euler law, defined as  

 F – E + V = 2 (2.1)

 where, F stands for faces, E stand for edges, and V stands for vertices. Equation 

(2.1) is the simplest representation of Euler’s law to describe a polyhedral; however, in 

the literature there are different variations of this law to represent complex solids (Zeid, 

1991). The relation between topology and geometry is based on its entities, and it can be 

said that the topological entities define the geometrical entities, due to the fact that the 

faces provide information about the surface equation, the edges define the curve equation, 

and the vertices determine the location of the point coordinates.  
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Although, there are many ways to represent a solid, the boundary representation 

(B-rep) models are one of the most used in the literature and in the industrial world. 

According to Case (1993) extracting features from constructive solid geometry (CSG) 

models are not as straightforward as those created with boundary representation (B-rep) 

modeling due to the fact that the constructive solid geometry (CSG) models are not 

unique; this means that a part can be created in many different ways by using a finite 

combination of primitives, such as point, lines, circle, and spheres, among others. For this 

reason, the present research will use the boundary representation (B-rep) models as a part 

of the decision support system in order to obtain information about the part that has to be 

inspected. In addition, it can be seen in Section 2.4, called Feature Recognition, that the 

boundary representation models have been used to extract features from solid models and 

some of these studies have used the format of solid models that is proposed in the present 

research. 

The solid modeling programs such as Pro-Engineering and SolidworksTM to store 

solids as boundary representation (B-rep) models by using the ACIS file type. ACIS is a 

three dimensional modeler kernel that was created in the 1980’s as an open source kernel 

which allowed it to be embedded in most of the CAD/CAM systems; however, ACIS was 

bought later on by Spatial Corporation a branch of Dassault Systemes (Corney et al., 

2001; Spatial Corp., 2006). Neither the Spatial Corp. website nor the two bibliographical 

references found about ACIS, provided the meaning or origin of the name of the modeler 

ACIS, however, there are several websites online such as Wikipedia that mention that 

ACIS is an acronym of the name of the three people that developed the modeler “Alan, 

Charles, and Ian’s System.”  
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The CAD/CAM systems use the ACIS file as well as many other files to exchange 

information between different areas, such as design, manufacturing, and inspection, 

among others. Some files have different advantages, however, the purpose of these files is 

the same, which is to translate and exchange information between systems. A brief 

explanation about the multiple data exchange format is given in the following section. 

 

2.3 Data Exchange Formats 

The data exchange formats have the purpose of exchanging information between 

different areas of computer aided design (CAD) and computer aided manufacturing 

(CAM); as well as to translate geometric models from one representation to another, 

either CSG to B-rep, or B-rep to CSG, among others (Kroszynski et al., 1989; Zeid, 

1991).  

The exchange of information between CAD/CAM areas has to be performed in 

such a way that no information is lost between interfaces, and for this reason, the 

standards defined four types of data that need to be exchanged between systems, such as 

shape, non-shape, design, and manufacturing data. The shape data focus on the 

geometrical, topological, part, and form features; the non-shape data refers to the 

graphics data, as well as database information; the design data is the information used to 

perform mass property calculation, and finite element analysis; and the manufacturing 

data refers to the path planning, tolerances, process planning, and tool design (Zeid, 

1991).  

The ideal data exchange involves the four data types mentioned previously, 

however at the beginning of the development of the CAD/CAM areas there were few 
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files capable of exchanging only geometrical information, such as Initial Graphics 

Exchange Specification (IGES) in the United States, ISO 10303 also known as Standard 

for the Exchange of Product model data (STEP), Standard for the Exchange of CAD data 

(SET) in France, and Organization of the Automobile Industry – Surface Translation 

Format (VDA-FS) in Germany (Kroszynski et al., 1989; Zeid, 1991; NIST, 2006).  

According to Kroszynski et al. (1989) the national standards IGES, SET and 

VDA-FS have several limitations, which was one of the main reasons why the STEP file 

was chosen as an international data exchange format that has been developed by several 

countries such as the United States, France, Great Britain, Germany, Japan, the 

Netherlands, and Switzerland. 

In the literature, authors had used different data exchange formats to extract 

features from design models, as well as from manufacturing parts, such as Li (1989) who 

used the IGES file to extract information of non rotational features from rotational parts; 

Prabhakar et al. (1992) used Romulus which is used as a CSG to B-rep converter, to 

extract features from boundary representation (B-rep) models using neural-networks 

techniques; Suliman et al. (2001) used the DFX file which is used in AutoCAD, to 

develop a recognition program to extract features from turned (rotational) parts using 

engineering drawings; and Case et al. (2000) proposed a system based on the design by 

features principle using the ACIS solid modeler; Ong et al. (2003) extracted STEP files 

from a design by features system using a developed feature recognizer; Ranjan et al. 

(2005) used DXF and IGES file formats to develop a recognition system that extracted 

machining features from a CAD model. Other data exchange formats include Gerber 

files, Parasolid, STL, among others. 
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2.4 Feature Recognition 

Pattern recognition is a branch of machine learning that focuses on classifying 

input data by comparing it against predetermined rules and patterns stored in a 

knowledge database. In the literature, the pattern recognition field has been studied 

extensively, because it is a powerful tool that can be used in many applications, such as 

speech recognition, meteorology, medical, military, design and manufacturing, among 

others. The recognition process greatly depends on the part of the application in which 

the procedure is used. For example, the meteorology field focuses on extracting patterns 

to help predict storms, tornados, or hurricanes; the military field applies these techniques 

to decode radio transmissions in order to gather intelligence to capture the enemy 

(Alpaydin, 2004). In a similar way, the computer aided design (CAD) and the computer 

aided manufacturing (CAM) use file exchange programs that allow them to trade 

information, thus, once the part has been designed, the CAM software uses features 

recognition algorithms to extract all machinable features from the wireframe, surface or 

solid model file (Owusu-Ofori, 1990). Although, the exchange process between CAD and 

CAM looks like an attractive way to automate the production of machined parts, it has 

had serious problems in the later years, because of the existence of multiple CAD 

programs that define features in different ways than the CAM programs, causing trouble 

to the latter to identify the information from the CAD file (Li et al., 1989; Prabhakar et 

al., 1992; Case et al., 1993; Jha, 1995; Erard et al., 1996; Coulibaly et al., 1998; You et 

al., 1998). On the other hand, Maendl’s (2003) study showed the CAM system 
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successfully extracted all features when using data exchange files such as ACIS (*.sat), 

Parasolids (*.x_t), and SolidworksTM (*.sldprt). 

In the literature, the communication problem between CAD and CAM is being 

solved in two ways. The first one focuses on redefining the way in which the design is 

performed with the purpose of constraining the number of features that the designer can 

use to represent a part, also called design by features (Case, 1993), and the second is to 

standardize the data exchange files so that all CAD/CAM systems speak the same 

language and become able to recognize features from these files. The approach of 

designing by features allows the designer to create a part based on a finite list of 

predefined features, which simplify all processes after the design phase; however many 

complex shapes cannot be modeled since the list of features is limited. Therefore, this 

process is not yet robust enough to completely eradicate the feature recognition problems. 

On the other hand, the creation of a common language for the CAD/CAM systems has 

caused the authors to study the definition of the word “feature,” which has had many 

different meanings according to the application in which it is used (Coulibaly, 1998). For 

example, Owusu-Ofori (1990) defined form features as the combination of solids created 

using a single machine cycle; Prabhakar et al. (1992) described feature as a function of 

topological variables and geometrical variables; and Jha (1995) classified the term feature 

as form features, precision features, and material features. Form features were defined as 

the shape of the part and its dimensions; the precision features were those attributes that 

determine the accuracy of the part such as tolerances and surface finish; and the material 

features that were defined as the material properties, types, surface treatments, etc. As can 

be seen, there are many definitions in the literature about the word “feature,” which 
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provide a difficult task for the feature recognition process, since they have had to adjust 

according to the types of features and the application in which they are used. 

The accuracy of the feature recognition process plays an important role in the 

CAD/CAM systems, since it is the way in which both systems exchange information. The 

feature recognition process can be performed in many different ways, depending on the 

application in which are used. Prabhakar et al. (1992) classified the feature recognition 

process into human-assisted feature recognition and automatic feature recognition. The 

human-assisted feature recognition is when the user needs to help the system recognize 

the features by providing information about the designed part. The automatic recognition 

does not need any user intervention, and it is further classified into machining-region 

algorithms that focus on detecting those areas of the designed part that need to be 

machined. The ruled-based algorithms recognize features based on a series of rules that 

describe each feature of the part, while the graph-based algorithms use a dependency 

graph that shows the decomposition of the boundary representation model (B-rep) into 

faces, edges, and vertices that later on are decomposed into low level entities. Finally, the 

application-based algorithms are customized according to the application in which they 

are used. In a different study, Case (1993) identified two main approaches: the syntactic 

pattern recognition and the rule-based template approach to perform the feature 

recognition process. In the syntactic pattern recognition approach the features in the solid 

model are represented as a set of words that are compared against a set of defined rules 

that determine the type of feature and the class to which that feature belongs. The rule-

based template approach is similar to the ruled-based algorithm defined by Prabahakar et 

al. (1992), where features are recognized by a set of predefined rules. Furthermore, Jha 
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(1995) divided the feature recognition systems into six groups called graph based, 

constructive solid geometry (CSG), volume decomposition, state transition and automata, 

syntactic pattern recognition, and expert system logic. 

The decision support system developed in this research will focus on extracting 

the form features from the CAD file using the ACIS data exchange file, and it will 

recognize features and their dimensions defined in the word-base file as a way to perform 

the feature recognition process. A survey of studies that had been performed in the feature 

recognition field applied to the manufacturing area is presented in the next lines, with the 

purpose of showing the different ways in which authors had extracted features from 

drawings or CAD files. Li et al. (1989) created a feature recognition system to extract 

features from entities stored on an IGES file, which contained information from 

rotational parts that had non rotational features; Owusu-Ofori et al. (1990) developed a 

system to extract information from scanned engineering drawings of rotational parts. 

Prabhakar et al. (1992) extracted features from solid models using a five-layer perceptron 

algorithm. Jha (1995) developed a recognition system where he transformed the 

constructive solid geometry (CSG) representation into a destructive solid geometry 

(DSG) to determine the primitives contained in the designed model. Coulibaly et al. 

(1998) reviewed different feature recognition techniques used on CAD systems. Suliman 

et al. (2001) recognized entities of turning parts by comparing the information of 2-D 

drawings against a knowledge data base containing predefined entities. Ismail et al. 

(2005) proposed a system to recognize cylindrical and conical features based on a new 

technique called edge boundary classification (EBC). 
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Li et al. (1989) proposed a semi-automatic feature recognition system to extract 

non-turning features from rotational parts by using the 2-Dimensional engineering 

drawings exported in IGES file format. The system was created based on Li’s (1988) 

study used a feature extraction system for rotational features, thus Li et al. (1989) 

extended the previous study, but with the purpose of including both turning and non-

turning features. The author defined a rotational part as a symmetrical part that contains 

turning features and non-turning features. According to Li et al. (1989), the non-turning 

features are created by other non-turning features, which are classified as primary and 

secondary surfaces; where the primary surface is regarded as the tool entrance. Thus, he 

found that all non-turning features have one or more than one geometrical tolerances and 

surface roughness information.  

The advantage of studying a part with only turning features was that a single view 

from CAD drawings was enough to extract all features from the part. However, this was 

not the case for non-turning features, since it was found that the system requires more pf 

the drawing’s views to extract both types of features; thus the top view, front view, right 

hand side view, and the cross-section view were used in this research. The drawings were 

exported from a CAD modeling software using the IGES format, which was regarded as 

the input of the recognition system. The entities from the CAD model were classified as 

symmetric parts, non-symmetric parts, and text, which were categorized by using a part-

definition data structure (PDDS) developed in Li’s (1988) study, but modified to 

accommodate the non-turning features. The PDDS organized the extracted data into eight 

sections, such as general data, turning feature, turning surface, part geometry, non-turning 

feature, non-turning face, coordinate tolerance, and geometric tolerance. The system 
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recognized three types of non-turning features, such as flats, holes (vertical, horizontal, 

and oblique), and slots (T-slot, square-slot, Y-slot, and dovetail-slot) that were extracted 

from the CAD drawings by analyzing their location based on the amount of vertical, 

horizontal, and oblique lines. However, the author found that there was no topological 

information that linked the lines of one view to the lines of a different view; therefore, the 

author analyzed each individual view and ordered the features according to the views and 

to their position within the view. The system performance was evaluated using a program 

developed in AutoCAD, where an IGES file that contained non-turning features was 

introduced to the system. It was found that the system successfully recognized flat 

features, holes, and slot features. The tolerances and the information from the surface 

roughness were also recognized, however, this information was gathered from the 

information provided by the user and not from the IGES files, which revealed the lack of 

robustness of the data exchange files. 

Owusu-Ofori et al. (1990) developed a feature recognition algorithm to extract 

manufacturing features of turned (rotational) parts from scans of engineering drawings. 

The recognition model was divided into three levels: the low level, which had the 

purpose of recognizing geometric elements, such as lines and arcs; the medium level, 

which identified the shapes; and the high level that recognized the features based on the 

information gathered by the two preceding levels. In addition to these levels of 

recognition the authors added a knowledge database that contained information about 

dimensional, bounding, and manufacturing related attributes, which helped the system to 

increase the recognition accuracy by adding redundancy. The lines and arcs captured by 

the low level were supplied to the shape recognition or medium level that used a set of 
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rules and the knowledge database to extract the shapes of the symmetric part. This level 

was regarded as a critical part of the system since any shape that was improperly 

recognized affected directly the feature recognition level. The system was able to detect 

twenty-four form features from turned (rotational) parts that were classified as grooves, 

transitions, recess-features, semi-open features, and others (open-diameter, chamfer, 

taper, and extrusion features). The feature classification was based on the parameters that 

affect the creation of turned (rotational) parts. The authors found that the form features of 

turned (rotational) parts were affected by five factors: 

- Form of cutting edge tool. 

- Tool motion (axial, radial, and combined). 

- Tool motion constraints. 

- Number of passes needed to machine the feature. 

- Machining technology constraints. 

The algorithm behind the shape and feature recognition was based on the set 

theory, where lines and arcs were combined to recreate the form features. The system was 

capable of recognizing single and multi-feature turned (rotational) parts following the 

mentioned logic, where the features were detected in order starting with the one located 

on the left side of the part.  

Prabhakar et al. (1992) proposed an automatic recognition system using neural-

network techniques to extract features from boundary representation (B-rep) models. The 

feature recognition system was modeled using a multilayer perceptron network, which 

used the threshold, transfer function, and weights to detect features from the boundary 

representation (B-rep) model. The solid model was exported from the ROMULUS solid 
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modeler using a format file called PROLOG. The topological and geometrical 

information obtained from the file format was used as the input of the model; however, 

this information was preprocessed and transformed into a numerical matrix called the 

adjacency matrix, since it was simpler for the neural network algorithm to perform 

numerical operations instead of logical operations. The adjacency matrix was defined as a 

2D array of integer vectors, where each of these vectors was composed of eight integers 

that held information of the feature entities (faces, edges, etc.) and the relationship 

between them. The rows of the adjacency matrix were composed of several vectors that 

described the characteristics and properties of a specific face. The rows were provided to 

the network one-by-one and were decomposed into vectors that at the same time were 

decomposed into integers. Thus, the network defined as a five-layer perceptron processed 

the integer values to generate the code that defined the feature hidden in each row. A 

feature library was created and trained with a specific network of features to be 

recognized, which were analyzed using the range nonlinearity developed by Prabhakar et 

al. (1992) since the standard nonlinearities were continuous functions that were not 

suitable for this application. The algorithm was tested using three complex parts that 

contained a through-hole, through-slots, and intersecting slots. Results from these tests 

showed that the system is able to identify features for which it has been trained, thus the 

accuracy of the system depended on the training of the network. Also the system showed 

difficulties to accurately identify all features that were intersecting due to the lack of 

information between the feature faces. 

Jha (1995) developed a feature recognition system using as an input a constructive 

solid geometry (CSG) model and extracting the features using destructive solid geometry 
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(DSG). The author proposed that a good feature recognition system should be able to 

display the recognized features on the interface and to allow the user to provide input in 

order to make the system more flexible. Also the system should create one database that 

can recognize CAD features, and that can cope with the deficiencies of the solid 

modelers’ databases, since these cannot store information about surface finish, tolerances, 

and material properties, among others. The proposed system received as input the 

constructive solid geometry (CSG) model that was created in I-DEAS and exported using 

a Universal File Format called UFF. The system used the Boolean operations performed 

in the constructive solid geometry (CSG) model to work backwards in order to extract the 

primitives. The extraction process was divided into four steps that were executed using 

eight software modules. The first step was to simplify the Boolean operations by 

expanding the terms and removing the parenthesis, which was performed by the first and 

second modules. The second step was to define the minimum envelope that enclosed each 

feature, which was performed using third, fourth and fifth modules. The third step was 

performed by the sixth module, which defined the different primitives used to remove the 

excess of material. Finally, the fourth step, performed in the seventh and eight modules, 

transformed the union primitives by the inverse and exported the output as an I-DEAS 

file. Although the feature recognition process was explained in the article, there was no 

information regarding any experimental procedure. The author suggested applying the 

system on parts created in a turning process, as well as on parts that are intersecting since 

they are common on constructive solid geometry (CSG) models. 

Coulibaly et al. (1998) reviewed the feature recognition process for conventional 

and feature-based CAD systems. For conventional CAD systems, the authors found that 
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the parts were defined as one entity instead of using features to define the part, such as 

the constructive solid geometry (CSG), which has the disadvantage that the models are 

not unique since they can be created using Boolean operations in different order, and the 

boundary representation (B-rep) approach that recognized features using topological 

information of the faces to determine the relationship between all shapes. For feature-

based CAD systems, the system has complete information of every feature contained in 

the model simplifying the feature recognition process. The authors found two recognition 

methods for these types of systems, the recognition using the entity/relationship model in 

which the part was broke up into all features in order to determine the relationship 

between them, and the recognition using graph-grammar approach where the system goal 

was to extract words from either SET or STEP files in order to get the feature’s 

characteristics and its relations. The graph grammar approach had a knowledge base with 

a list of features and their corresponding topological graphs, this was used to compare the 

words obtained from the STEP file and to determine the amount and type of features 

contained in the model. This type of recognition process is similar to the process 

proposed in the present research, which will be explained in the following chapters. 

Suliman et al. (2001) developed a system to automatically recognize features of 

turned (rotational) parts using engineering drawings. The system was created using three 

main modules: structured modeling, feature recognition, and feature sequencing for 

machining. The structured modeling module aim was to extract all entities from 2D 

AutoCAD drawings that were exported using the DFX file. The drawings of the turned 

(rotational) parts were extracted as orthographic projections where the hidden features 

were described with dotted lines and the edge of the part with continuous lines. A 
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program written in C language was used to extract information such as entity type, style, 

starting point, end point, and center point of an arc from the entities. The program had 

three stages that were used to recreate features based on the position of the lines in the 

drawing. The drawing of the part was symmetrical with respect to the center axis, 

therefore, on the first stage, all lines below the middle line were removed. In the second 

stage, some of the vertical continuous lines were removed according to the intersection 

between the continuous and dotted lines. The empty spaces left after removing the lines 

represented the beginning or ending of the internal features. Finally, in the third stage, the 

entities were arranged in a list where the external entities were ordered from right to left, 

while the internal entities were arranged first from left to right, or from right to left, 

according to the inaccessibility issues. The feature extraction module used the 

information from the previous module, where the recognition was performed 

automatically by comparing the AutoCAD information against a knowledge database that 

contained eight turning features, such as cylinders, end face, shoulder face, taper, 

chamfer, fillet, corner, and undercut turn. Each of these entities was represented by a 

major entity that held entity properties, related to style, type, convexity, peripherality, x 

and y coordinates’ changes, threshold relativity, and tool accessibility. The major entity 

information was carried on to the final module, where the extracted features were 

sequenced for machining using a program written in C++. The program used three 

algorithms to determine the rough and final turning operations as well as the tool motions 

that were sequenced according to the location of the internal and external features. 

Ismail et al. (2005) proposed a feature recognition system developed by using a 

new technique called edge boundary classification (EBC), which was based on the spatial 
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addressability property of the boundary representation (B-rep) models. The system 

extracted only cylindrical and truncated cone features, since the author found that they 

were the most used features in mechanical parts. The cylinders were defined in three 

ways: the single circular edge loop (SEL), in the case where the face of the cylinder was 

formed by the intersection between a cylinder and a normal plane. The multiple curve 

edge loop (MEL), in the case that the face of the cylinder was formed by the intersection 

of the cylinder and more than one tilted planes, or as semi-cylindrical faces, such as the 

case of a slot, where half of the cylindrical faces are located at the extremes of the slot. 

Hence, the system was able to recognize cylindrical features such as, through holes, blind 

holes, boss and internal undercuts. For conical shapes, the system only recognized the 

features of a truncated cone, such as chamfers and tapers, which were the ones that had 

two edge loops, where one of the loops was smaller than the other one. The system used 

the edge boundary classification (EBC) technique to define patterns of test points (tp1, tp2, 

and tpm) for feature classification. The test points were created by membership 

classification that was defined as the process where points and lines are classified 

according to the location of the test points in, on, or off the solid. The test points were 

created by positioning two points on the edge of the solid face, and then calculating the 

middle point between them. Thus, the location of these three points with respect to the 

object determined the type of feature contained in the part. For example, a through hole 

was defined by the three points being outside the solid, while a boss was defined by three 

combinations. The first one was defined by tp1, tp2 on the solid and , tpm in the solid, the 

second one by , tp1 on the solid, and tp2 , tpm in the solid, and the third one by tp1 , tpm being 

in the solid, and tp2 being on the solid. The feature recognition algorithm was evaluated 
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using a theoretical part in AutoCAD, where the proposed system was able to recognize all 

cylindrical features as well as other features that were not recognized in previous studies, 

such as a chamfer and a blind pocket. The reason that others did not recognize these 

features was that the later did not consider conical features in their knowledge base. 

Therefore, the above research agrees with the research proposed in the present study, 

where the use of boundary representation models for feature extraction is a good 

approach due to all properties and characteristics that are stored in these models.  

 

2.5 Inspection Technologies 

The application of the computers in the design and manufacturing areas have 

helped the development of products with tight tolerances and complex forms, which 

represent a big challenge to the inspection area, because the inspection equipment has to 

be designed with higher inspection capabilities in order to cope with the quality 

standards. There are many types of inspection instruments that range from simple gauges 

and calipers, to more sophisticated equipment such as profilometers, coordinate 

measuring machines (CMM’s), and laser equipment. Each one of these instruments has 

the purpose of measuring different types of tolerances. Although these instruments are 

developed with the purpose of providing accurate measurements, they are susceptible to 

different types of environmental conditions that affect the performance and accuracy of 

their readings. Barry (1978) identified two types of errors that apply to any inspection 

instrument and occur while taking measurements: the first type called accidental or 

random errors, and the second type called systematic or constant errors. The accidental 

errors were defined as the random noise that affects the measurements, which can occur 
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at any given time, and has no correlation between the magnitude and the sign of the 

previous or subsequent error. The systematic errors were defined as those errors that 

always induce noise into the readings with the same magnitude. These errors were 

subdivided into three categories called natural errors, instrumental errors, and personal 

errors. The natural errors were described as those inaccuracies caused by natural 

phenomena, such as thermal expansion, humidity, and atmospheric pressure. The 

instrumental errors were described as those errors caused by the instrument itself, which 

were related to the poor quality of the materials used to create the equipment, or related 

to the squareness of the axes, among other machine problems. The last type of systematic 

errors were the personal errors that were attributed to the person that is performing the 

measurements; some examples of this type of errors were identified as poor vision, slow 

reaction time to activate or halt the count of a stopwatch, among others.  

In addition to the above errors, there are many other errors that affect the 

measurements and the analysis of these measurements. Hocken et al. (1993) identified 

three main factors that induce noise into the inspection process. The first is related to the 

translation of the information provided by the designers to the inspection process, which 

is similar to the CAD/CAM problem that was stated above in the feature recognition 

section. The next is the effect caused by the inspection equipment and sampling strategy 

into the measurement results. The noise introduced by the mathematical algorithms used 

to process and analyze the results is the third factor of noise induction. For this reason, 

researchers had focused in creating reliable inspection equipment able to measure and 

analyze data using powerful mathematical tools that counteract and recognize the effects 

of these errors.  



 42

In coordinate metrology, the inspection equipment is used to determine the 

tolerances of manufactured parts by collecting a predetermined amount of point 

coordinates. The collected sample is processed using a fitting algorithm that will 

determine the parameters and the form error of the part. The verification process is not 

very complex, but it takes a significant amount of time since it is necessary to have a 

controlled environment to reduce the systematic errors that could affect the results of the 

process. For this reason, several inspection technologies have been developed, which 

collect point coordinates under different circumstances in a better and faster rate.  

Curless (1997) proposed a way to classify the inspection equipment based on the 

technology used to acquire information from the part, shown in Figure 6. The devices 

were classified as contact and non-contact technologies, where the contact technologies 

relied on probes and styluses to collect information from the part in a discrete way, while 

the non-contact technologies used lasers, electromagnetic waves, microwaves, and light 

to acquire the information. Contact technologies were found to be more common since 

they are cheaper and can achieve good levels of accuracy that makes them appropriate for 

many manufacturing shops; however, one problem that was encountered was that the data 

collection required a significant amount of time, since the equipment has to travel around 

the object in a collision free path. On the other hand, non-contact technologies were more 

versatile since they can acquire millions of data points in just a few seconds, but the cost 

of the equipment is much greater compared to those prices for the equipment that uses 

contact technologies. 
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Figure 6. Taxonomy of the shape acquisition. (Adapted from Curless, 1997) 

 

2.5.1 Coordinate Measuring Machine (CMM) 

The coordinate measuring machines (CMM) are used to verify the dimensions 

and tolerances of manufactured parts in industries such as aerospace, automotive, 

electronics, and plastics (Dotson et al., 2003). One of the main reasons that the coordinate 

measuring machine is highly utilized is the fact that it is economically affordable and 

provides many other benefits than the traditional micrometers and gauges. However, 

there are other technologies such as lasers and interferometers that are more accurate, but 

the acquisition cost is normally high. For this reason, the CMM technology was chosen in 

this research as the main way to collect information from the machined parts. In addition, 

any new improvement and contribution found in this research will have an important 

impact in the research and industry world. 
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Groover (2001) described the CMM as an inspection equipment that is composed 

of four basic elements:  

1. The touch-trigger probe that records point coordinates from the inspected part 

by measuring the displacements of a stylus. The probe is composed of a set of 

rollers and springs that are electronically connected to the machine controller, and 

are activated by the motion of the stylus (Anthony, 1986). The stylus is held by 

the probe head and physically touches the inspected part for collecting the 

measurements. Thus, the rollers and springs send an electronic signal to the 

machine controller that will decode and transform it into point coordinates each 

time that the stylus touches the inspected part, seen in Figure 13. The stylus can 

have many shapes, such as balls, cylinders, end pointers, and discs, and it can be 

found in different materials, such as ruby, steel, silicon nitride, zirconia, alumina, 

and tungsten carbide, which can vary according to the type of measurements and 

the environment in which the measurements are performed, as seen in Table 1; 

(Renishaw plc., 2005). 

 

Table 1. Stylus tip types and properties. (Adapted from Renishaw plc., 2005) 

Stylus Tip 
Deviations from 

spherical, cylindrical, 
or pointer forms 

Coefficient 
of expansion 

at 25°C 

Stylus 
Picture 

Ruby balls 5.12 μinch (0.13 μm) 4.5x10-6/°C 
Silicon nitrate balls 5.12 μinch (0.13 μm) 3.2 x10-6/°C 
Zirconia balls 5.12 μinch (0.13 μm) 10.5 x10-6/°C 
Ruby ball ended cylinder 0.0157 μinch (4 μm) 4.5x10-6/°C 

 
Silver Steel simple cylinder 0.0157 μinch (4 μm) 16 x10-6/°C 
Tungsten carbide ended cylinder +1575 μinch (+40 μm) 5 x10-6/°C 
Silver Steel simple pointer Cone angle 30° 16 x10-6/°C 
Tungsten carbide radius pointer  Cone angle 30° 5 x10-6/°C 
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Silver Steel discs 0.39 μinch (1 μm) 16 x10-6/°C 

Alumina hollow balls 0.39 μinch (1 μm) 8.1 x10-6/°C 

 

2. A set of servomotors work together to activate the bearings that position the 

three perpendicular axes of the machine (Dotson et al., 2003). Smith (2002) 

identified five types of bearings that are commonly used in inspection equipment, 

such as dry bearings, ball bearings, hydrodynamic bearings, air-based hydrostatic 

bearings, and oil-based hydrostatic bearings. Out of the five types of bearings, the 

air bearings are the most widely used bearing in coordinate measuring machines. 

The author found that this type of bearing can provide high levels of accuracy and 

generates the least amount of friction compared to the other types of bearings. 

However, it was found that the humidity and the uncleanness of the compressed 

air could decrease the accuracies or even damage the equipment. 

3. A computer system controls the machine during the numerical control and 

manual operations.  

4. A software tool is used to operate the inspection machine and to analyze the 

collected data. In general, the software contains a set of subroutines that allow the 

user to verify and analyze the most common tolerances found in machined parts, 

with the purpose of reducing the time of inspection (Dotson et al., 2003). The last 

two components defined by Groover (2001) are dependent on one another, since 

one will define the requirements of the other. Computational systems are easier to 

upgrade than the software tools, thus in most of the cases the software tool will 

define the amount of computer resources. Some of the most common software 
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tools used in CMM equipment are PCDMISTM, QuindosTM, Metrolog XGTM, 

Metrosoft CMTM, among others. 

 

 

Figure 7. Coordinate Measuring Machine (CMM), probe head, and stylus tip. 

 

The coordinate measuring machines (CMM) are operated in four different modes: 

manual, manual computer assisted, motorized computer assisted, and direct computer 

controlled (Dotson et al., 2003). The manual mode is the simplest of all the modes where 

the user measures data points by manually moving the probe to any desired location. The 

manual computer assisted mode is very similar to the manual mode, and the only 

difference is that in this mode the user is aided by a computer interface that provides 

information about the location of the probe and analysis of the data points. The motorized 

computer assisted mode allows the user to position the CMM’s probe in all three 

directions by using a joystick. The direct computer controlled mode is the most accurate 

since it allows the creation of a program that manipulates the movements of the CMM by 
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setting the positioning and measuring speeds, the approaching vector, and the point 

coordinates of the measuring points.  

Independently of the operation modes, the CMM can be found in the different 

configurations that vary according to the work envelope and the way in which the three 

axes are arranged. The five configurations are column, bridge, cantilever, horizontal arm, 

and gantry types (Dotson et al., 2003). The column type has a similar configuration as a 

computer numerical control milling machine, where the x and y axes are located on the 

measuring table, and the z axis lowers and raises the probe arm. The bridge type is one of 

the most commonly used types of CMM and is the same type of CMM that is being used 

in the present research. The bridge carries all three axes, moves back and forth in the y 

axis, left to right in the x axis, and it lowers and raises the probe in the z axis. The 

cantilever type is similar to the column type, where the x axis is located in the measuring 

table, the y axis moves the cantilever arm, and the z axis is located in the cantilever arm 

that carries the probe. The horizontal arm type is similar to a robotic arm and is located 

on one side of the measuring table, where the x axis moves the arm from left to right, the 

y axis extends and retracts the arm, and the z axis lowers and raises the arm. Finally, the 

gantry type is similar to the bridge type, however, in this type of CMM the bridge is 

supported by two arcs that define the work envelope. 

The concepts of accuracy and precision play an important role in the inspection 

process, since any reliable inspection requires an inspection instrument, in this case the 

coordinate measuring machine (CMM), to provide the same results within readings and 

with the smallest variability between them (Montogomery, 2001). However, studies 

performed by Hocken et al. (1993) showed that the mentioned CMM components are 
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susceptible to external factors such as parametric, probe, thermal, and general inspection 

errors that induce noise into the readings. The parametric errors were defined as those 

errors that are induced by the CMM components each time the probe needs to be 

physically relocated. Although the errors seem to be unavoidable, the author found that 

these errors behave as systematic errors, thus they can be reduced by the use of an 

accurate sampling strategy. The probe errors are those errors that are induced each time 

the stylus tip is in contact with the inspected part. The errors are due in great part to the 

approach vector, approaching speed, contact force, and stylus configuration. However, 

suppliers of coordinate measuring machines, DEA (1995a, 1995b), and stylus tip, 

Renishaw plc. (2005) suggested procedures and guidelines to reduce the effect of these 

types of errors. DEA (1995a, 1995b) recommended that the stylus tip must be qualified 

and compensated before any measurement is taken. The tip qualification consists of 

measuring five points, which are used to calculate the geometrical center of the ruby ball, 

and to estimate the tip diameter from a calibration sphere. The tip compensation process 

requires the measurement of five points from the calibration sphere, which helps the 

CMM recognize the approaching vector of measurements and compensate for the probe 

radius. In addition, it was recommended that all measurements must be taken using the 

normal vector of the surface in order to increase the accuracy of the measurements (DEA, 

1995a). On the other hand, Renishaw plc. (2005) suggested that the stylus must be as 

short as possible because the length of the stylus will affect the accuracy of the 

measurement. Moreover, it was recommended that the ball diameter must be as big as 

possible in order to reduce the possibility that the stern touches the measuring object 

before the stylus ball does. 
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Kanada (1997) studied the number of roundness measurements needed to estimate 

the sphericity error. He used a stylus tip to record the roundness measurements where he 

found that the accuracy of the measurements increased when performing the 

compensation procedure. In addition, studies done by Hocken et al. (1993) on the effect 

of probe approach rate, stylus length, and stylus orientation in geometric tolerances, 

showed that the probe errors are sometimes the magnitude of the desired tolerances. For 

this reason, he found that it is extremely important to perform the tip compensation and 

probe qualification before taking any measurement. 

The thermal errors are very critical for the inspection process since studies done 

by Hocken et al. (1993) reported that these types of errors can have the same magnitude 

as the errors induced by the imperfections of the machine components, such as errors due 

to axes squareness, or straightness errors, among others. Moreover, it was found that 

these errors are not normally distributed, making it a difficult task to find a sampling 

strategy that can counteract their effect. The sources of these errors are room temperature, 

lights, number of people working close to the inspection machine, among others. Finally, 

the last type of errors is the inspection errors that are related to all the set up, inspection 

and data analysis procedures that induce noise to the measurements. Some examples of 

this type of errors include the improper alignment between the origin of the CMM and 

the geometrical origin of the part, accuracy of the fitting algorithms, stylus properties, 

uncontaminated part surface and measuring table, among others.  
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2.6 Geometrical Tolerances 

The tolerances are used to describe the geometrical imperfections between the 

machined part and the ideal geometry developed during the design phase (CAD) (Dotson 

et al. 2003). Thus, the correct inspection of these tolerances will determine the accuracy 

of the part. The five types of geometrical tolerances are form, profile, orientation, 

location, and runout (Kalpakjian, 2001). The tolerance of form determines the deviations 

of the inspected part regarding how straight, flat, round, and cylindrical the part is. The 

profile tolerances specify the level of error of the profile of a line or surface. The form 

and profile tolerances determine the error of the machined parts based only on the 

specific curve of the surface being measured. On the other hand, the calculation of the 

tolerances of orientation, location, and runout, require the measured data to be compared 

against theoretical references called datums, in order to determine the level of error of the 

part, Henzold (1995). The orientation tolerances verify the deviation between the datum 

and a measured plane in order to determine if both are perpendicular, parallel, or tilted at 

a specific angle. The location and runout tolerances verify the differences between the 

datum and the measured features, in order to determine if both are at the same position 

and concentric or if they have a circular and total runout, respectively; as seen in Table 2 

Geometrical Tolerances. 

Table 2. Geometrical Tolerances. (Adapted from Kalpakjian, 2001) 
Tolerance Type Tolerance Symbol 

Form 

Straightness  
Flatness  

Roundness  
Cylindricity  

Profile 
Profile of a line  

Profile of a surface  
Orientation Perpendicularity  
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Angularity  
Parallelism  

Location 
Position  

Concentricity  

Runout 
Circular runout  

Total runout  
 

The national and international standards ANSI and ISO recognize the mentioned 

tolerances. However, the standards do not specify the procedures needed to evaluate the 

tolerances, which can lead to interpretation problems. Consequently, several researchers 

have focused on determining the algorithms that best determine the tolerances of 

machined parts, especially the form tolerances. Forms such as spherical, conical, conical 

frustum, torus, and prismical have not been defined by the standards yet. Therefore, it is 

important to focus on these complex shapes in order to find the best inspection 

parameters that yield the true form or error. Among these parameters are the sample size 

(geometry based, adaptive size), sampling strategy (Hammersley, Halton-Zaremba, 

random, aligned systematic, uniform, adaptive sampling), and fitting algorithm (linear or 

nonlinear), which are explained in the subsequent sections. 

2.6.1 Circular and Spherical Form 

The study of form verification of circular and spherical shapes is a problem that 

was created due to the needs of producing quality parts in the manufacturing 

environment. However, some of the principles that govern the algorithms that nowadays 

are used to verify circular and spherical shapes were studied during the 1800’s and in the 

beginning of the 1900’s. Clear good examples are the papers from Sylvester (1857) who 

identified the importance of finding the smallest circular shape to enclose a finite number 
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of points, and Blumenthal (1941), who described a way to find a minimum circumscribed 

spherical surface that can bound a subset of n-dimensional Euclidian space, in which he 

referred to many other articles that were developed during the early 1800’s. 

Unfortunately, the references from Blumenthal’s (1941) paper were in German and 

French, making them difficult to read and almost impossible to obtain, due to the times 

when these papers were published.  

One hundreds years after Sylvester’s (1857) publication, Rademacher et al. (1957) 

developed an interesting algorithm to enclose n-points inside the smallest circumscribed 

circle. The procedure to compute the circle radius required the calculation of the 

distances between all points. Then after all distances were calculated, the “span” of the 

set of points was determined by choosing two points (P1, P2) that have the maximum 

distance between them. The maximum distance (d) was used to create two circles: one 

with radius d and origin in P1 and another that had a radius d and origin in P2. The 

intersection between these two circles created an area similar to the shape of a football 

where the rest of the points were positioned. The football shaped area had two points S1 

and S2 that were the points where the two circles intersected. The distance between the 

two points represented the smallest diameter of a circle needed to enclose the n-points, 

shown in Figure 8.  

 

Figure 8. n-points enclosed by smallest circle (Adapted from Rademacher et al. 1957) 
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Thus, the radius of the enclosing circle was obtained by applying the Pythagorean 

Theorem to the triangle created by P1, S1and O,  

 
ddddr 866.03

22

2
2 ≈=⎟

⎠
⎞

⎜
⎝
⎛−= (2.2)

 

Despite the results obtained, Rademacher (1957) proved under different scenarios 

that there was a smaller circle that can enclose the given set of points, which was found 

by applying H.W.E. Jung’s theorem that stated that “every set of diameters d in a 

Euclidian space En is contained in a ball in En of radius ( )( )12/ += nndr ,” therefore, 

the smallest circle that can enclose n given points was defined by the radius of 

ddr 577.03
3

≈=  (SpringerLink, 2006). 

Similar to Sylvester (1857) and Rademacher et al. (1957), Elzinga et al. (1972) 

revisited the problem to find the smallest spherical shape that enclosed a finite number of 

points, where he formulated the problem as a quadratic programming dual problem and 

solved using the Simplex method. Although none of these studies were applied in the 

metrology area, it is important to mention that they provided an insight of the importance 

that the circular and spherical shapes have in the mathematical world, since they are very 

useful shapes that can be used to solve many different types of problems, ranging from 

the pure mathematical problems to the more applied problems such as the form 

verification of circular and spherical shapes.  

The spherical surfaces are one of the most studied 3-Dimensional shapes in the 

literature due to their vast number of applications in the metrology area and to their 

simple mathematical models that define them. Several authors have published multiple 
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articles on form verification of spheres, such as Kanada (1995, 1997) and Samuel et al. 

(2000, 2003). They had revisited the topic providing improvements to the existing models 

as well as exploring new fitting algorithms for the calculation of the parameters of the 

sphere. These articles and many others are explained in the following paragraphs and are 

arranged in a chronological order, starting first with those used to verify the form of 

circular shapes and then reviewing those related to form verification of spherical shapes.  

 

2.6.1.1 Roundness (Circularity) 

The term roundness or circularity defines the degree in which measured parts 

deviate from the true form of a circle. Chetwynd (1979) studied the properties and 

applications of the Limacon approximation for roundness measurements. The Limacon is 

as a mathematical shape used to linearly approximate the parameters of the circle with 

respect to the origin. The procedure also called “radius suppression,” is applied to 

counteract the origin offsets between the coordinate system of the measuring instrument 

and the geometrical coordinate system of the round part that is being inspected.  

Figure 9 provides a graphic explanation of the logic behind the Limacon 

approximation where R is the radial distance measured from the surface of the round part 

to the geometrical origin of the part Oc; and ρ is the radial distance measured from the 

surface of the round part to the origin of the measuring instrument Os. The geometrical 

origin of the part Oc is located in polar coordinates at a distance e at an angle of φ 

degrees, or in Cartesian coordinate at a distance of a in the x axis and b in the y axis, or in 

polar coordinates. 
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Figure 9. The Limacon approximation (Adapted from Chetwynd, 1979) 

 

Figure 10. Limacon approximation explanation 

 

Mathematically, the main idea of the Limacon approximation is to linearly 

calculate the value of ρ in terms of the radii R and the origin offsets (x0, y0). By doing this 

the measurements of a round part can be broken-down into these three factors in order to 

find real deviations of a circular part. Therefore, from the Figure 10 and Equation (2.3), 

the value of ρ can be calculated by adding the values of ρ1 and ρ2, where ρ1 is obtained 

by using Equation (2.4) and ρ2 by using the Pythagorean theorem, as described in 

Equation (2.5). 
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 21 ρρρ +=  (2.3)

 ( )φθρ −= cos1 e  (2.4)

 ( )[ ] 2/1222
2 sin φθρ −−= eR  (2.5)

 

Equation (2.5) can be reduced to only R since the value of e is considered very 

small compared to the value of R, thus making the right side of the subtraction almost 

zero. In a similar way, Equation (2.4) is extended by substituting the value of cos(θ - φ) 

for the trigonometric identity of the sum of two angles cos(φ)cos(θ)+sin(φ)sin(θ). 

Therefore, the value of ρ is obtained by adding R to ρ1, as seen in Equation (2.6). 

 ( ) ( ) ( ) ( ) Ree ++≅ θφθφρ sinsincoscos (2.6)

 

The value of a and b that represent the location of the geometrical origin of the 

part can be defined as a = e cos (φ) and b = e sin (φ). Thus, if these trigonometric 

relations are substituted in Equation (2.7) then the value of ρ is given by 

 Rba ++≅ )sin()cos( θθρ  (2.7)

 

Finally, instead if a and b are called x0 and y0, then the equation describing the 

value of ρ can be used to verify mathematically that the form of a round manufactured 

part was created according to specifications. Therefore, the major contribution of 

Chetwynd (1979) is that round parts can be linearly verified since the origin offsets are no 

longer affecting the calculations of the parameters of the circle. 
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The advantages of incorporating the Limacon approximation to a 2-Dimensional 

or 3-Dimensional form evaluation model are that the model will compensate the origin 

offset between the measuring instrument and the measuring part, therefore, the model 

will provide information of the origin offset in x and y components and the true radial 

measurements of the inspected part. Furthermore, the Limacon approximation can be 

applied in a real manufacturing environment especially in the inspection process because 

it will allow the operator to decrease the time that he/she spends aligning the part to the 

instrument’s coordinate system, thus reducing the cycletime of the process. In addition, 

the Limacon provides good results when the approximation is solved by means of the 

least squares method, due to its linear properties (Chetwynd, 1979).  

 

2.6.1.2 Sphericity 

The sphere is a 3-Dimensional surface in Euclidian space 3ℜ  that is defined as a 

set of points that are equidistant from a center point called the origin (Weisstein, 1999). 

Figure 11 illustrates the two parameters that describe the form of the sphere, which are 

the origin of the sphere O (x0, y0, z0), and the radius (R) which is the distance from the 

surface origin to a point P (x, y, z) contained on the spherical surface. Usually, the 

location of the origin is at O (0, 0, 0), however this location can change according to the 

application in which the spherical surface is being used. Equation (2.8) shows the relation 

between the radius of the sphere and the Cartesian coordinates (x, y, z).  

The spherical forms can be found as closed surface such as Figure 1, or as partial 

surface such as in the case of the hemisphere. These surfaces are very useful shapes since 

they can be easily adapted to solve difficult geometrical problems, such as the calculation 
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of the form deviation of cones, frustums, and torus forms, as shown in the subsequent 

chapters. 

 2222 zyxR ++=  (2.8)

 

 

Figure 11. Parameters of the Sphere 

 

The form evaluation of spherical shapes, also called sphericity, is defined as how 

much the form of an object is different from an ideal sphere. The sphericity error was 

determined based on sets of 2-Dimensional round planes. (Kanada, 1995, 1997; Huong, 

1999; and Samuel et al., 2001), instead of measuring the sphere as a 3-Dimensional 

object; all of this due to the lack of procedures from ANSI and ISO to evaluate the 

tolerances of complex forms. For this reason, the following lines present a collection of 

previous studies that attempted to establish a 3-Dimensional model to evaluate the form 

tolerances of spherical forms.  

The mathematical models that describe the spherical shape are essentially two, 

which are also the most frequently used in the literature. The first model is a linear model 

that uses the Limacon approximation as a reference to find the origin offsets (x0, y0, z0) 

R
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and radii of the sphere (R). This research refers to the model as a linear spherical model; 

as seen in Equation (2.9),  

 [ ]ααθαθ cossinsinsincos 000 zyxRrd ii +++−=  (2.9)

 

The second model is a nonlinear model, which applies the Euclidian distance 

principle to find the parameters of the sphere, and is referred to through out this research 

as a nonlinear spherical model, shown in Equation (2.10). 

 ( ) ( ) ( )2
0

2
0

2
0 zzyyxxRd iiii −+−+−−= (2.10)

 

Although, one model is linear and the other is nonlinear, both aim to find the radii 

of the sphere and the origin offsets. Each of these models has advantages and 

disadvantages, which are explained in detail in the following chapters. Meanwhile, the 

next paragraphs show a summary of the spherical papers available in the literature, in 

which most of them apply the mentioned linear and nonlinear models. Thus for 

simplicity, the models will be referred to by name in the text and not in the equation 

form. 

The sphericity evaluation is a 3-Dimensional measurement that requires accurate 

and precise instruments to collect data from the surface part, such as the Coordinate 

Measuring Machines (CMM). However, the CMM’s are measuring instruments that were 

not developed until the late 1990’s. Prior to this time, the sphericity evaluation was 

performed by using a combination of 2-Dimensional procedures such as sets of roundness 

or circular measurements where each of these measurements were located at 90 degrees 

between each of them, thus calculating the sphericity value by using the minimum 
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circumscribed circle method (Kanada, 1995). The main reason that the spheres were 

evaluated as a combination of roundness measurements was that ANSI and ISO standards 

showed that the circle and the sphere share similar geometrical properties. However, 

authors such as Kanada (1995, 1997), Huong (1999), and Samuel et al. (2001) stated that 

the 2-Dimensional measurement of a sphere was not accurate since the spherical form is 

by nature a 3-Dimensional shape, and repetitive 90 degrees apart roundness 

measurements did not provide a good representation of the sphere error. Kanada (1997) 

used a statistical method to verify the form of spherical parts where his main purposes 

were to determine the efficiency of the measuring method proposed by the ISO and ANSI 

standards and the minimum number of roundness measurements needed to obtain a good 

representation of the sphericity error. The method used to accomplish his goals was to 

measure four spheres selected out of a set of nineteen spheres, with radii ranging from 

11/16 to 2 inches. The samples were measured using a rotational measuring table for 

roundness measurements, in which each sphere was evaluated using sixty round profiles 

arranged in groups of three. The reason why only three profiles were in a group was that 

only three 90 degree profiles could be measured from a spherical surface at a time. Thus, 

after the first group was measured, the sphere was rotated to a different position and three 

different round profiles were measured. The procedure was repeated until all sixty 

profiles were measured. The roundness measurements were calculated by means of the 

minimum circumscribed circle, in which confidence intervals were calculated for the 

roundness measurements and for the standard deviation of the measurements. Although 

the results were satisfactory, the author stated the difficulty of using 2-Dimensional 

instruments to evaluate 3-Dimensional shapes, since it was very difficult to keep each 
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round profile 90 degrees apart from each other. Moreover, Kanada (1997) studied the 

minimum number of roundness measurements needed to obtain a good estimate of the 

sphericity error. The procedure used was to measure four spheres using different values 

of (n) number of round profiles per group, n going from 3, 6, 9,…, up to 57 profiles. 

Since 60 is the total number of profiles, then the maximum number of profile 

combinations for each value of n was limited to 20. The results were graphed using a 

scatter plot in which the y-axis corresponded to the sphericity values while the x-axis was 

the number of round profiles. Results showed that for small diameter balls the minimum 

number of round profiles needed are 9, while for big diameter ball the minimum number 

of recommended profiles are 18 or more. 

In a similar study, Kanada (1995) focused on the evaluation of spherical forms by 

means of the iterative least squares and minimum zone models. Actual measurements 

were not collected; however, the author simulated the measuring data by using Laplace 

spherical function. The simulator helped the author to generate random noise used to 

simulate surface errors and to generate the angles that describe the position of the data 

point in spherical coordinates. The author simulated 7,192 data points that were 

distributed into five sets, where the simulator provided the sphere radii and standard 

deviation of the data. The data was evaluated first using the iterative least squares method 

in which a linear spherical model was used to calculate the parameters of the sphere. The 

data was also evaluated in a nonlinear spherical model using the minimum zone approach 

by applying the downhill simplex method. The simplex method uses a triangular shape in 

which each of the vertices represents different values of the objective function. The size 

of this vertex either increases or decreases according to the improvements given by 
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following the vertices that provide the minimum value of the objective function. The 

method was finalized when the convergence criterion is fulfilled; in this case, that 

criterion was given by the magnitude of the standard deviation of the measurements. For 

the five sets of data the minimum zone approach outperformed the iterative least squares 

method, providing smaller zones of error and taking less computing time. In a similar 

way as Kanada’s (1997) paper, the author analyzed the data in order to determine if all 

data were necessary for sphericity calculation. After performing least squares analysis, 

the author found that the data can be classified into three zones, such as “hills,” “dales,” 

and “medium high data.” The hills represent the data that is above the least squares line, 

while the dales are the data below the line. The medium high data is the data that is in the 

middle, which does not affect the calculation of the sphericity value, since the sphericity 

is calculated based either on the subtraction of the minimum from the maximum residual 

or by minimizing the maximum deviation. Thus, the author proposed a criterion to 

determine the amount of data required to reduce the computational time. In addition, 

Kanada (1995) performed a comparison between analyzing the sphere as a set of 

roundness measurements and analyzing it as a 3-Dimensional surface, where he found no 

significant differences between the roundness measurement of the equatorial plane and 

the sphericity value. However, he found that the roundness measurements of longitudinal 

lines are one third of the sphericity value. Results from this research contradict the 

guidelines provided by the standards since the ANSI and ISO standards accept the 

evaluation of sphericity as a combination of roundness measurements. Therefore, the 

sphere should be inspected as a 3-Dimensional surface in order to avoid any 

underestimation of the surface deviations. 
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Huang (1999), Fan et al. (1999), and Samuel et al. (2001) studied the sphericity as 

a 3-Dimensional problem using different approaches than the ones already revised in the 

literature. Huang (1999) applied the 3D Voronoi approach to find the exact origin of the 

sphere that minimizes radial distances. Fan (1999) simulated a mechanical system using 

the minimum potential energy theory that emulates the analysis of the sphere deviations, 

while Samuel et al. (2001) applied a similar procedure like 3D Voronoi approach in 

which he used 3D convex hulls to inscribe and circumscribe the sphere deviations for the 

calculation of the minimum zone of the sphere. 

The 3D Voronoi diagrams applied by Huang (1999) are defined as a plane that 

split the Euclidian distance of two measured points A(xa, ya) and B(xb, yb) into half spaces, 

in which all points on the plane are equidistant to the two measured points. One side of 

the half spaces that does not contain A is defined as the farthest region F(A) while the 

space containing A is defined as the nearest region N(A), thus the farthest region of A is 

the nearest region of the point B labeled N(B), and the nearest region of A is the farthest 

region of point B labeled F(B). The approach can be extended to multiple points since it 

can be used to generate n number of half spaces according to the number of paired points 

available, where the farthest and nearest regions are created by the intersections of the 

half spaces. The relation between the sphericity problem and the 3D Voronoi diagrams is 

the existence of a “max region” that contains two control points that define the minimum 

zone of spheres, since these points determine the radial distance between the inscribed 

and circumscribed spheres. Huang (1999) developed an automated procedure to calculate 

the minimum zone of spheres.  
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The steps followed during this procedure were to identify five points among the 

set of data points for the X-vertex calculation. Then, the inscribed and circumscribed 

spheres were calculated with the purpose of determining if all points on the set were 

enclosed by the two spheres. If all points were enclosed then the procedures ends, 

however, if some points were outside the spheres, then some of five points selected for 

the X-vertex calculation were replaced by these points outside the spheres, and then the 

procedure continues until all points are enclosed between the spheres. The procedure was 

verified under two similar conditions. First, a set of five points was used to determine the 

X-vertex that generated the minimum radial separation. The five points’ coordinates are 

(4.8, 6.4, 6.0), (0, 0, -10), (0, 9, 0), (0, -9, 0), and (0, -9, 0). Among all possible vertices 

generated from the set of five points, the vertex (0, 0, 0) provided the minimum radial 

separation equal to 1. In addition, it was found that points 1, 2, and 3 described the 

position of the circumscribed sphere with radii of ten, while points 4 and 5 determined 

the position of the inscribed sphere with radii of nine. The solution of this procedure was 

used to determine the efficiency of the algorithm under a different condition. The five 

points were hidden in a set of ninety-five points, making the total sample points equal to 

one hundred. The new places of these points were 51, 62, 70,79, and 95. The one hundred 

points were evaluated in set of five points, and it was found that the algorithm needed 

five updates to locate the five known points. The results were identical to the ones 

obtained from the first experiment, proving the efficiency and accuracy of the procedure. 

In addition, the author created several scenarios in which he varied the number of 

evaluated points ranging from 10 to 100, with the purpose of determining the total 

number of updates needed to calculate the sphericity, as well as the total number of points 
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that were on the final set. Results for 10 points showed that the average number of 

updates needed were 2.89 updates, while the average number of points on the final set 

was 7.81 points. Results for 100 points showed that the average number of updates 

needed was 6.09 updates, while the average number of points on the final set was 14.12 

points.  

In a different study, Fan et al. (1999) proposed an analogy to study the minimum 

zone of spheres, in which he applied the minimum potential energy theory to a 

mechanical system that behaves similarly to the sphericity problem. The mechanical 

system was defined by a set of two spherical surfaces that represent the circumscribed 

sphere with radii equal to Ro = 1, and the inscribed sphere with radii equal to Ri=Ro/α (α 

> 1), as well as by a set of mechanical supports that were located in the same position as 

the measuring points; it was assumed that these supports can only withstand compression 

force. The system was controlled by a spring that stores elastic energy while contracting. 

The adjustment on the spring caused modifications to the dynamic of the whole system, 

since it was assumed that there are only five points that are in contact with the spherical 

surfaces. Hence, the contractions of the spring change the contact points between the 

inscribed and circumscribed spheres, until the elastic energy of the system was reduced to 

the minimum. The five supports in contact with the spherical surface behaved in different 

ways, which is the reason why the author defined four modes to describe the system. The 

first mode was called M4-1 in which four points are in contact with the circumscribed 

sphere while one point is in contact with the inscribed sphere. The second and third 

modes were called M3-2 in which there are three supports in contact with the 

circumscribed sphere and two with the inscribed sphere, and M2-3 in which two supports 
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are in contact with the circumscribed sphere while two are in contact with the inscribed 

sphere. The last mode was called M1-4 where one support is in contact with the outer 

sphere while four supports are in contact with the inner sphere. The principles of virtual 

work and the equilibrium equations were applied to each of the described modes, where it 

was determining that if the supports were in compression then the reaction should be 

positive, but if the reaction was negative then the energy spent on the system could be 

reduced even more, giving chance for improvements. In a similar way as Huang’s (1999) 

algorithm, Fan’s procedure was to update the active support each time the reaction was 

negative; the procedure was repeated until all supports were evaluated and none of them 

yielded a negative reaction. The algorithm was verified using a set of fifty data points that 

were generated randomly. The points were evaluated first using the least squares 

approach in which the solution was used as initial conditions for the proposed algorithm. 

Results obtained from this procedure showed that the minimum potential energy analogy 

took 1.3 seconds using six iterations to calculate the zone of error of the sphere given by 

7.66 μm.  

Samuel et al. (2001) proposed a model to evaluate spherical forms similar to 

Huang’s (1999) 3D Voronoi diagrams and to Fan’s et al. (1999) analogy, where he 

employed the use of convex hulls for the calculation of the parameters of the sphere as 

well as to calculate the minimum zone of spheres. Three techniques were applied for the 

evaluation of spheres: the minimum circumscribed sphere, maximum inscribed sphere, 

and minimum zone spheres. The logic behind the construction of the 3D convex hulls lies 

on a new technique developed by the Samuel et al. (2003) called equidistance (ED) plane 

and line. The ED plane perpendicularly slices a line connecting two measured points P1 
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and P2 from a spherical surface, in which all points contained on the ED plane are 

equidistant from both mentioned points. Similar to the Voronoi diagrams, the procedure 

was adapted to n number of points. For three points, the intersection between all ED 

planes, created a center point among all points that was used to generate a perpendicular 

line also called as ED line, in which all points contained on this line are equidistance to 

the three mentioned points. Thus, any point over the ED line was used to determine the 

origin of the circumscribed or inscribed sphere.  

The procedure used to calculate the circumscribed sphere was based on the 

calculation of the 3D convex outer hull, which used the logic behind the ED plane and 

the ED line. For a set of points, the procedure looked for identifying the nearest and 

farthest centers that passed through at least four vertices. The data were evaluated as 

triangular planes of three points that were updated based on the location of the centers, 

where the final error was obtained by selecting a center that provided the smallest radius 

that surrounded all measured points. The inscribed sphere or 3D convex inner hull was 

calculated based on the center found for the circumscribed sphere, and on the same 

procedure used to calculate the outer convex hull. In addition the data were transformed 

in order to simplify the calculations of the procedure. The last approach was the 

minimum zone spheres, defined as the zone between two concentric spheres that is the 

smallest radial distance that enclosed all measured points. For this procedure, the initial 

conditions were found by applying the information obtained from the outer and inner 

convex hulls’ approaches. Five data points were required to construct two concentric 

spheres, thus the procedure passed several times through the data until it identified the 

five data points that provided the minimum radial separation between spheres.  
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An experiment was performed to verify the accuracy of the procedures where two 

sets of data points were used. The first points were a set of 26 data points found in the 

literature, while the second set was simulated based on those values obtained from the 

literature. Results from this experiment showed that the three proposed methods 

performed better than the least squares technique. The minimum zone spheres performed 

better than the results found in the literature, since they yielded a zone of error of 

2.82842μm while those in the literature were in the order of 2.88μm. In addition, the 

author found that the proposed methods were not affected by the convergence value 

specified in each method, but by the data points that controlled the zone of error. 

Samuel et al. (2003) performed a different study in which they analyzed the form 

errors of circular and spherical shapes by using coordinate measuring machine data. The 

data were analyzed using the linear spherical and nonlinear spherical models shown in 

Equations (2.9) and (2.10). For the nonlinear spherical and circular models the data were 

applied directly from the CMM output, while for the linear spherical and circular models 

the data were transformed into polar coordinates, which employed the limacon and 

limacoid surfaces as assessment features. The nonlinear circularity evaluation was 

determined first by applying an equation similar to the nonlinear spherical model from 

Equation (2.10), but reduced in dimensionality since the circular shapes only require the x 

and y coordinates instead of the x, y, and z coordinates required by the spherical shapes, 

as seen in Equation (2.11). 
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The nonlinear model used a circle as an assessment feature with an origin located 

at O(x0, y0) and radii equal to R. The minimum zone of the circle or circularity was found 

by calculating the difference between the maximum deviation and the minimum 

deviation. The linear circularity evaluation was calculated in a different way than the 

nonlinear procedure, since it requires the data to be transformed into polar coordinates to 

apply the limacon shape as an assessment feature. The procedure used to transform was 

the follow. First, the nonlinear model from Equation (2.11) was used to calculate the 

origin location x0 and y0, and the radii R; where, instead of estimating the parameter using 

the whole set of data, the parameters were calculated based on three data points. then, the 

estimated parameters were used to calculate the residuals for all data points. These 

residuals were used to transform the radial distances ri that were calculated by adding to 

each of the residuals, the negative value of the minimum residual plus the value of a 

variable d0 that was chosen arbitrarily. The angle θ was calculated by the tangent inverse 

of ( ) ( )00 / xxyy ii −−  where the x0 and y0 were obtained by means of the mentioned three 

data points. The linear model for circular shapes is similar to the sphere model shown in 

Equation (2.9) but reduced in dimensionality as mentioned before. The parameters of the 

nonlinear spherical model were calculated using Equation (2.10) and were assessed based 

on the spherical feature, while the parameters of the linear spherical models were 

obtained by transforming the data in a similar way as it was done for the circular shapes.  

An experiment was performed to verify the accuracy of the two models where the 

data were obtained from Fan et al.’s (1999) study. The models were analyzed by means of 

the simplex search techniques. Results from this study showed that the output generated 

from the four models were very close to those results obtained in the literature. For 
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circularity, Fan et al.’s (1999) found that the form error of the data was 29.2860μm, while 

Samuels et al.’s (2003) transformed model showed a form error of 29.2816μm and the 

untransformed model showed a form error of 29.2809μm. For sphericity, Fan et al.’s 

(1999) form error was 7.660μm, while Samuels et al.’s (2003) transformed model showed 

a form error of 7.66023μm and the untransformed model showed a form error of 

7.66011μm. Regarding the zone of error the four models were comparable to the results 

and approach used in Fan et al.’s (1999) study. However, the transformed model does not 

represent the real parameters. Hence, this model will mislead the metrologist when trying 

to make inference regarding the state of the manufacturing and the inspection processes.  

Balakrishna (2005) and Balakrishna and Raman (2007) applied the support vector 

regression (SVR) technique to evaluate the form tolerance of spherical shapes. The main 

goal of this study was to provide a new approach to overcome the deficiencies of the least 

square method. Since it was found that the least square method requires the data to follow 

the normal distribution and it is sensitive to outliers, it overestimates the zone of error. On 

the other hand, the support vector regression only requires the data to be independent and 

identically distributed. The author applied the ν-SVR technique that minimized the zone 

of error based on a parameter ν. This parameter was used to determine the fraction of 

errors that can lie outside the error tube. The sphere is by nature a nonlinear shape, which 

is why the author employed the radial basis kernel that allowed her to solve the sphericity 

problem in a higher dimension. The performance of the support vector regression 

approach was evaluated by comparing it to the linear least squares, the nonlinear least 

squares, the linear optimization approach, and the nonlinear optimization approach. The 

data were generated using the random sampling strategy with sample sizes of 20, 64, 100, 
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200, and 500 data points that were collected using a coordinate measuring machine 

(CMM). The collected (x, y, z) data points were transformed into spherical coordinates (r, 

θ, β) so that they can be used in the proposed approach. The ν-SVR approach was solved 

using the SPIDER© software that was implemented in Matlab®. Results from this study 

showed that the ν-SVR zone of error was smaller than the zones of error from the other 

methods, however, no statistical analysis was performed neither on the fitting algorithm 

nor on the sample size. In addition, no information was provided regarding the estimated 

parameters of the sphere, thus, the conclusions of these papers were based exclusively on 

the minimum zone of error. 

Most of the existent research articles about the sphere tend to provide information 

about the zone of error of the inspected sphere, instead of providing a complete analysis 

based on the fitted parameters and the zone of error. The problem in focusing only on the 

zone of error makes the inspected sphere look as it was manufactured according to 

specifications, however, if the parameters of the sphere are taken into account together 

with the zone of error, then the analysis of the inspected sphere will be accurate since it 

can have a very low zone of error with an estimated radius that is higher or lower than the 

desired values, or it can have a high zone of error with estimated parameters being at the 

correct size of the radius. The most common mathematical models used by the mentioned 

authors are explained and analyzed later on in this research with the purpose of 

developing improvements that can describe the spherical forms in an accurate way.  
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2.6.2 Conical Form 

The conical form can be found in the literature as a complete conical form or as a 

frustum form. The cone is described as a pyramid with a circular cross section (Weisstein, 

1999). The cone has three parameters that describe it: the height of the cone (h), the 

radius of the base of the cone (r), and the slope (s) which is given by the relation of the 

first two parameters (γ), Equation (2.12). In the literature, most of the studies locate the 

position of the origin of the cone O (x0, y0, z0) at the bottom of the surface; however, this 

research will consider the origin of the cone at the vertex, Figure 12. 
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Figure 12. Parameters of the Cone. 

 

On the other hand, the frustum is a conical surface that has the top part removed. 

Unlike the cone, the frustum has four parameters that describe its shape: the radius of the 

base (r), the radius of the top cross section (r”), the height of the cone (h’), and the slope 

(s) which is defined by the relation between the height of the cone and the both radii of 

the cone. 
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Figure 13. Parameters of the Frustum. 

 

The form verification of conical forms has not been studied extensively in the 

literature. Studies from Tsukada et al. (1988), Chung (1997), Chatterjee et al. (1998), 

Chen et al. (2000), Prakasvudhisarn et al. (2004), Ahn et al. (2002), and Ahn (2004) 

focused on studying the form verification of these shapes by estimating the paratemers of 

the cone; the first, the second, and fifth studies are the only ones that report values of the 

zone of error. 

Tsukada et al. (1988) proposed a model to calculate the zone of error of conical 

taper forms using the simplex method and the least squares method. The study employed 

fifty seven cones with diameters ranging from 6 to 60 mm, rates of taper from 1/50 to 

1/3, and cone heights from 20 to 100 mm. The conical tapered parts were evaluated using 

a measuring machine designed to inspect cylindrical parts, where the radial deviations, 

defined as the distance from the surface of the cone to the base line of the measuring 

machine, were recorded. The conical form was inspected by collecting data points from 

the surface where five hundred positions were recorded around the cone surface by 
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revolving the rotational table of the measuring equipment, and several positions were 

recorded along the axial direction ranging from 1.03 to 6 mm. Due to the imperfections 

of the rotational table, the author had to mathematicaly counteract the effects of the origin 

offsets and axis misalignments in order to provide valid values of the zone of error. For 

this reason, the definition of direction cosines was used to cancel out the origin offsets of 

the x and y components and the misalignments between the axis of the cone and the axis 

of the measuring machine. However, it was assumed that there is no offset on the z 

component, which means that the z component of the origin of the machine was placed 

on the same position as the z component of the geometrical origin of the part, causing 

invalid results as it was stated at the beginning of this section. The calculation of the zone 

of error was performed by enclosing the cone deviations using inscribed and 

circumscribed cones. The parameters of the cone were estimated by applying the least 

squares method and the simplex method, where for the later method, five variables were 

optimized using a simplex with six vertices. The convergence criterion for the simplex 

method was set to be the standard deviation of the objective function at each vertex that 

was compared against a constant set at 0.01μm. Results obtained from both fitting 

methods showed that the least squares zone was greater than the one obtained from the 

simplex method. The differences were caused due to the tendency of the least squares 

method to overestimate the zone of error. 

Chatterjee et al. (1998) performed a study to develop mathematical models to 

verify the form of error of conical forms, in which the Chebychev approximation method 

was used to solve the proposed models. The conical form of error was defined for several 

scenarios in which the best fitted cone was estimated based on specific known data. The 
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first scenario was used to prove that a cone can be constructed based on the the three 

given points and the vertex; as shown in Equation (2.14).  

( )
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 where k represents the positive and negavite half cones, P is a vector that 

represents the direction of the cone axis, Xi represents the data points (i = 1, 2, 3), and X0 

represents the vertex of the cone. The formulation generated eight combinations due to 

the fact that k can take positive or negative values for each of the point coordinates; it 

was found that four cones can be generated for the given data points that share the same 

vertex. The second scenario involved the use of the Chebychev approximation to generate 

two cones that enclosed the form deviations of the inspected cone given a vertex and four 

data points. The Chebychev cone was obtained first by applying the least squares method 

to a set of data points, where four points out of the data points set were selected. Two 

points out the four points were selected among the points that were above the middle line, 

while the other two were chosen from below the middle line. Then, the four points were 

processed with the Chebychev algorithm, by using as an initial solution the axis direction 

provided by the least squares method. The solution from the Chebychev was either a non-

optimal or optimal solution. For the non-optimal solution, four given points were not able 

to create a fitted cone that enclosed all deviations, thus the four points were replaced and 

fitted again. For the optimal solution, it meaned that the created fitted cone was able to 

enclose all deviations given by the set of points. Thus, it was possible to create a fitted 

cone with four given points and a vertex based on the iterative process of the Chebychev 

approximation method. The third scenario focused on creating a fitted cone based on the 

axis of the cone and three given points. One of the advantages of this scenario was that 
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the dimensionality of the problem was reduced since the only two unknowns were the 

position of the vertex of the cone and the magnitude of the half angle. The fitted cones 

enclosing the deviations were created in a similar way as the cones created in the first 

scenario, however, one of the main differences was the X0 in Equation (2.14) that was 

subtituted by (t ± l)P, which represents the vertex of the fitted cones. The modified 

equation was manipulated after sustituting the values of the three given coordinates, 

where it was found that only four fitted cones can be generated. The four cones were 

generated by rotating the points along the given axis. In this way each point had a unique 

location based on the direction of rotation and the position on the 3-Dimensional space, 

which was used to define the fitted cones. The last scenario was to contruct the fitted 

cones based only on a given set of points. The simplex search algorithm was used to 

determine the location of the vertex of the cone, where the Chebychev width was 

calculated at different positions in order to determine the best location of the vertex. The 

last scenario which is preferred, to evaluate the form of error of conical forms was 

verified by inspecting from a tappered conical form. The object was measured at different 

locations using sixty data points that were evaluated using the least squares and the 

Chebychev approximation. Results from this experiment showed that the Chebychev 

method provided a slightly smaller zone of error (0.0032 inch) compared to the least 

squares method (0.0035 inch). The axis and vertex location were very similar for both 

methods. However, the angle of the cone was identical for both fitting methods. 

Chen et al. (2000) developed a study to estimate the parameters of conical tapered 

forms. The paper proposed a new mathematical model to calculate the minimum zone of 

error by applying the definition of the minimum circumscribed and maximum inscribed 
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cones, which are the ones that have the minimum volume and maximum volume, 

respectively. The cone was mathematicaly defined by the axis of symmetry which had 

four parameters a, b, l, and m, where a and b were the eccentricity factors that 

compensate the origin offsets with respect to the x and y components, respectively. The 

parameters l and m defined the axis misalignments between the x and z component and 

between the y and z component, respectively. The four parameters were used to determine 

the minimum circumscribed and maximum inscribed cones. The two cones were 

calculated by estimating the half angle of the cone, which at the same time was estimated 

based on the vertex of either minimum or maximum cone, the inspected points, and the 

parameters l and m that are counteracting the effects of the axis misalignments. The half 

angles of both cones were used to determine the distance between the ith point and the 

axis line of the cone. The five points that had the maximum angles were chosen to 

estimate the parameters of the axis misalignments and the vertex of the minimum 

circumscbribed cone, and the five points that had the lower angles were used to estimate 

the parameters of the axis misalignments and the vertex of the maxumim inscribed cones. 

The output of the mathematical model showed estimated parameters for both maximum 

and minimum cone. For the minimum circumscribed cone, the estimated parameters were 

two points one on the upper surface (9.5570, 5.6574, 22.6476) and one in the lower 

surface ( -18.4880, -0.5083, 30.8011); the radius of the upper base was 13.5001, while the 

radius of the main base was 18.4999, a half angle of 30°59', and a cone height of 8.3214.  

For the maximum inscribed cone, the parameters were two points, one on the upper 

surface (12.9543, 3.1074, 22.3751) and one in the lower surface ( -18.4880, -0.5083, 

30.8011); the radius of the upper base was 13.4100, while the radius of the main base was 
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18.4001, a half angle of 31°0'2'', and a cone height of 8.3213. Although the authors are 

calculating the angles in an “interactive” way, they did not provide any information 

regarding the way the residuals are calculated and the the size of the zone of error. In 

addition, one risk that can be encountered while estimating both inscribed and 

circumscribed cones is that the model can provide different half angular values for both 

cones. Hence, the zone of error will be created by two cones that are not strictly parallel 

to each other, which will not follow the definition of the minimum zone provided by 

ANSI and ISO standards that state that the zone enclosing the part deviations should take 

on the shape of the inspected object.  

Prakasvudhisarn (2002) and Prakasvudhisarn et al. (2004) studied the form 

evaluation of cones and conical frustum forms by evaluating the effects that several 

independent variables have on the zone of error of conical forms. The five independent 

variables used in this research were the sampling strategy, fitting algorithm, conical 

surface, conical specimen, and sample size. The sampling strategies defined as the 

procedure used  to collect information from the surface of the part, such as  Hammersley, 

Halton-Zaremba, and aligned systematic strategies, were adapted to fit conical and 

frustum forms since no previous study had defined them. In addition, the study provided 

two ways to inspect the form of conical features, using linear and nonlinear formulations, 

as can be seen in equations (2.15) and (2.16), respectively.  
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 where: 

  ri is given by the Euclidian distance between the xi and yi of the ith point. 

  R0 is the radii of the base of the cone. 

  R1 is the radii of the upper cut of the frustum. 

  h is the height of the cone. 

  zi is the z component of the ith point. 

  m is the first component of the axis of assessment  

  x0 is the component that counteracts the origin offsets. 

   θi is the angle created by the xi and yi component of the ith point. 

  n is the second component of the axis of assessment. 

D is the orthogonal distance from the measured point to the axis of 

assessment. 

 

The conical forms were evaluted using an experiment in which the mentioned 

factors were analyzed. Eight conical forms were used, where four specimens were 

complete conical forms while the remaining four were conical frustums. The eight forms 

were held on the measuring table using conical areas, which were quadrangular blocks of 

13.74 inch2 and 22.71 inch2. The form of these specimens was inspected using a 

Coordiante Measuring Machine, which automatically recorded the point coordinates from 

the surface of these parts. The number of points collected from each specimen were of 8, 

16, 64, and 256 data points. The factor combinations were evaluated using the least 
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squares and the minimum zone methods. A program written in Visual Basic for 

Applications in Microsoft® Excel was used to perform both of the least squares analyses, 

while LINGO® 6 was used to perform the minimum zone algorithms. Results from this 

experiment showed that higher sample sizes yield higher zones of error since more 

information is collected from the part surface. It was found that the nonlinear 

optimization method provided the smallest zone of error; however, no analysis was 

performed to determine which fitting method the parameters of the cone were closer to 

the ideal values. Thus, it is erroneous to conclude that a model performed better than 

others if there is no analysis on the parameters of the cone. Although both formulations 

provided a good estimate of the parameters and zone of error of the cone, none of them 

counteract the origin offsets with respect to the z component. Furthermore, the inspection 

of the cone is performed using radial distances that are calculated from the x and y 

coordinate components, instead of using information from all three components.  

The studies by Ahn et al. (2002) and Ahn (2004) focused on the form inspection 

of 2-Dimensional and 3-Dimensional shapes analyzed by means of the least square 

orthogonal distance fitting. It is important to mention that both studies came out from the 

doctoral dissertation of the first author, where the first study was published in the year 

2002 as a journal paper, and the second study was published in the year 2004 as a book. 

The objective of both studies was based on the computational efficiency of the developed 

models, reason why the later study was published as a “Lecture Notes in Computer 

Science.” Although, that the author focused on developing fitting models in the 

metrology area, the study did not focus on providing information regarding neither the 

sampling strategy nor the procedures used to collect the data. For this reason, the only 
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inferences that can be made from these studies are regarding the fitting models, which 

will be explained in detail in the fitting algorithms section. 

Ahn (2004) defined the cone as a function of the vertex angle created by the axis 

of the cone and the peripheral face of the cone; the radius of the base, and the vector 

composed by the Cartesian components, Equation (2.17). The conical function was 

evaluated under the orthogonal distance fitting, where the origin position and the 

rotational angles were defined as constraints based on the mass center of the measuring 

data points, Equation (2.18). 
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The author validated the proposed model by using ten point coordinates that were 

obtained from the German Federal Authority PTB. The point coordinates were used first 

to acquire the initial conditions for the fitting algorithm. The author proposed that the 

initial conditions were calculated based on geometric models that were simpler than the 

studied geometric shape. In this case, the initial conditions of the origin position and the 

radius magnitude were calculated by fitting measured data to the circularity and the 

cylindricity models, and the initial value of the vertex angle was set to zero, since none of 

these models calculated the vertex angle. The results reported in this study were based 

only on the parameters of the cone, therefore, the magnitude of the zone of error was not 

provided. The following table shows the results obtained from the circular, cylindrical, 

and conical models, where it can be seen that the initial conditions provided by the 

simpler models were very close to the final solution. However, the author mentioned that 
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the orthogonal distance fitting (ODF) took a significant amount of time to converge due 

to the initial conditions that were provided, since it was found that the conditions 

provided by the cylinder fitting represented a local minima.  

 

Table 3. Comparison of circle, cylinder, and cone parameters using ODF model. 
Parameter ψ[rad] r[mm] Xo[mm] Yo[mm] Zo[mm] ω[rad] ϕ[rad] 
Circle - 283.04 694.53 -889.73 -498.10 2.053 0.547 
Cylinder - 379.09 561.53 -702.15 -398.22 1.609 -0.157 
Cone 1.4262 276.44 706.72 -890.52 -499.10 2.055 0.587 

 

2.6.3 Torus Form 

Hilbert et al. (1952) and Schwartz (1967) described the torus as a surface of 

revolution, created when a circle is revolved around the z-axis. It has a doughnut shape 

with the origin located at the center of the complete surface. However, Bourke (2007) 

mentioned that the torus can be formed using a finite number of spheres arranged around 

a circle, where the radius of the spheres represents the radius of the torus tube. 

The torus equation has been defined for several coordinate systems, but it has two main 

parameters that describe it. These parameters are the internal radius of the tube (a), and 

the radius (c) that goes from the origin of the torus to the middle of the tube, as can be 

seen in Figure 14. 
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Figure 14. Parameters of the torus 

 

According to Weisstein (1999), the torus can be named in different ways that 

depend on the values of the mentioned parameters; for example, if the torus has a radius c 

greater than radius a, it is called a Ring Torus. If the value of radius c is equal to radius a, 

then it is called a Horn Torus, and if the radius c is less than the radius a, it will be called 

Spindle Torus, Figure 15.  

 

 

Ring Torus     Horn Torus      Spindle Torus 
   (c > a)         (c = a)            (c < a) 

Figure 15. Cross section of Torus forms 

 

The study of form verification of torus forms is not as extensive as other 

geometrical shapes; this can be caused by either the complexity of shape or due to the 

lack of ISO and ANSI procedures to inspect these shapes. In the literature, there are 
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several papers related to the application of torus shapes in other fields that are different 

from coordinate metrology, however, there are four papers by Ahn et al. (2002), Aguirre 

Cruz (2003), Ahn (2004), and Aguirre Cruz and Raman (2005) that proposed new 

methods to verify the form of torus forms. The second paper by Aguirre Cruz (2003) is 

the Master’s thesis of the author of the present research, which was published later on. 

Therefore, the second and last, and the first and third studies are summarized together in 

the next paragraphs. The research by Ahn (2004), and Aguirre Cruz and Raman (2005) 

were focused on the study of form verification of torus shapes; however, each study 

applied different mathematical models to describe the geometry of the torus form as well 

as different procedures to analyze the data. 

The studies by Ahn (2004) focused on the form inspection of 2-Dimensional and 

3-Dimensional shapes, such as the case of the conical model explained in the previous 

section. Similar to the conical model, the author described the torus form as a quartic 

surface defined by two radii, r2 that represents the radius of the torus, and r1 that 

represents the radius of the torus tube, as seen in the following function defined in 

Cartesian coordinates. 
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The initial conditions of the torus form were calculated using only the circular 

shape, which was applied to the orthogonal distance fitting (ODF) algorithm to calculate 

the parameters of the torus. It can be seen in the following table that the parameters 

obtained from the circle are not as close as the ones found for the conical form, due to the 

geometrical differences between the circular shape and the torus form.  
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Table 4. Comparison of circle and torus parameters using ODF model. 
Parameter r1[rad] r2[mm] Xo[mm] Yo[mm] Zo[mm] ω[rad] ϕ[rad] 
Circle - 9.059 0.383 1.527 4.716 0.493 0.358 
Torus 2.510 7.512 1.316 1.955 3.232 0.527 0.272 

 

The study performed by Aguirre Cruz and Raman (2005) focus mainly on the 

development of mathematical models to verify the form errors of torus shapes. The 

research was the first one in the literature to develop fitting algorithms as well as to adapt 

the existent sampling strategies into a torus form. Several geometric models were 

analyzed for torus form representation, however, only two “Complete Torus” 

approximation, and “Transformed Torus” approximation were found feasible for this 

study, where both approximation methods inspect the torus form with respect to the 

central axis z. The Complete Torus approximation, defined in polar coordinates, was 

intended to analyze the torus form by defining horizontal radial distances in terms of the 

parameters of the torus, c and a. The horizontal radial distance were measured using a 

virtual xy plane located at the same height of the measured point, thus the radial distances 

is given by using the Euclidian distance principle between the measured point P(xi, yi, zi) 

and the point where the virtual xy plane and the central axis z intersect P(0, 0, zi). The 

Transformed Torus approximation is analyzed by transforming the ring torus into a horn 

torus. The advantage of this transformation is to simplify the mathematical analysis. 

Thus, this approximation was intended to analyze the torus form using irregular-vertical 

cross sections that are perpendicular to the x axis. Therefore, the two approximation 

formulas were used to measure the minimum zone of error, which was calculated by 

comparing the measurements against the formula obtained from the approximation 

models, including the origin offsets equation obtained from the Limacon approximation 
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as well as the misalignments equation that corrects the errors due to the axis of 

assessment.  

An experiment was developed to verify the accuracy of the two approximation 

methods, where 10 torus specimens, 5 positive torus forms and 5 negative torus forms 

were used. Although, 10 specimens were used only 8 parts were used for the experiments 

in order to fulfill the randomization requirements. Three sample sizes were selected in the 

range from 40, 80 and 120 data points, where three sets of 40, 80 and 120 data points 

were generated using Align Systematic, Hammersley and Random sampling strategies. 

The 72 factor combinations were randomized in order to determine the inspection 

sequence. The data points were collected using a Coordinate Measuring Machine that 

measured the parts in an automatic mode. The measured points were evaluated using the 

linear least squares and the minimum zone method, where the torisity values or zone of 

error of torus parts was calculated. The 72 values of torisity were analyzed using the 

ANOVA procedure were it was found that the torisity value of the positive torus forms 

were smaller than the values of the negative torus forms, however, it was found that one 

negative part was not machined properly, thus causing the ANOVA procedure to detect 

the differences. The fitting algorithm was also a significant factor because the minimum 

zone method outperformed the linear least squares. In addition, the Complete Torus 

approximation performed much better than the Transformed Torus approximation, due to 

the robustness of the first approximation compared to the irregular-vertical cross sections 

of the Transformed Torus approximation. The sample strategy was used as a blocking 

factor since the main purpose of the study was to determine the accuracy of the 

approximations. Results from this study showed that the best factor combination for 
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measuring torus forms was to apply a sample size of 80 data points, analyzing the data 

using the Complete Torus approximation and the minimum zone algorithm. 

 

2.7 Sampling Strategies and Sample Size 

In metrology, the inspection process plays a fundamental role in determining 

whether or not machined parts were created according to specifications. The process 

focuses on collecting data points from the part and fitting them using mathematical 

models that will determine the tolerances of the part. The data collection is indeed an 

expensive process because of the number of machined parts that have to be inspected 

from a lot and the number of data points that have to be collected in each part. Although, 

there is inspection equipment that can collect data points from a part in a matter of 

seconds, they are costly, which is why the coordinate measuring machine (CMM) is more 

popular in industry. Still a disadvantage of the CMM is that it samples the part in a 

discrete way, which increases the inspection time and cost.  

The inspection process is an operation that does not add value to the product, 

since it is focusing on verifying if the machining processes were machining parts within 

the quality limits. The inspection process is susceptible to errors due to the fact that 

operators and machines are controlling the process and can induce errors. For this reason, 

Dodge et al. (1945) identified two risks, the producer’s risk and the consumer’s risk that 

are encountered as a result of the inspection process. The producer’s risk is the 

probability of rejecting a part when the part is non-defective also known as type I error 

(α), while the consumer’s risk is the probability of accepting a part when the part is 

defective also known as type II error (β), (Montgomery, 2001). Moreover, Dodge et al. 
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(1945) stated that the mentioned risks were not enough to determine an efficient sampling 

plan, since they tend to view the lots of parts as independent samples and not as 

dependent series. Due to this, he included the concepts of quality control to the inspection 

process, which allowed him to base his analysis not only on the actual conditions of the 

process but on the existing conditions too, with the purpose of minimizing the collection 

of data. The statements from Dodge et al. (1945) are very important and are going to be 

used later on to establish the sampling strategy and the sample size needed to determine 

the quality of a machined part. 

The importance of evaluating the geometrical tolerances of machined parts is due 

to the fact that each manufacturing process leaves a unique fingerprint over the surface of 

the part that is created by a combination of amplitudes and frequencies. The high 

frequencies are referred to as the surface roughness, medium frequencies as the waviness 

and low frequencies as the form error (Hocken et al., 1993). Therefore, if a 100% 

sampling is performed then the inspection process will yield the true form error of the 

part. However, the main goal of an efficient inspection process is to verify the tolerances 

of machined parts by minimizing the cost and the time of inspection. For this reason, 

authors developed sampling strategies that were able to capture the form errors of 

machined parts. Some of the most known strategies are Hammersley, Halton-Zaremba, 

random, aligned systematic, and uniform, among others. The majority of the mentioned 

strategies are based on a fixed or semi-random point distribution that sometimes caused 

them to perform a poorly, since at times they are not able to sample the regions that 

govern the width of the zone of error (Edgeworth et al., 1999). Although there are no 

perfect sampling strategies, there is a possibility to study the relationship between the 
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type of process, the machining parameters and the form of the part, which will provide 

information about the fingerprint that the specific combination of factors produced on the 

part surface. Therefore, if this relationship is known, then it will be possible to develop a 

new generation of sampling strategies that focus its point distribution only on those areas 

that define the error of the machined part. These sampling strategies are commonly 

known as adaptive sampling, since they adapt the search pattern according to the quality 

of the machined part (Edgeworth et al., 1999). The drawback of these strategies is the 

high cost involved in their development, because of the need of iterative algorithms used 

to determine the sample size, the location of the data points, and the patterns between the 

mentioned factors. In addition to the mentioned strategies, there are other sampling 

strategies that have not been studied in depth and appear to be more efficient than some 

of the mentioned ones. Such is the case with the honeycomb lattice distribution proposed 

by Narayanan Namboothiri et al. (1995) whom found that the honeycomb lattice requires 

less inspection time than the aligned systematic, and the spiral strategy proposed by 

Collins, Berrocal, Aguirre Cruz, and Raman (2006, 2007) whom created a strategy that 

focuses its point distribution on those zones of the workpiece that contain the maximum 

deviations. 

In the literature, the accuracy of the sampling strategies is determined by 

evaluating the discrepancy of the sequence of data points. Studies performed by Roth 

(1954) on data sequences produced a lower bound discrepancy in terms of the sample 

size and the dimension of the inspected feature, which was used by Woo et al. (1993) to 

test the accuracy of the Hammersley and uniform sampling strategies, and by Collins, 

Berrocal, Aguirre Cruz, and Raman (2006, 2007) to verify the accuracy of the spiral 
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sampling strategy. Roth (1954) created the lower bound discrepancy by mathematically 

integrating the residuals (errors) of the sequence with respect to size of the rectangular 

inspection zones. The zones had a maximum area of 1 unit2, and the shapes were squares 

or hypercubes, according to the dimension of the problem. The square zones were used to 

calculate the residuals (errors) by gradually incrementing the size of the squares and 

comparing them against the number of data points located inside them. The residuals 

(errors) were small when the data points contained inside the squares or hypercubes were 

proportional to their size, and vice versa. Woo et al. (1993) used the mentioned 

methodology to verify the accuracy of the Hammersley and uniform strategies, since he 

found that the discrepancy of the Hammersley sequence had a quadratic reduction 

compared to the lower bound discrepancy proposed by Roth (1954), which means that the 

Hammersley sequence needs only 10 data points compared to the 100 points needed by 

other sequences.  

The two sampling sequences were compared by measuring data points from two 

machined surfaces that were simulated using the Wiener model and the Gaussian model. 

The differences between these two modeling techniques is that the first produced 

smoother surfaces similar to those surfaces obtained from a single point rotary cutting; 

while the latter generates rougher surfaces similar to those obtained from an electro-

discharge machining or sand blasting processes. The Hammersley sequence had sample 

sizes of 12, 32, 64, and 128 data points, while the uniform sequence had sample sizes of 

100, 625, 2500, and 15625 points arranged in grids of 10x10, 25x25, 50x50, and 

125x125, respectively. The reason why the sample sizes between distributions are 

different is because the authors tried to emulate the efficiency of the Hammersley 
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sequence. The sequences were compared based on the root mean square error (RMS), 

which showed indeed that the Hammersley distribution is more efficient than the uniform 

distribution, since it was found that the former needs a quadractic reduction in the 

number of points to produce the same results than the later. 

In a different study, Woo et al. (1995) followed a similar comparison procedure to 

verify the accuracy of the Hammersley, Halton-Zaremba, and uniform sampling 

sequences. The data points generated from the Halton-Zaremba strategy were found to be 

very similar to those obtained from the Hammersley distribution. However, it was found 

that the former had two main differences. Firstly, it was defined only in two dimensions, 

and secondly, the number of data points generated must be a power of 2. For this reason, 

the author compared the accuracy of the three strategies by using the lower bound 

discrepancy obtained by Roth (1954). The author found that the Hammersley as well as 

the Halton-Zaremba sequences needed fewer points (quadratic reduction) to achieve the 

same level of accuracy obtained using the uniform distribution. In order to probe these 

results, the author evaluated the three strategies by measuring the roughness error and the 

flatness error from simulated parts. The surfaces of the machined parts were simulated 

using the Wiener process, the average Wiener process, and isotropic process, where each 

surface was defined as a grid of 300 x 300 points. The surfaces were used to evaluate the 

roughness and the flatness errors. The roughness error was evaluated in terms of the root 

mean square error (RMS) that was obtained by applying the point distribution of each 

sampling strategy using sample sizes of 16, 64, and 256 data points. The results obtained 

from the RMS analysis showed that the performance of Hammersley and Halton-

Zaremba strategies produced very similar results, while the uniform distribution produced 
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much higher RMS values. For the evaluation of flatness error, the least squares and 

minimum zone algorithms were compared using the same sample sizes and same number 

of replications as the ones used before. The results obtained from the RMS values 

showed that the three strategies performed similarly, except for RMS values obtained 

from the surfaces generated using the isotropic process, which showed a higher value of 

RMS values for all strategies. In general, the author found no significant differences 

between the Hammersley and Halton-Zaremba strategies in 2 dimensions. In addition, the 

author found that both strategies are preferred when compared to the uniform 

distribution, but their accuracy in practice was not as efficient as the quadratic reduction 

found in the theory. 

Narayanan Namboothiri et al. (1995) proposed a collision free path that was used 

to find a distribution sequence that provided the smallest inspection time and highest 

level of precision. The authors first compared the efficiency of the systematic sampling 

versus the stratified random sampling by using the variance of the samples. The data 

points were generated for the systematic sampling by selecting a random data point from 

different batches of k units each, where the magnitude of the first data point determined 

the distribution of the sequence. On the other hand, the data points from the stratified 

random sampling were generated by selecting a random point from each of the zones in 

which the sampling area was divided. The variance of each strategy was defined in terms 

of the sample size for the systematic sequence, while the variance for the stratified 

random sequence was defined in terms of the sample size and in the size of the inspection 

zones. The comparison of variances showed that the effectiveness of the systematic 

sampling depended in great part on the sample size used, while the stratified random 
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sampling was affected only when the size of the inspection zone was greater than the 

unit. Based on these findings the author developed a collision free path for square lattice 

honeycomb sampling sequences. The lattices were evaluated based on the density of the 

measurement points and on the connective constant (μ) that defines the number of 

available steps that can be performed without colliding with the workpiece. Results 

showed that the honeycomb lattice had a smaller connective constant than the square 

lattice, however the honeycomb lattice got a better density of the measurement points. In 

addition, it was found that the honeycomb lattice required less measurement time since it 

required 23% less measurements than the square lattice to measure the same area. Thus, 

the reason why the author proposed the honeycomb lattice as a much better sequence was 

due to the fact that the sequence was similar to the unaligned systematic sampling. Yet, 

the author recommended the use of the stratified sampling sequence since it was found to 

be more precise than the systematic sequence. 

Lee et al. (1997) proposed feature-based methodology to apply the Hammersley, 

uniform, and random sampling strategies to 3-Dimensional geometric features. The 

author modified the procedure used to generate the Hammersley points in order to 

minimize the systematic error captured due to the nature of the sampling sequence. The 

sequences were adapted to different shapes such as circles, cones, conical frustums, and 

hemispheres. For each shape, the author defined two cases to distribute the data points. 

The first case consisted of generating the sample points based on the central point of the 

curves or surfaces of revolution; this case was created for those surfaces that have a good 

inner surface but bad edges. The second case focused on generating data points based on 

the edge point; the purpose of this case was to evaluate those surfaces that have uniform 
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surface finish. The three sampling strategies and the two cases were evaluated using an 

experimental procedure that consisted of verifying the surface roughness of a multi-

feature part. The part was virtually created and it consisted of three surfaces of 

revolution, a hemisphere, a cylinder, and a conical frustum. For this reason, the part was 

assumed to be machined using a turning process, which helped the author to reduce the 

dimensionality of the problem by analyzing the features using polar coordinates instead 

of the Cartesian coordinates. The surfaces of the three features were simulated using the 

Wiener process and a modified isotropic process, similar to the simulations developed by 

Woo et al. (1993, 1995). The sampling strategies used to verify the roughness of these 

surfaces were the stratified Hammersley with randomization of the first data point, the 

random, and the uniform distribution. The root mean square error (RMS) was used to 

determine the accuracy of each factor combination, where each combination of factors 

was replicated 100 times. The results from this experiment showed that the random 

sampling was not affected by the periodic variation, as the uniform sampling was. It was 

found that the Hammersley distribution decreased the probability of capturing systematic 

errors by randomizing the first data point. In general, the Hammersley distribution 

performed better than the uniform distribution. On the other hand, the random 

distribution had the same levels of accuracy as the uniform distribution. Therefore, the 

author recommended the stratified Hammersley distribution to evaluate the tolerances of 

multi-feature parts.  

Narayanan Namboothiri et al. (1999) proposed a new methodology to determine 

an optimal sample size that can predict the form error of manufactured parts. The 

methodology consisted of modeling the errors of the measuring points as if they were 
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sampled from a standard normal distribution, which allowed the author to define the 

errors in terms of the sample size n and two constants an and bn. The three variables were 

used to define a mathematical model to determine the probability (Pf) that a given error is 

less than the predicted value. The model was verified by simulating straightness errors, 

using profiles that contained systematic noise, random noise, and the combination of two 

noises. The advantage of simulating the profiles instead of physically measuring profiles 

on parts was the straightforward way to determine the efficiency of the proposed model 

since all parameters of the profiles are known. The profiles were virtually inspected using 

the random sampling distribution with sample sizes ranging from 3 to 40 data points. For 

each sample predicted form error and the probability were estimated, while the actual 

form error was calculated using the least squares method. Results from this experiment 

showed that the mathematical model is more sensitive to the predicted from error rather 

than the sample size. At the same time it was found that the factor sample size had less 

effect on the predicted form error as the sample size increases. For all factor 

combinations, the predicted error was always greater than the form error obtained from 

the least squares method. The probability (Pf) was found to have an increasing trend for 

smaller sample sizes and a steadier trend for higher sample sizes. The reason that this 

effect was found was due to the fact that the probability of capturing a maximum error 

was smaller at a smaller sample size, and it started to increase as the sample size 

increased. For this reason, the author recommended to use this methodology in order to 

reduce the time of inspection, since higher values of probability will determine the 

chances of capturing the maximum deviation. The proposed approach seems to be very 
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effective, however, it will be difficult to apply it in industry or in the research area since 

most of the time the total error of the machined parts is unknown.  

Edgeworth et al. (1999) developed an iterative and adaptive sampling method to 

inspect the form error of machined parts. The method consisted of comparing the position 

and surface normal vector of the measured data points against the nominal values in order 

to determine the deviation of the surface of the machined part. The adaptive sampling 

method was executed online, meaning that the method was evaluating the accuracy of the 

data points at the same time that the machine was performing the measurements. An 

experiment was performed to verify the accuracy of the proposed method. The machined 

part consisted of a circular contour of 300 mm, which was inspected using 360 

measurements. The data points were collected using a probing head of a coordinate 

measuring machine. The data was fitted to the nominal geometry after each measurement 

was taken. The position and surface normal vector was calculated based on the results 

from the fitting algorithm that were used to create an interpolation curve to determine the 

next point of inspection. The consequent inspection points were determined by three 

rules: first, the extreme points of the interpolation curve should be sampled if the curve 

exceeds bounding box offset; second, if the distance between sample points is greater 

than the maximum allowed then the next sample points should be in the middle of the 

two points; and third, if the distance between sample points is smaller than the minimum 

allowed then stop sampling. The method was more accurate than the uniform distribution 

since it needs fewer measurements to achieve the same level of accuracy. However, it was 

found that the method has drawbacks because it is very sensitive to the starting point of 

the sequence. In addition, it is important to notice that the algorithm provided by the 
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author does not generate a collision free path plan, rather it only generates the coordinates 

of the sampling points. Thus, the functionality of this technique depends in great part on 

the capability of the coordinate measuring machine used. 

 

2.8 Fitting Algorithms 

The fitting algorithms play an important role in the tolerance verification of 

manufacturing parts, since they have the task of estimating the geometrical parameters 

and the zone of error of the inspected parts. The parameters are obtained by comparing 

the measurements against a nominal form (Choi et al., 1999), where the difference of 

these two represents the zone of error, which is composed of errors from the machining 

process and inspection process. Thus, the accuracy and robustness of these algorithms 

will determine whether a part is acceptable or not.  

In the literature, there are two common fitting algorithms that have been used 

extensively, the least squares method and the minimum zone method. The least squares 

method is the most used method in the metrology area, due to its simplicity and to the 

efficient computational time required to analyze the data. This method is used to estimate 

the regression coefficients by minimizing the sum of squares of error in a multiple linear 

regression method (Montgomery, 2001; Choi et al., 1999). However, results provided by 

the least squares method are not very precise since it is insensitive to outliers, which 

means that it tends to overestimate the zone of error (Orady et al., 2000). For this reason, 

the ANSI and ISO standards have adopted the minimum zone as a method to evaluate the 

geometric tolerances of features. The minimum zone method looks for fitting a set of 

measurements into a predetermined tolerance zone, thus if all points are enclosed by this 
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zone then the part is regarded as a good part. The minimum zone is also known as a mini-

max fit and has the objective of minimizing the maximum deviation, which provides a 

tighter fit than the least squares method. For this reason, the least squares method will 

generate type I errors (rejects good parts) since it focuses on finding a centerline that 

minimizes the objective function, while the minimum zone will generate type II errors 

(accepts bad parts) since it focuses on minimizing the maximum error between points and 

a fitted line (Choi et al., 1999; Huang, 1999).  

Prakasvudhisarn (2002) and Kethara Pasupathy et al. (2003) provided two 

different classifications for the tolerance zone methods. Prakasvudhisarn (2002) classified 

the minimum zone methods into two categories, computational geometry approaches and 

numerical approaches. The computational geometry approaches are computationally 

efficient and are used to estimate the error of basic geometric features; some examples of 

this approach are convex hull, eigen-polygon, and Voronoi diagram. On the other hand, 

the numerical approaches use linear and nonlinear optimization methods to evaluate 

geometric forms. A disadvantage of these methods is that they require a significant 

amount of computational time to analyze large data sets. Some examples of this approach 

are the genetic algorithms, and neural networks. Kethara Pasupathy et al. (2003) 

proposed a classification of these methods based on the mathematical approaches used: 

offsets method (Minkowski operation, and conditional tolerance zone from half-spaces), 

parametric space method, algebraic methods, homogenous transformation methods, user-

defined offset zone by parametric curves, and statistical analyses such as the process 

capability index. Although the two classifications showed the methodologies used in the 

literature to calculate the tolerance zone of manufactured parts, the one proposed by 
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Prakasvudhisarn (2002) contains some of the most widely used algorithms in the 

literature, as is explained below.  

Dowling et al. (1995) compared the orthogonal least squares against the minimum 

zone approach to estimate straightness and flatness errors. Huang (1999) used the 3D 

Voronoi diagram to calculate the zone of error of spherical surfaces. Prakasvudhisarn 

(2002) applied the linear least squares, nonlinear least squares, linear minimum zone, and 

nonlinear minimum zone to study the geometric tolerances of cones and conical frustums. 

Aguirre Cruz (2003) compared the performance of the linear least squares against the 

linear minimum zone on the tolerance verification of torus forms. Malyscheff et al. 

(2002) defined the use of support vector machines (SVMs) for representing the minimum 

zone problem, while Prakasvudhisarn et al. (2003), and Balakrishna (2005) used the 

support vector regression (SVR) to analyze the form tolerance of flat and spherical 

surfaces, respectively. Support vector regression (SVR) is a tool that was developed as a 

part of statistical learning theory, which has not been extensively applied in the metrology 

area to verify form tolerances, as mentioned before. One big advantage of the SVM 

algorithms is that the data does not have to follow the normality assumption, which 

makes these algorithms very robust (Prakasvudhisarn et al., 2003). For this reason, the 

proposed support system will compare the performance of the support vector regression 

against the minimum zone method. The former will be applied for the first time to 

analyze the tolerance zone of conical and torus forms. 

The 3D Voronoi diagrams applied by Huang (1999) are defined as a plane that 

split the Euclidian distance of two measured points A(xa, ya) and B(xb, yb) into two equal 

spaces, in which all points on the plane are equidistant to the two measured points. One 
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side of the two spaces that does not contain A is defined as the farthest region F(A), while 

the space containing A is defined as the nearest region N(A), thus the farthest region of A 

is the nearest region of the point B labeled N(B), and the nearest region of A is the farthest 

region of point B labeled F(B). The approach can be extended to multiple points since it 

can be used to generate n number of half spaces according to the number of paired points 

available, where the farthest and nearest regions are created by the intersections of the 

half spaces.  

The relation between the sphericity problem and the 3D Voronoi diagrams is the 

existence of a “max region” that contains two control points that define the minimum 

zone of spheres, since these points determine the radial distance between the inscribed 

and circumscribed spheres. The region contains two types of vertices that are defined as 

Y-vertex and X-vertex, which are the extreme points of this region. The Y-vertex created 

before the existence of the “max region” is defined by the four either nearest of farthest 

regions. The X-vertex was defined by five measuring points, which describe the 

intersection between a Voronoi diagram and an edge, where two measured points defined 

the diagram and three points defined the edge. Huang (1999) defined two lemmas with 

the purpose of demonstrating that the exact minimum zone value was obtained by using 

the Voronoi diagrams and the information obtained from the “max region.” The first 

lemma provided evidence that the X-vertex contained within the “max region” is the only 

one that can minimize the radial separation center for the inscribed and circumscribed 

spheres. The author proved that the Y-vertex cannot provide the minimum radial center 

since it was found that the Y-vertex on the nearest region can provide values of the 

objective function that are less or equal in magnitude to those generated by the Y-vertex 
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in the “max region.” Thus, the X-vertex was the only vertex in the region that provided 

the smallest radial separation center. The second lemma focused on verifying that the 

sphericity value for a given set of points is always smaller than the sphericity value 

calculated by including new point to the set. The reason that the zone of error of the 

sphere cannot change is due to the two control points inside the “max region,” which 

determine the zone of error. If two points from a known set provide the smallest 

maximum separation between the inscribed and circumscribed spheres, then any new 

point cannot decrease the size of the zone of error. However, any of the control points can 

be replaced, if and only if the new added points cause an increase in value to the zone of 

error of the sphere.  

Based on these statements, Huang (1999) developed an automated procedure to 

calculate the minimum zone of spheres. The steps followed during this procedure were to 

identify five points among the set of data points for the X-vertex calculation. Then, the 

inscribed and circumscribed spheres were calculated with the purpose of determining if 

all points on the set were enclosed by the two spheres. If all points were enclosed then the 

procedure ends, however, if some points were outside the spheres, then some of five 

points selected for the X-vertex calculation were replaced by these points outside the 

spheres, and then the procedure continues until all points are enclosed between the 

spheres. The procedure was verified under two similar conditions. First, a set of five 

points was used to determine the X-vertex that generated the minimum radial separation. 

The five points; coordinates are (4.8, 6.4, 6.0), (0, 0, -10), (0, 9, 0), (0, -9, 0), and (0, -9, 

0). Among all possible vertices generated from the set of five points, the vertex (0, 0, 0) 

provided the minimum radial separation equal to 1. In addition, it was found that points 1, 
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2, and 3 described the position of the circumscribed sphere with radii of ten, while points 

4 and 5 determined the position of the inscribed sphere with radii of nine.  

The solution of this procedure was used to determine the efficiency of the 

algorithm under a different condition. The five points were hidden into a set of ninety-

five points, making the total sample of points equal to one hundred. The data points are 

not shown in this chapter, but they will be used to verify the new sphere model proposed 

in this research. The five points used in the previous experiment were randomly hidden 

within the data. The new places of these points were 51, 62, 70, 79, and 95. The one 

hundred points were evaluated in set of five points, and it was found that the algorithm 

needed five updates to locate the five known points. The results were identical to the ones 

obtained from the first experiment, proving the efficiency and accuracy of the procedure. 

In addition, the author created several scenarios in which he varied the number of 

evaluated points ranging from 10 to 100, with the purpose of determining the total 

number of updates needed to calculate the sphericity, as well as to calculate the total 

number of points that were on the final set. Results for 10 points showed that the average 

number of updates needed were 2.89 updates, while the average number of points on the 

final set was 7.81 points. Results for 100 points showed that the average number of 

updates needed were 6.09 updates, while the average number of points on the final set 

was 14.12 points. Although, the 3D Voronoi approach looks appealing, it leaves room for 

questioning its performance, since the data used were simulated and not measured on a 

coordinate measuring machine. It will be interesting to evaluate its performance using 

real data, where the maximum deviations are unknown. In addition, the approach will be 

useful under the assumption that an efficient sampling strategy was used to collect the 
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data Moreover if this approach is used online then the time needed to find the control 

points will increase into regions not accepted by industrial standards. 

In summary, it can be said that the minimum zone method outperformed the least 

squares method, due to the reasons explained above. However, in a few cases the least 

squares method performs better than the minimum zone method, which is due to the fact 

that the minimum zone method does not provide the global optima as a solution, instead 

the algorithm gets trapped in a local minima solution. 
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CHAPTER 3 

DECISION SUPPORT SYSTEM TO EVALUATE FORM TOLERANCES OF 

SURFACES OF REVOLUTION 

 

3 Summary  

The proposed decision support system is composed of five major phases. Some 

have been already studied in the literature and are improved here, while others are newly 

developed, taking into account the weaknesses of existing procedures. The system is 

created with the purpose of offering a tool to verify the form tolerances of rotational 

parts. The system begins by extracting information from a CAD file provided by the user. 

The file contains the geometric model of the part based on the boundary representation, 

which includes dimensions, form characteristics, position, and orientation of the part. 

Then, the obtained information is used to determine the location and amount of data 

points needed to determine the form tolerances of the inspected part. Once the location 

and amount of points are obtained, then the sampling points are generated according to 

the requirements of the software of the CMM. The data are loaded in the CMM computer 

and the points collected using the numerical control mode of the CMM. The measured 

point coordinates are sorted and compared against an ideal form feature to determine the 

form tolerance of the desired feature in the inspected part. Two different analyses are 

performed on the measuring data; one that compares the measured data points against and 

ideal form; and the other that extracts the parameters of the feature from the measuring 

data. The residuals, the parameters, and the magnitude of the zone of error of both 
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analyses are compared in order to determine if the part was created according to 

specifications. The pattern of the residual is stored in the computer, taking into account 

the manufacturing process, machine, material, and form feature used to create the part, in 

order to create a knowledge-base that can be used in the future to generate adaptive 

sampling strategies for reducing inspection time and increasing sampling efficiency. The 

information is presented to the user in a suitable manner to facilitate decision making. 

The five phases of the proposed decision support system are: 

Phase I – Feature Recognition 

Phase II – Path Planning 

Phase III – Data Collection 

Phase IV – Form Verification 

Phase V – Information Analysis  

The first phase Feature Recognition is explained in Chapter 4, while Path 

Planning and Data Collection are explained in Chapter 5. These three phases are standard 

procedures used in the CAD/CAM areas to machine and inspect manufactured parts. 

Although these procedures have been studied in the past, two programs are developed for 

cleaning and for extracting the form features from the CAD file. However, the 

contributions that can be claimed from the first three phases are minimal, since these 

procedures have been well-researched in the past. The remaining two phases explained in 

chapters 6 and 7 represent the main contributions that this research adds to the science 

and engineering content in metrology. Although, the phases are explained in the 

following chapters, a brief summary of each phase is presented below. 
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3.1 Phase I – Feature Recognition 

In this phase, the user provides a CAD file that contains the design of the part that 

is inspected. The systems supports CAD files generated in some of the most common 

modeling software, such as AutoCADTM, ProETM, and SolidworksTM. The algorithm 

behind this phase has the purpose of extracting all the information about the part from the 

CAD file. The information stored in the CAD files can vary and depend in great part on 

the type of file used. There are several exchange data files that provide different types of 

information, as mentioned in Chapter 2. In this research, the ACIS file was chosen as the 

exchange data file, for the reason that it stores the part information using boundary 

representation modeling and word-based syntaxes. The code of the ACIS file is cleaned 

and rearranged in the form of a matrix, which simplifies the feature recognition process 

Thus, the data matrix is used to recognize the types of features, the dimensions, the 

location, and orientation of the part. Finally, the algorithm saves the information in a 

series of matrices that are used in the next phases to verify the form tolerances of all 

features. Figure 16 shows a flowchart of the first phase of the support system, explained 

below. 
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Figure 16. Flow diagram of the feature recognition block. 
 

3.1.1 ACIS File  

The decision support system begins by reading the ACIS file (*.sat) obtained by 

exporting the solid model from either AutoCADTM, Pro-EngineeringTM, or SolidworksTM 

programs. The proposed system accepts an ACIS file exported as text using a version no 

older than ACIS V12.0. However, if a previous version of this file is provided, then the 

system will not be able to determine the form features, dimension, location and 

orientation of the part. An example of a cone, frustum, cylinder, sphere, and torus model 

exported as an ACIS file can be seen in the Appendix A. 
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3.1.2 Data Preparation 

The data preparation block has the goal of transforming the ACIS file into a 

matrix composed of codes that represent the form features and its properties. The 

structure of the ACIS file can vary according to the number of features and to the 

orientation of the part in the virtual world of the modeling program. In addition, the file 

contains many standard lines that are generated when exporting the solid model as a *.sat 

file; however some of those lines do not provide any information about the features, and 

they could increase the processing time of the feature recognition program if they are left 

in the data matrix, which is why they are deleted. The remaining lines are efficiently 

rearranged so that the feature recognition program can read the information and extract 

all details from each line in a faster rate, as is shown in Figure 17.  

Finally, after transforming all the lines, the program adds an extra column at the 

right side that contains all the key information that later on is used to speed up the feature 

recognition process. The key information is composed of fourteen cells that contain the 

information from all geometrical/topological element counters, such as number of lines, 

faces, loops, planes, spheres, cones, torus, coedges, edges, vertexes, straight curves, 

ellipse curves, points, and shells. Then, the program saves the data matrix as a text file 

(*.txt) called ACIS in a location specified by the user. 
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Figure 17. Flowchart of the data preparation block 
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3.1.3 Feature Recognition 

The feature recognition block receives as input the data matrix developed in the 

data preparation block. The feature recognition algorithm extracts the feature(s) from the 

file by reading the last column of the data matrix, which contains the key information 

about the total number of lines and the number of topological and geometrical entities. 

Based on this information, the program recognizes whether the file contains a single 

feature or a multi-feature part. For single feature parts, the program reads the file and 

extracts the information in a matrix form for each of the topological and geometrical 

entities. Then the program determines the position and orientation of the feature. In the 

case that the user needs to recognize a single feature but the data matrix contains more 

than one feature, then the program focuses its resources to determine the position and 

orientation of that specific feature within the multi-feature object. For multi-feature 

objects, the program sorts the vertexes and point coordinates from high to low, and it 

relates the coordinate points to the type of surface that they belong to. Finally, a matrix 

containing a summary of all the recognized features including their dimension, position, 

and orientation, as well as the data matrix and the matrices of the topological and 

geometrical entities is stored in memory. The matrices are used later on either to generate 

the sampling points for form tolerance verification, or to extract the features from the 

measured point coordinates. Figure 18. shows the flow diagram of the feature recognition 

block. 
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Figure 18. Flowchart of the feature recognition process. 
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3.2 Phase II – Path Planning  

The path-planning phase has the purpose of determining the way in which the part 

is inspected. The input for this phase are the three matrices generated in the feature 

recognition phase. The first, which is the most important, holds the summary of all the 

extracted features and their properties. The second is the matrices of the topological and 

geometrical entities obtained from phase I. And third is the data matrix that contains a 

summary information from the part. The process includes establishing the sample size as 

well as the location of the sampling points. Several studies have been done in the 

literature to determine, which sampling strategy yields the best information from the 

surface of the part. However, it is well known that the manufacturing process contains an 

infinite number of variables, in which the same feature forms can be produced in many 

different ways. Therefore, it will be erroneous to inspect a part based only on the form of 

the object. For this reason, it is important to understand the way in which the parts were 

created including the manufacturing parameters. By doing this, the user can related the 

defects of the part with the common problems caused by that particular manufacturing 

process. For example, if the part was created using the turning operation, then more focus 

is given to the highest part of the object as well as to the sides in order to detect the 

accuracy of the axis of rotation.  

The support system follows the Hammersley sampling strategy as a baseline to 

determine the distribution of the points across the part surface. Hammersley was chosen 

because it is one the most used strategies in the literature, and has a good point 
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distribution. The system also generates data points based on two different sampling 

strategies: random and aligned systematic.  

 

3.3 Phase III – Data Collection 

The data collection phase employs the CMM to measure the point coordinates 

created in the path-planning phase. The points are measured automatically using the 

numeric control function of the CMM. The data points are collected in a random manner 

or by following a strategy set by the user, which could be either based on descending or 

ascending height. 

In addition, the support system provides a set of rules that the user needs to follow 

in order to set the part on the measuring table, as well as the necessary guidelines to 

translate the location of the origin of the CMM to the location of the geometrical origin of 

the part.  

 

3.4 Phase IV – Form Verification 

The form verification phase has the purpose of analyzing the data points obtained 

from the data collection process. The data points are analyzed using new developed 

mathematical models that define the shape of the inspected form, such as spheres, 

cylinders, cones, frustums, and torus. The measurements are analyzed according to the 

number of inspected features. For single features, the data points are analyzed in a 

conventional way, where the data points are plugged into the form verification models 

and the parameters of the feature are calculated. On the other hand, for parts that have 

multiple features, the points are separated based on the inspected features. Then, each of 
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the features are analyzed individually in order to obtain all the features parameters and 

see whether there is a correlation on the form error between features. At the same time, 

the parts with multiple features are analyzed as one entity; this means that all features are 

regarded as a cylindrical form, assuming that the part was created using the turning 

process. This step allows to find out whether the axis of rotation had any influence on the 

form of error, and to determine the amount of error that each feature contributes to the 

total zone of error. Figure 19 shows the flowchart for individual and multiple feature 

form verification. 

 

 

Figure 19. Flowchart of individual and multiple feature form verification. 
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3.5 Phase V – Information Analysis 

Finally, the information analysis phase presents a set of graphs and charts that 

help the user to identify the reasons why the part was either under specifications or out of 

tolerance. The goal of the support system is to help the user identify the regions of each 

form that contribute to the zone of error, as well as to identify if the problem was due to 

the setup of the inspection process or due to the tools or materials of the manufacturing 

process. By doing this, the system will aid the user to recognize patterns and trends that 

occurs when using different sets of inspection and machining parameters. 

The following Chapters are organized according to the order of the phases of the 

decision support system, starting with Chapter 4 explains the feature recognition process. 

Chapter 5 focuses on the sampling strategies and path planning. Chapter 6 presents the 

approaches and mathematical models developed in this research. Chapter 7 is related to 

the experimental methodology needed to verify the performance of the proposed 

mathematical models. Chapter 8 shows the results of the experiments and Chapter 9 gives 

complete details about the contributions, conclusions, recommendations, and future work. 
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CHAPTER 4 

FEATURE RECOGNITION 

 

4 Summary 

The feature recognition algorithms focus on extracting information from a set of 

data, based on patterns and rules stored on knowledge based systems. Computational 

advances and higher quality standards revolutionized the design and manufacturing areas, 

in which the products were conceptualized and materialized under processes that were 

controlled by computers. This caused the development of new systems capable of 

ensuring the quality of the parts, such as the computer aided design (CAD) and computer 

aided manufacturing (CAM) systems. The exchange of information between the two 

systems was based on feature recognition algorithms due to the fact that the features used 

in the design (lines, arcs, etc.) were different from the features used in the manufacturing 

area (chamfers, holes, etc.). Thus, the feature recognition algorithms provided the link 

needed to simplify the task. Furthermore, these algorithms have also been implemented in 

the inspection area to verify the form tolerances of manufactured parts, such as is the case 

of the present research. 

 

4.1 Feature Recognition 

The CAD/CAM process involves a set of steps needed for creating a 

manufactured part: the first step is the conceptualization of the idea, that is, an area where 

the idea becomes a design by virtually modeling it using a computer program. Then, the 
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design becomes a reality when the virtual model is electronically transferred to the 

processing unit of the computer numerical control machine that will translate the model 

into a set of instructions needed to physically manufacture the part. Finally, the virtual 

model is also imported into the processing unit of the inspection machine that recognizes 

the feature(s) and its dimensions in order to create a path plan that is used to inspect the 

manufacturing tolerances of the machined part (Zeid, 1991). Thus, the communication 

and transfer of information between the design, manufacturing, and inspection systems is 

very important because any misinterpretation of the information will cause the part to be 

out of tolerances. For this reason the feature recognition algorithms have been 

incorporated into the design and manufacturing areas with the purpose of avoiding 

misinterpretations of information and connecting the design and manufacture modules 

(Owusu Ofori et al., 1990). 

The CAD programs such as AutoCADTM, ProETM, and SolidworksTM, are solid 

modeling software that use different types of data exchange files to transfer the 

information to the CAM modules. Among the exchange files there are three that were 

found in the literature to be the common data exchange files: IGES, STEP, and ACIS. 

These files use a solid model representation to convert the designed part into categorized 

geometrical and topological entities that can be easily transferred and recognized by other 

machines (Coulibaly et al., 1998). Although these files provide enough information about 

the features contained in the design, Case et al. (1993) found that more information is 

required in order to make the model suitable for the whole CAD/CAM process, such as 

tolerances, surface finish, materials, and tool access directions. Additionally, Maendl 

(2003) found the cycle time of the product is reduced if the file has the right information. 
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Therefore, it is important to choose the right exchange file that has the right information 

needed for that specific application.  

The goal of the present research is to develop a feature recognition system that 

can extract the features, dimensions, and orientation from data exchange files in order to 

verify the manufacturing tolerances of machined parts. Among all the data exchange files 

surveyed, the ACIS file was chosen for this research, due its word-base syntaxes and 

capability to define the parts in terms of their boundaries. In addition, the feature 

recognition system developed for this research requires information about dimensions 

and orientation of the part, which is similar to the information provided by the CAD 

programs, since these use geometry as their official language (Jha, 1995). Hence, there is 

no need to translate the ACIS file; instead the feature recognition program needs to 

recognize the relationship between geometrical and topological entities to determine the 

type of features that are contained in the virtual design. 

 

4.2 ACIS 

ACIS is a geometric modeler that uses the boundary representation format to model 

the shapes of parts. The reconstruction of these parts is created by using a set of curves 

and surfaces that are interconnected to each other, in which the inside and outside of the 

curves and surfaces are distinguished by the modeler (Corney et al., 2001). The ACIS file 

can be obtained from a solid modeler by exporting the solid part as text file (*.sat) or as 

binary file (*.sab). The former being the one used in the feature recognition program of 

the present research. 
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The ACIS code uses geometrical and topological entities to process at a fast rate the 

mathematics involved in the representation of the solids. The geometric entities are used 

to define the graphic representation of the part (Coulibaly et al., 1998), while the 

topological entities define the way in which the geometrical entities are interconnected 

(Corney et al., 2001). The solid modeling program uses three geometrical entities, points, 

curves, and surfaces, and three topological entities such as faces, edges, and vertices. 

However, the ACIS modeler uses more topological entities, coedges, loops, shells, lumps, 

and bodies, in order to increase the processing speed of the information (Corney et al., 

2001). 

A solid part is composed of one or many form features, which vary according to the 

complexity of the part. Based on those features, the ACIS modeler arranges the entities 

into categories according to their hierarchy, with the highest topological entity called 

body. The body represents the complete solid part, which can be either a single feature or 

multi-feature part. At the same time, the body is composed by a set of lumps that are 

broken down into sets of shells. The lumps and shells are also topological entities that are 

contained in solid parts, which vary in number according to the amount of features in the 

part. The shells are defined by a set of topological entities called the faces. The faces are 

constructed by surfaces and by loops. The surfaces are geometrical entities that define the 

type of the feature contained in the part, such as cone, plane, spline, sphere, and torus, 

while the loops are a topological entity that represent the boundary of the faces and are 

composed by a chain of edges and coedges. The difference between the edges and the 

coedges is that the edges are entities that are shared by multiple faces, while the coedges 

are unique for each face (Corney et al., 2001). In addition, the edges are defined by a 
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geometrical entity called curves that can be of two types, either an ellipse or a straight 

curve. Finally, each edge/curve is bounded at the end points by the topological entity 

vertex and by the geometrical entity point.  

 

4.2.1 ACIS Example  

The following lines show an example of a conical form that was created using 

SolidworksTM. The example explains the way in which the solid modeler ACIS stores the 

solid part in a *.sat file and the way in which the data is interpreted from the file. The 

cone presented in this example is shown in Figure 20 and has a height (h) of 60, a radius 

of the base (r) of 30, an angle (γ) equal to 26.57 degrees, a vertex located at the origin (0, 

0, 0), and an axis of revolution in the same orientation as the z-axis. 

 

 

Figure 20. Conical form created in SolidworksTM. 

 

The code shown in the following lines was partially cleaned. This means that the 

decimals were reduced to 5 digits because the complete file contains a precision of at 

least 16 decimals. However, the complete code used in this example is found at the end of 
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this dissertation in Appendix A. In order to simplify the explanation, the following 

example uses color codes to represent the topological and geometrical entities. It begins 

by explaining the general lines of the code and then goes from the lower level entities to 

the higher level entities. 

The first three lines of the code contain general information about the file, such as 

the program used to generate the code, the type of file, either *.sat or *.sab, the version of 

the ACIS modeler, and the date in which the file was created, among others, while the last 

line of the code contains a tag named “End-of-ACIS-data.” 

 

1400 0 1 2 
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 Wed Feb 07 19:25:07 2007 
1 9.9999999999999995e-007 1e-010 
M  
End-of-ACIS-data 
 

The middle part of the code contains the representation of the part in terms of the 

geometrical and topological entities. The amount of information of each entity depends 

on the version of the ACIS modeler. The final part has the lower level entities, such as 

points, vertices, curves, and edges, which are arranged in no particular order. Most of the 

modelers enumerate each of the lines using a dash followed by the number, but there are 

some versions of ACIS that do not provide this information. Each line is terminated by 

the symbol (#), and the entities are called by other entities using the symbol ($) before 

enumerating the desired entity.  

The lines 1 and 3 shown below, are common to all ACIS files. The only difference 

is that these lines represent the attributes of the solid model. The attributes shown in line 

1 have an effect on the entity in line 0, which corresponds to the body that is the highest 
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topological entity. Another attribute is the color, which is seen in the last three numbers in 

line 3. The numbers represent the RGB color system used by AutoCADTM, ProETM, and 

SolidworksTM to render the faces of the solid. In this example, the three colors are Red 

(0.09803 or 25), Green (0.18431 or 47), and Blue (0.91764 or 234), in scales from 0 to 1 

and from 0 to 255, respectively.  

 

-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @8 Cone # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.09803 0.18431 0.91764 # 
 

The points and vertices are the lower level entities, and normally they are found 

on the last lines of the ACIS file. However, the code builder arranges the middle body of 

the code in no particular order. Table 5 shows the points and vertices needed to construct 

the conical solid model. The three lines on the left represent the number of points, where 

the last three columns of each line describe the location of each point. For example, point 

32 is located on the coordinate (0, 0, 0). On the other hand, the vertices are located on 

three lines on the right, which are topological entities that are related to each one of the 

points. The last two columns of each vertex line are pointing to an edge, which is a higher 

order topological entity, and to a point, which defines the vertices, respectively. 

 

Table 5. Three points and three vertices used to create a conical solid model. 
Points (Geometrical Entities) Vertices (Topological Entities)

           -32 point $-1 -1 -1 $-1 0 0 0 # -25 vertex $-1 -1 -1 $-1 $22 $32 # 
           -33 point $-1 -1 -1 $-1 –30 0 -60 # -26 vertex $-1 -1 -1 $-1 $28 $33 # 
           -35 point $-1 -1 -1 $-1 30 0 -60 # -29 vertex $-1 -1 -1 $-1 $28 $35 # 

 

From Table 6, it can be seen that the conical form is composed by four edges. 

Each of these lines has four pointers: the first two refer to the vertices that create that 
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edge; the third pointer refers to the coedge associated with that edge; and the fourth 

pointer refers to the data in Table 7 that defines the type of curve used to construct the 

edge, either straight or ellipse. For example, the edge described in line 19 is constructed 

by vertices 25 and 26, has a coedge number 18, and the pointer 27 defines the edge as a 

straight curve. Figure 21 shows the point, vertex, edge, and curve entities that create the 

cone, where the geometrical and topological entities are outside and inside the 

parentheses, respectively.  

Table 6. Four edges of a conical form. 
Edges (Topological Entities) 

                         -19 edge $-1 -1 –1 $-1 $25 0 $26 0.067082 $18 $27 forward @7 unknown F # 
                         -22 edge $-1 -1 –1 $-1 $25 0 $29 0.067082 $16 $30 forward @7 unknown F # 
                         -24 edge $-1 -1 –1 $-1 $29 0 $26 3.14159 $17 $31 forward @7 unknown F # 
                         -28 edge $-1 -1 –1 $-1 $26 -3.14159 $29 0 $21 $34 forward @7 unknown F # 

 

Table 7. Four curves that define the type of edge. 
Curves (Geometrical Entities) 

                         -27 straight-curve $-1 -1 -1 $-1 0 0 0 -447.21359 0 -894.42719 I I # 
                         -30 straight-curve $-1 -1 -1 $-1 0 0 0 447.21359 0 -894.42719 I I # 
                         -31 ellipse-curve $-1 -1 -1 $-1 0 0 -60 0 0 1 30 0 0 1 I I # 
                         -34 ellipse-curve $-1 -1 -1 $-1 0 0 -60 0 0 1 30 0 0 1 I I # 

 

 

Figure 21. Position of points, vertices, edges, curves of a conical form.  
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The coedges are topological entities that are associated with each edge and are 

unique to each face. Table 8 shows the eight coedges that create the conical form. Each 

coedge line is defined by five pointers: the first three are referring to the next, the 

previous, and the partner coedges, the fourth pointer refers to the edge where the coedge 

is located, and the fifth pointer refers to the loop created by that coedge. For example, the 

coedge in line 12 has as next coedge the number 16, as previous coedge the number 17, 

and as partner coedge the number 18. This coedge is in the same position as edge 19, and 

it is part of loop number 7.  

Coedge 12 can be seen in the form of a white arrow at the top view of Figure 22. 

The direction of the arrow determines the next coedge, that is, number 16, and the 

previous coedge, that is, number 17, which together create loop number 7. Coedge 12 is 

located in the same position as edge 19, and it is in front of coedge 18, which makes them 

partner coedges. This means that coedge 12 and coedge 18 share the same edge but do 

not belong to the same face.  

 

Table 8. Coedges of the conical form. 
Coedges (Topological Entities) 

                         -12 coedge $-1 –1 -1 $-1 $16 $17 $18 $19 reversed $7 $-1 # 
                         -15 coedge $-1 –1 -1 $-1 $18 $21 $16 $22 reversed $10 $-1 # 
                         -16 coedge $-1 –1 -1 $-1 $17 $12 $15 $22 forward $7 $-1 # 
                         -17 coedge $-1 –1 -1 $-1 $12 $16 $23 $24 forward $7 $-1 # 
                         -18 coedge $-1 –1 -1 $-1 $21 $15 $12 $19 forward $10 $-1 # 
                         -20 coedge $-1 –1 -1 $-1 $23 $23 $21 $28 reversed $13 $-1 # 
                         -21 coedge $-1 –1 -1 $-1 $15 $18 $20 $28 forward $10 $-1 #
                         -23 coedge $-1 –1 -1 $-1 $20 $20 $17 $24 reversed $13 $-1 # 
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Figure 22. Front, top, and bottom views of the entities of the conical form.  

 

The loops are created by a set of coedges, which create a face. The conical form 

has three loops and thus three faces and three surfaces, seen in Tables 9 to 11 

respectively. The loops have two pointers, one pointing to the first coedge on the loop and 

the other refers to the face created by that loop. From Figure 22, it can be seen that the 

cone has three faces: two are half conical faces, while the third face represents the base of 

the cone. The faces have four pointers: the first pointer refers to the next face on the shell, 

the second pointer refers to a loop, the third is pointing to the shell, and the fourth 

determines the surface that creates that face.  

 

Table 9. Loops created by the conical form. 
Loops (Topological Entities)

                         --7 loop $-1 -1 –1 $-1 $-1 $12 $5 F unknown # 
                         -10 loop $-1 -1 -1 $-1 $-1 $15 $6 F unknown # 
                         -13 loop $-1 -1 -1 $-1 $-1 $20 $9 F unknown # 
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Table 10. Three faces of the conical form. 
Faces (Topological Entities)

                         -5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward singleFT -2.23606 -2.10190 0 3.14159 # 
                         -6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward singleFT -2.23606 -2.10190 -3.14159 0# 
                         -9 face $-1 -1 -1 $-1 $-1 $13 $4 $-1 $14 forward singleFF # 

 

Table 11. Three surfaces of the conical form. 
Surfaces (Geometrical Entities)

         -8 cone-surface $-1 -1 -1 $-1 0 0 -1000 0 0 -1 -500 0 0 1 I I 0.44721 0.89442 500 forward I I I I # 
         -11 cone-surface $-1 -1 -1 $-1 0 0 -1000 0 0 -1 -500 0 0 1 I I 0.44721 0.89442 500 forward I I I I # 
         -14 plane-surface $-1 -1 -1 $-1 0 0 -60 0 0 -1 -1000 0 0 forward_v I I I I # 

 

Finally, all the mentioned entities are tied to the high level entities which are 

normally located in lines 0, 2, and 4. The first numbered line 0 represents the higher-level 

topological entity called body, which as mentioned before is composed by a set of lumps. 

It can be seen in this line that the body is pointing to line number 2, which is the only 

lump needed to represent the conical form. At the same time, the lump is pointing to line 

number 4, which is the shell that is pointing to line number 5, which is a face.  

 

-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
 

In summary, it can be said that the ACIS code needs three points, three vertices, 

four edges, four curves, eight coedges, three loops, three faces, three surfaces, one shell, 

one lump, and one body to create a conical form and to determine the position, 

orientation, and dimensions of the solid. This information, as well as the entities of other 

features, is used to train the feature recognition program which is explained in the 

following sections. For this reason, Table 12 shows the geometrical and topological 

entities needed to create the form features used in this research. 
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Table 12. Geometrical and topological entities of complex forms features. 

 Form Feature 
Cylinder Cone Sphere* Torus 

Geometrical 
Entities 

Points 4 3 6 4 
Curves 6 4 6 8 

Surfaces 4 3 2 4 

Topological 
Entities 

Vertex 4 3 6 4 
Edges 6 4 8 8 

Coedge 12 8 16 16 
Loop 4 3 4 4 
Faces 4 3 4 4 
Shell 1 1 1 1 

Total Number of Entities 45 32 53 53 

*The orientation of the sphere in the CAD program can increase or 
decrease the number of entities. 

 
 

4.3 Feature Recognition 

A decision support system to verify form tolerances should be an automated tool 

that gets input, in this case the CAD model from the user, and uses it to extract valuable 

information that allows the system to recognize the type of feature, the dimensions of the 

feature, and the orientation of the feature. For this reason, the present study proposes the 

use of a feature recognition system that is built based on the ACIS format shown above. 

The system asks the user to provide the ACIS file of a solid model. Then the system 

cleans the ACIS code by using a program developed using Microsoft® Excel macros, 

which is used to remove all unnecessary characters and information. The program 

generates a data matrix that becomes the input of the feature recognition program 

developed in Matlab® that uses the entities’ information shown in Table 12 to determine 

the type of feature and its dimensions. Then the program generates the data points needed 

to inspect the feature based on the strategy selected by the user. The following lines show 
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an example of the steps needed to recognize the conical form shown above in the ACIS 

example. 

First, the ACIS file of the conical form is imported as a text file into a Microsoft 

Excel® worksheet, where the data on the file is separated into columns by spaces. The 

cleaning program that is stored in the form of macros is executed, and it goes line by line 

removing unnecessary information and leaving only the entities, dimensions, and the 

pointers that relate the entities to one another. The program removes the names of all the 

entities and replaces them by using the seven-bit Binary Counter code (BC-code), seen in 

Table 13. The macro reads the name of the entity and substitutes its name with the 

corresponding five bit binary code. The last two remaining bits correspond to the counter 

that tells the program the number of times that the entity is used in the code.  

 

Table 13. Binary code used to create data matrix 
Entities Binary code Counter BC-Code 

Face 10001 00 1000100 
Loop 10010 00 1001000 

Plane surface 10011 00 1001100 
Sphere surface 10100 00 1010000 
Cone surface 10101 00 1010100 
Torus surface 10110 00 1011000 

Coedge 10111 00 1011100 
Edge 11000 00 1100000 

Vertex 11001 00 1100100 
Straight curve 11010 00 1101000 
Ellipse curve 11011 00 1101100 

Point 11100 00 1110000 
Shell 11101 00 1110100 

 

An example of the cleaning process for each type of entity is shown in the next 

lines and in Table 14. The unnecessary information in each of the lines of the ACIS code 

is shown in white font color and black background, while the wanted information is 
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shown in black font color and white background. The required information for each entity 

is as follows: 

- Face: the type of entity, and the pointers of face, loop, shell, and surface. 

- Loop: the first coedge of the loop and the number of the face created by the 

loop. 

- Plane surface: the point that determines the location of the plane and the normal 

vector of the plane. 

- Cone surface: the relationship between the vertical and horizontal components 

that create the slope of the cone. 

- Coedge: the next, previous, and partner coedges, the edge, and the loop. 

- Edge: the vertices that define the edge, the coedge, and the type of curve. 

- Vertex: the edge and the point. 

- Straight curve: type of curve (0). 

- Ellipse curve: type of curve (1). 

- Point: the location of the point. 

- Shell: shell counter. 

Table 14. Cleaning process of the geometrical and topological entities. 
Face 

ACIS  -5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F T -2.23 -2.10 0 3.14 # 
BC code 5 1000101 6 7 4 8 

Loop 
ACIS  -7 loop $-1 -1 -1 $-1 $-1 $12 $5 F unknown # 

BC code 7 1001001 12 5 
Plane Surface 

ACIS  -14 plane-surface $-1 -1 -1 $-1 0 0 -60 0 0 -1 -1000 0 0 forward_v I I I # 
BC code 14 1001101 0 0 -60 0 0 -1 

Cone Surface 
ACIS  -8 cone-surface $-1 -1 -1 $-1 0 0 -1000 0 0 -1 -500 0 0 1 I 0.447 0.894 500# 

BC code 8 1010101 0.447 0.894 
Coedge 
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ACIS  -12 coedge $-1 -1 -1 $-1 $16 $17 $18 $19 reversed $7 $-1 # 
BC code 12 1011101 16 17 18 19 7 

Edge 
ACIS  -19 edge $-1 -1 -1 $-1 $25 0 $26 0.0670 $18 $27 forward @7 unknown F# 

BC code 19 1100001 25 0 26 0 18 27 
Vertex 

ACIS  -25 vertex $-1 -1 -1 $-1 $22 $32 # 
BC code 25 1100101 22 32 

Straight Curve 
ACIS  -27 straight-curve $-1 -1 -1 $-1 0 0 0 -447.21 0 -894.42 I I # 

BC code 27 1101001 0 
Ellipse Curve 

ACIS  -31 ellipse-curve $-1 -1 -1 $-1 0 0 -60 0 0 1 30 0 0 1 I I# 
BC code 31 1101101 1 

Point 
ACIS  -32 point $-1 -1 -1 $-1 0 0 0 # 

BC code 32 1110001 0 0 0 
Shell 

ACIS  -4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
BC code 4 1110101 1 

 

The second step is the creation of the data matrix. After cleaning each line, the 

macro creates a data matrix of nx13, n being the number of entities on the ACIS file, seen 

in Table 15. The last column of the matrix represents the counter of all entities, which are 

used by the feature recognition program to extract the information. For the cone feature, 

the last column reads: 32 entities, 3 faces, 3 loops, 1 plane surface, 0 sphere surface, 2 

cone surface, 0 torus surface, 8 coedges, 4 edges, 3 vertex, 2 straight curve, 2 ellipse 

curve, 3 points, and 1 shell. 

Table 15. Data matrix that represents the entities of a conical feature. 
4 1110101 1 0 0 0 0 0 0 0 0 0 32 
5 1000101 6 7 4 8 0 0 0 0 0 0 3 
6 1000102 9 10 4 11 0 0 0 0 0 0 3 
7 1001001 12 5 0 0 0 0 0 0 0 0 1 
8 1010101 0.447 0.894 0 0 0 0 0 0 0 0 0 
9 1000103 -1 13 4 14 0 0 0 0 0 0 2 
10 1001002 15 6 0 0 0 0 0 0 0 0 0 
11 1010102 0.447 0.894 0 0 0 0 0 0 0 0 8 
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12 1011101 16 17 18 19 7 0 0 0 0 0 4 
13 1001003 20 9 0 0 0 0 0 0 0 0 3 
14 1001101 0 0 -60 0 0 -1 0 0 0 0 2 
15 1011102 18 21 16 22 10 0 0 0 0 0 2 
16 1011103 17 12 15 22 7 0 0 0 0 0 3 
17 1011104 12 16 23 24 7 0 0 0 0 0 1 
18 1011105 21 15 12 19 10 0 0 0 0 0 0 
19 1100001 25 0 26 0 18 27 0 0 0 0 0 
20 1011106 23 23 21 28 13 0 0 0 0 0 0 
21 1011107 15 18 20 28 10 0 0 0 0 0 0 
22 1100002 25 0 29 0 16 30 0 0 0 0 0 
23 1011108 20 20 17 24 13 0 0 0 0 0 0 
24 1100003 29 0 26 3 17 31 0 0 0 0 0 
25 1100101 22 32 0 0 0 0 0 0 0 0 0 
26 1100102 28 33 0 0 0 0 0 0 0 0 0 
27 1101001 0 0 0 0 0 0 0 0 0 0 0 
28 1100004 26 -3 29 0 21 34 0 0 0 0 0 
29 1100103 28 35 0 0 0 0 0 0 0 0 0 
30 1101002 0 0 0 0 0 0 0 0 0 0 0 
31 1101101 1 0 0 0 0 0 0 0 0 0 0 
32 1110001 0 0 0 0 0 0 0 0 0 0 0 
33 1110002 -30 0 -60 0 0 0 0 0 0 0 0 
34 1101102 1 0 0 0 0 0 0 0 0 0 0 
35 1110003 30 0 -60 0 0 0 0 0 0 0 0 

 

The third step is to execute the feature recognition program created in Matlab®. 

The first line of the program is to load the data matrix into memory, and then the program 

reads the last column of the matrix and defines the type of feature that is contained in the 

matrix. The program compares the number of entities in the matrix against those values 

obtained in Table 12, which allow it to determine whether the matrix contains a single- or 

multi-feature part. If the program matches the total number of entities of the data matrix 

with one of the values of Table 12 then the program proceeds to determine the 

dimensions and orientation of the feature by reading the information of the geometrical 

entities such as the normal vectors of the surfaces and the location of the points. For 

example, the data matrix shown above has 32 entities in total that fit the description of a 
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conical form shown in Table 12. Then, the program reads the normal vectors, the 

inclination and the position of the surfaces, which help it determine that the cone has a 

vertex located at (0, 0, 0) and the axis of revolution in the same position as the z-axis. 

Once the program has finished recognizing the object, then it displays a summary of the 

objects including a set of matrices of the geometrical and topological entities, as shown 

below. 

 

 

Figure 23. Feature and entities matrices extracted using feature recognition program. 
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On the other hand, if the program was not able to match the total number of 

entities with the totals of Table 12, then the program identify the type of surfaces and the 

total number of points in the file and sorts the points from highest to lowest. Then the 

features are recognized based on the location and number of points that belong to the 

feature. Finally, the form feature and the entities matrices are used to determine the way 

in which the feature is inspected. This involves the number of data points and the strategy 

used to collect them, as shown in the next chapter. 
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CHAPTER 5 

SAMPLE POINT GENERATION, MACHINE SETUP, AND DATA COLLECTION 

 

5 Summary 

The feature recognition process explained in the previous chapter generated 

matrices that contained information regarding the dimensions and orientation of the form 

feature(s) that needed to be inspected. These matrices were used to generate the sampling 

points, to set up the machined part on the inspection equipment, and to collect the data 

using a collision free path. Each of these procedures is vulnerable to many different 

sources of error that can affect the readings as well as the analysis of the form tolerances 

(Hocken et al., 1993). For this reason, the following sections provide recommendations 

and insights that can be used to avoid these errors. 

 

5.1 Sample Point Generation 

One of the biggest problems in the inspection process of manufactured parts is the 

calculation of the number of sample points needed to obtain a good estimate of the zone 

of error. Larger data sets require longer inspection times than the small data sets, but 

smaller data sets do not provide enough information from the surface of the part. In the 

literature, several authors have focused on solving this problem by studying the 

mathematical sequences that yield a small amount of error, such as the Hammersley 

sampling strategy (Woo et al., 1993), and on those sequences that are able to capture the 

fingerprint on the surface of the part left by the manufacturing process (Hocken et al., 
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1993), such as the adaptive sampling strategies (Edgeworth et al., 1999; Kim et al., 1999; 

Badar et al., 2003) and spiral sampling strategy (Collins, Fay, Aguirre Cruz, and Raman, 

2006, 2007). In addition to these strategies, others have been studied in the literature but 

are not as accurate as the Hammersley distribution, such as the Halton-Zaremba that can 

be considered as a special case of the Hammersley distribution since the main difference 

between both strategies is that the Halton-Zaremba strategy generates its data points in 

batches that are powers of two. The random strategy has the disadvantage that the 

generated sample points are not evenly distributed. Rather they are clustered in different 

zones over the surface of the part. The uniform and aligned systematic strategies generate 

the datasets based on location of the first data points, causing the sequences to ignore 

several regions of the surface of the part. Most of the papers agree that the Hammersley 

strategy has a better point distribution than the mentioned sampling strategies. For 

example, Woo et al. (1993) and Lee et al. (1997) found that the Hammersley distribution 

needs fewer points to produce great levels of accuracy compared to the uniform 

distribution. In a different study, Woo et al. (1995) studied the surface roughness of 

manufacturing parts by comparing the efficiency of the Hammersley, Halton-Zaremba 

and the uniform sampling strategies. The authors found that there were not significant 

differences between the Hammersley and the Halton-Zaremba sampling strategies, while 

the uniform strategy generated the highest root mean square error. In contrast, Kim et al. 

(1999) found that the Halton-Zaremba strategy has a smaller discrepancy than the 

Hammersley, random, and uniform distributions when applied to the evaluation of 

flatness error.  
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In addition to these strategies, there are sequences that focus on adapting the 

distribution of the data points according to the resources used to machine a part. This type 

is called adaptive sampling and was studied by Edgeworth et al. (1999), who used an 

iterative method of inspection and evaluation to determine the surface error, and by 

Collins, Fay, Aguirre Cruz, and Raman (2006, 2007), who used a spiral sampling method 

with the purpose of capturing the pattern left by the face milling and turning processes. 

The application of these strategies requires the development of an algorithm that 

evaluates the performance of the points as they are being collected. However, an 

algorithm cannot be created if the mathematical models contained in it are not very 

accurate. For this reason, the present research focuses on developing accurate and robust 

mathematical models that can be used to evaluate the data points. By doing this, the 

residuals can be analyzed in order to determine the points that create the boundaries of 

the zone of error of the inspected part. The developed mathematical models must be 

evaluated using an accurate sampling strategy, and since the Hammersley distribution has 

been proved to be a good sequence, the present study uses the Hammersley distribution to 

analyze the form verification models that are developed in Chapter 6. It is important to 

mention that the decision support system should be able to generate any type of sampling 

strategy in order to create a system that can be adaptable to the requirements of the user.  

 

5.2 Hammersley Sampling Strategy 

The Hammersley sampling strategy was chosen in the present research as the 

strategy to collect the data points due to the fact that it has been proved in the literature to 

provide a good sample point distribution. The Hammersley distribution has been applied 
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to circles, spheres, cones, (Lee et al. 1997, Prakasvudhisarn 2002) and torus forms 

(Aguirre Cruz 2003). This section provides the mathematical formulation used to apply 

the Hammersley sampling strategy to the inspection path planning for the form features 

studied in this research. 

The foundation of the Hammersley distribution came from a low error 

mathematical sequence developed by Van der Corput in 1935 that later on was improved 

by Roth (1954), Hammersley (1960) and Lee et al. (1997) into a d dimensional 

randomized sampling sequence. Thus, the main parameters of the Hammersley sampling 

strategy were defined by 
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where (N) is the total number of data points, (i) represents the ith data point in the 

range of [0,…, N-1], (k) represents the total number of bits needed to define the desired 

sample size and is obtained by calculating the logarithm with base two of the total 

number of data points (N), (j) represents the position of the bits defined in the range of 

[0,…, k], (bij) represents the jth bit of the ith binary number (bi), and (xrand, yrand) is a 

point coordinate drawn at random that affects the location of all data points. 
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Features such as spheres, cones, cylinders, frustums, and torus forms have in 

common that they all can be viewed from a plane perpendicular to the axis of revolution 

as a partial circle in the case of the torus form or as a full circle in the case of the other 

form features. Therefore, Lee et al. (1997) proposed a transformation of the Hammersley 

parameters from Cartesian to polar coordinates, which allow the definition of the 

parameters of the features using a central point. The mathematical expression of this 

transformation was represented by 

 
HiHi yrr =  (5.3)

 HiHi x°= 360θ  (5.4)

where (r) is the radius of the form feature being inspected, and 360 represents the 

location of the radial distance on the circular shape. Finally, the polar coordinates defined 

above were adapted to three dimensional form features by substituting the calculated 

radius and angle into the equation that represents the height of the form feature being 

inspected. The following lines show an example of eight Hammersley coordinates that 

were adapted to spherical, cylindrical, conical, frustum, and torus form features. In the 

final section of this chapter (Data Collection), the Hammersley coordinates are regarded 

as measuring points since they represent those points that are inspected by the coordinate 

measuring machine. In addition, the polar coordinate obtained from this procedure must 

be transformed into Cartesian coordinates due to the fact that the coordinate measuring 

machine requires the latter format as an input of the numerical control (NC) mode. 
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5.2.1 Hammersley Sequence Applied to Surfaces of Revolution 

For simplicity, the following example assumes that all form features have the 

same radius (r). This means that the radius of the sphere, the radius of the cylinder, the 

radius of the base of the cone, and the distance from the origin of the torus to its 

boundary are all equal to 1.25 inches. The random point, given by xrand = 0.39 and yrand = 

0.7, is added to the each one of the Hammersley coordinates, as shown in Table 16. 

 

Table 16. Example of eight data points generated using the Hammersley strategy. 
i bi bi22-2-1 bi12-1-1 bi02-0-1 ∑bij2-j-1 i/N xHi yHi rHi θHi 
0 (0,0,0) 0 0 0 0 0 0.390 0.700 1.046 140.4
1 (0,0,1) 0 0 0.500 0.500 0.1 0.490 0.200 0.559 176.4
2 (0,1,0) 0 0.250 0 0.250 0.2 0.590 0.950 1.218 212.4
3 (0,1,1) 0 0.250 0.500 0.750 0.3 0.690 0.450 0.839 248.4
4 (1,0,0) 0.125 0 0 0.125 0.4 0.790 0.825 1.135 284.4
5 (1,0,1) 0.125 0 0.500 0.625 0.5 0.890 0.325 0.713 320.4
6 (1,1,0) 0.125 0.250 0 0.375 0.6 0.990 0.075 0.342 356.4
7 (1,1,1) 0.125 0.250 0.500 0.875 0.7 0.090 0.575 0.948 32.4

 

 
Figure 24. Polar plot of eight Hammersley coordinates. 
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The polar coordinates shown in Figure 24 are transformed into Cartesian 

coordinates for each feature so that they can be used as measuring points for the collision 

free path program of the coordinate measuring machine. Firstly, the polar coordinates are 

adapted to inspect spherical form features, where the x and y components are calculated 

by multiplying the Hammersley radii (rHi) by the cosine and sine functions of the angle 

(θHi), respectively. The z component is found by substituting the xMi and yMi components 

into the equation of the sphere and solving for zMi, as seen in Equations (5.1) to (5.4). The 

measuring points of the spherical form are shown in Table 17, where the geometrical 

origin of the sphere is located at the center of the shape. 

 HiHiMi rx θcos=  (5.1)

 HiHiMi ry θsin=  (5.2)

 222
MiMiMi zyxr ++=  (5.3)

 ( )222
MiMiMi yxrz +−=  (5.4)

Table 17. Measuring points of the spherical form. 
xMi yMi zMi 

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

0.5

1

1.5

 

-0.806 0.667 0.685 
-0.558 0.035 1.118 
-1.029 -0.653 0.279 
-0.309 -0.780 0.927 
0.282 -1.100 0.523 
0.549 -0.454 1.027 
0.342 -0.021 1.202 
0.800 0.508 0.815 

 

The measuring points of the cylindrical form are obtained in a different way than 

the ones obtained for the spherical form, due to the fact that the cylinder has a constant 

radius that makes necessary that the Euclidian distance between the x and y components 
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to yield the radius of the cylinder. For this reason, the x and y components of the 

cylindrical form are calculated by multiplying the radius of the cylinder (r) times the 

cosine and sine functions of the angle (θHi), respectively. The z component is obtained by 

using a virtual conical form with the same radius of the base (r) and height (h=1) as the 

cylindrical form. By doing this, the z is calculated by the negative product between the 

Euclidian distance (rMi) of Equations (5.1) and (5.2) times the relation between the radius 

and the height of the conical form, as seen in Equations (5.5) to (5.8) and Table 18. It is 

important to mention that the geometrical origin of the cylinder is set to be on the center 

of the top plane. 

 HiRMi rx θcos=  (5.5)

 HiRMi ry θsin=  (5.6)

 22
MiMiMi yxr +=  (5.7)

 
⎟
⎠
⎞

⎜
⎝
⎛−=

r
hrz MiRMi  (5.8)

Table 18. Measuring points of the cylindrical form. 
xMi yMi zMi 

-2
-1

0
1

2

-2

-1
0

1

2
-1

-0.5

0

0.5

 

-0.963 0.797 -0.837 
-1.248 0.078 -0.447 
-1.055 -0.670 -0.975 
-0.460 -1.162 -0.671 
0.311 -1.211 -0.908 
0.963 -0.797 -0.570 
1.248 -0.078 -0.274 
1.055 0.670 -0.758 

 

The measuring points of conical forms are obtained by using the Equations (5.1) 

and (5.2) for the calculations of the x and y components, respectively, while the z 
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component is obtained by following the Equation (5.8) developed for the cylindrical 

form. Table 19 shows the eight measuring points of the conical form, where the 

geometrical origin of the cone is located at the vertex and the height of the cone (h) is 

equal to 1. 

Table 19. Measuring points of the conical form. 
xMi yMi zMi 

-2
-1

0
1

2

-2
-1

0
1

2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 

-0.806 0.667 -0.837 
-0.558 0.035 -0.447 
-1.029 -0.653 -0.975 
-0.309 -0.780 -0.671 
0.282 -1.100 -0.908 
0.549 -0.454 -0.570 
0.342 -0.021 -0.274 
0.800 0.508 -0.758 

 

The measuring points of the frustum form requires the Hammersley radial 

distance (rHi) to be calculated in a different way from the one shown in Table 16. The new 

radial distance (rFHi) is calculated by multiplying the difference between the radius of the 

frustum base (r) and the radius of the top circular plane (r’) by the square root of the 

vertical Hammersley component (yHi). Then, the x and y components of the measuring 

points are calculated by adding the new radial distance (rFHi) and the radius of the top 

circular plane (r’) and multiplying them by the cosine and sine functions of the angle 

(θHi), respectively. Finally, the z component is obtained by multiplying the negative 

Euclidian distance between the x and y components of the measuring points times the 

relation between the height of the conical form (h) and the radius of the frustum base (r). 

It is important to notice that the height of the conical form is not the height of the frustum 

form but the height of a complete cone. In addition, the geometrical origin of the frustum 
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is located at the vertex of the complete conical form. Table 20 shows the eight 

coordinates of the frustum form. 

 ( ) HiFHi yrrr '−=  (5.9)

 ( ) HiFHiFMi rrx θcos'+=  (5.10)

 ( ) HiFHiFMi rry θsin'+=  (5.11)

 22
FMiFMiFMi yxr +=  (5.12)

 ⎟
⎠
⎞

⎜
⎝
⎛−=

r
hrz FMiMi  (5.13)

Table 20. Measuring points of the frustum form. 
xMi yMi zMi 

-2
-1

0
1

2

-2
-1

0
1

2
0

0.2

0.4

0.6

0.8

1

1.2

 

-0.837 0.693 -0.837 
-0.696 0.044 -0.447 
-1.034 -0.656 -0.975 
-0.339 -0.856 -0.671 
0.288 -1.122 -0.908 
0.632 -0.523 -0.570 
0.523 -0.033 -0.274 
0.851 0.540 -0.758 

 

Similar to the frustum form, the torus forms requires the Hammersley radial 

distance (rHi) to be calculated in a different way from the one shown in Table 16. For this 

reason, the new radial distance (rTHi) is calculated by adding two terms: the first term is 

obtained by multiplying two times the radius of the torus tube (a=0.25) by the square 

root of the vertical Hammersley component (yHi), while the second term is the radius of 

the torus hole, given by the difference between the radius of the torus (c=1) and the 

radius of the torus tube (a). Then, the x and y components of the measuring points are 

calculated by multiplying the new radial distance (rTHi) by the cosine and sine functions 



 144

of the angle (θHi), respectively. Finally, the z component is calculated using the 

Pythagorean Theorem between the radius of the torus tube (a) and the horizontal radial 

distance, where the horizontal radial distance is obtained by the difference between the 

radius of the torus (c) and the Euclidian distance between the x and y components of the 

measuring points. Table 21 shows the eight coordinates of the torus form. 

 ( )acyar HiTHi −+= 2  (5.14)

 HiTHiTMi rx θcos=  (5.15)

 HiTHiTMi ry θsin=  (5.16)

 ( )2222
TMiTMiTMi yxcaz +−−= (5.17)

Table 21. Measuring points of the torus form. 
xMi yMi zMi 

 

-1.287 1.065 0.462 
-1.182 0.074 0.622 
-1.556 -0.988 0.196 
-0.539 -1.361 0.587 
0.438 -1.705 0.361 
1.031 -0.853 0.619 
0.965 -0.061 0.557 
1.328 0.843 0.535 

 

 

5.3 Coordinate Measuring Machine Setup 

The form tolerance verification of manufactured parts is a procedure for 

collecting data points from the surface of the part and analyzing them to verify the 

geometry of the form feature. The evaluation of this tolerance requires a set of tools that 

ensures the accurate estimation of the parameters of the features, such as: the sampling 
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strategy that determines the location and amount of sampling points, as explained above; 

a collision free path plan that tells the inspection equipment the movements required to 

inspect the sampling points, explained in the next section; and the inspection equipment 

that collects and analyzes the data points, explained in this section. 

The inspection equipment such as the CMM allows the metrologist to inspect the 

tolerances of parts by following predetermined procedures set by the manufacturer of the 

equipment. Each type of CMM is unique according to the instructions that need to be 

followed to operate the machine. Most of these procedures are general information that 

the metrologist needs to follow so that software can interpret and analyze the data. DEA 

(1995a, b), the manufacturers of the software, TUTOR for WindowsTM, that is used in 

this research, suggested procedures for qualifying and calibrating the stylus tip, 

translating the origin of the CMM, and inspecting manufacturing tolerances, among 

others. One of the most important operations that needs to be done before inspecting the 

tolerances of a part is to determine the location of the origin of the machine with respect 

to the geometrical origin of the part. Most mathematical models available in the literature 

require the origin of the machine to be located in the same or very close to the position to 

the geometrical origin of the part. If this operation is not followed, then the mathematical 

models will not be able to determine the parameters of the part that is being inspected or 

they will need powerful algorithms to extract those parameters from the measured data. 

For this reason, it is very important to collect the data according to the way in which it 

will be analyzed. It is important to mention that the software of the CMM as well as 

many other computer programs (Polyworks® and Geomagic®) contain powerful 

algorithms that can fit primitive or free forms on the measured data regardless of the 
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location of the origin of the machine. However, the algorithms that they use are 

proprietary. Thus, the mathematics that they apply to analyze the data are unknown. 

The software used in this research, TUTOR for WindowsTM, provides four options 

to translate the origin of the machine. The first is “preset on circle,” which allows the user 

to collect four or more data points on a circular shape with the purpose of estimating the 

center of the circle, thus positioning the origin of the two involved Cartesian components 

in that location. For example, if a circular shape is located on the xy plane, then the 

machine will set the origin of the x and y components to zero at the same position as the 

origin of the circular shape. The last three options are “x preset,” “y preset,” and “z 

preset,” which allow the user to collect one point from any surface and the machine to 

locate the origin of the component over the virtual plane in which the point was collected. 

For example, if the user needs to locate the origin of a square block on the southwest 

corner, then the user needs to select the “x preset” and collect one point from the south 

face of the square block. Next the user needs to select the “y preset” and collect one point 

from the west face of the square block. Finally, the user needs to select the “z preset” and 

collect a point from the top face of the block. Therefore, the intersection between the 

three planes yields a point located at the southwest corner of the block.  

In a similar way, the present research uses these four options to translate the 

origin of the machine into the same position as the geometrical origin of spheres, 

cylinders, cones, frustums, and torus forms. The translation is not straightforward since 

for some shapes such as the torus that has its geometrical origin in the middle of the 

doughnut hole. For this reason, the following lines show the way in which the origin of 

the machine can be translated in order to fulfill the requirements of the mathematical 
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models. In addition, the experiments in Chapter 7 show examples of setting the origin of 

the machine in an inaccurate position, while Chapter 8 shows the consequences of this 

mistake. 

The following procedures take into account that the CMM used in the present 

research can only measure the top part of the feature forms. This means that the CMM 

can only inspect the top hemisphere of a complete sphere surface, all the cone surface, all 

the cylinder surface, all the frustum surface, and the top half of the torus surface. In 

addition, it is assumed that the origin of the machine is located at Os (xs, ys, zs). 

The procedure to translate the origin of the machine into the geometrical origin of 

the sphere (located at the center of the shape) requires three steps that use the option 

“preset on circle”:  

1. The first step is to set the x and y components of the origin along the 

axis of revolution of the sphere. This is done by inspecting four points 

on the north, east, south, and west positions. The points must be 

contained on the same plane, where the location of the plane z=a should 

be as close as possible to the equator of the sphere, as seen on the left 

side of Figure 25.  

2. The second step is to set the z component of the origin at the center of 

the sphere. In order to do this, the user needs to choose between the x=0 

or y=0 planes, which are used to inspect four points on the arc that 

belong either to the xz or yz planes, respectively. By doing this, the two 

components of the origin (xz or yz) are set to zero at the center of this 
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arc, as seen on the right side of Figure 25. Since it is very difficult to 

find the x=0 or y=0 plane, then a third step is needed. 

3. The third step is basically to repeat the first step in order to ensure that 

the x and y components of the origin were not affected by the second 

step. 

Figure 25. Top (left) and front (right) view of the procedure used to translate the origin of 
the machine into the location of the geometrical origin of the sphere. 

 

The procedure to translate the origin of the machine into the geometrical origin of 

the cylinder (located at the top-center of the shape) requires two steps that use the option 

“preset on circle,” and “z preset,” respectively: 

1. The first step is to set the x and y components of the origin along the 

axis of revolution of the cylinder. This is done by inspecting four points 

on the north, east, south, and west positions. The points must be 

contained on the same plane, where the plane z=a can be located at any 

height, as seen on the left side of Figure 26.  

2. The second step is to set the z component of the origin at top-center of 

the cylinder. In order to do this, the option “z preset” is selected, which 
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allows the user to inspect one point at the desired height of the z-axis. 

Thus, a point is inspected at the top of the cylinder, and since the x and 

y components are already set at the center, then the origin’s new 

position is located at the top-center of the cylinder, as seen on the right 

side of Figure 26. 

Figure 26. Top (left) and front (right) view of the procedure used to translate the origin of 
the machine into the location of the geometrical origin of the cylinder. 

 

The procedure to translate the origin of the machine into the geometrical origin of 

the cone (located at the vertex of the shape) requires two steps that use the option “preset 

on circle,” and “z preset,” respectively: 

1. The first step is to set the x and y components of the origin along the 

axis of revolution of the cone. This is done by inspecting four points on 

the north, east, south, and west positions. The points must be contained 

on the same plane, where the plane z=a can be located at any height, as 

seen on the left side of Figure 27.  

2. The second step is to set the z component of the origin at the vertex of 

the cone. In a similar way as the cylinder, the option “z preset” is 
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selected and a point is inspected at the vertex of the cone, and since the 

x and y components are already set at the center, then the origin’s new 

position is located at the vertex of the cone, as seen on the right side of 

Figure 27. 

Figure 27. Top (left) and front (right) view of the procedure used to translate the origin of 
the machine into the location of the geometrical origin of the cone. 

 

The procedure to translate the origin of the machine into the geometrical origin of 

the frustum (located at the top-center plane of the shape) requires two steps that use the 

option “preset on circle,” and “z-axis,” respectively: 

1. The first step is to set the x and y components of the origin along the 

axis of revolution of the frustum. This is done by inspecting four points 

on the north, east, south, and west positions. The points must be 

contained on the same plane, where the plane z=a can be located at any 

height, as seen on the left side of Figure 28.  

2. The second step is to set the z component of the origin at the top-center 

plane of the frustum. Thus, the option “z preset” is selected and a point 

is inspected at any location on the top plane of the frustum, and since 
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the x and y components are already set at the center, then the origin’s 

new position is located at the top-center plane of the frustum, as seen 

on the right side of Figure 28. 

Figure 28. Top (left) and front (right) view of the procedure used to translate the origin of 
the machine into the location of the geometrical origin of the frustum. 

 

The procedure to translate the origin of the machine into the geometrical origin of 

the torus (located at the center of the hole of the torus) requires three steps that use the 

option “preset on circle”: 

1. The first step is to set the x and y components of the origin along the 

axis of revolution of the torus. This is done by inspecting four points on 

the north, east, south, and west positions. The points must be contained 

on the same plane, where the location of the plane z=a should be as 

close as possible to the equator of the torus, as seen on the left side of 

Figure 29.  

2. The second step is to set the z component of the origin. In a similar way 

as the spherical form, the user needs to choose between the x=0 or y=0 

planes, which are used to inspect four points on the arc of the torus tube 
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that belong either to the xz or yz planes, respectively. By doing this, the 

two components of the origin (xz or yz) are set to zero at the center of 

this arc, as seen on the right side of Figure 29. However, since the 

origin of the torus is not located at the center of the torus tube, then a 

third step is needed.  

3. The third step is basically to repeat the first step in order to set the x and 

y components of the origin. 

Figure 29. Top (left) and front (right) view of the procedure used to translate the origin of 
the machine into the location of the geometrical origin of the torus. 

 

5.4 Data Collection 

The path planning process is defined as the distance traveled by the inspection 

equipment to collect all data points from the surface of the part. The purpose of the path 

planning is to create a pathway that collects all information using the minimum amount 

of time, which also implies that the inspection device has to travel the shortest path 

without colliding with the part.  

The present study investigates two types of path planning approaches: the 

raindrop approach and the hexagonal mesh approach. The raindrop approach is a heuristic 
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and simple way to generate a path plan. This approach uses three types of points: the 

measuring, the positioning, and z-plane points. Basically, the approach moves the stylus 

tip horizontally using the z-plane points that are located above the part. Each one of the z-

plane points is located above the positioning points, thus, the stylus tip is lowered as a 

raindrop from the z-plane point to the positioning point. Then, the stylus moves to the 

measuring point using a vector that is normal to the surface. Once that the point is 

inspected, the stylus moves back to the z-plane in order to locate the next point. Although 

the raindrop approach is simple, it consumes a lot of time since it is not an optimized 

sequence. An example of the input files and CMM program used to generate this 

approach can be seen in Appendix B. 

For this reason, the present research proposes an optimized approach based on a 

hexagonal mesh, which can be easily adapted to any surface. In addition, the approach 

will collect the data points using the normal vector of the surface, which will increase the 

reliability and accuracy of the readings. The approach calculates the shortest distance 

between one measuring point and the next and uses the vertices and links of the 

hexagonal mesh to find the shortest traveling path. An example of the file and CMM 

program used to generate this approach can be seen in Appendix B. 

 

5.4.1 Raindrop Path Planning 

The raindrop approach is a collision free path plan that uses three different types 

of points to inspect a part. The points are defined as: measuring points, which are the 

actual points that belong to the surface of the part that is being inspected. The positioning 

points are offset in the outward direction at a specific distance that is normal to the 
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surface of the part. The location of these points determines the approaching vector that 

the inspection equipment uses to collect the measuring points. Finally, the z-plane points 

are located on a plane that is normal to the axis of revolution of the part that is being 

inspected. The plane is located above the part, which is used by the inspection equipment 

to position the stylus tip above the positioning points. 

The inspection equipment collects the data points by first positioning the stylus tip 

above the first positioning point. Then, the machine lowers the tip until it reaches the 

positioning point. Next, the stylus moves from the positioning point to the measuring 

point and collects the information from the surface. Subsequently, the machine 

automatically retracts to the positioning point and then retracts the stylus tip in a vertical 

direction to the location of z-plane point. Once in the z-plane the machine moves to a 

different z-plane point and continues the process explained above until all measuring 

points are collected. In order to simplify the understanding of this process, the raindrop 

approach is explained by using an example that calculates the positioning and z-plane 

points of the surfaces of revolution, with the measuring points obtained in the Table 16 as 

a reference. 

 

5.4.1.1 Raindrop Approach Applied to Surfaces of Revolution 

The example shows the parameters and calculations needed to obtain the 

positioning and z-plane points. In addition, the example assumes that the distance 

between the measuring points and the positioning points is 0.20 inches; this distance is 

regarded as the positioning offset (oP) in this example. The location of the z-plane varies 

according to the form because the origin of the part is located at different positions. In 
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addition, the example uses three symbols to differentiate the three types of points: a circle 

for the measuring points, a square for the positioning points, and a star as z-plane points. 

The positioning and z-plane points for the spherical form are found by calculating 

the angle (αSi) that determines the relation between the xy horizontal component and the z 

component. The main reason for the calculation of this angle is that it can be used to 

break up the positioning offset (oP) into x, y, and z components. Thus, the (xSPi) and (ySPi) 

components of the positioning points are calculated by adding the ideal radius of the 

sphere (r) and the positioning offset (oP) and multiplying them by the trigonometric 

functions related to each of the components, while the (zSPi) component is obtained by 

adding the ideal radius of the sphere (r) and the positioning offset (oP) and multiplying 

them by the cosine of the angle (αSi), as seen in Equations (5.19) to (5.21).  

Finally, the components of the z-plane points are obtained as follows: the (xSZi) 

and (ySZi) components are the same as the positioning points, while the (zSZi) component 

is obtained by adding the ideal radius of the sphere plus the positioning offset, as seen in 

Equations (5.22) to (5.24). Table 22 and Figure 30 show the values and location of the 

positioning and z-plane points. 

 

⎟
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yx 22
1tanα  (5.18)

 ( ) SiHiPSPi orx αθ sincos+=  (5.19)

 ( ) SiHiPSPi ory αθ sinsin+=  (5.20)

 ( ) SiPSPi orz αcos+=  (5.21)

 SPiSZi xx =  (5.22)
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 SPiSZi yy =  (5.23)

 ( )PSZi orz +=  (5.24)

 

Table 22. Positioning and z-plane point coordinates of a spherical form. 
Positioning Points Z-Plane Points 

xSPi ySPi zSPi xSZi ySZi zSZi 
-0.935 0.773 0.794 -0.935 0.773 1.450 
-0.647 0.041 1.297 -0.647 0.041 1.450 
-1.193 -0.757 0.324 -1.193 -0.757 1.450 
-0.358 -0.904 1.075 -0.358 -0.904 1.450 
0.328 -1.276 0.607 0.328 -1.276 1.450 
0.637 -0.527 1.191 0.637 -0.527 1.450 
0.396 -0.025 1.395 0.396 -0.025 1.450 
0.928 0.589 0.945 0.928 0.589 1.450 

 

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

0.5

1

1.5

 
Figure 30. Measuring (circle), positioning (square), and z-plane (star) points of a 

spherical form. 
 

The positioning and z-plane points for the cylindrical form are found in a simpler 

way than the spherical form, because the Euclidian distance between the x and y 

components yields the radius of the cylinder. The (xRPi) and (yRPi) components of the 
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positioning points are calculated by adding the ideal radius of the cylinder (r) and the 

positioning offset (oP) and multiplying them by the cosine and sine functions of the angle 

(θHi), respectively; while the (zRPi) component is identical in magnitude to the (zMi) 

component of the measuring points, as seen in Equations (5.25) to (5.27).  

Finally, the components of the z-plane points are obtained as follows: the (xRZi) 

and (yRZi) components are the same as the positioning points, while the (zRZi) component 

is given by the positioning offset (oP), as seen in Equations (5.28) to (5.30). Table 23 and 

Figure 31 show the values and location of the positioning and z-plane points of the 

cylindrical form. 

 ( ) HiPRPi orx θcos+=  (5.25)

 ( ) HiPRPi ory θsin+=  (5.26)

 MiRPi zz =  (5.27)

 RPiRZi xx =  (5.28)

 RPiRZi yy =  (5.29)

 PRZi oz =  (5.30)

 

Table 23. Positioning and z-plane point coordinates of a cylindrical form. 
Positioning Points Z-Plane Points 

xRPi yRPi zRPi xRPi yRPi zRPi 
-1.117 0.924 -0.837 -1.117 0.924 0.200 
-1.447 0.091 -0.447 -1.447 0.091 0.200 
-1.224 -0.777 -0.975 -1.224 -0.777 0.200 
-0.534 -1.348 -0.671 -0.534 -1.348 0.200 
0.361 -1.404 -0.908 0.361 -1.404 0.200 
1.117 -0.924 -0.570 1.117 -0.924 0.200 
1.447 -0.091 -0.274 1.447 -0.091 0.200 
1.224 0.777 -0.758 1.224 0.777 0.200 
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Figure 31. Measuring (circle), positioning (square), and z-plane (star) points of a 

cylindrical form. 
 

The positioning and z-plane points for the conical form are found by calculating 

the angle (αCi) that determines the relation between the radius of the base of the cone (r) 

and the height of the cone (h), as shown in Equation (5.31). In a similar way to the 

spherical form, this angle is calculated primarily because it can be used to break up the 

positioning offset (oP) into x, y, and z components. In addition, the (xyi) horizontal 

component is calculated in order to simplify the calculation of the individual x and y 

components. Thus, the (xyi) component is calculated by adding the Euclidian distance 

between the (xMi) and (yMi) components of the measuring points plus the product between 

the positioning offset (oP) times the sine of the angle (αCi), seen in Equation (5.32). 

Consequently, the (xCPi) and (yCPi) components of the positioning points are 

calculated by multiplying the (xyi) component by the cosine and sine functions of the 

angle (θHi), respectively. The (zCPi) component is obtained by adding the (zRMi) 

component of the measuring points plus the product between the positioning offset (oP) 
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and the cosine of the angle (αCi), as seen in Equations (5.33) to (5.35). Finally, the 

components of the z-plane points are obtained as follows: the (xCZi) and (yCZi) 

components are the same as the positioning points, while the (zCZi) component is given by 

the positioning offset (oP), as seen in Equations (5.36) to (5.38). Table 24 and Figure 32 

show the values and location of the positioning and z-plane points. 

 
⎟
⎠
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⎜
⎝
⎛= −

h
r

Ci
1tanα  (5.31)

 
CiPMiMii oyxxy αsin22 ++=  (5.32)

 HiiCPi xyx θcos=  (5.33)

 HiiCPi xyy θsin=  (5.34)

 CiPRMiCPi ozz αcos+=  (5.35)

 CPiCZi xx =  (5.36)

 CPiCZi yy =  (5.37)

 PCZi oz =  (5.38)

 

Table 24. Positioning and z-plane point coordinates of a conical form. 
Positioning Points Z-Plane Points 

xCPi yCPi zCPi xCZi yCZi zCZi 
-0.926 0.766 -0.7117 -0.926 0.766 0.200 
-0.714 0.045 -0.3223 -0.714 0.045 0.200 
-1.161 -0.737 -0.8497 -1.161 -0.737 0.200 
-0.366 -0.925 -0.5459 -0.366 -0.925 0.200 
0.321 -1.251 -0.7834 0.321 -1.251 0.200 
0.669 -0.554 -0.4451 0.669 -0.554 0.200 
0.498 -0.031 -0.1489 0.498 -0.031 0.200 
0.932 0.592 -0.6333 0.932 0.592 0.200 
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Figure 32. Measuring (circle), positioning (square), and z-plane (star) points of a conical 

form. 
 
 

The positioning and z-plane points of the frustum form are obtained by using the 

equations obtained from the conical form, where Equations (5.33) to (5.35) describe the 

positioning points, while Equation (5.36) to (5.38) describe the z-plane points. Although, 

the formulas are the same, the position of the point coordinates differs due to the different 

form of both surfaces. Thus, Table 25 and Figure 33 show the values and location of the 

positioning and z-plane points. 

 

Table 25. Positioning and z-plane point coordinates of a frustum form. 
Positioning Points Z-Plane Points 

xPi yPi zPi xZi yZi zZi 
-0.958 0.792 -0.712 -0.958 0.792 0.200 
-0.852 0.054 -0.322 -0.852 0.054 0.200 
-1.166 -0.740 -0.850 -1.166 -0.740 0.200 
-0.396 -1.001 -0.546 -0.396 -1.001 0.200 
0.327 -1.273 -0.783 0.327 -1.273 0.200 
0.752 -0.622 -0.445 0.752 -0.622 0.200 
0.679 -0.043 -0.149 0.679 -0.043 0.200 
0.983 0.624 -0.633 0.983 0.624 0.200 
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Figure 33. Measuring (circle), positioning (square), and z-plane (star) points of a frustum 

form. 
 

The positioning and z-plane points for the torus form are found by calculating the 

angle (αTi) that determines the relation between the xy horizontal component and the z 

component inside the torus tube, as seen in Equation (5.39). This angle is calculated 

because it can be used to break up the positioning offset (oP) into x, y, and z components. 

Thus, the (xTPi) and (yTPi) components of the positioning points are calculated by 

evaluating the position of the point with respect to the ideal radius of the torus (c). If the 

point has an angle (αTi) greater than 90 degrees, then the xy horizontal component of the 

point is smaller than the ideal radius of the torus (c), and the (xTPi) and (yTPi) components 

must be calculated by subtracting the horizontal component of the torus tube from the 

ideal radius of the torus (c), and multiplying the result by cosine and sine of the angle 

(θHi), respectively. On the other hand, if the point has an angle (αTi) smaller than 90 

degrees, then the xy horizontal component of the point is greater than the ideal radius of 

the torus (c) and the (xTPi) and (yTPi) components must be calculated by adding the 

horizontal component of the torus tube plus the ideal radius of the torus (c), and 
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multiplying the result by cosine and sine of the angle (θHi), respectively. It is important to 

mention that the horizontal component of the torus tube is obtained by adding the ideal 

radius of the torus tube (a) plus the positioning offset (oP), and multiplying the result by 

the cosine of the angle (αTi).  

The (zTPi) component is obtained by adding the ideal radius of the torus tube (a) 

plus the positioning offset (oP) and multiplying the result by the sine of the absolute value 

of the angle (αTi). The three components of the positioning points are seen in Equations 

(5.40) to (5.42). Finally, the components of the z-plane points are obtained as follows: the 

(xTZi) and (yTZi) components are the same as the positioning points, while the (zTZi) 

component is obtained by adding the ideal radius of the torus tube (a) plus the positioning 

offset (oP), as seen in Equations (5.43) to (5.45). Table 26 and Figure 34 show the values 

and location of the positioning and z-plane points. 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= −

cr
z

Hi

TMi
Ti

1tanα  (5.39)

 ( )[ ]
( )[ ] HiTiPTPi

HiTiPTPiTi

oacxotherwise
oacxif

θα
θαα

coscos                 
coscos               0  

+−=
++=>

 (5.40)

 ( )[ ]
( )[ ] HiTiPTPi

HiTiPTPiTi

oacyotherwise
oacyif

θα
θαα

sincos                 
sincos               0  

+−=
++=>

 (5.41)

 ( ) TiPTPi oaz αsin+=  (5.42)

 TPiTZi xx =  (5.43)

 TPiTZi yy =  (5.44)

 PTZi oaz +=  (5.45)
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Table 26. Positioning and z-plane point coordinates of a torus form. 
xTPi yTPi zTPi xTPi yTPi zTPi 

-1.391 1.151 0.610 -1.391 1.151 0.925 
-1.161 0.073 0.820 -1.161 0.073 0.925 
-1.717 -1.089 0.259 -1.717 -1.089 0.925 
-0.564 -1.424 0.775 -0.564 -1.424 0.925 
0.478 -1.863 0.476 0.478 -1.863 0.925 
1.052 -0.870 0.817 1.052 -0.870 0.925 
0.875 -0.055 0.736 0.875 -0.055 0.925 
1.415 0.898 0.706 1.415 0.898 0.925 

 

 
Figure 34. Measuring (circle), positioning (square), and z-plane (star) points of a torus 

form. 
 

5.4.2 Hexagonal Mesh Path Planning 

Without a doubt, the hexagonal mesh approach is better than the raindrop 

approach due to the mathematical principles behind it, as shown below. However, some 

problems were encountered while retrieving the measured coordinates from the output 

file provided by the CMM, because the software of the CMM records the measured 

coordinates without subtracting or compensating from the radius of the stylus tip. This 

problem generates point coordinates from an inspected part that have bigger dimensions 
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than the real dimensions of the part. For this reason, the hexagonal mesh was not used to 

collect the data of the present research; instead the raindrop approach was applied. It is 

important to mention that the program and files created for the hexagonal mesh approach 

are functional (seen in Appendix B), but the CMM software was the main cause of this 

setback.  

Furthermore, the CMM software provides a summary of the dimensions and 

parameters of the inspected part, which are accurate according to the dimensions of the 

part. This led us to conclude that the CMM software has some kind of proprietary 

protection that does not allow the user to obtain the real point coordinates, while using 

the type of program seen in Appendix B.  

The hexagonal mesh approach is applied only to spherical forms, due to the 

reason mentioned above. However, this approach can be applied to any type of form 

feature. The hexagonal mesh approach is an optimized path plan that uses three 

hexagonal shapes that are rotated 60 degrees from each other. This arrangement creates a 

hexagonal frustum that encloses the part, where the vertices and links that creates the 

frustum form are used to guide the movements of the CMM.  

Similar to the raindrop approach, the hexagonal mesh uses three types of points: 

the measurement, the positioning, and the mesh points. The measuring points lie on the 

surface of the inspected part. The positioning points are located on a positioning sphere 

that is bigger in size than the inspected sphere, while the mesh points, which are similar 

as the z-plane points explained in the raindrop approach, are a fixed net of points that are 

located on the positioning sphere that has a radius (rH), which is given by: 

 PH orr +=  (5.46)
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where (r) is the radius of the spherical shape being inspected and (oP) is the 

positioning offset explained in the raindrop approach. Thus, instead of making the CMM 

go up and down as in the raindrop approach, the mesh helps the CMM to position itself in 

a faster rate to the location of the next measuring point. The main components of the 

hexagonal approach are seen in Figure 35. 

 

 
Figure 35. Top (left) and front (right) view of hexagonal mesh components. 

 

The hexagonal mesh has twelve vertices; six from the top-small hexagon (A, B, 

C, D, E, F) and six from the bottom-big hexagon (1, 2, 3, 4, 5, 6), where the point 

coordinates of these vertices are calculated based on the radius of the positioning sphere 

(rH), as seen on the left side of Figure 36 and in Tables 27 and 28. Moreover, the vertices 

from the top-small hexagon are defined by a circle that is half of the size (0.5rH) of the 

circular reference that defines the position of the vertices of the bottom-big hexagon (rH). 

Thus, the two circular references and the hexagonal mesh split the inspected part into 

twelve zones, as seen on right side of the Figure 36. The zones determine the path that the 

CMM needs to follow to collect all measuring data points. For example, if the previous 

and next measuring points are located in the same zone, then there is no need to use any 
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mesh points, since the CMM can travel between the previous and next positioning points 

without colliding with the part. On the other hand, if the previous measuring point is 

located in zone a and the next measuring point is located in zone d, then the several mesh 

points are used to guide the movements of the CMM around the part, as explained in the 

following example. 

 

 
Figure 36. Top view of the vertices of the two hexagonal shapes (left) and top view of the 

twelve zones used to partition the inspected part (right). 
 

Table 27. Point coordinates of vertices of bottom-big hexagon. 

Vertex Point Coordinates 
x y z 
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Table 28. Point coordinates of vertices of top-small hexagon. 

Vertex Point Coordinates 
x y z 
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5.4.2.1 Hexagonal Mesh Approach Applied to Spherical Form 

The following example was created in Microsoft® Excel, in which all possible 

paths were calculated in advance in order to simplify the process. However, a program 

can be created to avoid the calculation of the paths. The examples uses the measuring and 

positioning data points generated for the spherical form of radius 1.25 inches, shown 

above in Tables 16 and 17. Thus, it uses the same positioning offset (oP) of 0.20 inches, 

which creates a positioning sphere with a radius equal to 1.45 inches. Also, it is assumed 

that the initial position of the CMM is at the point (0, 0, 8). 

The following steps explain the creation of the path plan needed to collect the 

eight Hammersley data points: 

1. Firstly, the program should determine the zone containing each 

measuring point and the closest vertex to each point. Table 29 shows 
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the eight measuring and positioning points including the zone and 

closest vertex for each data point. A graphic representation of this step 

is seen in Figure 37. 

 

Table 29. Data needed to generate the hexagonal mesh path planning. 

Point xMi yMi zMi xSPi ySPi zSPi Zone Closest
Vertex 

0 -0.806 0.667 0.685 -0.935 0.773 0.794 c C 
1 -0.558 0.035 1.118 -0.647 0.041 1.297 i D 
2 -1.029 -0.653 0.279 -1.193 -0.757 0.324 d 5 
3 -0.309 -0.780 0.927 -0.358 -0.904 1.075 e E 
4 0.282 -1.100 0.523 0.328 -1.276 0.607 e 6 
5 0.549 -0.454 1.027 0.637 -0.527 1.191 f F 
6 0.342 -0.021 1.202 0.396 -0.025 1.395 l A 
7 0.800 0.508 0.815 0.928 0.589 0.945 a B 

 

 

Figure 37. Location of the eight Hammersley points in the hexagonal mesh. 
 

2. Then, it is necessary to move the stylus of the machine to the vertex 

that is closer to the first measuring point “0”. It is important to mention 
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that the first vertex must be located on the top-small hexagon in order 

to avoid any collision. In this example, the first measuring point “0” 

has as its closest vertex the point “C,” located on the top-small 

hexagon. Thus, only one positioning movement is required to get to the 

closest vertex, given by the point coordinate of the vertex “C”. In 

addition, since the first movement of the CMM is a positioning point, 

the first line of the code should start with the letter “P”, as seen below. 

1 P -0.363 0.628 1.256 

3. The second line of the code is also a positioning movement, since it is 

necessary to move the stylus probe from vertex “C” to the positioning 

point of the first measuring point (xSP0, ySP0). 

2 P -0.935 0.773 0.794 

4. The third line is given by the point coordinate of the first measuring 

point (xSM0, ySM0), which makes the CMM measure the data point and 

automatically retract to the location of the positioning point. The line 

begins with the letter “M” since this coordinate belongs to a measuring 

point. 

3 M -0.806 0.667 0.685 

5. The next measuring point “1” has as its closest vertex the point “D,” 

and is located in zone “i,” a different zone than from the previous 

measuring point. However, the order in which the Hammersley 

sequence generates the data points in a counterclockwise direction, 

which simplifies the positioning movements between points, since only 

one positioning movement is required from one point to another. 
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Therefore, the fourth line of the code is a positioning movement from 

the previous positioning point (xSP0, ySP0) to the closest vertex of point 

“1,” given by the point coordinate of the vertex “D.” 

4 P -0.725 0.000 1.256 

6. In the next movement, the CMM moves the stylus to the positioning 

point of point “1” (xSP1, ySP1), which creates the fifth line of the code 

given by the point coordinate of this positioning point. 

5 P -0.647 0.041 1.297 

7. The sixth line is given by the point coordinate of measuring point “1” 

(xSM1, ySM1), which makes the CMM measure the data point and 

automatically retract to the location of the positioning point. 

6 M -0.558 0.035 1.118 

8. The next three lines of the code are given by: the movement of the 

CMM from the previous positioning point (xSP1, ySP1) to the closest 

vertex “5” of the next measuring point “2,” the movement from the 

vertex “5” to the positioning point of point “2” (xSP2, ySP2), and the 

movement from the positioning point (xSP2, ySP2) to the measuring point 

(xSM2, ySM2), respectively. 

7 P -0.725 -1.256 0.000 
8 P -1.193 -0.757 0.324 
9 M -1.029 -0.653 0.279 

9. Then, the next three lines of the code are given by: the movement of the 

CMM from the previous positioning point (xSP2, ySP2) to the closest 

vertex “E” of the next measuring point “3,” the movement from the 

vertex “E” to the positioning point of point “3” (xSP3, ySP3), and the 
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movement from the positioning point (xSP3, ySP3) to the measuring point 

(xSM3, ySM3), respectively. 

10 P -0.363 -0.628 1.256 
11 P -0.358 -0.904 1.075 
12 M -0.309 -0.780 0.927 

10. The next measuring point “4” is located in the same zone as point “3.” 

Thus, there is no need to move the stylus to the closest vertex, since it 

is safe for the machine to move within a zone. Therefore, only two 

movements are required: the movement from the previous positioning 

point (xSP3, ySP3) to the next positioning point (xSP4, ySP4), and the 

movement from the positioning point (xSP4, ySP4) to the measuring point 

(xSM4, ySM4), respectively. 

13 P 0.328 -1.276 0.607 
14 M 0.282 -1.100 0.523 

11. The next measuring point “5” is located in a different zone than the 

previous one, thus, three lines of the code are needed to inspect the 

point. The first line is the movement of the CMM from the previous 

positioning point (xSP4, ySP4) to the closest vertex “F” of the next 

measuring point “5.” The second line is the movement from the vertex 

“F” to the positioning point of point “5” (xSP5, ySP5), and the last line is 

given by movement from the positioning point (xSP5, ySP5) to the 

measuring point (xSM5, ySM5). 

15 P 0.363 -0.628 1.256 
16 P 0.637 -0.527 1.191 
17 M 0.549 -0.454 1.027 

12. Then, the next three lines of the code are given by: the movement of the 

CMM from the previous positioning point (xSP5, ySP5) to the closest 
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vertex “A” of the next measuring point “6,” the movement from the 

vertex “A” to the positioning point of point “6” (xSP6, ySP6), and the 

movement from the positioning point (xSP6, ySP6) to the measuring point 

(xSM6, ySM6), respectively. 

18 P 0.725 0.000 1.256 
19 P 0.396 -0.025 1.395 
20 M 0.342 -0.021 1.202 

13. The last three lines of the code are given by: the movement of the 

CMM from the previous positioning point (xSP6, ySP6) to the closest 

vertex “B” of the next measuring point “7,” the movement from the 

vertex “B” to the positioning point of point “7” (xSP7, ySP7),and the 

movement from the positioning point (xSP7, ySP7) to the measuring point 

(xSM7, ySM7), respectively. 

21 P 0.363 0.628 1.256 
22 P 0.928 0.589 0.945 
23 M 0.800 0.508 0.815 

     
14. Finally, all lines of the code are arranged in order and are modified 

according to the requirements of the CMM. The first and last line are 

code lines that tells the CMM the beginning and end of the point 

coordinates, while two columns of 1’s are added as a part of the 

syntaxes required by the CMM software, as seen in Appendix B. 
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CHAPTER 6 

FORM TOLERANCE VERIFICATION OF COMPLEX FORMS 

 

6 Summary 

The purpose of this chapter is to explain the analysis, improvements, and 

implementation of existing and newly developed form verification models. In the 

literature, mathematical models to verify spheres, cylinders, cones, frustums, and torus 

forms have been reported. The majority of these papers have focused on spheres and 

cylinders, a few focused on cones and frustums, and a smaller number have focused on 

torus forms. Most of the mathematical models presented in those researches performed 

reasonably; however, this research proposes a number of improvements that can be done 

to the existing models in order to increase their accuracy. At the same time, this research 

proposes several new unique models that help to estimate the form error of manufactured 

parts. This is done with the purpose of providing better tools to the metrologists so that 

they can make accurate decisions regarding the status of the machining and inspection 

process. 

A secondary goal of this chapter is to create robust geometric models that are not 

dependant on powerful fitting algorithms to extract the parameters of the part. This means 

that, if the geometric model is capable of representing the form deviations of the part that 

is being inspected, then the zone of error will be accurately calculated regardless of the 

fitting algorithm used. Furthermore, the geometric models must also be as simple as 

possible in order to make them easy to apply and thus computationally efficient.  
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The achievement of these goals requires the use of two developed approaches: 

called the Dynamic Angle Approach (DAA) and the Free Form Orientation (FFO). The 

former focuses on the dynamic calculation of the magnitude of the angles and the latter 

on the correction of the axis misalignments. In addition, this chapter also provides 

information about the implementation of each of the mathematical models, such as 

constraints that must be used in order to maintain the performance of the models. 

 

6.1 Form Tolerance Verification 

Form tolerance verification is a procedure used to determine the quality of a 

manufactured part. The procedure involves the use of three elements: the measurements; 

a mathematical model that represents the geometry of the part, the origin offsets and the 

misalignments due to the axis of assessment; and, last but not least, a fitting algorithm 

that is used to compare the measurements against the mathematical model in order to 

extract the dimensions and form of error from the measurements. Therefore, if a 

mathematical model is not robust enough to represent the form of error of the part, then a 

powerful fitting algorithm must be used in order to get the accurate parameters and form 

deviations. On the other hand, if a robust mathematical model is created, then any good 

fitting algorithm is able to extract the information from the measurements.  

The present study proposes newly developed mathematical models and two 

approaches that improve the performance of the existing models. Hence, the models are 

analyzed using a simple but strong fitting algorithm, such as the minimum zone method 

in the form of a nonlinear programming problem. In the literature, there are several fitting 

algorithms that have been applied to study the form tolerances of manufactured parts, 
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such as the least squares method, minimum zone, support vector regression, Voronoi 

diagrams, convex hulls, and simplex method, among others. Among all of these 

algorithms, the least squares method is one of the most used due to its simplicity and the 

fact that is computationally efficient. However, it has been proved that the algorithm 

tends to overestimate the zone of error, which causes the rejection of good parts (Anthony 

1986). For this reason the ANSI and ISO standards have adopted the use of the minimum 

zone method that focuses on creating an envelope form that encloses the deviations (di). 

The shape of the envelope is identical to the form being inspected, such as the zone of 

error of the torus form shown in Figure 38. The envelope is created by minimizing the 

maximum normal deviation. Hence, the magnitude of the zone of error (H) of any form is 

based on residuals that are normal to the form being inspected, and it is calculated by 

subtracting the smallest negative deviation from the largest positive deviation, as shown 

in Equation (6.1). 

 ( ) ( )ii ddH minmax −=  (6.1)

 

 

Figure 38. Graphical representation of a minimum zone of error of a torus form. 
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The minimum zone algorithm is solved using the minimax approach which 

models each deviation function (di) as an inequality constraint. According to Winston 

(1995) each variable in the function that is unrestricted in sign should be modeled as the 

difference between two positive variables, while the variables that are always positive 

must be left without modification. Hence, the constraints needed to evaluate each 

mathematical model or deviation function are presented at the end of the section of each 

form feature. 

 

6.2 Circular Form 

The circle or curve segment has two parameters that describe its form: the radius 

(R) and the location of the origin (x0, y0). Shunmugam (1987) and Samuel et al. (2003) 

studied two different approaches in which the circular form can be evaluated; one is 

known as the linear circular model and the other as the nonlinear circular model. The 

linear model was developed based on the principles of the Limacon approximation 

developed by Chetwynd (1979), in which it is assumed that the axis of the assessed circle 

is oriented perfectly with the z-axis and that there exist origin offsets between the origin 

of the machine (OS) and the geometrical origin of the part (OC). Equation (6.2) shows the 

Limacon approximation where the value of (ρ) is the radial distance from the origin of 

the machine to the location of the ith point, and it is calculated by adding the radius of the 

circle plus or minus the terms that compensate the horizontal and vertical differences 

between the machine and the part origins.  

 )sin()cos( 00 ii yxR θθρ ++≅  (6.2)
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where (R) represents the radius of the circle, (x0) is the variable used to represent 

the origin offsets in the x direction, (y0) is the variable used to represent the origin offsets 

in the y direction, and (θi) represents the location of the ith point on the xy plane and it is 

obtained using Equation (6.3). 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

i

i
i x

y1tanθ  (6.3)

In general, the form deviations (di) are obtained by subtracting the ideal form 

from the measured data points. For circular shapes, the ideal form is obtained by using 

the Limacon approximation shown in Equation (6.2), while the assessed data is obtained 

from the radial distances (ri) shown in Equation (6.4) that are found by using the 

Euclidian distance between the ith point and the origin of the machine OS(0,0). Hence, 

the model to verify circular forms is found by substituting Equations (6.3) and (6.4) in 

Equation (6.5). 

 22
iii yxr +=  (6.4)

 ( ) ( )[ ]iiii yxRrd θθ sincos 00 ++−=  (6.5)

The model to verify circular forms shown in Equation (6.4) has been proven to be 

effective in the literature. However, several researchers have applied the Limacon 

approximation principle to evaluate form tolerances of circles (Shunmugam, 1987, 

Samuel et al., 2003), spheres (Shunmugam, 1987, Balakrishna et al., 2005), cylinders 

(Shunmugam, 1987), cones (Prakasvudhisarn et al., 2004), and torus (Aguirre Cruz et al., 

2005) and have regarded the angle (θi) as a constant term, obtained by using Equation 

(6.3). It can be seen from Figure 39, that the angle (θi) depends on the location of the 

origin of the inspection equipment. Thus, if the origin changes, then the angle (θi) should 



 178

be updated as well, resulting in a more accurate approach to find the parameters of the 

feature than the approach used when the angle (θi) is regarded as a constant term. For this 

reason, the present research proposes an approach called the “Dynamic Angle Approach 

(DAA),” which is an improvement to the Limacon approximation that is used to avoid 

this problem. 

Figure 39 shows two perfect circles that are hypothetically evaluated using the 

constant angle approach (left circle) and the proposed dynamic angle approach (right 

circle). It is assumed that the origin of the machine is in a different position than the 

geometrical origin of the part. Therefore, for this example the geometrical origin (OC) of 

both circles is located a few inches to the southwest side of the machine origin (OS).  

 

Figure 39. Circular form evaluated using constant angle approach (left), and dynamic 
angle approach (right). 

 

Then a fitting algorithm is used to extract an optimal solution for the parameters 
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solution lies. The solution then is based on inaccurate radial distances and angular 

magnitudes. On the other hand, when the optimization tool is applied to the circle in the 

right, then the mathematical model updates the origin offsets as well as the radial 

distances, which provides a better estimate of the parameters of the circle. Hence, this 

problem can be solved either by redesigning the existing models in order to make them 

insensitive to origin offset or avoiding the use of angles in the mathematical models. Both 

proposed solutions are explained in the following sections and are applied to the 

mathematical models of sphere, cylinder, cone, frustum, and torus forms.  

In contrast, the nonlinear model developed by Shunmugam (1987) is claimed to 

be more accurate than the linear model since it obtains the circle deviations by 

subtracting an ideal radial distance (R) from the measured radial distance. The latter 

distance is referred in this research as (ris) and is obtained in a different way than the 

radial distance (ri) because this uses the location of the origin of the circle Oc(x0, y0) as a 

part of the Euclidian distance that represents the measurements. Equation (6.7) shows the 

nonlinear model that is obtained by subtracting the ideal radial distance (R) from the 

measured radial distance (ris) shown in Equation (6.6).  

 ( ) ( )2
0

2
0 yyxxr iiis −+−=  (6.6)

 ( ) ( ) Ryyxxd iii −−+−= 2
0

2
0  (6.7)

 

6.2.1 Dynamic Angle Approach Applied to Circular Forms 

The mathematical principle behind the dynamic angle approach is to define the 

measured radial distances (ris) in terms of the origin offsets and angles of the Limacon 
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approximation in terms of the x, y, and z components of the measured points and the 

origin offsets. The adjustment will force the fitting algorithms to find an optimal value for 

the parameters of the geometrical form that minimizes the zone of error based on the 

magnitude of the origin offsets, the radius of the circle, and the angular location of the 

data points. In the literature, authors have developed mathematical models to verify the 

form tolerance of different forms. Out of these papers, the studies performed by Chen et 

al. (2000) and Samuel et al. (2003) came closest to updating the magnitude of the angles. 

Chen et al. (2000) developed a model to inspect conical parts based on the maximum 

inscribed cone and minimum circumscribed cone. The authors defined the half angle of 

the cone in terms of the axis of assessment and the radial distances, which helped them to 

identify the data points that gave the maximum and minimum angles in order to 

determine the parameters of the tapered cone. Samuel et al. (2003) studied the form 

tolerances of round parts by using the linear and nonlinear mathematical models to 

describe these shapes. The point coordinates used in both approaches was identical; the 

only difference was that the data used for the linear approach were transformed into 

radial distances and angular values. The transformation involved the use of a reference 

circle with radius (rR) and origin (xR, yR) that was generated by selecting three points from 

the dataset. The origin of the reference circle was used to calculate the ith angle of each 

data point, as seen below. 
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The numerical calculation of the angles was performed before applying any fitting 

algorithm. Although the angle was updated based on the circle origin, the fitting 

algorithm did find the parameters of the circle based only on the radius and origin offsets, 
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missing the fact that the magnitude of the angles are also affected by the calculation of 

the origin offsets. Therefore, the next lines show the changes needed to redesign the 

linear model shown in Equation (6.5). 

First, the model is adapted to the principles of the dynamic angle approach. To do 

this, the original calculation of the angle (θi) given by Equation (6.3) as well as the sine 

and cosine identities must be replaced by an expression defined in terms of the origin 

offsets (x0, y0), which will aid the model to update the angles each time the fitting 

algorithm provides a new origin position. Thus, the angle (θi) and the trigonometric 

identities are symbolically calculated in terms of the ith point coordinate and the origin 

offsets, as seen in Equations (6.9) to (6.11).  
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It is important to mention that the trigonometric functions are blind regarding the 

position of the (xi) and (yi) components. This means that sometimes the sign obtained by 

these identities does not represent the real position of the point in space. For example: if a 

point is located at 225 degrees, then the sign of the trigonometric function of x=-3 and 

y=-3 should be negative, but if this coordinate is used, then the value obtained will be as 

if the point were located at 45 degrees on the first quadrant instead of the third quadrant, 

seen in Equation (6.12). Therefore, Equations (6.10) and (6.11) should be modified as 

shown in Equations (6.13) and (6.14) to avoid this problem.  
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where the trigonometric identities are enclosed into an absolute value and the sine 

and cosine identities are multiplied by the sign of the x and y components, respectively. 

This provides the accurate location of the point. Finally, the linear model in Equation 

(6.5) is modified by replacing the constant angle identities by the dynamic angle 

identities, seen in Equation (6.15). 
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In theory, the previous model should be more efficient than the existing model, 

since it takes into consideration the updated angles. However, both models can be 

theoretically improved if the measured radial distance is calculated using Equation (6.6) 

instead of Equation (6.4). Thus, the model to inspect circular parts is obtained by 

replacing the radial distance (ri) by (ris), as shown in Equation (6.16). 
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6.2.2 Form Verification of Circular Forms (Circularity/Roundness) 

The form tolerance to verify circular forms is known as circularity or roundness, 

and it is defined by ANSI Y14.5M-1994 (ASME 1995) as the condition in which all 

assessed points are equidistant from an axis and belong to a plane that is perpendicular to 

that axis. The circular form is evaluated using four mathematical models that follow the 

definition of the standards, the two models proposed by Shunmugam (1987) and the two 

developed models that contain the principles of the dynamic angle approach, shown in 

Equations (6.5) to (6.7) and Equations (6.15) and (6.16), respectively.  

The magnitude of the zone of error of circular forms is obtained by subtracting the 

smallest negative normal deviation from maximum positive normal deviation. In this 

case, the residuals provided by the four mathematical models are already normalized and 

so there is no need to transform the data. In addition, all variables that are unrestricted in 

sign must be represented as a difference between two positive variables, while the 

positive ones should remain the same. Hence the additional constraints for the four 

models are: 
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6.3 Spherical Form 

The sphere represents challenges to the manufacturing environment due to its 

complex form. Several factors can cause the form to be out of the spherical shape, such as 

machine vibrations, tool wear, depth of cut, work misalignments, and properties of the 

material, among others. For this reason, it is important to study the mathematical models 

that describe these shapes, in order to capture as many form errors as possible. 

In Chapter 2, it was mentioned that the spherical forms are evaluated by means of 

two commonly used mathematical models, the linear spherical model and the nonlinear 

spherical model. Although the sphere is a nonlinear shape by nature and the spherical 

nonlinear model should perform better than the linear model, Samuel et al. (2003) found 

slightly different results. He compared the accuracy of the nonlinear and linear spherical 

models against the procedure used by Fan et al. (1999). Samuel et al. (2003) applied 50 

Cartesian coordinates obtained from Fan et al.’s (1999) research to the nonlinear 

spherical model. In addition, the 50 point coordinates were transformed into polar 

coordinates and applied to the linear spherical model. The zones of error obtained for the 

nonlinear and linear models were 7.66023 micrometers and 7.66011 micrometers, 

respectively; while the results obtained from Fan’s research were 7.66 micrometers. 

Therefore, the latter shows that both models can perform in a similar way, regardless of 

the properties of the models. For this reason, this section focuses on transforming the 

linear model into a nonlinear model by applying the principles of the dynamic angle 

approach. Equations (6.18) and (6.19) were introduced in Chapter 2; however they are 

rewritten in the next lines in order to ease the reading of this paper.  
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The linear spherical model compares the measurements (ri) against the ideal form 

composed by the parameters (R), (x0), (y0), and (z0), where the last three parameters are 

multiplied by the calculated vertical and horizontal components of the angles (θi), and 

(αi), where the angle (θi) represents the relation between the x and y components and the 

angle (αi) represents the relation between the z and xy components. The measurements 

are calculated by applying the Euclidian distance between the ith point and the origin of 

the system Os (0, 0, 0), as seen in Equation (6.20). 

 ( ) ( ) ( )222 000 −+−+−= iiii zyxr  (6.20)

The linear spherical model has been studied by Kanada (1995), Shunmugam 

(1987), Samuel et al. (2003), and Balakrishna et al. (2005), who regarded the magnitude 

of the angles as a constant value. Kanada (1995) used a Laplace spherical function to 

simulate the spherical errors where the angles (θi), and (αi) were generated using the 

variables n and m obtained from the simulation algorithm. The angle (θi) described the 

relation between the z and the xy components, while the angle (φi) defined the relation 

between the x and y components, shown in Equations (6.21) and (6.22). 
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Samuel et al. (2003) obtained the two mentioned angles by applying the concepts 

of trigonometry, as seen in Equations (6.23) and (6.24); where (θi) represented the 

position of the point on the x and y components, and (βi) described the position of the 

point between the z and xy components. The angles were calculated by subtracting from 

each measured point a reference coordinate, which is obtained by selecting three points 

on a reference sphere and calculating the location of the origin. This location provided the 

origin offsets that were subtracted from the measured points, similar to the procedure 

used in the circular form. 
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Finally, Balakrishna et al. (2005) applied similar formulas to the model used by 

Samuel et al. (2003). The only difference is that the first authors did not subtract the 

reference point; they only calculated the angles based on the measured data. From 

Equations (6.25) and (6.26) it can be seen that (θi) shows the position of the point 

coordinate between the x and y components, while the angle (αi) shows the position 

between the z and the xy components. 
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Although the calculation of these angles varies according to the three mentioned 

authors, all of them estimated and used the angular values as a constant. This means that 

once the value of the angle is calculated, it will not change regardless of the value of the 

estimated parameters of the sphere. This procedure might induce some errors because the 

purpose of the sphericity algorithm is to find the radii and origin offsets that minimize the 

zone of error. Thus, if the location of the origin changes, then the estimated angles should 

change in the same proportion. This means that the sphericity algorithm should estimate 

the angles in a dynamic way instead of fixing them. Samuel et al. (2003) used the correct 

formulas since they adjusted the angle calculation by using a reference origin. However, 

they applied a fixed angle value on the fitting algorithm instead of using a dynamic one.  

This research proposes three mathematical models to study the verification of 

spherical forms by applying the dynamic angle approach. The first two models are similar 

to the two models developed for the circular forms, while the third model is different 

from the other two since it does not contain trigonometric functions, as is explained 

below. 

6.3.1 Dynamic Angle Approach Applied to Spherical Forms 

The first two models are obtained by modifying the constant angles of Equation 

(6.18) into dynamic angles. The angles (θi) and (αi), which represent the position of the 

data point between the x and y components and the position of the point between the z 

and xy components, respectively, are calculated symbolically by adding the components 

of the origin of the system (Os), as shown in Equations (6.27) and (6.28) and Figure 40. 
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Figure 40. Parameters used in the calculation of the spherical form error. 
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Hence, Equations (6.29) and (6.30) show the first two models to inspect the 

spherical form that are found by substituting the dynamic angles and the proper sign of 

each trigonometric function into the linear spherical model. The difference between the 

two models is basically the way in which the measured radial distance is modeled, where 

the first model uses the (ri) distance from Equation (6.18) and the second model uses the 

(ris) radial distance. 
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6.3.2 Model of Spherical Form without Trigonometric Identities  

Following the second solution proposed in Section 6.2 to improve the form 

verification models, the third model is constructed by removing all trigonometric 

functions in order to determine if these are causing inaccuracies in the model. Firstly, 

according to Weisstein (1999) the definition of the cosine of an angle is given by the 

relation between the adjacent side of the triangle and the hypotenuse, while the sine is 

given by the relation between the opposite side of the triangle and the hypotenuse. The 
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cosine and sine functions of the ith point are defined as shown in Figure 41 and Equations 

(6.31) to (6.34). 

 

 

Figure 41. Cartesian and trigonometric components of the ith point. 
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Then, each of these Equations is substituted in the linear model shown in 

Equation (6.18), which provides a model without trigonometric functions, as seen in 

Equation (6.35).  
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From the previous Equation, the middle terms of (x0) and (y0) can be simplified by 

canceling out the Euclidian distances between x and y. Thus, the simplified model is 

shown in Equation (6.36). 
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Finally, it can be seen that the terms that model the origin offsets contain the 

Euclidian distance between x, y and z. Hence, if the right side is representing the ideal 

form then all of these distances can be substituted by the ideal radius of the sphere (R), 

which simplifies the model even more, as seen in Equation (6.37).  
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6.3.3 Form Verification of Spherical Form (Sphericity) 

The form verification of spherical forms is also known as sphericity. In the 

present research, three sphericity models have been developed that analyze the zone of 

error of spherical forms in different ways. However, they all provide residuals that are 

normal to the surface. Thus, the zone of error is obtained in a straightforward way. The 

additional constraints needed for the above models are: 
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6.4 Cylindrical Form 

The cylinder is created by joining together both ends of a 3-Dimensional plane 

where every point on the surface is equidistant to a central axis, and its upper and lower 

ends are bounded by two parallel planes. The parameters of the cylinder include the 

radius (r), which is the perpendicular distance from the central axis to the surface of the 

cylinder; and the height of the cylinder (h); Figure 42. 
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Figure 42. Parameters used in the analysis of the cylindrical form. 

 

The height is not as important as the radius because the cylindrical form does not 

depend on the height; it only depends on the magnitude of the radius. The cylinder was 

studied by Shunmugam (1987), Lai et al. (1996), Carr et al. (1995), Narayannan 

Namboothiri (1998), and Prakasvudhisarn (2002). Shunmugam (1987), Narayannan 

Namboothiri (1998) and Prakasvudhisarn (2002) studied the cylindrical form using two 

models: they all used the same linear model that is improved in the present research, and 

they used two different nonlinear models. Lai et a. (1996) studied the cylindrical form by 

transforming it into a planar surface, while Carr et al. (1995) verified the cylinder 

deviations using two approaches: one by extracting the parameters by fitting the 

measured data into a reference cylinder and the other by fitting the data into a common 

cylindrical axis. The results obtained from Carr’s (1995) and Prakasvudhisarn’s (2002) 

nonlinear models are compared against the nonlinear model developed in the present 

research. 

The present research proposes two models to inspect the cylindrical form. The 

first model adapts the dynamic angle approach to a model studied by Shunmugam (1987), 

Narayannan Namboothiri (1998), and Prakasvudhisarn (2002), and the second model is a 
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nonlinear approach that uses information from a 3 dimensional point coordinate to 

inspect the cylinder with spherical radial distances. 

 

6.4.1 Model of the Cylindrical Form using the Spherical and the Dynamic Angle 

Approaches 

The linear model shown in Equation (6.39) was used by Shunmugam (1987), 

Narayannan Namboothiri (1998), and Prakasvudhisarn (2002). The model uses the (xi) 

and (yi) components of the ith point coordinate and transforms the data into radial 

distances that depend on the axis of revolution of the cylinder. Although the 

manufactured parts are created using computer controlled machines, they are not error 

free. Thus, the model has to compensate for any axis misalignments due to the machining 

process or induced by the inspection process. The axis misalignment is represented by the 

vector of the cylinder axis [m, n, 1], which is the normal vector of the cylindrical feature. 

Then the model analyzes the measured data in order to find the inclination of the 

cylindrical form that minimizes the form of error.  

 ( ) ( ) ( ) ( )[ ]iiiiiiii ynzxmzrrd θθθθ sinsincoscos 00 ++++−=  (6.39)

where the angle (θi) defines the location of the point on the xy plane. Therefore, if 

this angle is defined as a dynamic angle (Equation 6.40) then the modified cylindrical 

model with the dynamic angle approach principle will look like Equations (6.41) and 

(6.42). 
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6.4.2 Model of the Cylindrical Form with Free Form Orientation 

The nonlinear model presented in this section studies the form deviations of the 

cylindrical form by using information from the three components of the ith point. This 

means that the cylinder is studied using a finite number of spheres or a finite number of 

radial distances that are transformed into normal deviations.  

From Figure 43, it can be seen that the radius of the cylinder of the ith point (rhi) 

is given by multiplying the radial distance (ris) times the cosine of the angle (αi). 

However, the angle (αi) is not a constant term for all radial distances (ri). Thus the angle 

(αi) is obtained with the inverse tangent of the relation between the vertical component 

(zi) and the ideal radius of the cylinder (r), as seen in Equations (6.43) and (6.44). 

 

 



 196

 

 

Figure 43. Front and top views of the free form orientation model for cylindrical forms. 
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The relation shown in Equation (6.44) assumes that the axis of the cylinder is 

perfectly aligned with the z-axis of the inspection equipment. Thus, it is necessary to 

compensate for any axis misalignment. The (zi) used to calculate the angle (αi) must be 

corrected in order to apply the free form orientation approach to the model. A simple way 

to do this is to apply the flatness model developed by Shunmugam (1987) to each of the 

(zi)’s used in the calculation of the angle, as shown in Equations (6.45) and (6.46), 

respectively. By doing this, the model rectifies the value of (zi) according to the 

inclination of the axis of the cylinder and calculates the normal vector of each ith plane 

that minimizes the zone of error. Therefore, the model can find the measured points in 

any location of 3-dimensional space.  
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In addition, it can be seen from Equation (6.44) that the (zi) contained in the 

Euclidian distance is not affected by the flatness model, due to the fact that the distance 

obtained from that calculation belongs to the cylinder surface regardless of the inclination 

of the cylindrical form. Hence, the only (zi) affected is the one used to calculate the angle 

(αi). Finally, the nonlinear model to verify the form deviations of the cylindrical form is 

obtained by subtracting the radius of the cylinder (r) from the radius of the cylinder of the 

ith point (rhi), as seen in Equation (6.47) and in Figure 44. 
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The advantages of using this model compared to the one above are that: 

- The model can find the cylindrical feature anywhere in the 3-dimensional 

space. 

- The cylinder axis does not have to align with the z-axis of the inspection 

equipment, and  

- Complete information from the ith point coordinate is being used to 

extract the parameters from the data. 
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Figure 44. Free Form Orientation approach applied to the study of cylindricity. 

 

6.4.3 Form Verification of Cylindrical Forms (Cylindricity) 

The form tolerance zone of cylindrical forms is also known as cylindricity, which 

is studied in the present research using three mathematical models shown above. The 

residuals provided by the three models are normal to the surface, so there is no need to 

modify them. The additional constraints needed to solve the cylindricity models are 

defined as follows: 
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6.5 Complete Conical Form 

The conical form can be found in several mechanical assemblies in two common 

configurations: the complete conical form and the conical frustum form. The latter feature 

is the most used in industry and it is also known as tapered cone, which was studied by 

Chen et al. (2000), Liu et al. (2004), and Prakasvudhisarn et al. (2002), while Charterjee 

et al. (1998) and Prakasvudhisarn et al. (2002) studied the complete conical form. The 

present research analyzes both conical forms in a separate way, where two different 

mathematical models are used to describe the form of these shapes.  

The complete conical form is studied using two brand new models. The first 

developed model uses the spherical form and the dynamic angle approach to inspect the 

form of the cone. This modification makes the model less sensitive to origin 

misalignment, but the only disadvantage is that the axis of the conical form needs to be 

aligned as close as possible with the z-axis of the inspection equipment. For this reason, a 

new nonlinear model is developed that applies the free form orientation principles that 

were adapted to the cylindrical form. 
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6.5.1 Model of the Complete Conical Form using the Spherical and the Dynamic 
Angle Approaches 

 
The mathematical analysis of the complete conical form requires the use of the 

three Cartesian components of the measured data, which are used to extract the 

parameters of the cone. The main idea behind the model is to measure the cone as a finite 

number of virtual spheres. The origin of the cone and the origin of these spheres are 

located at the vertex of the measured cone. Thus, each measurement (Pi) provides a radial 

distance from the vertex of the cone (origin of the sphere) to the location of the point (Pi) 

(which lies on the surface of the cone and on the surface of the virtual sphere). Since the 

cone is measured (n) number of times, then each distance can be represented as a radial 

distance. For this reason, the analysis of the cone is performed as if it were composed of a 

set of (n) virtual spheres of different radii, as seen in Figure 45. The radii of the virtual 

spheres can be transformed into the cone deviations that are normal to the surface by 

applying the principles of analytic geometry, trigonometry, and nonlinear programming 

algorithms. 

 

Figure 45. Virtual spheres superimposed on the conical form. 
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The conical form has three main parameters: the height of the cone (h), the radius 

of the base of the cone (r), and the angle (γi) that determines the relation between the 

height of the cone and the length of its base. In addition, there is one more parameter that 

can be obtained based on the magnitude of the parameters mentioned above. The angle 

(αi) together with the 90-degree angle and the angle (γi) creates the internal angles of one 

of the triangles that composed the cross section of the cone. Figure 46 portrays the cone 

in the form of a kite. The shape of the cone is the top part described as a shaded cross 

section, while the bottom of the kite is used to calcualte the normal deviations of the 

cone. 

 

 

Figure 46. Parameters used in the analysis of the complete conical form.  

 

The geometrical deviations of the cone (di) are found by comparing the surface 

measurements of the manufactured cone against an ideal cone surface. In this model, the 
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surface measurements are converted into radial distances (ri) that are compared against 

calculated ideal radial distances (rSi), as seen below. 

 Siii rrd −=  (6.49)

The proposed model is explained by using an example based on a single 

inspection point, which is divided into two parts. The first part is concerning the 

definition of the ideal identities needed to perform the analysis, while the second part 

concerns the application of those identities to develop the mathematical model that 

estimates the cone deviations. 

The calculation of the ideal distances requires the analysis of five perfect triangles 

that are obtained from the kite shape explained above. From Figure 47, it can be seen that 

the first three triangles share the same proportions of its sides, this is the reason why they 

all have the same magnitude of their angles. The first triangle can be described as one 

half of the cross section of the conical form and has a height (v1) equal to (h), and a radius 

of the base of the cone given by (r). The hypotenuse of this triangle is the maximum ideal 

radial distance (rimax), which is the radius of the biggest sphere that can be generated and 

can be obtained symbolically by applying the Pythagorean Theorem. In a similar way, the 

relations of the angle (γ) are obtained by using the trigonometric identities, as seen in 

Equations (6.50) to (6.54). 

 hv =1  (6.50)
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h
r

=γtan  (6.54)

The second triangle is located under the first triangle and is created by using the 

radius of the base of the cone and the ideal maximum normal distance of the cone (aimax). 

Equation (6.55) shows the calculation of the hypotenuse (aimax) of this triangle using a 

different relation than the one develop in Equation (6.53). 

 

max

cos
ia
r

=γ  

 
γcosmax

rai =  (6.55)

Accordingly, the vertical side (v2) can be obtained symbolically in terms of the 

tangent of the angle (γ), as seen in Equation (6.56). 

 
r
v2tan =γ  

 γtan2 rv =  (6.56)

The third triangle is located at the right of the first triangle and is created by using 

the ideal maximum radius of the virtual sphere (rimax) and the maximum normal distance 

of the cone (aimax). The height of this triangle is obtained by adding together the height of 

the first and second triangles, seen in Equation (6.57). 

 213 vvv +=  

 γtan3 rhv +=  (6.57)
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Figure 47. Right triangles used to analyze the complete conical form. 

 

The fourth and fifth triangles are generated according to the location of the ith 

measuring point. Thus, the explanation of these triangles is included in the example 

shown in the next lines. The measuring point Pi (xi, yi, -zi) used in this example has a 

negative (zi) due to the fact that the point is located under the origin located at the vertex. 

It can be seen from Figure 47 that the location of the point (Pi) generates the fourth and 

fifth triangles, which are similar in proportions as the other three triangles.  

The measurement of the ith point is converted into a radial distance (ris) or radius 

of the ith virtual sphere by applying the Euclidian distance principle, where the variables 

that control the origin offsets are introduced to the formula in order to compensate for 

those misalignments, similarly as it was done in the previous geometric shapes shown 

above. 
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Equation (6.58) is compared against the ideal radial distance (rSi), which is 

obtained by following the next steps. Firstly, the mathematical formula that describes the 

ideal radial distance must be defined using the parameters of complete conical form in 

order to use them to extract the parameters of the assessment cone. Therefore, the ideal 

radius of the ith sphere (rSi) is calculated by transforming the ideal normal distances (ai) 

of the fourth triangle into radial distances, which can be achieved by multiplying each (ai) 

by the inverse of Equation (6.54), shown in Equation (6.59). 
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The second step is to obtain the value of the ideal normal distance (ai) by 

subtracting the complementary ideal normal distance (ui) of the fifth triangle from the 

ideal maximum normal distance (aimax) obtained in Equation (6.55), seen in Equation 

(6.60). 
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The third step is to calculate the vertical side of the fifth triangle, which is going 

to be used to obtain the value of (ui). From Figure 48, it can be seen that the height of the 

fifth triangle is obtained by the height of the first (v1), second (v2), third (v3), and fourth 

(v4) triangles. The height of the first, second, and third triangles was already obtained in 
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Equations (6.50), (6.56), and (6.57). The only variable remaining is the height of the 

fourth triangle that is obtained by transforming the third Cartesian component (zi) into a 

height that represents the total height of the kite or height of the third triangle. The main 

reason that this transformation needs to be done is because the ideal normal distances (ai) 

are created using the height of the third triangle instead of using only the original height 

of cone (v1). Therefore, the height of the fourth triangle is calculated by using the 

similarities between the first and third triangles, where the (z0) component is added to the 

(zi) value in order to counteract the effect of the origin offsets, as seen in Equation (6.61).  

 

 

Figure 48. Ideal triangles used to calculate the cone deviations. 
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Thus, the height of the fifth triangle is determined by two terms, which is the 

height of the second triangle (Equation 6.56) and the difference between the height of the 

first triangle (v1) minus the height of the fourth triangle (v4), as it is described in Equation 

(6.62). 
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From the first triangle, it is known that the tangent of the angle (γ) is given by the 

ratio between the height of the cone (h) and the radius of the base of the cone (r). Thus, 

Equation (6.62) can be simplified by implementing Equation (6.54) 
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The fourth step is to calculate the value (ui), which is given by applying the sine 

identity to the fifth triangle and solving for (ui), as described in Equations (6.64) and 

(6.65). 
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Equation (6.65) can be simplified by substituting Equation (6.52) that was 

obtained from the first triangle, as seen below.  
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Finally, the fifth step is to substitute Equations (6.53) and (6.66) in Equation 

(6.60) in order to obtain the ideal value of the radial distances in terms of the parameters 

of the cone. Equation (6.67) shows the final equation, which was algebraically simplified 

in order to reduce the computing time. 
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Equation (6.68) shows the calculation of the residuals of the cone that are 

obtained by substituting Equations (6.58 and 6.67) in Equation (6.49). 
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The residuals obtained by Equation (6.68) are not the true normal deviations of 

the conical surface, since they come from the radial distances. Hence, in order to generate 

the normal deviations, Equation (6.68) should be multiplied by Equation (6.54), which is 

a relation that comes from the third triangle, as seen in Equation (6.69). 
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The mathematical relation shown in Equation (6.69) to determine the normal 

deviations of the cone can be used to verify the conical form under the assumption that 

the manufacturing process used to machine the part is the only source of error. This 

means that in an ideal scenario with no misalignments from the inspection instrument, 

this relation will provide the width of the zone of error. However, this is not possible 

since it was mentioned in Section 2.5 of Chapter 2 that the inspection instruments induce 

different types of errors that can affect the output of the inspection process. Moreover, at 

the beginning of this section, it was explained that the complete conical form is analyzed 

using a finite number of spheres and for this reason, it is necessary to add the last terms 

employed in the sphericity model that counteract the effects of origin offsets of the 

spheres. However, there are some differences between the last terms of the spherical 

model and the conical model because the latter has the angle (γ) that is constant for all 
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data points, therefore the last term of each origin offset must be changed from cosine to 

sine and from sine to cosine, as see in Equation (6.70) and (6.71). 
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6.5.2 Model of the Complete Conical Model with Free Form Orientation 

The model presented in Equation (6.72) behaves similar as the cylindrical model 

shown before, in which the (zi) component of Equation (6.69) is substituted by the 

flatness model shown in Equation (6.45) in order to compensate for any axis 

misalignments and origin offsets. Figure 49 presents a graphic representation of Equation 

(6.72). 
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Figure 49. Free Form Orientation approach applied to the study of conical forms. 
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6.5.3 Form Verification of Conical Forms (Conicity) 

The form verification of conical forms is also known as conicity, which is study in 

the present research using three mathematical models shown above. The residuals 

provided by the three models are normal to the surface, this is the reason why there is no 

need to modify them. The additional constraints needed to solve the conicity models are 

defined as follow: 
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6.6 Conical Frustum Form 

The conical frustum is defined as a cone that has the top part sliced, or in other 

words is a conical section bounded by two parallel planes (Weisstein 1999). Although, the 

complete cone is more recognizable than the frustum form, the frustum is more utilized in 

industrial equipment in the form of conical bearings, conical fixtures, and in some other 

parts in the form of chamfers. The frustum form can be evaluated in a similar way as the 

verification of complete conical form. However, it is necessary to take into consideration 

that the top part does not exits, and thus making impossible for the inspection equipment 

such as the coordinate measuring machine (CMM) to set its origin in the same position as 

the vertex of the cone. For this reason, the formulas developed for complete conical 

forms should be modified so that can be suitable to verify conical frustums. The frustum 

form is analyzed using two models. The first model uses the principles of the dynamic 
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angle approach and represents the frustum deviation using a finite number of spheres. 

The second model uses the free form orientation approach that allows the model to 

extract the parameters of the frustum by searching the feature anywhere in the 3-

dimensional space. 

6.6.1 Model of the Conical Frustum Form using the Spherical and the Dynamic 
Angle Approaches 

 
The parameters of the conical frustum form are slightly different than the ones 

used to describe the complete conical form. The former has six parameters where three of 

them are the same parameters as the complete conical form, such as the radius of the base 

of the frustum given by (r), and the angles (αi, γi) used to describe the proportions of the 

sides of the frustum. The remaining three parameters are: the radius of the top plane 

given by (r’), the height of the frustum given by (h”), and the height of the peak (h’) 

given by the distance between the top plane and the imaginary vertex of the frustum, as 

seen in Figure 50. 

 

Figure 50. Parameters used in the analysis of the frustum form. 
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The deviations of the conical frustum (di) are calculated in a similar way as the 

deviations of the complete conical form, where virtual spheres are used to calculate the 

measured radial distance (ri) and the ideal radial distance (rSi). However, the frustum 

form does not posses a physical vertex, which makes it impossible to locate the origin of 

the measuring instrument in that location. Hence, the origin is positioned at the center of 

the top plane, which causes some minor changes to the analysis. 

The mathematical analysis of the frustum form requires the calculation of eight 

ideal triangles and one ideal rectangle that are going to be used to generate a symbolic 

equation in terms of the parameters of the frustum in order to determine the ideal radial 

distances (rSi). The first four triangles and the rectangular shapes are explained below, 

while the remaining triangles are explained later on due to the fact that these triangles are 

created according to the position of the ith measuring point. From Figure 51, it can be 

seen that the rectangle and first triangle are the two shapes that create the frustum form. 

However, the proportion of the sides of the second triangle is the one that define the 

width of the rectangle and radius of the first triangle. 

The rectangular shape, which creates a cylinder in 3-dimensions, has a height (h”) 

created by the height of the frustum, and a width (r’) that is created by the radius of the 

top circular plane. The first triangle is located at the left side of the rectangle and has 

parameters given by a height (v1), which is the same as the height of the rectangle and the 

radius of the base (r”) that is given by the difference between the base of the frustum (r) 

and the width of the rectangle (r’). In addition, the relation between the height and the 

radius of the base of this triangle is controlled by the angle (γ), which is obtained by 
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applying the parameters and the trigonometric identity shown in Equations (6.74) to 

(6.76). 

 "1 hv =  (6.74)

 '" rrr −=  (6.75)

 
"
"tan

h
r

=γ  (6.76)

The second triangle is created by the conical cap that is removed from the cone in 

order to create the frustum form. The parameters of this triangle are the height (v2), which 

is given by the distance from the center of the top circular plane to the imaginary vertex 

of the frustum, and the radius of the base (r’), which is given by the dimensions of the top 

plane. Similarly to the relation between the parameters of the first triangle, the angle (γ) 

controls the relation of the sides of the second triangle; as shown by the tangent and sine 

of the angle (γ) in Equation (6.77) to (6.79). 
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The third and fourth triangles are identical in form and magnitude to the second 

and third triangles used in the analysis of the complete conical form. For the third triangle 

the corresponding Equations are (6.55) and (6.56), while for the fourth triangle the 

corresponding Equation is (6.57). The role that these two triangles play in this analysis is 

not as strong as the role that they played in the complete conical form. The three 

remaining cones are explained as a part of the example since those triangles are created 
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according to the location of the ith measuring point. The point used in the following 

example is located in the same position as the location of the point used above.  

 

 

Figure 51. Right triangles used to analyze the conical frustum form. 

 

The point (Pi) is used to calculate the measured radial distance, which is 
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second triangle is substituted in Equation (6.80) with the purpose of forcing the fitting 

algorithm to extract the height between the origin from the center of the radial plate to the 

imaginary vertex of the frustum. The reason that the height (h’) is negative is because the 

offset will move the origin up making all zi’s be further down than where they were 

before the offset.  

 ( )222 'hzyxr iiii −++=  (6.80)

The ideal radial distance (rSi) is obtained by transforming the Euclidian distance 

that goes from the actual origin of the frustum to the location of the point, into a 

Euclidian distance that goes from the new origin located at the imaginary vertex to the 

location of the point. The transformation is explained using the following steps. The first 

step is to calculate the base of the fifth triangle, shown in Figure 52. The triangle is 

similar in form to the first triangle, where the proportion of the sides is given by the 

location of the ith point. The triangle has a height (v5) given by the absolute value of the 

third component of the Cartesian coordinate (zi), where the (z0) component is added to the 

(zi) value in order to counteract the effect of the origin offsets, as seen in Equation (6.81). 

Furthermore, since the first and fifth triangles are similar in proportions, the base of the 

triangle (rPi) is given by multiplying the tangent identity obtained for the first triangle in 

Equation (6.76) by the height of the triangle (v5), as seen in Equation (6.82).  
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The second step is to calculate the base of the sixth triangle. The sixth triangle is 

used to describe the location of the ith point with respect to the actual origin of the 

frustum. This triangle has a height (v6) that is the same as the height of the fifth triangle 

(v5) and the base of this triangle (rTi) that is given by the addition of the width of the 

rectangle (r’) plus the base of the fifth triangle (rPi) obtained in Equation (6.82), as seen 

in Equations (6.83) and (6.84). 
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The third step is to convert the horizontal distance (rTi) obtained in Equation 

(6.84) into an ideal radial distance (rSi) by applying the relations of the seventh triangle. 

The seventh triangle is similar in proportions to the first, second, and fifth triangles and 

shares the magnitude (rTi) with the sixth triangle. The triangle has a height (v7) given by 

adding the height of the second triangle (v2) and the height of the sixth triangle (v6). It can 

be seen from Figure 52 that the hypotenuse of this triangle is given by the ideal radial 

distance (rSi). Thus, the ideal radial distance (rSi) is given by applying the sine of the 

angle (γ) to this triangle, and substituting Equation (6.84) in Equation (6.85), as seen in 

Equation (6.86). 
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Figure 52. Ideal triangle used to calculate the frustum form deviations. 

 

Finally, the symbolic equation to calculate the ideal radial distances (rSi) that 

involve all parameters of the frustum is found by substituting Equation (6.79) in Equation 

(6.86). 
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Equation (6.88) shows the calculation of the residuals of the frustum that are 

obtained by substituting Equations (6.80) and (6.87) in Equation (6.49). 
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The residuals obtained by Equation (6.88) are not the true normal deviations of 

the frustum surface, since they come from the radial distances of the sphere. In order to 

generate the normal deviations, the Equation (6.88) is multiplied by the sine relation 

obtained from the eighth triangle. However, this relation is equivalent to the relation 

shown in Equation (6.76), which comes from the first triangle and is based on the ideal 

parameters of the frustum. Therefore, Equation (6.88) is multiplied by the ratio between 

the parameters of the first triangle, as seen in Equation (6.89). 
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The Equation (6.89) can be used to inspect frustum forms that are aligned as close 

as possible with the z-axis of the inspection instrument. Furthermore, the frustum is 

analyzed using a finite number of spheres that follows the same geometry as the cone. 

For this reason, it is necessary to add the last terms employed in the conicity model to 

counteract the origin offset, as seen in Equation (6.71).  
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6.6.2 Model of the Conical Frustum Form with Free Form Orientation 

The model presented in Equation (6.89) assumes that the frustum form is 

perfectly oriented with the z-axis of the inspection instrument. However, this is not 

always the case because sometimes the axis of both the manufactured part and the 

inspection instrument are not always aligned. Hence, the (zi) component of Equation 

(6.89) is substituted by the flatness model shown in Equation (6.45). Therefore, the final 

model to inspect frustum forms is shown in Equation (6.91) and in Figure 53.  
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Figure 53. Free Form Orientation approach applied to the study of conical frustum. 
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6.6.3 Form Verification of Conical Frustum Form (Conicity) 

The form verification of conical forms is also known as conicity, which is studied 

in the present research using two mathematical models shown above. The residuals 

provided by the three models are normal to the surface, reason why there is no need to 

modify them. The additional constraints needed to solve the conicity models are defined 

as follows: 
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6.7 Torus Form 

The torus form has received very little attention in the literature. Aguirre Cruz 

(2003), Aguirre Cruz and Raman (2005), and Ahn et al. (2004) were the only three 

researches that have studied the tolerance verification of torus form. The form error of the 

torus is analyzed using three different models. The first model is based on the approach 

developed by Aguirre Cruz (2003) and Aguirre Cruz and Raman (2005). The second 

model is the model proposed in this research, which focuses on measuring the torus form 

using an origin as a reference instead of using the axis of assessment, similar to the 

approach used for the complete cone and frustum forms. Finally, the third model inspects 

the torus deviations using the free form orientation approach. 
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6.7.1 Linear Model of Torus Form 

Aguirre Cruz (2003) and Aguirre Cruz and Raman (2005) developed a linear 

model to inspect torus forms, which was based on radial distances that were defined from 

the axis of assessment to the location of the ith point, as shown in Equation (6.93). The 

experimental procedure developed in these researches confirms the accuracy of the model 

to represent the form deviations. However, the model applies the constant angle 

approach. Hence, the present research compares the performance of this model against 

those new models that have the dynamic angle approach. 

 ( ) ( ) ( ) ( ) ( )[ ]iiiiiiii ynzxmzacyxd θθϕ sincoscos 00
22 ++++±−+=  (6.93)

 

6.7.2 Model of the Torus Form using the Spherical and the Dynamic Angle 
Approaches 

 
Although the torus shape is completely different from conical forms, the form 

verification model is similar, in which the torus is evaluated using radial distances that 

provide the normal deviations of the inspected shape. The main idea is to assess the torus 

form as a finite combination of virtual spheres. A similar idea is found in Aguirre Cruz 

(2003), in which he proposed to transform the torus form into a sphere form. He found 

that the torus equation is a particular case of the sphere because if the radius c of the torus 

equation is set to zero then the remaining equation is identical to the equation of the 

sphere. Therefore, the present study adapts that idea, and instead of transforming the 

torus shape into a sphere, it uses several spheres to inspect the torus form, as is explained 

in the following lines. 
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The first step is to calculate the measured radial distance (ri) and the symbolic 

radial distance (ris) that goes from the origin of the inspection system (Os) to the location 

of the ith point Pi(xi, yi, zi), as seen in Equations (6.94) and (6.95). 
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The next step is to calculate all the three angles created by the ith radial distance: 

the angle (θi) that describes the location of the ith point on the x and y plane; the angle 

(ϕi) that provides information about the location of the ith point with respect to horizontal 

distance and the elevation of the point inside the torus tube; and last but not least, the 

angle (αi) that describes the location of the ith point by using the relation between height 

of the point and the horizontal distance that goes from the origin of the torus to the 

location of the point. 
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Once all angles are calculated, it is necessary to find a mathematical relationship 

to represent the radial distances (ri) and (ris) in terms of the parameters of the torus. The 

purpose of this step is to create a relationship that can be used to extract the parameters of 

the torus from the measured radial distances. As mentioned above, Aguirre Cruz (2003) 
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and Aguirre Cruz and Raman (2005) developed a model to assess torus form using 

horizontal distances that changed in magnitude according to the location of the point on 

the torus surface. The horizontal distances were calculated by adding together the radius 

of the torus (c) plus/minus the product between the torus tube radius (a) and the cosine of 

the angle (ϕi), shown in Equation (6.99). The addition or subtraction of these two values 

depends on the location of the measured point, for example if the horizontal location of 

the point is greater than the value of the torus radius (c) then it is necessary to add both 

values, but if the horizontal location is less than the value of the torus radius then it is 

necessary to subtract them. Figure 54 provides a description of the mentioned procedure. 

 

 

Figure 54. Parameters used in the analysis of torus forms. 
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The previous equation provides the value of the horizontal distance; however it is 

necessary to convert this horizontal distance into a radial distance. Therefore, if Equation 

(6.99) is divided by the cosine of the angle (αi), it will provide an ideal radial distance 
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based on the one that was calculated using the measured data, as can be seen in Equation 

(6.100) 
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The torus zone of error can be found by substituting Equation (6.100) in the 

Equations (6.29) and (6.30) on the same place as the radius of the sphere. Thus, the 

model to verify torus forms is given by Equations (6.101 and 6.102)  
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Finally, the normalized residuals (dni) are found by multiplying Equation (6.101) 

and (6.102) by the cosine of the difference between the angle (ϕi) and the angle (αi).  

 ( )iiini dd αϕ −= cos  (6.103)

 

6.7.3 Model of the Torus Form with Free Form Orientation 

The free form orientation model for torus forms is developed in a different way 

than the models for cone, cylinder, and frustum forms. The objective of the model is to 
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generate the normalized residuals by comparing the measured value of the radius of the 

torus tube (ai) against the ideal value of the radius of the torus tube (a). Thus, the 

measured radial distance (ri) must be converted into the measured value of the radius of 

the torus tube (ai). The transformation is done by following the next steps: First, the 

Pythagorean Theorem is used to convert the measured radial distance (ri) into a 

horizontal distance (rhi), as seen below.  

 ( ) 2
2

222
iiiihi zzyxr −++=  (6.104)

The (zi) component of the ith point which describes the height of the triangle seen 

in Figure 55 needs to be modified according to the principles of the free form orientation. 

This means that the (zi) needs to be adapted for any axis misalignments. Thus, the flatness 

model from Equation (6.45) is applied to this value. On the other hand, the (zi) value 

inside the square root of the measured radial distance (ri) is not affected by this procedure 

because it is used as a coordinate of a 3-dimensional space and not on its own.  

 

 

Figure 55. Nonlinear free form orientation of torus form. 
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Second, the radius of the torus (c) is then subtracted from the horizontal radial 

distance (rhi), which generates the horizontal distance (rai) inside the torus tube. 
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Third, the Pythagorean Theorem is applied between Equation (6.106) and the (zi) 

component in order to obtain the measured value of the radius of the torus tube (ai). 

Finally, the ideal radius of the torus tube (a) is subtracted from the measured value (ai) 

(Equation 6.106) providing the nonlinear torus model with free form orientation 

capabilities, as seen in Equation (6.107) and in Figure 56. 
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Figure 56. Free Form Orientation applied to the study of torisity. 
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6.8 Multiple Feature Form Evaluation 

The evaluation of multiple form features is performed by solving simultaneously 

the mathematical models that are contained in the part. Hence, no special mathematical 

models are developed for the multiple feature part. The multiple feature analysis 

presented in the chapter 8 should be viewed as a guideline for developing future research 

in the field and is by no mean intended to serve as a comprehensive analysis of feature 

interactions, orientation tolerance verification, and /or part-based tolerance analysis. It is 

interesting, however to note that adjacent feature can be analyzed jointly to identify axis 

errors, and fixturing defects. 
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CHAPTER 7 

EXPERIMENTAL METHODOLOGY 

 

7 Summary 

The proposed form verification models were evaluated by using a series of 

experiments in order to determine their performance and accuracy. The experiments were 

divided according to the form that was inspected, due to the fact that the presented 

research studied many types of form features. Each of the form features studied here are 

independent in itself and hence the type of feature form was not considered as an 

independent variable in the experiment. 

 

7.1 Experimental Tools and Apparatus 

The inspection equipment used to collect the data from the surface of the form 

features was a Brown & Sharpe MicroVal PFxTM 454 coordinate measuring machine 

(CMM) with a touch trigger probe head. The movements of the CMM were controlled 

using the numerical control (NC) mode that was programmed using the CMM software. 

The machine had a measurement repeatability of 0.00015 inches and a linear 

displacement accuracy of 0.0002 inches for each of the axes. The measuring table of the 

CMM had threaded holes that allowed the use of clamps to hold the workpieces in place 

and to avoid any movements of the parts during the inspection. The elements used to hold 

the workpiece were composed of four metric studs, four flange nuts, four screws, and 

four serrated end clamps. 
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The machine recorded the data points from the part surface using a Renishaw 

(PH9/PH10) manual touch trigger probe head that was fixed at the bottom part of the z-

axis and had the capability of holding M2 and M3 styluses. The two styluses used in the 

following experiments were: a Renishaw M2 ruby tipped stylus (A-5003-0577) with an 

overall length of 0.787 inches and a ball radius of 0.0276 inches, and a Renishaw M3 

ruby tipped stylus (A-5003-0052) with an overall length of 1.2 inches and a ball radius of 

0.0787 inches.  

A personal computer with WindowsTM 98 as an operating system was used as the 

link between the experimenter and the coordinate measuring machine. The computer had 

an interface software called TUTOR for WindowsTM that helped the experimenter to: 

qualify and calibrate each of the styluses’ tips, to translate the origin of the machine into 

the same position as the geometrical origin of the part, to run the subroutines to inspect 

the form features, and to execute the NC programs needed to collect the point 

coordinates.  

 

7.2 Experimental Design 

The response variable for these experiments was set as the width of the zone of 

error produced by the mathematical models. The width of the zone of error was affected 

by two independent variables: sample size and the type of mathematical model. The main 

reason that these two variables were chosen was because one of the goals of this study 

was to determine the accuracy and precision of the developed models in the presence of n 

number of data points.  



 234

The fitting algorithm used to analyze the data was not set as an independent 

variable in these experiments since only one algorithm was used, mentioned below as the 

minimax algorithm. Furthermore, the specimens used in these experiments were 

considered the blocking factor since they were not identically machined.  

The levels of the two independent variables were set as: 

- Sample size: 8, 32, 128, and 512 data points. 

- Mathematical model: varies according to the feature being inspected. Refer to 

Tables 30 to 35. 

A balanced factorial design model with fixed factors was used to analyze the 

variance of the width of the zone of error. The statistical model was defined by: 

 ( ) ijkijkjiijk ABBAy εβμ +++++= (8.1)

 

 where: 

  Ai is the effect of the ith sample size, 

   i = 1, ... , 4 

  Bj is the effect of the jth mathematical model, 

   j 1, ... , b 

(AB)ij is the interaction between the sample size and the mathematical 

model, 

βk is the blocked effect of the kth specimen, 

 k = 1, ..., 5 

  εijk is the random error 
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7.3 Experimental Procedure 

The experiments were performed in the precision laboratory located in Carson 

Engineering Center room CEC33 where the temperature of the room was set at 65 

degrees Fahrenheit. The aluminum parts and the measuring table of the CMM were 

cleaned using alcohol and a soft cloth in order to avoid any scratches to the surface of the 

parts. The type of features and the factor combinations of each feature were inspected in a 

random order, which was: the cylinder, sphere, cone, torus, multiple feature part, and the 

frustum.  

Once the data points were collected, the data points were stored for the analysis in 

a Dell® Inspiron 8100 laptop computer with an Intel Pentium III mobile CPU. The text 

files with the data points were cleaned using a program written in Microsoft® Excel 2000 

macros. The data points were applied to each of the mathematical models of the inspected 

feature using the worksheets of Microsoft® Excel 2000. Then, the parameters of the 

features were extracted from the data points using the function fminimax from Matlab® 

6.5 where the only information provided to the function solver was the starting point. It is 

important to mention that no upper and lower boundaries were provided to the function in 

order to verify if the models were accurate enough to yield the correct parameters of the 

form feature. Finally, the parameters and residuals were exported and analyzed using the 

Microsoft® Excel worksheets. 

 

7.3.1 Experimental Procedure for Spherical Feature 

The sphericity error was evaluated by inspecting five hemispheres that were used 

in Balakrishna’s (2005) research. The spherical forms were machined out of an aluminum 
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workpiece and were created at the top of two cylindrical features using a radius of 1.25 

inches. The manufacturing process and the tolerances used to create the five parts were 

unknown. However, it was known that the five parts were not identically machined since 

some of them had an incomplete hemisphere form. This means that the top part of the 

hemisphere feature was accurate in form but the bottom part did not meet the xy plane at 

a radial value of 1.25 inches causing a bump in the interface between the hemisphere and 

the cylindrical part. Figure 57 shows a drawing of one of the specimens used to evaluate 

the spherical form. 

 

Figure 57. Top and front view of a hemisphere part used to verify the spherical form. 

 

The spherical form was verified using two experimental procedures: the first 

experiment consisted of evaluating the performance of the two dynamic angle approach 

models (SQRT and NSQRT), the nonlinear model with no angles (NOANG), and 

Shunmugam’s linear (SL) and nonlinear (SNL) spherical models, shown in Table 30. The 

models were evaluated by collecting information about the surface from the five 

hemispheres using four sample sizes of 8, 32, 128, and 512 data points generated using 

the Hammersley sampling strategy. The stylus tip used in this experiment was the M2 
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stylus which was used to translate the origin of the CMM into the geometrical origin of 

the sphere. The procedure used for the translation of the origin was the same procedure 

explained in Chapter 5, and it was used in order to make sure that both origins were 

located very close to each other. Finally, the data points were collected using the NC 

mode of the CMM that was programmed using the software of the CMM. This approach 

was used in order to collect the data points by applying an approaching vector that was 

normal to the surface of the hemisphere. 

Table 30. Mathematical models used in the evaluation of spherical form. 
Acronym Type of Model Equation 

SL Shunmugam’s linear model (6.18) 
SNL Shunmugam’s nonlinear model (6.19) 

NSQRT DAA with No square root (6.29) 
SQRT DAA with Square root (6.30) 

NOANG No angles (6.37) 
 

The second experiment consisted on evaluating the performance of the models 

mentioned above by setting the origin of the CMM in a different position than the 

geometrical origin of the sphere. The former was located approximately 0.25 inches 

above the geometrical origin of the part. The procedure used to locate the origin at that 

position was the same as the one used above. The only difference was that the z offset 

was changed by positioning the stylus 0.25 inches above the location of the origin and 

recording a point at that height using the “z-preset” function. The five workpieces were 

inspected using the M3 stylus tip and a sample size of 32 data points that followed the 

Hammersley distribution.  

Finally, the twenty factor combinations and the five factor combinations of the 

first and second experiments respectively were randomly evaluated in order to avoid any 
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systematic errors, where the randomization function from Microsoft® Excel 2000 was 

used to determine the random order of the experiment.  

 

7.3.2 Experimental Procedure for Cylindrical Feature 

The cylindricity error was evaluated by inspecting the cylindrical features that 

were contained in the parts used in Balakrishna’s (2005) research. Although, the 

hemispheres were the principal features of these parts, the cylindrical features were 

machined accurately using a radius of 1.25 inches.  

The cylindrical features were evaluated using the dynamic angle approach model 

(SQRT), Shunmugam’s linear model (SL), and the nonlinear model with free form 

orientation capabilities (NL), as shown in Table 31. The cylindrical features were 

inspected using four sample sizes of 8, 32, 128, and 512 data points that followed the 

Hammersley distribution. The parts were not aligned perfectly with the coordinate system 

of the CMM. The misalignment was intentionally induced in order to determine if the 

models were accurate enough to capture the misalignments and to see if they could 

estimate the parameters and the zone of error in a precise way. The inclination of the part 

was induced by positioning the part above the first step of the serrated end clamp located 

at the right side of the part, which approximately rotated the axis of the cylinder to a new 

position [0.033, 0, 1], as seen in Figure 58. It is important to mention that not all the 

cylindrical feature was inspected due to the limitations of the CMM and in order to avoid 

any collision with the part. This was due to the fact that the parts were inspected by 

programming the NC mode of the CMM using the software. For this reason, a small 

region of the top part of the cylinder was inspected which had a height of 0.35 inches 
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below the origin of the hemisphere. This means that the origin of the CMM was 

translated into the geometrical origin of the hemisphere where the 0.35 inches below the 

hemisphere form were inspected. 

 

Figure 58. Inspection of cylindrical feature using an axis of revolution of [0.033, 0, 1]  

 

Table 31. Mathematical models used in the evaluation of cylindrical form. 
Acronym Type of Model Equation 

SL Shunmugam’s linear model (6.39) 
SQRT DAA with Square root (6.42) 

NL FFO Nonlinear model (6.47) 
 

7.3.3 Experimental Procedure for Conical Feature 

The conicity error was evaluated by inspecting five conical features that were 

used in Prakasvudhisarn’s (2002) research. The conical forms were machined out of an 

aluminum workpiece using a radius of the base of the cone of 1.5 inches and a height of 

the cone of 2.5 inches. The conical parts had a small pin at the base of the cone that was 

Top view 
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used to fix the part over a small square base in order to avoid movements during the 

inspection process. Figure 59 shows the conical form and the square base used in this 

experiment. 

 

Figure 59. Workpiece of a conical form used to verify the conical form. 

 

The conical parts were inspected using one experiment that consisted on 

evaluating the performance of the two dynamic angle approach models (SQRT and 

NSQRT) and the nonlinear model with free form orientation capabilities (NL), shown in 

Table 32. The parts were inspected using four sample sizes of 8, 32, 128 and 512 data 

points that followed the Hammersley distribution. The translation of the origin between 

the CMM and the conical part was performed using the procedures explained in Chapter 

5. All the data points were recorded using the M2 stylus tip by programming the NC 

mode of the CMM using the software. In addition, the twenty factor combinations were 

randomly evaluated in order to avoid any systematic errors. 

Table 32. Mathematical models used in the evaluation of conical form. 
Acronym Type of Model Equation 
NSQRT DAA with No square root (6.70) 
SQRT  DAA with Square root (6.71) 

NL FFO Nonlinear model (6.72) 
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7.3.4 Experimental Procedure for Frustum Feature 

The conical frustum error was evaluated by inspecting five frustum features that 

were used in Prakasvudhisarn’s (2002) research. The frustum forms were machined out of 

an aluminum workpiece using a radius of the base of the cone of 2 inches and a frustum 

height of 3 inches. In a similar way as the conical parts, the frustums had a small pin at 

the base that was used to fix the part over a small square base in order to avoid 

movements during the inspection process. Figure 60 shows the frustum form and the 

square base used in this experiment. 

 

Figure 60. Top and front view of a frustum form used to verify the zone of error. 

 

The frustum features were evaluated by comparing the performance of two 

mathematical models: one which used the dynamic angle approach (NSQRT) and the 

nonlinear model that uses the free form orientation capabilities (NL), shown in Table 33. 

The forms were inspected using four sample sizes of 8, 32, 128, and 512 data points that 

followed the Hammersley distribution. The data points were collected with a M2 stylus 

by programming the NC mode of the CMM using the software. In addition, all factor 
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combinations were randomly evaluated in order to diminish the probability of capturing 

systematic errors.  

Table 33. Mathematical models used in the evaluation of frustum form. 
Acronym Type of Model Equation 
NSQRT DAA with No square root (6.90) 

NL FFO Nonlinear model (6.91) 
 

7.3.5 Experimental Procedure for Torus Feature 

The torisity error was evaluated by inspecting five torus features that were used in 

Aguirre Cruz’s (2003) research. The torus forms were machined out of an aluminum 

workpiece with a radius of the torus of 1.25 inches, and a radius of the torus tube of 0.75 

inches. The parts were not all machined in the same way, since they presented similar 

machining inaccuracies as the ones explained in the spherical parts. Figure 61 shows a 

drawing of the torus forms used in these experiments. 

 

Figure 61. Workpiece of a torus form used in the verification of form error. 
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The torus forms were evaluated using two experiments: the first experiment 

consisted on inspecting the five torus parts using the M2 stylus and the NC mode of the 

CMM programmed using the software, where four sample sizes were used of 8, 32, 128, 

and 512 data points that followed the Hammersley distribution. These factors were used 

to compare the performance of the two dynamic angle approach models (SQRT and 

NSQRT), Aguirre Cruz’s Thesis model (Thesis), and the nonlinear model with free form 

orientation capabilities (NL), as shown in Table 34. 

The second experiment consisted on inspecting the five torus parts using the M3 

stylus. The parts were not aligned properly with the coordinate system of the CMM, in 

order to determine whether the models could capture the inclination of the torus form. 

The inclination of the parts was done by setting the part above the first step of the 

serrated end clamp which provided an axis of assessment of [0.033, 0, 1]. The parts were 

inspected using one sample size of 32 data points that followed the Hammersley 

distribution, which were used to verify the performance of the four models shown in 

Table 34. 

Table 34. Mathematical models used in the evaluation of torus form. 
Acronym Type of Model Equation 

Thesis Aguirre Cruz’s thesis model (6.93) 
NSQRT DAA with No square root (6.101) 
SQRT DAA with Square root (6.102) 

NL FFO Nonlinear model (6.107) 
 

7.3.6 Experimental Procedure for Multiple Feature Parts 

The multiple feature part was verified using the workpieces used in Balakrishna’s 

(2005) research. The reason that this parts were chosen was because they had two of the 

most used features in the literature: a spherical feature and a cylindrical feature. The 



 244

features were verified by solving the models of both features at the same time, where the 

mathematical model chosen for the spherical form was the dynamic angle approach 

model with square root (SQRT), while the mathematical model chosen for cylindrical 

form was the nonlinear model with free form orientation capabilities (NL), shown in 

Table 35. The purpose of this experiment was to determine if both features were created 

using the same manufacturing process. If both features were created using one machining 

sequence, then both features must share the same origin and the width of the zone of error 

of the multiple feature analysis should be equal to the maximum width of the zone of 

error of the individual feature analysis. However, if both features were machined using 

different machining sequences then the minimax algorithm should show a higher zone of 

error for the analysis of the multiple feature part than ones found for the individual 

feature analysis.  

Table 35. Mathematical models used in the evaluation of multiple feature part. 
Acronym Type of Model Equation 

SQRT DAA with Square root (Sphere) 6.30 
NL FFO Nonlinear model (Cylinder) 6.47 

 

The five parts were inspected using a sample size of 64 data points that followed 

the Hammersley distribution. The sample size was divided in two parts, where the first 32 

points were used to inspect the spherical feature, while the remaining points were used to 

inspect the cylindrical feature. The points were collected using the NC mode of the CMM 

that was programmed using the software. The M3 stylus tip was used to collect the data 

points since it was the longest tip available that was able to reach most of the cylindrical 

feature. Finally, the parts were randomly evaluated in order to avoid any systematic 

errors. 
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CHAPTER 8 

RESULTS AND ANALYSES 

 

8 Summary 

The results presented in this chapter were arranged by features in the order of 

spherical, cylindrical, conical, frustum, torus, and multiple feature forms. The parameters 

and zone for error of each of these features were analyzed using the statistical analysis of 

variance to determine the precision of the mathematical models.  

 

8.1 Results of Spherical Form 

The spherical form was evaluated using two experiments. The first experiment 

focused on evaluating the performance of the mathematical models by inspecting five 

spherical parts that were perfectly aligned with the coordinate system and origin of the 

coordinate measuring machine. Each one of the five parts was inspected using four 

sample sizes of 8, 32, 128, and 512 data points for a factor combination of twenty. The 

results obtained from this experiment showed no difference between the performances of 

the models. The estimated parameters and zones of error were identical for all models. 

Figure 62 shows the plot of the zones of error of the spherical parts at all sample sizes. It 

can be seen that the width zone of error increases as the sample size increases proving 

that more information from the surface is being captured as the sample size increases. In 

addition, the plot contains the value called “Worst,” which is given by comparing the 
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measured data points (xi, yi, zi) against an ideal radius (r), assuming no origin offsets. 

Hence, the value “Worst” is obtained as follows: 

 Worst = rzyx iii −++ 222  (8.1)

The main purpose of the comparison between the performance of the models and 

the value “Worst” was that if the width of the zone of error of the models had been found 

identical to the value “Worst” then it would imply that the origin of the CMM was 

theoretically positioned almost in the same spot as the geometrical origin of the part. If 

the models performed even worse than the value “Worst,” then it would imply that the 

models were not robust enough to be attracted to the optimal solution. Finally, if the 

width of the zone of error of the models was located well below the value “Worst,” then 

this would suggest that the origin of the CMM and the geometrical origin of the part were 

not very well aligned. Furthermore, it can be seen from Figure 63 that the estimated radii 

values of all the models were closer to the ideal value of the radius of the measured 

spheres, which was specified at 1.25 inches.  

The analysis of variance (ANOVA) was not conducted in this experiment, due to 

the fact that all models generated the same width of the zone of error and the same radii 

values. Therefore, it was assumed that all models have the same performance. 
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Width of the Zone of Error of Spherical Forms
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Figure 62. Zones of error of spherical form at different sample sizes. 
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Figure 63. Estimated radii values of the five spherical models. 
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The second experiment consisted of placing the origin of the CMM at 0.25 inches 

above the geometrical origin of the part. The five parts used in this experiment were 

identical to the parts used above. The only difference was that the parts were inspected 

using only a sample size of 32 data points. Results from this experiment showed different 

performance between the models. For this reason the width of the zone of error of the 

five models was analyzed using the analysis of variance (ANOVA), where the width of 

the zone of error was calculated by subtracting the minimum deviation (di) from the 

maximum deviation (di). For this experiment, the type of mathematical model was the 

only independent variable, due to the fact that only one sample size was applied. Figure 

64 shows the width of the zone of error generated by each mathematical model and by the 

coordinate measuring machine (CMM).  
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Figure 64. Width of the zone of error of spherical models. 
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It is important to mention that the magnitude of the zone of error of the CMM was 

included in the plots but was not included in the analysis of variance, due to the fact that 

the CMM is not a level of the factor “mathematical model” and that the type of model 

that the CMM used to calculate the parameters is unknown. 

In order to detect any violations of the ANOVA assumptions, the data were 

analyzed for normality, equal variances, and independence, which can be seen in 

Appendix D. The analysis showed that the normality assumption was validated by the 

four tests and the normal probability plot generated using the proc univariate function. 

The plots for equal variances showed a pattern close to a funnel which implied that the 

models have different variances. However, ANOVA is robust to unequal variances when 

using a balance fixed effects model (Montgomery 2001). The plot of residuals versus 

sequence was not generated due to the fact that the same data for each factor combination 

was applied to each of the mathematical models. Thus no specific order was used to 

apply the data to a particular model.  

Results from the analysis of variance showed significant differences between the 

performances of the five mathematical models. According to the results showed by the 

Tukey test using an alpha value of 0.01, the means of all models were found to be divided 

in three groups, shown in Figure 65 below. The first group was composed by the dynamic 

angle approach model with no square root (NSQRT) with a mean of 0.005929, the model 

with no angles (NOANG) with a mean of 0.004834, and Shunmugam’s linear model (SL) 

with a mean of 0.003233. The second group was composed of the model with no angles 

(NOANG) with a mean of 0.004834, Shunmugam’s linear model (SL) with a mean of 

0.003233, and Shunmugam’s nonlinear model (SNL) with a mean of 0.001704, while the 
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third group was composed of Shunmugam’s linear model (SL) with a mean of 0.003233, 

Shunmugam’s nonlinear model (SNL) with a mean of 0.001704, and the dynamic angle 

approach model with square root (SQRT) with a mean of 0.001191.  

 

NSQRT 
0.005929 

NOANG 
0.004834

SL 
0.003233

SNL 
0.001704

SQRT 
0.001191 

     

     

Figure 65. Means comparison of the factor Mathematical Model of the spherical form 
using the Tukey test. 

 

The results obtained from the Tukey test implied that the mean value of the width 

of the zone of error of the models was statistically significant. The first group had the 

highest magnitude of the means, while the third group had the smallest magnitude of the 

means. In theory, the smaller the width of the zone of error the better, since it means that 

the mathematical models were able to locate an optimal solution that represents the form 

deviations. However, this does not mean that the models were accurate regarding the 

estimated radius of the sphere because they could have generated a small zone of error 

but at a radius and origin offsets that do not represent the dimensions of the real part. For 

this reason, further analysis was done in order to determine the accuracy of the 

mathematical models. 

The accuracy of the models was evaluated by constructing a plot that combined 

the width of the zone of error and the estimated radii of the mathematical models. The 

plot was constructed by calculating a new type of residual called the residuals for the 

accuracy comparison (rac) that was calculated by adding the value of the residuals (di) to 

the correspondent estimated radius of the mathematical model. 



 251

 iac drr += ˆ  (8.2)

The advantage of using this type of residual was that it allowed the experimenter 

to understand the position and variability of each mathematical model with respect to the 

ideal value of the radius of the inspected sphere. Figure 66 confirms the findings obtained 

by the Tukey test since it shows that the dynamic angle approach model without square 

root (NSQRT), the model with no angles (NOANG), and Shunmugam’s linear model 

(SL) were the ones that had the highest zones of error.  
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Figure 66. Real zone of error of spherical models. 

 

In addition, it can be seen that the dynamic angle approach model without square 

root (NSQRT), the model with no angles (NOANG), and Shunmugam’s nonlinear model 

(SNL) overestimated the radius of the sphere; the first two models performed the worst, 

while the latter overestimated the radius of the sphere by approximately ten microinches. 
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On the other hand, Shunmugam’s linear model (SL) was the only model that 

underestimated the radius of the sphere. Out of all five models the dynamic angle 

approach model with square root (SQRT) was the only model that performed similarly to 

the results obtained from the CMM and the only one that included the value of the ideal 

radius of the sphere inside the zone of error. 

Finally, from Figure 67 it can be seen that the dynamic approach angle model 

with square root (SQRT) showed the shortest distance between the point (0,0,0) and the 

geometrical origin of the part. The main reason that this effect happed was because both 

the measured data and the ideal form are in motion while the fitting algorithm finds the 

optimal solution. In other models the measurements are used as reference while the ideal 

form is in motion. 
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Figure 67. Euclidian distance between the origins of the machine and of the part. 
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8.2 Results of Cylindrical Form 

The performance of the models developed for the cylindrical form was evaluated 

using two procedures: the first was an experiment similar to those shown above and the 

second procedure was to apply the data available in the literature to the models and 

compare the generated parameters against those that were obtained by others.  

The first experiment evaluated the cylindrical parts using an induced error, in 

which the parts were not oriented in the same direction as the coordinate system of the 

CMM. The axis of the cylinder was oriented approximately [0.033, 0, 1], which was 

intentionally done to determine the accuracy of the models. The experiment compared the 

performance of the following models: dynamic angle approach model with square root 

(SQRT), Shunmugam’s linear model (SL), and the nonlinear model with free form 

orientation capabilities (NL), using four sample sizes of 8, 32, 128, and 512 data points. 

The width of the zone of error obtained from the three models was analyzed using 

the analysis of variance, where the ANOVA assumptions were verified using the tests and 

plots shown in Appendix D. Results from this analysis showed that the ANOVA model 

was significant, being that the main factors were significant, while the interaction was not 

significant. The magnitude of the mean of the main factors was compared using the 

Tukey test with an alpha value of 0.01, shown in Figures 68 and 69. Results from the 

main factor sample size showed the means arranged in three groups. The first group was 

composed of sample size 512. The second group was composed of sample sizes of 32 and 

128, while the third group was composed of a sample size of 8 data points. Results for the 

main factor mathematical models showed the means arranged in two groups: the first 
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group was composed by the dynamic angle approach model with square root (SQRT) and 

Shunmugam’s linear model (SL), while the second group was composed by the nonlinear 

model with free form orientation capabilities (NL).  

 

512 Points 
0.007996 

128 Points 
0.006867 

32 Points 
0.006288

8 Points 
0.003836 

      

Figure 68. Means comparison of the factor Sample Size of the cylindrical form using the 
Tukey test. 

 

SL 
0.008020

SQRT 
0.008019

NL 
0.002700

    

Figure 69. Means comparison of the factor Mathematical Model of the cylindrical form 
using the Tukey test. 

 

Figure 70 shows the graphical explanation of the width of the zone of error for the 

three mathematical models and the four sample sizes. The performance of the first two 

models: the dynamic angle approach with square root (SQRT) and Shunmugam’s linear 

model (SL) were identical, while the last model the nonlinear model with free form 

orientation capabilities (NL), was different from them. Although the latter generated the 

smallest zone of error, all models showed an incremental increase as in the width of the 

zone of error as the sample size increases. Furthermore, the value “Worst” for cylindrical 

form was calculated using Equation (8.3), but was not shown in the plots because the 

values were in the order of tenths of microns. 

 Worst = ryx ii −+ 22  (8.3)
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Figure 70. Zones of error of cylindrical form at different sample sizes. 

 

The accuracy of the performance of the models was analyzed using the plot of the 

real zone of error. The residuals for the accuracy comparison (raci) were calculated 

following Equation (8.4), which adds to each residual (di) the estimated radius value of 

the mathematical model. 

 iaci drr += ˆ  (8.4)

Figure 71 shows the real zone of error of the cylindrical models. It can be seen 

that the three models found a solution closer to the ideal radius of the cylinder. The 

difference between the ideal radius of the cylinder ranges between a few nanoinches for 

the nonlinear model (NL) and a few microinches for the first two models (SQRT and SL). 

In addition, it can be seen that the nonlinear model (NL) performed very close to the 
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parameters obtained from the CMM, which means that the model was capable of 

accurately extracting the inclination and parameters of the cylindrical form. 
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Figure 71. Real zone of error of cylindrical models. 

In addition to the experiment mentioned above, the cylindrical models were 

verified using datasets available in the literature, specifically from Carr et al.’s (1995) and 

Roy et al.’s (1995) studies. Prakasvudhisarn (2002) presented a comparison of several 

studies that had analyzed datasets presented in Carr et al.’s (1995) and Roy et al.’s (1995) 

studies. In this comparison, Prakasvudhisarn (2002) presented the results obtained from 

his nonlinear model solved using the generalized reduce gradient method, against the 

results obtained from Carr et al.’s (1995) algorithm, and from Wang’s (1992) sequential 

quadratic programming model. This comparison is used in the present research to 

determine the performance and accuracy of the dynamic angle approach model with 

square root (SQRT) and the nonlinear model with free form orientation capabilities (NL).  
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Carr et al. (1995) studied the cylindrical form by developing a linear 

programming algorithm to determine the maximum inscribed cylinder, the minimum 

circumscribed cylinder, and the straightness of the cylinder axis. The authors verified 

their algorithms by using three datasets of 40, 20, and 40 data points that can be seen in 

Appendix C. The first dataset was generated by NIST Algorithm Testing System (ATS), 

where 40 data points were generated randomly from two cylinders that had their axes of 

revolution perfectly aligned with the z-axis. The cylinders had a radius of 30.000 and 

30.001 respectively. Thus, the data had a known cylindricity solution of 0.001. Table 36 

shows a comparison of the models and algorithms used by Carr et al. (1995), Wang 

(1992), Prakasvudhisarn (2002), and the two proposed cylindricity models. The results 

obtained from this comparison showed that both proposed models outperformed Wang’s 

(1992) and Prakasvudhisarn’s (2002) studies. The performance of the nonlinear model 

with free form orientation capabilities (NL) generated a zone of error very close to the 

value obtained by Carr et al. (1995).  

 

Table 36. Results obtained from the analysis of Carr et al.’s (1995) dataset 1. 

Model Carr et al. 
(1995) 

Wang 
(1992) P1 (2002) DAA 

(SQRT) 
FFO 
(NL) 

Minimum 
Zone 0.001 0.004809865 0.004809871 0.00380700 0.001425359

r - 30.00206564 30.00206564 30.000882 30.000366 
m - 8.71539E-06 8.71526E-06 0.000043 5.017E-05 
x0 - 0 0 -0.000234 0.000599 
n - 0 0 -0.000057 -9.649E-06 
y0 - 0 0 0.000579 0.0002312 
z0 - - - - -1.599E-05 

1Prakasvudhisarn (2002) 
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The last two datasets from Carr et al.’s (1995) study were generated using the 

NIST Algorithm Testing System (ATS) and had random errors and unknown cylindricity 

values. Table 37 shows the results obtained from the analysis of the second dataset. 

Results showed that both proposed models outperformed Carr et al.’s (1995) algorithms, 

Wang’s (1992) model, and Prakasvudhisarn’s (2002) model, since the nonlinear model 

with free form orientation (NL) generated the smallest zone of error. 

 

Table 37. Results obtained from the analysis of Carr et al.’s (1995) dataset 2. 

Model Carr et al. 
(1995) 

Wang 
(1992) P1 (2002) DAA 

(SQRT) 
FFO 
(NL) 

Minimum 
Zone 0.18396 0.194828343 0.194828184 0.036460163 0.031963025

r - 60.00478139 60.00478136 60.000544 59.996995 
m -0.00062 0 0 0.001915 0.0018534 
x0 - 0.005930704 0.00593079 -0.009502 0.0183155 
n -0.00292 0 0 0.001025 0.0011124 
y0 - 0 0 -0.011912 0.0246282 
z0 - - - - 0.0037978 

1Prakasvudhisarn (2002) 

The third dataset was slightly different than the first two datasets, since it had a 

cylinder that was not perfectly aligned with the z-axis. Therefore the dynamic angle 

approach with square root was not used during this comparison. Table 38 compares the 

performance of the four models and shows that the nonlinear model with free form 

orientation capabilities (NL) outperformed the parameters from the previous studies, 

since it generated the smallest zone of error and produced a good estimate of the radius of 

the cylinder. 
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Table 38. Results obtained from the analysis of Carr et al.’s (1995) dataset 3. 

Model Carr et al. 
(1995) 

Wang 
(1992) P1(2002) DAA 

(SQRT) 
FFO 
(NL) 

Minimum 
Zone 0.00941 0.009410136 0.009410193 - 0.003367416

r - 49.99953289 49.99953288 - 50.00032 
m 1.000052 1.000058463 1.000058461 - 1.000249 
x0 - 3.998826419 3.998826401 - 1.748899 
n 1.000052 1.000046417 1.000046416 - 1.000049 
y0 - 4.998937542 4.998637497 - 2.748737 
z0 - - - - -2.24918 

1Prakasvudhisarn (2002) 

The last dataset was obtained from Roy et al.’s (1995) study which was applied to 

the proposed models in order to compare their performances against studies from Roy et 

al. (1995), Wang (1992), and Prakasvudhisarn (2002). Table 39 provides a summary of 

this comparison, which showed that the dynamic angle approach model with square root 

(SQRT) and the nonlinear model with free form orientation (NL) outperformed the results 

provided by other studies. In addition, it can be seen that the latter showed the smallest 

zone of error. 

 

Table 39. Results obtained from the analysis of Roy and Zu’s (1995) dataset. 

Model Roy et al. 
(1995) 

Wang 
(1992) P1 (2002) DAA 

(SQRT) 
FFO 
(NL) 

Minimum 
Zone 0.02881336 0.029548125 0.029548126 0.026281926 0.011538552

r - 5.000751946 5.000751947 5.0000452 4.998422 
m 0.001567376 0.001017511 0.001017512 0.0011712 0.002661 
x0 -0.00911603 0 0 -0.0011626 -0.006810 
n 0.00054574 0.000104874 0.000104875 -8.925E-05 -0.001700 
y0 -0.00182085 0 0 -0.0020074 0.006266 
z0 - - - - 0.001682 

1Prakasvudhisarn (2002) 
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8.3 Results of Conical Form 

The conical form was evaluated using only one experiment in which the cone was 

oriented perfectly with the coordinate system of the machine. However, a second 

experiment with the conical form tilted to the left side was planned but not performed due 

to the fact that the slope of the cone was too steep and could have caused the probe head 

of the CMM to collide with the cone surface.  

The experiment included as independent variables the sample size with four 

levels:8, 32, 128, and 512, and the mathematical models with three levels: dynamic angle 

approach with square root (SQRT) and without square root (NSQRT), and the nonlinear 

model with free form orientation capabilities (NL). The width of the zone of error of the 

models was chosen as the dependent variable.  

The width of the zone of error was analyzed using the analysis of variance in 

order to determine if the mathematical models were statistically different. The ANOVA 

assumptions were validated by analyzing the plots of normality and equal variances, as 

shown in Appendix D. The results obtained from the analysis of variance showed that the 

main factors as well as the interaction between them were statistically significant. The 

plots of the main factors are found in Appendix D, while the interaction plot can be seen 

in Figure 72. 
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Figure 72. Two way interaction plot between sample size and mathematical model. 

 

The means of the two main factors were analyzed using the Tukey test with an 

alpha value of 0.01, as shown in Figures 73 and 74. Results for sample size showed that 

the means were arranged in two groups; the first group was the sample sizes of 8 and 32, 

and the second group was 128 and 512. The first group generated the smallest width of 

the zone of error. Results for the mathematical model showed that the two dynamic angle 

approach models (SQRT and NSQRT) were not significantly different. The nonlinear 

model with free form orientation capabilities (NL) was the only significant model, since 

it produced a smaller zone of error than the other two models. The effect of sample size 

on the former was smaller than in the other two models, making the former less sensitive 

to increments in sample size, as seen in the interaction plot. 

 



 262
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Figure 73. Means comparison of the factor Sample Size of conical form using the Tukey 
test.  
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Figure 74. Means comparison of the factor Mathematical Model of the conical form using 
the Tukey test.  

 

The accuracy of the performance of the models was also analyzed, since it is 

important to verify that the models produced not only a small zone of error but also 

accurate parameters that describe the shape of the cone that is being inspected. The 

analysis was done by plotting the width of the zone of error of each factor combination, 

as well as the real zone of error of the cone. Figure 75 shows a plot that describes the 

performance of the models at different sample sizes, which included the value “Worst”. 

This value was determined by using Equation (8.5), which assumes that the 

measurements were perfectly aligned with the z-axis and without any origin offsets. The 

purpose of this value was to determine the accuracy of the measurements, similar to the 

analysis done for the spherical forms.  
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Width of the Zone of Error of Conical Forms
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Figure 75. Zones of error of conical form at different sample sizes. 

 

Figure 75 shows the same effect found on the interaction plot, where the zone of 

error of the models increases as the sample size increases. All models performed better 

than the value “Worst” showing that the models were able to find the axis misalignments 

and origin offsets from the data. Out of the three models, the nonlinear model (NL) had 

the lowest width of the zone of error compared to the two dynamic angle approach 

models (SQRT and NSQRT). It can be seen that the performance of the last two models 

was more defined at larger sample sizes than at low sample sizes. At large sample sizes 

(128 and 512) the (SQRT) model performed slightly better than the (NSQRT), while at 

low sample sizes (8 and 32) both produced mixed results.  
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The second analysis was done by plotting the real zone of error that studied the 

accuracy and precision of the performance of the mathematical models. The plot was 

created by using a formula that defined the zone of error of the cone. Therefore, the 

residuals of the conical form were calculated using the formula developed in Chapter 6 

for the ideal maximum normal distance (aimax). This parameter was chosen because it 

combines the three main parameters of the conical form: the radius of the base (r), the 

height of the cone (h), and the angle (α) that describe the relation between the radius and 

the height of the cone. Thus, the residuals for the accuracy comparison (raci) were 

calculated by adding to each estimated normal distance (aimax) the value of each residual 

(di), which can be visualized as a Christmas tree, as seen in Figure 76. 
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 where the estimated radius and height are the values obtained in each of the 

mathematical models. For example, all residuals obtained from the factor combination, 

sample size 8 and model (SQRT), were transformed by adding to them the estimated 

normal distance that was obtained based on the values of the parameters from the model 

(SQRT). Thus, each factor combination should have different set of parameters.  

 
Figure 76. Visualization of the zone of error of conical forms. 
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Figure 77 shows the real zone of error of the conical form. Although the models 

were different in performance regarding the width of the zone of error, they generated 

comparable results regarding the estimated parameters of the cone. All models produced 

maximum normal distances lower than the ideal value. The ideal value was calculated by 

substituting the ideal parameters of the cone on Equation (8.6). However, it is unknown if 

the conical parts were machined according to specifications. Therefore, it is not possible 

to determine whether the models underestimated the parameters of the cone. Finally, it 

can be seen that for all sample sizes the three models generated comparable results; this 

means that all models recognized specimens one and four as the worst machined and 

specimen two and five as the best machined. 
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Figure 77. Real zone of error of conical models. 
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8.4 Results of Frustum Form 

The performance of the frustum models was evaluated using one experiment, 

which used five frustum parts that were perfectly aligned with the coordinate system and 

origin of the coordinate measuring machine and were inspected using four sample sizes 

of 8, 32, 128 and 512. The mathematical models that were evaluated were the dynamic 

angle approach without square root (NSQRT) and the nonlinear model with free form 

orientation capabilities (NL). 

The width of the zone of error obtained from the two models was analyzed using 

the statistical analysis of variance, where the ANOVA assumptions were verified using 

the tests and plots shown in Appendix D. Results showed that the ANOVA model was 

significant, and the main factor sample size was the only significant term of the model. 

The means of the sample size were further analyzed using the Tukey test with an alpha 

value of 0.01, shown in the Figure 78. The test showed that the means of the sample size 

were arranged in three groups. The first group was composed of the sample sizes of 512 

and 128 data points. The second group was composed of the sample sizes of 128 and 32 

data points, while the third group was composed of the sample sizes of 32 and 8 data 

points.  
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Figure 78. Means comparison of the factor Sample Size of the frustum form using the 
Tukey test. 

 

Figure 79 shows the effect that the mathematical model and the sample size has 

over the width of the zone of error. It can be seen that the width of the zone of error 

increases as the sample size increases, agreeing with the findings of the Tukey test.  
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Width of the Zone of Error of Frustum Form
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Figure 79. Zones of error of frustum form at different sample sizes. 

 

Furthermore, the statistical analysis showed that there were no differences in the 

performance of the two mathematical models, and it can be seen that both models 

accurately identified the origin offsets and axis misalignments since both performed 

better than the value “Worst.” The latter was calculated using Equation (8.7), which 

assumed that the frustum was perfectly aligned with the coordinate system of the 

machine. 
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The data from this experiment was also analyzed using a plot of the real zone of 

error that described the accuracy and precision of the performance of the mathematical 
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models. In a similar way as the conical feature, the plot of the frustum form was created 

by using a formula that defined the zone of error of the cone. Therefore, the residuals of 

the frustum form were calculated using the formula developed in Chapter 6 for the ideal 

maximum normal distance (aimax). This formula was chosen because it combines all the 

parameters used to generate a frustum form. Thus, the residuals for the accuracy 

comparison (raci) were calculated by adding to the estimated normal distance (aimax) the 

value of each residual (di). 
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Figure 80 shows the plot of the real zone of error of the frustum forms. It can be 

seen that the accuracy of the two developed models is very high since both models were 

able to obtain results that were very close to the ideal maximum normal distance of the 

frustum form. The nonlinear model with free form orientation capabilities (NL) 

performed the best because it showed less variability and it was less affected by the 

location of the data points. The dynamic angle approach without square root (NSQRT) 

was more affected by the location of the data points because it produced different widths 

of the zone of error for each of the specimens at different sample sizes, while the 

nonlinear model was more consistent in its results. 
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Figure 80. Real zone of error of frustum models. 

 

8.5 Results of Torus Form 

The mathematical models developed for the torus form were evaluated using two 

experiments. The first experiment consisted of inspecting five torus forms using four 

sample sizes of 8, 32, 128, and 512 data points, where the parts were aligned perfectly 

with the coordinate system and origin of the coordinate measuring machine. The 

mathematical models used were the dynamic angle approach model with square root 

(SQRT) and without square root (NSQRT), Aguirre Cruz‘s thesis model (Thesis), and the 

nonlinear model with free form orientation capabilities (NL). The calculated width of the 

zone of error of each model was analyzed using the method of the analysis of variance. 

The ANOVA assumptions were analyzed using the tests and plots shown in Appendix D.  
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The normality assumption was violated on this experiment; however ANOVA is very 

robust to any deviation from normality (Montgomery, 2001). The ANOVA model was 

found to be significant, thus the means of the main factors were further analyzed using 

the Tukey test with an alpha value of 0.01, shown in Figures 81 and 82. It is important to 

mention that the interaction between the two main factors was not significant. Results for 

the main factor sample size showed the means arranged in three groups. The first group 

was composed of the sample sizes of 512 and 128 data points. The second group was 

composed of the sample size of 128 and 32 data points, while the third group was 

composed of the sample size of 8 data points. The last group generated the smallest width 

of the zone of error. Results obtained from the main factor mathematical model showed 

the mean arranged in two groups. The first group was composed of the nonlinear model 

with free form orientation capabilities (NL) and Aguirre Cruz’s thesis model (Thesis), 

while the second group was composed of Aguirre Cruz’s thesis model (Thesis), the 

dynamic angle approach with square root (SQRT) and the model without square root 

(NSQRT). 
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Figure 81. Means comparison of the factor Sample Size of the torus form using the Tukey 
test. (Experiment I) 
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Figure 82. Means comparison of factor Mathematical Model of the torus form using the 
Tukey test. (Experiment I) 
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Figure 83 shows the width of the zone of error for all factor combinations as well 

as for the value “Worst.” The latter was calculated using Equation (8.9), which assumes 

that the data comes from a perfectly aligned torus part.  
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Figure 83. Width of the zone of error of torus forms. (Experiment I) 

 

In general, it can be seen that for all models the width increases as the sample size 

increases. The sample size of 8 data points was the only level in which all the models 

performed better than the value “Worst.” For the remaining sample sizes, four out of the 

five models performed better than the value “Worst” with the nonlinear approach with 

free form orientation capabilities (NL) performing the worst. On the other hand, the 

dynamic angle approach models with square root (SQRT) and without square root 

(NSQRT) generated lower widths of the zone of error, with the latter the smallest. The 

Aguirre Cruz’s thesis model (Thesis) was very sensitive to certain data points, since for 



 272

some of the specimens it produced very large zones of error; however the generated 

widths were above the dynamic angle approach models but below the nonlinear model.  
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The accuracy of the models was evaluated by verifying the real zone of error of 

the torus. The plot shown in Figure 84 shows the zone of error defined by the radius of 

the torus tube (a). It can be seen that the model that had the worst performance was the 

dynamic angle approach without square root (NSQRT). The model underestimated the 

radius of the torus tube for smaller sample sizes but started to improve its performance as 

the sample size increased. Aguirre Cruz’s thesis model (Thesis) was consistent through 

all sample sizes, since it generated radii of the torus tube that were very close in 

magnitude to those of the ideal form (0.75 inch). However, it can be seen that the model 

was too sensitive to outliers. The dynamic angle approach with square root (SQRT) and 

the nonlinear model with free form orientation capabilities (NL) performed very badly for 

the sample size of 8 data points but started to improve their performance as the sample 

size increased. However, the latter had a higher width of the zone of error. 



 273

Zone of Error of Torus Tube Radius
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Figure 84. Real zone of error of the torus using the torus tube radius. (Experiment I) 

 

The second experiment consisted of inspecting the same five torus parts using the 

sample size of 32 data points, where the parts were intentionally tilted in order to 

determine if the models were capable of recognizing the axis misalignment. The four 

mathematical models used to analyze the measured data points were the same models 

used in the experiment above.  

The width of the zone of error generated by each of the mathematical models was 

evaluated using the analysis of variance. The ANOVA assumptions were analyzed using 

the tests and plots shown in Appendix D. The ANOVA model was found to be significant, 

thus the means of the main factors were further analyzed using the Tukey test with an 

alpha value of 0.01, shown in Figure 85. Results for the main factor mathematical model 

showed the means arranged in three groups: the first group was composed of the dynamic 
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angle approach with square root (SQRT) and Aguirre Cruz’s thesis model (Thesis). The 

second group was composed by the dynamic angle approach model without square root 

(NSQRT), while the third group was composed of the nonlinear model with free form 

orientation capabilities (NL). The third model produced the smallest width of the zone of 

error. 
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Figure 85. Means comparison of factor Mathematical Model for the torus form using the 
Tukey test. (Experiment II) 

 

Figure 86 shows the behavior of the width of the zone of error for each of the 

mathematical models. It can be seen that all models performed better than the value 

“Worst,” and the nonlinear model with free form orientation capabilities (NL) produced 

the smallest width of the zone of error. The dynamic angle approach with square root 

(SQRT) and Aguirre Cruz’s thesis model (Thesis) produced similar widths of the zone of 

error, which were statistically significant as pointed out by the Tukey test. Finally, the 

dynamic angle approach without square root (NSQRT) produced widths of the zone of 

error that were slightly smaller than the two previously mentioned models but higher than 

the nonlinear model.  
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Figure 86. Width of the zone of error of torus forms. (Experiment II) 

 

The accuracy of the models was evaluated by verifying the real zone of error of 

the torus. The plot shown in Figure 87 shows the zone of error defined by the radius of 

the torus tube (a). It can be seen that the two dynamic angle approach models produced 

the worst performance since they were very sensitive to the inclination of the torus parts. 

On the other hand, the nonlinear model with free form orientation (NL) performed the 

best, because the model was consistent for all specimens and it produced values of the 

radii of the torus tube that were very close to the ideal value. Finally, Aguirre Cruz’s 

thesis model (Thesis) was also consistent for all specimens; however, this model 

overestimated the radius of the torus tube. 
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Zone of Error of Torus Tube Radius using 32 Data Points
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Figure 87. Real zone of error of torus forms. (Experiment II) 

 

8.6 Results of Multiple Feature Part 

As a sample, the spherical and cylindrical features contained in a single part were 

used to verify the multifeature part. The parts were inspected using a sample size of 32 

data points, which were analyzed using the dynamic angle approach with square root 

(SQRT) for the spherical form, and the nonlinear model with free form orientation 

capabilities (NL) for the cylindrical form. The main purpose of the analysis of multiple 

feature parts was to identify if the width of the zone of error of individual features was 

the same as the width of the zone of error obtained when analyzing both features at the 

same time.  

The analysis of the width of the zone of error of individual features was identical 

as the analyses shown above, while the analysis of multiple features consisted of solving 
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both mathematical models simultaneously, which in this case are the models of the sphere 

and the cylinder. The two mathematical models had in common the variables of the origin 

offsets and its radii. Thus, the only difference between the two models was the variables 

of the axis of assessment from the cylindrical model. Results obtained from the individual 

and multiple feature analyses are shown in the Figures 88 and 89. The first figure shows 

the width of the zone of error for all the features as well as for the value “Worst.” The 

latter was obtained by combining the two mathematical models of the two features, 

substituting the ideal radius into the model, and setting the origin offsets and axis 

misalignments to zero. It can be seen that the width of the zone of error of the individual 

analyses for both features was smaller than the width obtained from the multiple feature 

analysis. At the same time, both individual and multiple feature widths of the zone of 

error were smaller than the width provided by the value “Worst.”  
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Figure 88. Width of the zone of error of multiple feature part. 
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The accuracy of both analyses was verified by plotting the real zone of error of 

individual and multiple feature parts. Figure 89 shows that both analyses included the 

ideal radii of the sphere and the cylinder inside the zone of error, however the difference 

between the performances of the two analyses was the dimension of the width of the zone 

of error, with the zone of error of multiple features wider than the individual zones. 

In addition, results failed to show that the zone of error of multiple features is 

given by the maximum zone of error of the individual features. One of the reasons that 

this might have happened is due to the fact that the two features were not machined using 

a single machining sequence, thus causing them to have their geometrical origins in 

different locations. 
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Figure 89. Real zone of error of multiple feature part. 
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CHAPTER 9 

CONTRIBUTIONS, CONCLUSIONS, RECOMMENDATIONS, AND FUTURE 

WORK 

 

9 Summary 

The guidelines and mathematical models presented in this research contribute to a 

better understanding of the form verification of complex features on manufactured parts. 

Although much work needs to be done to completely determine the accuracy of machined 

parts, the conclusions from this research show that simple and robust mathematical 

models can be used to estimate inspection parameters and form tolerances that are close 

to optimal solutions. 

 

9.1 Contributions 

The main contributions of this research belong to the last two phases of the 

decision support system presented in this thesis. New mathematical models and 

approaches were developed to improve the estimation of the form tolerance of 

manufactured parts in these phases. These contributions are summarized below. 

1. Two approaches were developed to counteract the errors induced by the 

inspection process: the dynamic angle approach (DAA) and the free form orientation 

(FFO) approach. The dynamic angle approach was developed with the purpose of 

allowing the fitting algorithm to dynamically calculate the magnitude of the angles that 

minimizes the zone of error, instead of using them as a constant value. This approach had 
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two alternatives: one that described the measurements as a Euclidian distance affected by 

the origin offsets (SQRT) and another that used the measurements as a constant term 

(NSQRT). In theory the first alternative should be more accurate since it ensures that the 

origin of the machine and the origin of the part will be closer. The second alternative 

focuses on identifying the distance between the origin of the machine and the origin of 

the part that minimizes the deviations. The free form orientation approach was developed 

to recognize the position and orientation of the part anywhere in the 3-dimensional space. 

The approach applied the concepts of the flatness model that allows it to counteract the 

effect of the axis misalignments, and the principles of the dynamic angle approach with 

square root (SQRT) alternative that allows it to calculate the angles in a dynamic way 

counteracting the origin offsets. 

2. New mathematical models were developed to inspect cylindrical, conical, 

frustum and torus forms. The models were created by using a finite number of spheres to 

measure the parts. The advantage of using this approach is that the parameters of these 

forms are simpler to calculate since they are no longer constrained by the axis of 

revolution but only by a central point.  

3. Two sets of analysis were performed to evaluate the performance of the 

mathematical models. The first analysis was done by using the width of the zone of error 

that determined the variability of the residuals. The second analysis was done by 

evaluating the estimated parameters of the features using the “residuals for the accuracy 

comparison” that determined the accuracy and precision of the models. In addition, the 

analyses were carried out by comparing the performance of the models against the value 
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“Worst” that allows the metrologist to analyze the impact that the axis misalignments and 

origin offsets have on the mathematical models. 

4. The minimum zone of error was evaluated using the “residual for the accuracy 

comparison” that was developed to describe the way in which the maximum and 

minimum deviations enclosed the zone of error. These residuals were developed for 

spherical, cylindrical, conical, frustum, and torus forms. 

5. Finally, the analysis performed on multiple feature parts was developed to 

compare the width of the zone of error of individual features against the width of the zone 

of error of the combined features. This was done with the purpose of determining if the 

maximum width of the zone of error of individual features governs the width of the zone 

of error of the combined features. Thus, the analysis allows the metrologist to recognize 

the feature that has the worst form deviation and to determine if the two features were 

created within the same setup and process sequence. 

Other contributions of this research described in the first three chapters of this 

dissertation. These contributions are based on the  

1.  A feature recognition program was developed to extract the form features from 

CAD files of popular commercial systems such as AutoCAD®, Solidworks®, and 

ProEngineering®. The program arranges in a set of matrices the topological and 

geometrical entities of the extracted form features. The matrices are used in the 

consequent phases of the decision support methodology for the creation of the sampling 

strategies, path planning, and form verification analysis. The feature recognition program 

is capable of recognizing spherical, cylindrical, conical, frustum, and torus features. 
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2. A hexagonal mesh path plan was developed that allows the CMM to collect 

measuring points using approaching vectors that are normal to the surface of the part. The 

path plan uses the vertices and links of the hexagonal mesh to guide the CMM through 

the collection of the points. The advantage of the path plan is that it requires less time to 

inspect a part due to the fact that it calculates the shortest distance between 

measurements. 

3. Guidelines were provided to improve the quality of the measurements that 

show the user how to translate the origin of the coordinate measuring machine into the 

origin of the inspected part. These guidelines were developed for inspecting spherical, 

cylindrical, conical, frustum, and torus forms.  

 

9.2 Conclusions and Recommendations 

The procedures to verify the form tolerances of spherical, cylindrical, conical, 

cone frustum, and torus form features were studied. The research developed a set of 

guidelines to accurately inspect these forms, from extracting the CAD file of the form 

features of the part, to the analysis of the accuracy and precision of the mathematical 

models for each form feature. The conclusions are summarized according to the order in 

which guidelines were presented in this thesis. 

The methodology for setting up the origin of the coordinate measuring machine in 

the same place as the geometrical origin of the part was studied for each form feature. 

The spherical form was evaluated by setting up the origin of the machine in a different 

position than the geometrical origin of the part. It was found that alignment of the axes 

created a big impact on the performance of the models. However, the performance of the 
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models was significantly different when the origin of both the CMM and the part was 

offset. Hence, it is recommended to spend more time at the beginning of inspection in 

aligning the coordinate systems, because this will help to ensure that the mathematical 

models will have better estimates of the parameters and zone of error of the form 

features. 

The present study proposed two approaches: the dynamic angle approach (DAA) 

and the free form orientation (FFO) approach. These were developed to improve the 

performance of the existing mathematical models as well as to increase the robustness of 

the proposed mathematical models. The performance of these approaches was different 

for each form feature, and the following paragraphs summarize the conclusion for the 

form features. 

1. Five models were used to study the spherical forms: the dynamic angle 

approach models with square root (SQRT), without square root (NSQRT), the model with 

no angles (NOANG), and Shumugam’s linear (SL) and nonlinear (SNL) models. The 

performance of the five mathematical models was evaluated using data that belonged to a 

perfectly aligned part. The results showed that the models had an identical performance 

since the parameters and the width of the zone of error were the same. This meant that the 

five mathematical models provided good results in the presence of data that belongs to a 

perfectly aligned part. However, the same conclusion could not be drawn when the data 

belonged to parts that were not aligned with the coordinate system of the machine, 

because the performance of the mathematical models depended in great part on the 

geometrical principles used to create them. Out of the five mathematical models the 

dynamic angle approach with square root (SQRT) was the only model that included the 
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ideal dimensions of the spherical form within the zone of error. Also this model provided 

the smallest width of the zone of error and was very close to the performance of the 

algorithms used by the CMM. Therefore, it is recommended to use the dynamic angle 

approach model with square root (SQRT) when analyzing spherical form. It is important 

to mention that the three proposed models to inspect spherical forms required the origin 

of the machine to be located inside the spherical form.  

2. Three models were used to study the cylindrical forms: the dynamic angle 

approach models with square root (SQRT), the nonlinear model with free form 

orientation capabilities (NL), and Shunmugam’s linear model. The nonlinear model with 

free form orientation capabilities (NL) generated the smallest widths of the zone of error 

and had a better performance in the analysis of the parameters of the cylinder. The main 

reason that this model outperformed the others was that the cylindrical forms were not 

aligned with the coordinate system of the machine. This made it very difficult for the 

other models to counteract the axis misalignments. In addition, the free form orientation 

model (NL) proved to be very robust and accurate since it outperformed the results 

obtained by Carr et al. (1995), Wang (1992), Prakasvudhisarn (2002), and Roy et al. 

(1995). Therefore, the use of the free form orientation model (NL) in combination with 

Hammersley sampling strategy and a sample size between 32 and 128 data points to 

inspect cylindrical parts is recommended, since the model was found to be robust enough 

to be attracted to an optimal solution.  

3. Three models were used to study the conical forms: the dynamic angle 

approach with square root (SQRT) and without square root (NSQRT), and the nonlinear 

model with free form orientation capabilities (NL). The latter generated the smallest 
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width of the zone of error and was less affected by the increments of the sample size. 

However, the three models had a similar performance when analyzing the magnitude of 

the estimated parameters of the cone. For this reason, it is recommended to use the free 

form orientation model (NL) as a baseline to analyze the conical forms. This was 

followed by the dynamic angle approach with square root (SQRT) that determined 

slightly smaller widths of the zone of error at higher sample sizes than the model with no 

square root (NSQRT). 

4. Two models were used to study the frustum forms: the dynamic angle approach 

without square root (NSQRT) and the nonlinear model with the free form orientation 

capabilities (NL). Both performed similarly with respect to the width of the zone of error. 

However, the analysis of the estimated parameters of the frustum showed that the free 

form orientation model was more accurate since it included the ideal dimension of the 

frustum parameters within the zone of error. This is a clear example that the width of the 

zone of error did not provide enough information to determine the accuracy of the 

models. For this reason, it is important to draw conclusions about a model based on both 

the estimated parameters and the width of the zone of error. In conclusion, it is 

recommended to use the nonlinear model with free form orientation capabilities (NL) in 

combination with a sample size between 32 and 128 data points to inspect the frustum 

forms. 

5. Four models were used to study torus forms: the dynamic angle approach with 

square root (SQRT) and without square root (NSQRT), the nonlinear model with free 

form orientation capabilities (NL), and Aguirre Cruz thesis model (Thesis). In the 

presence of data from a perfectly aligned part, the two dynamic angle approaches (SQRT 
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and NSQRT) and Aguirre Cruz thesis model (Thesis) outperformed the free form 

orientation model while determining the width of the zone of error. The Aguirre Cruz 

thesis model (Thesis) was the only model that generated values closer to the ideal torus 

parameters for all sample sizes, while the other models produced mixed results at small 

sample sizes and were more accurate at higher sample sizes. One disadvantage of Aguirre 

Cruz thesis model (Thesis) is that it is too sensitive to data points that are located at the 

top of the torus due to the use of constant angles. For this reason, it is recommended to 

adapt the dynamic angle approach principles to this model to increase its accuracy. On 

the other hand, in the presence of data from a tilted torus part, the nonlinear model with 

free form orientation capabilities (NL) outperformed the other models since it was able to 

accurately recognize the inclination of the torus feature. Thus, it is recommended to apply 

the nonlinear model with free form orientation capabilities (NL) to torus forms, but 

caution must be taken since it is not very robust in the presence of data that belong to a 

perfectly aligned part. 

In general for all form features, the fact that the mathematical models or the 

fitting algorithms generated a small width of the zone of error does not mean that the 

model performed the best. It just means that the model will be able to detect form 

deviations on parts that have tighter tolerances. For this reason, it is recommended to 

analyze the width of the zone of error as well as the estimated parameters of the features 

in order to determine the accuracy of the mathematical models. 

The nonlinear model with free form orientation capabilities (NL) performed the 

best in all cases due the properties which allow it to counteract the effects of the axis 

misalignments and the effects of the origin offsets, excluding results obtained from the 
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first experiment of the torus form. In addition, this model proved to be accurate and 

robust because it looks for the normalized vector of the form feature by reorienting only 

the z component (flatness model) instead of reorienting the x and y components.  

Although the dynamic angle approach model with square root (SQRT) did not 

have the best performance, it proved to be a simple and accurate way to improve the 

performance of the mathematical models because it was constructed with the purpose of 

eliminating the noise induced by the origin offsets. 

Finally, the factor sample size affected the zone of error of all form features, since 

it was found that the width of the zone of error increased as the sample size increased. It 

is recommended to use bigger sample sizes to observe when the width of the zone of 

error tails off in order to determine a specific sample size needed to obtain a good 

estimate of the width of the zone of error.  

 

9.3 Future Work 

1. The dynamic angle and the free form orientation approaches could be applied 

to the study of regular and irregular prismatic forms. Aguirre Cruz and Raman (2006) 

developed a study to verify the form tolerances of prismatic forms by using the Fourier 

series analysis. The regular and irregular prism forms were transformed into periodic 

waves with the purpose of generating one mathematical formula that describes the whole 

prism form; where the periodic waves were generated based on the normal axis of the 

part, similar to the study of cylindrical forms. For this reason, the present study 

recommends applying the principles of the nonlinear model for cylindrical forms (NL) to 

the study of prism forms in order to improve the accuracy of the model. Figures 90 and 
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91 show the transformation of quadrangular (regular) and rectangular (irregular) prism 

forms into periodic waves. 

 
Figure 90. Quadrangular prism form verified using Fourier series analysis. 

 
Figure 91. Rectangular prism form verified using Fourier series analysis. 

 

2. The nonlinear model with free form orientation capabilities for cylindrical 

forms can be applied to the estimation of the machining parameters using coordinate 

metrology. This is similar to the study performed by Kilic, Aguirre Cruz, and Raman 

(2007) in which they developed a model to inspect cylindrical forms after turning. The 

model included a parameter that modeled the deflection of the part and the machining 

parameters, such as depth of cut and tool nose radius. In this way, the authors inspected 

the cylindrical form using point coordinates to estimate the parameters applied to 

machine the cylindrical form. 
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3. The performance of the mathematical models presented in this research should 

be studied using different fitting algorithms and different sampling strategies in order to 

determine if the accuracy of the models is consistent under different scenarios.  

4. The errors induced by the inspection equipment should be studied and 

mathematically modeled in order to find the real form deviations of the inspected parts. 

More studies should be done to understand the capabilities of the inspection equipment. 

For example, the measuring table of the coordinate measuring machine cannot be 

perfectly aligned with the gantry that carries the stylus probe. For this reason it is 

important to determine the error induced by the table. To do so, optical interferometry can 

be used to obtain the inclination of the machine table [j, k, 1]. This information can be 

added to each variable that describes the normalized vector [m+i, k+n, 1] of the form 

features so that the fitting algorithm can obtain the real normalized vector of the part 

being inspected.  

5. More research should be done in experimental design to develop a procedure to 

analyze an unbalanced design in which the levels of the factor have unequal variances. 

The advantage of studying this procedure is that all the residuals from the models could 

be analyzed to determine their variability within and between factors, instead of using the 

width of the zone of error that is constructed using only the maximum and the minimum 

deviations. The secondary advantage of analyzing all residuals is that the power of the 

experiment will increase and the normality assumption will be validated.  

6. The guidelines and mathematical models proposed in this study could be used 

to develop an automated application for the analysis of the form tolerance of 

manufactured parts. It is foreseen that the experiments and mathematical analysis 
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presented here will become the basis for the development of a comprehensive decision 

support system for verification of geometrical tolerances. 
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ACIS CODE OF SURFACES OF REVOLUTION 

 
 
 
 
 



 301

ACIS Code of a Spherical Form 
1400 0 1 2            
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 
1 9.9999999999999995e-007 1e-010  
-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @10 Sphere # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.94117647058823528 0.67450980392156867 0.11764705882352941 # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
-5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F F # 
-6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward single F F # 
-7 loop $-1 -1 -1 $-1 $-1 $12 $5 F unknown # 
-8 sphere-surface $-1 -1 -1 $-1 0 0 0 50.000000000000142 1 0 0 0 0 1 forward_v I I I I # 
-9 face $-1 -1 -1 $-1 $13 $14 $4 $-1 $15 reversed single F F # 
-10 loop $-1 -1 -1 $-1 $-1 $16 $6 F unknown # 
-11 sphere-surface $-1 -1 -1 $-1 0 0 0 50.000000000000142 1 0 0 0 0 1 forward_v I I I I # 
-12 coedge $-1 -1 -1 $-1 $17 $18 $19 $20 reversed $7 $-1 # 
-13 face $-1 -1 -1 $-1 $21 $22 $4 $-1 $11 forward single F F # 
-14 loop $-1 -1 -1 $-1 $-1 $23 $9 F unknown # 
-15 plane-surface $-1 -1 -1 $-1 0 0 0 1 0 0 0 0 -1000 forward_v I I I I # 
-16 coedge $-1 -1 -1 $-1 $24 $25 $26 $27 reversed $10 $-1 # 
-17 coedge $-1 -1 -1 $-1 $18 $12 $25 $28 forward $7 $-1 # 
-18 coedge $-1 -1 -1 $-1 $12 $17 $29 $30 reversed $7 $-1 # 
-19 coedge $-1 -1 -1 $-1 $31 $32 $12 $20 forward $33 $-1 # 
-20 edge $-1 -1 -1 $-1 $34 -1.5707963267948966 $35 0 $19 $36 forward @7 unknown F # 
-21 face $-1 -1 -1 $-1 $-1 $33 $4 $-1 $8 forward single F F # 
-22 loop $-1 -1 -1 $-1 $-1 $26 $13 F unknown # 
-23 coedge $-1 -1 -1 $-1 $37 $29 $24 $38 forward $14 $-1 # 
-24 coedge $-1 -1 -1 $-1 $25 $16 $23 $38 reversed $10 $-1 # 
-25 coedge $-1 -1 -1 $-1 $16 $24 $17 $28 reversed $10 $-1 # 
-26 coedge $-1 -1 -1 $-1 $39 $40 $16 $27 forward $22 $-1 # 
-27 edge $-1 -1 -1 $-1 $41 -3.1415926535897931 $34 -1.5707963267948966 $26 $42 forward @7 unknown F # 
-28 edge $-1 -1 -1 $-1 $34 -2.7837141606445961e-015 $43 1.5707963267949001 $17 $44 forward @7 unknown T -
1.7457416805546961e-013 -1.3918570803223021e-013 0 50.000000000000142 50.000000000000142 0 # 
-29 coedge $-1 -1 -1 $-1 $23 $45 $18 $30 forward $14 $-1 # 
-30 edge $-1 -1 -1 $-1 $35 0 $43 1.5707963267948966 $29 $46 forward @7 unknown F # 
-31 coedge $-1 -1 -1 $-1 $32 $19 $45 $47 reversed $33 $-1 # 
-32 coedge $-1 -1 -1 $-1 $19 $31 $39 $48 reversed $33 $-1 # 
-33 loop $-1 -1 -1 $-1 $-1 $19 $21 F unknown # 
-34 vertex $-1 -1 -1 $-1 $28 $49 # 
-35 vertex $-1 -1 -1 $-1 $30 $50 # 
-36 ellipse-curve $-1 -1 -1 $-1 0 0 0 -1.2246063538223773e-016 -1 0 0 0 50.000000000000142 1 I I # 
-37 coedge $-1 -1 -1 $-1 $45 $23 $40 $51 forward $14 $-1 # 
-38 edge $-1 -1 -1 $-1 $43 1.5707963267948966 $41 3.1415926535897931 $23 $52 forward @7 unknown F # 
-39 coedge $-1 -1 -1 $-1 $40 $26 $32 $48 forward $22 $-1 # 
-40 coedge $-1 -1 -1 $-1 $26 $39 $37 $51 reversed $22 $-1 # 
-41 vertex $-1 -1 -1 $-1 $51 $53 # 
-42 ellipse-curve $-1 -1 -1 $-1 0 0 0 -1.2246063538223773e-016 -1 0 0 0 50.000000000000142 1 I I # 
-43 vertex $-1 -1 -1 $-1 $30 $54 # 
-44 ellipse-curve $-1 -1 -1 $-1 0 0 0 0 0 1 50.000000000000142 0 0 1 I I # 
-45 coedge $-1 -1 -1 $-1 $29 $37 $31 $47 forward $14 $-1 # 
-46 ellipse-curve $-1 -1 -1 $-1 0 0 0 -1 0 0 0 0 50 1 I I # 
-47 edge $-1 -1 -1 $-1 $55 -1.5707963267948966 $35 0 $45 $46 forward @7 unknown F # 
-48 edge $-1 -1 -1 $-1 $34 1.5707963267948992 $55 3.1415926535897967 $39 $56 forward @7 unknown T -1.7151265217091364e-
013 -50.000000000000142 -6.1232339957367834e-015 50.000000000000142 -1.3016524707046322e-013 -1.5940645318506716e-
029 # 
-49 point $-1 -1 -1 $-1 50 -1.391857080322298e-013 0 # 
-50 point $-1 -1 -1 $-1 0 0 50 # 
-51 edge $-1 -1 -1 $-1 $41 3.1415926535897931 $55 4.7123889803846897 $37 $52 forward @7 unknown F # 
-52 ellipse-curve $-1 -1 -1 $-1 0 0 0 -1 0 0 0 0 50 1 I I # 
-53 point $-1 -1 -1 $-1 0 0 -50 # 
-54 point $-1 -1 -1 $-1 -1.7861563276672136e-013 50 0 # 
-55 vertex $-1 -1 -1 $-1 $47 $57 # 
-56 ellipse-curve $-1 -1 -1 $-1 0 0 0 0 1.2246467991473532e-016 -1 0 50.000000000000142 6.1232339957367834e-015 1 I I # 
-57 point $-1 -1 -1 $-1 -1.7861563276672136e-013 -50.000000000000142 -6.1232339957367661e-015 # 
End-of-ACIS-data  
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ACIS Code of a Cylindrical Form 
1400 0 1 2            
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 
1 9.9999999999999995e-007 1e-010  
-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @8 Cylinder # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.94117647058823528 0.67450980392156867 0.11764705882352941 # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
-5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F F # 
-6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward single F T -1.9999999999999964 3.4914833611093821e-015 -3.1415926535897931 0 
# 
-7 loop $-1 -1 -1 $-1 $-1 $12 $5 F unknown # 
-8 plane-surface $-1 -1 -1 $-1 1.0474450083328164e-013 0 30.00000000000005 3.4914833611093821e-015 0 1 1000 0 -
3.4914833611093821e-012 forward_v I I I I # 
-9 face $-1 -1 -1 $-1 $13 $14 $4 $-1 $15 forward single F T -1.9999999999999964 3.4914833611093821e-015 0 
3.1415926535897931 # 
-10 loop $-1 -1 -1 $-1 $-1 $16 $6 F unknown # 
-11 cone-surface $-1 -1 -1 $-1 1.0474450083328146e-013 0 30 3.4914833611093821e-015 0 1 30 0 -1.0408340855860843e-013 1 I I 
0 1 30 forward I I I I # 
-12 coedge $-1 -1 -1 $-1 $17 $17 $18 $19 forward $7 $-1 # 
-13 face $-1 -1 -1 $-1 $-1 $20 $4 $-1 $21 forward single F F # 
-14 loop $-1 -1 -1 $-1 $-1 $22 $9 F unknown # 
-15 cone-surface $-1 -1 -1 $-1 1.0474450083328146e-013 0 30 3.4914833611093821e-015 0 1 30 0 -1.0408340855860843e-013 1 I I 
0 1 30 forward I I I I # 
-16 coedge $-1 -1 -1 $-1 $23 $24 $25 $26 reversed $10 $-1 # 
-17 coedge $-1 -1 -1 $-1 $12 $12 $24 $27 forward $7 $-1 # 
-18 coedge $-1 -1 -1 $-1 $28 $25 $12 $19 reversed $14 $-1 # 
-19 edge $-1 -1 -1 $-1 $29 0 $30 3.1415926535897931 $12 $31 forward @7 unknown F # 
-20 loop $-1 -1 -1 $-1 $-1 $32 $13 F unknown # 
-21 plane-surface $-1 -1 -1 $-1 -1.0474450083328127e-013 0 -29.999999999999947 -3.4914833611093821e-015 0 -1 -1000 0 
3.4914833611093821e-012 forward_v I I I I # 
-22 coedge $-1 -1 -1 $-1 $25 $28 $32 $33 forward $14 $-1 # 
-23 coedge $-1 -1 -1 $-1 $34 $16 $35 $36 forward $10 $-1 # 
-24 coedge $-1 -1 -1 $-1 $16 $34 $17 $27 reversed $10 $-1 # 
-25 coedge $-1 -1 -1 $-1 $18 $22 $16 $26 forward $14 $-1 # 
-26 edge $-1 -1 -1 $-1 $37 -0.059999999999999894 $30 1.0302869668521453e-016 $25 $38 forward @7 unknown F # 
-27 edge $-1 -1 -1 $-1 $30 -3.1415926535897931 $29 0 $17 $39 forward @7 unknown F # 
-28 coedge $-1 -1 -1 $-1 $22 $18 $34 $40 reversed $14 $-1 # 
-29 vertex $-1 -1 -1 $-1 $40 $41 # 
-30 vertex $-1 -1 -1 $-1 $26 $42 # 
-31 ellipse-curve $-1 -1 -1 $-1 1.0474450083328183e-013 0 30.000000000000103 3.4914833611093821e-015 0 1 30 0 -
1.0408340855860843e-013 1 I I # 
-32 coedge $-1 -1 -1 $-1 $35 $35 $22 $33 reversed $20 $-1 # 
-33 edge $-1 -1 -1 $-1 $43 0 $37 3.1415926535897931 $22 $44 forward @7 unknown F # 
-34 coedge $-1 -1 -1 $-1 $24 $23 $28 $40 forward $10 $-1 # 
-35 coedge $-1 -1 -1 $-1 $32 $32 $23 $36 reversed $20 $-1 # 
-36 edge $-1 -1 -1 $-1 $37 -3.1415926535897931 $43 0 $23 $45 forward @7 unknown F # 
-37 vertex $-1 -1 -1 $-1 $26 $46 # 
-38 straight-curve $-1 -1 -1 $-1 -29.999999999999893 3.6739403974420592e-015 30.000000000000103 3.4914833611093821e-012 
0 1000 I I # 
-39 ellipse-curve $-1 -1 -1 $-1 1.0474450083328183e-013 0 30.000000000000103 3.4914833611093821e-015 0 1 30 0 -
1.0408340855860843e-013 1 I I # 
-40 edge $-1 -1 -1 $-1 $43 -0.059999999999999894 $29 1.0658141036401502e-016 $34 $47 forward @7 unknown F # 
-41 point $-1 -1 -1 $-1 30.000000000000103 0 30 # 
-42 point $-1 -1 -1 $-1 -29.999999999999893 3.6739403974420592e-015 30.000000000000206 # 
-43 vertex $-1 -1 -1 $-1 $33 $48 # 
-44 ellipse-curve $-1 -1 -1 $-1 -1.0474450083328108e-013 0 -29.999999999999893 3.4914833611093821e-015 0 1 30 0 -
1.0408340855860843e-013 1 I I # 
-45 ellipse-curve $-1 -1 -1 $-1 -1.0474450083328108e-013 0 -29.999999999999893 3.4914833611093821e-015 0 1 30 0 -
1.0408340855860843e-013 1 I I # 
-46 point $-1 -1 -1 $-1 -30.000000000000107 3.6739403974420726e-015 -29.99999999999979 # 
-47 straight-curve $-1 -1 -1 $-1 30.000000000000103 0 29.999999999999893 3.4914833611093821e-012 0 1000 I I # 
-48 point $-1 -1 -1 $-1 29.999999999999893 0 -30 # 
End-of-ACIS-data  
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ACIS Code of a Conical Form 
1400 0 1 2            
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 
1 9.9999999999999995e-007 1e-010  
-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @4 Cone # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.94117647058823528 0.67450980392156867 0.11764705882352941 # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
-5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F T -1.6666666666666636 -1.566666666666664 0 3.1415926535897931 # 
-6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward single F T -1.6666666666666636 -1.566666666666664 -3.1415926535897931 0 # 
-7 loop $-1 -1 -1 $-1 $-1 $12 $5 F unknown # 
-8 cone-surface $-1 -1 -1 $-1 -3.2819943594428191e-012 0 -940 -3.4914833611093821e-015 0 -1 -750.00000000000205 0 
2.6645352591003757e-012 1 I I 0.60000000000000109 0.79999999999999916 750.00000000000205 forward I I I I # 
-9 face $-1 -1 -1 $-1 $-1 $13 $4 $-1 $14 reversed single F F # 
-10 loop $-1 -1 -1 $-1 $-1 $15 $6 F unknown # 
-11 cone-surface $-1 -1 -1 $-1 -3.2819943594428191e-012 0 -940 -3.4914833611093821e-015 0 -1 -750.00000000000205 0 
2.6645352591003757e-012 1 I I 0.60000000000000109 0.79999999999999916 750.00000000000205 forward I I I I # 
-12 coedge $-1 -1 -1 $-1 $16 $17 $18 $19 reversed $7 $-1 # 
-13 loop $-1 -1 -1 $-1 $-1 $20 $9 F unknown # 
-14 plane-surface $-1 -1 -1 $-1 0 0 0 3.4914833611093821e-015 0 1 1000 0 -3.4914833611093821e-012 forward_v I I I I # 
-15 coedge $-1 -1 -1 $-1 $18 $21 $16 $22 reversed $10 $-1 # 
-16 coedge $-1 -1 -1 $-1 $17 $12 $15 $22 forward $7 $-1 # 
-17 coedge $-1 -1 -1 $-1 $12 $16 $20 $23 reversed $7 $-1 # 
-18 coedge $-1 -1 -1 $-1 $21 $15 $12 $19 forward $10 $-1 # 
-19 edge $-1 -1 -1 $-1 $24 0 $25 0.074999999999999845 $18 $26 forward @7 unknown F # 
-20 coedge $-1 -1 -1 $-1 $27 $27 $17 $23 forward $13 $-1 # 
-21 coedge $-1 -1 -1 $-1 $15 $18 $27 $28 reversed $10 $-1 # 
-22 edge $-1 -1 -1 $-1 $24 0 $29 0.074999999999999872 $16 $30 forward @7 unknown F # 
-23 edge $-1 -1 -1 $-1 $25 0 $29 3.1415926535897931 $20 $31 forward @7 unknown F # 
-24 vertex $-1 -1 -1 $-1 $19 $32 # 
-25 vertex $-1 -1 -1 $-1 $28 $33 # 
-26 straight-curve $-1 -1 -1 $-1 2.0948900166656292e-013 0 60 -600.00000000000409 0 -799.9999999999975 I I # 
-27 coedge $-1 -1 -1 $-1 $20 $20 $21 $28 forward $13 $-1 # 
-28 edge $-1 -1 -1 $-1 $29 -3.1415926535897931 $25 0 $27 $34 forward @7 unknown F # 
-29 vertex $-1 -1 -1 $-1 $28 $35 # 
-30 straight-curve $-1 -1 -1 $-1 2.0948900166656292e-013 0 60 599.99999999999829 7.3478807948841329e-014 -
800.00000000000125 I I # 
-31 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093821e-015 0 -1 -45 0 1.5711675124992219e-013 1 I I # 
-32 point $-1 -1 -1 $-1 2.0948900166656292e-013 0 60 # 
-33 point $-1 -1 -1 $-1 -45.000000000000007 0 3.1671131103978845e-013 # 
-34 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093821e-015 0 -1 -45 0 1.5711675124992219e-013 1 I I # 
-35 point $-1 -1 -1 $-1 45.000000000000007 5.5109105961630903e-015 4.4610853639631695e-015 # 
End-of-ACIS-data 
 
ACIS Code of a Frustum Form 
1400 0 1 2            
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 
1 9.9999999999999995e-007 1e-010  
-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @11 Frustum # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.94117647058823528 0.67450980392156867 0.11764705882352941 # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
-5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F T -1.166190378969062 4.3292329318285554e-031 0 3.1415926535897931 # 
-6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward single F T -1.166190378969062 4.3292329318285554e-031 -3.1415926535897931 0 
# 
-7 loop $-1 -1 -1 $-1 $-1 $12 $5 F unknown # 
-8 cone-surface $-1 -1 -1 $-1 6.0952280304518356e-028 -1.7457416805546915e-013 0 3.4914833611093825e-015 -1 0 50 
1.7457416805546915e-013 0 1 I I 0.51449575542752579 0.85749292571254465 50 forward I I I I # 
-9 face $-1 -1 -1 $-1 $13 $14 $4 $-1 $15 forward single F F # 
-10 loop $-1 -1 -1 $-1 $-1 $16 $6 F unknown # 
-11 cone-surface $-1 -1 -1 $-1 6.0952280304518356e-028 -1.7457416805546915e-013 0 3.4914833611093825e-015 -1 0 50 
1.7457416805546915e-013 0 1 I I 0.51449575542752579 0.85749292571254465 50 forward I I I I # 
-12 coedge $-1 -1 -1 $-1 $17 $18 $19 $20 forward $7 $-1 # 
-13 face $-1 -1 -1 $-1 $-1 $21 $4 $-1 $22 forward single F F # 
-14 loop $-1 -1 -1 $-1 $-1 $23 $9 F unknown # 
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-15 plane-surface $-1 -1 -1 $-1 0 0 0 3.4914833611093825e-015 -1 0 1000 3.4914833611093825e-012 0 forward_v I I I I # 
-16 coedge $-1 -1 -1 $-1 $24 $25 $17 $26 reversed $10 $-1 # 
-17 coedge $-1 -1 -1 $-1 $27 $12 $16 $26 forward $7 $-1 # 
-18 coedge $-1 -1 -1 $-1 $12 $27 $28 $29 reversed $7 $-1 # 
-19 coedge $-1 -1 -1 $-1 $30 $30 $12 $20 reversed $21 $-1 # 
-20 edge $-1 -1 -1 $-1 $31 0 $32 3.1415926535897931 $12 $33 forward @7 unknown F # 
-21 loop $-1 -1 -1 $-1 $-1 $19 $13 F unknown # 
-22 plane-surface $-1 -1 -1 $-1 -1.74574168055469e-013 49.999999999999972 0 -3.4914833611093825e-015 1 0 -1000 -
3.4914833611093825e-012 0 forward_v I I I I # 
-23 coedge $-1 -1 -1 $-1 $34 $34 $27 $35 forward $14 $-1 # 
-24 coedge $-1 -1 -1 $-1 $28 $16 $30 $36 forward $10 $-1 # 
-25 coedge $-1 -1 -1 $-1 $16 $28 $34 $37 reversed $10 $-1 # 
-26 edge $-1 -1 -1 $-1 $32 -0.058309518948453092 $38 0 $17 $39 forward @7 unknown F # 
-27 coedge $-1 -1 -1 $-1 $18 $17 $23 $35 reversed $7 $-1 # 
-28 coedge $-1 -1 -1 $-1 $25 $24 $18 $29 forward $10 $-1 # 
-29 edge $-1 -1 -1 $-1 $31 -0.058309518948453098 $40 0 $28 $41 forward @7 unknown F # 
-30 coedge $-1 -1 -1 $-1 $19 $19 $24 $36 reversed $21 $-1 # 
-31 vertex $-1 -1 -1 $-1 $29 $42 # 
-32 vertex $-1 -1 -1 $-1 $36 $43 # 
-33 ellipse-curve $-1 -1 -1 $-1 -1.745741680554689e-013 49.999999999999936 0 3.4914833611093825e-015 -1 0 20 
6.9388939039072284e-014 0 1 I I # 
-34 coedge $-1 -1 -1 $-1 $23 $23 $25 $37 forward $14 $-1 # 
-35 edge $-1 -1 -1 $-1 $40 0 $38 3.1415926535897931 $23 $44 forward @7 unknown F # 
-36 edge $-1 -1 -1 $-1 $32 -3.1415926535897931 $31 0 $24 $45 forward @7 unknown F # 
-37 edge $-1 -1 -1 $-1 $38 -3.1415926535897931 $40 0 $34 $46 forward @7 unknown F # 
-38 vertex $-1 -1 -1 $-1 $35 $47 # 
-39 straight-curve $-1 -1 -1 $-1 -50 -3.4914833611093831e-013 6.1232339957367661e-015 -514.49575542752279 -
857.49292571254648 6.3007558005921896e-014 I I # 
-40 vertex $-1 -1 -1 $-1 $29 $48 # 
-41 straight-curve $-1 -1 -1 $-1 50 0 0 514.49575542752882 -857.49292571254284 0 I I # 
-42 point $-1 -1 -1 $-1 19.999999999999826 50 0 # 
-43 point $-1 -1 -1 $-1 -20.000000000000174 49.999999999999865 4.2862637970157365e-015 # 
-44 ellipse-curve $-1 -1 -1 $-1 0 0 0 3.4914833611093825e-015 -1 0 50 1.7457416805546915e-013 0 1 I I # 
-45 ellipse-curve $-1 -1 -1 $-1 -1.745741680554689e-013 49.999999999999936 0 3.4914833611093825e-015 -1 0 20 
6.9388939039072284e-014 0 1 I I # 
-46 ellipse-curve $-1 -1 -1 $-1 0 0 0 3.4914833611093825e-015 -1 0 50 1.7457416805546915e-013 0 1 I I # 
-47 point $-1 -1 -1 $-1 -50 -3.4914833611093831e-013 6.1232339957367661e-015 # 
-48 point $-1 -1 -1 $-1 50 0 0 # 
End-of-ACIS-data 
 
ACIS Code of a Torus Form 
1400 0 1 2            
37 SolidWorks(2005143)-Sat-Convertor-2.0 12 ACIS 14.0 NT 24 
1 9.9999999999999995e-007 1e-010  
-0 body $1 -1 -1 $-1 $2 $-1 $-1 F # 
-1 name_attrib-gen-attrib $-1 -1 $-1 $-1 $0 keep keep_kept ignore copy @5 Torus # 
-2 lump $3 -1 -1 $-1 $-1 $4 $0 F # 
-3 rgb_color-st-attrib $-1 -1 $-1 $-1 $2 0.94117647058823528 0.67450980392156867 0.11764705882352941 # 
-4 shell $-1 -1 -1 $-1 $-1 $-1 $5 $-1 $2 F # 
-5 face $-1 -1 -1 $-1 $6 $7 $4 $-1 $8 forward single F T -1.0474450083328143e-014 3.1415926535898002 0 3.1415926535897931 # 
-6 face $-1 -1 -1 $-1 $9 $10 $4 $-1 $11 forward single F T -3.1415926535897931 5.0487097934144758e-030 0 3.1415926535897931 
# 
-7 loop $-1 -1 -1 $-1 $-1 $12 $5 F periphery $8 F # 
-8 torus-surface $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 60 20 -1 0 3.4914833611093825e-015 forward_v I I I I # 
-9 face $-1 -1 -1 $-1 $13 $14 $4 $-1 $15 forward single F T -1.0658141036401503e-014 3.1415926535898002 -3.1415926535897931 
0 # 
-10 loop $-1 -1 -1 $-1 $-1 $16 $6 F periphery $11 F # 
-11 torus-surface $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 60 20 -1 0 3.4914833611093825e-015 forward_v I I I I # 
-12 coedge $-1 -1 -1 $-1 $17 $18 $19 $20 reversed $7 $-1 # 
-13 face $-1 -1 -1 $-1 $-1 $21 $4 $-1 $22 forward single F T -3.1415926535897931 5.0487097934144758e-030 -
3.1415926535897931 0 # 
-14 loop $-1 -1 -1 $-1 $-1 $23 $9 F periphery $15 F # 
-15 torus-surface $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 60 20 -1 0 3.4914833611093825e-015 forward_v I I I I # 
-16 coedge $-1 -1 -1 $-1 $24 $25 $17 $26 reversed $10 $-1 # 
-17 coedge $-1 -1 -1 $-1 $27 $12 $16 $26 forward $7 $-1 # 
-18 coedge $-1 -1 -1 $-1 $12 $27 $28 $29 reversed $7 $-1 # 
-19 coedge $-1 -1 -1 $-1 $30 $31 $12 $20 forward $14 $-1 # 
-20 edge $-1 -1 -1 $-1 $32 -1.5707963267949001 $33 1.5707963267948863 $19 $34 forward @7 unknown F # 
-21 loop $-1 -1 -1 $-1 $-1 $35 $13 F periphery $22 F # 
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-22 torus-surface $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 60 20 -1 0 3.4914833611093825e-015 forward_v I I I I # 
-23 coedge $-1 -1 -1 $-1 $31 $30 $27 $36 reversed $14 $-1 # 
-24 coedge $-1 -1 -1 $-1 $28 $16 $37 $38 reversed $10 $-1 # 
-25 coedge $-1 -1 -1 $-1 $16 $28 $39 $40 forward $10 $-1 # 
-26 edge $-1 -1 -1 $-1 $32 0 $41 3.1415926535897931 $17 $42 forward @7 unknown F # 
-27 coedge $-1 -1 -1 $-1 $18 $17 $23 $36 forward $7 $-1 # 
-28 coedge $-1 -1 -1 $-1 $25 $24 $18 $29 forward $10 $-1 # 
-29 edge $-1 -1 -1 $-1 $33 0 $43 3.1415926535897931 $28 $44 forward @7 unknown F # 
-30 coedge $-1 -1 -1 $-1 $23 $19 $45 $46 reversed $14 $-1 # 
-31 coedge $-1 -1 -1 $-1 $19 $23 $35 $47 forward $14 $-1 # 
-32 vertex $-1 -1 -1 $-1 $26 $48 # 
-33 vertex $-1 -1 -1 $-1 $46 $49 # 
-34 ellipse-curve $-1 -1 -1 $-1 -60 0 4.189780033331259e-013 0 -1 0 0 0 -20 1 I I # 
-35 coedge $-1 -1 -1 $-1 $39 $37 $31 $47 reversed $21 $-1 # 
-36 edge $-1 -1 -1 $-1 $41 -3.1415926535897896 $43 -1.2446030555722282e-062 $27 $50 forward @7 unknown F # 
-37 coedge $-1 -1 -1 $-1 $35 $45 $24 $38 forward $21 $-1 # 
-38 edge $-1 -1 -1 $-1 $33 1.5707963267948863 $32 4.7123889803846861 $37 $51 forward @7 unknown F # 
-39 coedge $-1 -1 -1 $-1 $45 $35 $25 $40 reversed $21 $-1 # 
-40 edge $-1 -1 -1 $-1 $43 -1.2446030555722282e-062 $41 3.1415926535897967 $25 $52 forward @7 unknown F # 
-41 vertex $-1 -1 -1 $-1 $36 $53 # 
-42 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 -80 0 2.7931866888875051e-013 1 I I # 
-43 vertex $-1 -1 -1 $-1 $36 $54 # 
-44 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 -39.999999999999993 0 1.3965933444437528e-013 1 I I # 
-45 coedge $-1 -1 -1 $-1 $37 $39 $30 $46 forward $21 $-1 # 
-46 edge $-1 -1 -1 $-1 $43 -3.1415926535897931 $33 0 $45 $55 forward @7 unknown F # 
-47 edge $-1 -1 -1 $-1 $41 -3.1415926535897931 $32 0 $31 $56 forward @7 unknown F # 
-48 point $-1 -1 -1 $-1 -80 0 4.8880767055531349e-013 # 
-49 point $-1 -1 -1 $-1 -39.999999999999993 0 2.119382952648577e-013 # 
-50 ellipse-curve $-1 -1 -1 $-1 60 7.3478807948841184e-015 0 -1.2246467991473532e-016 1 4.275833922458848e-031 -
20.000000000000004 -2.4492935982947065e-015 0 1 I I # 
-51 ellipse-curve $-1 -1 -1 $-1 -60 0 4.189780033331259e-013 0 -1 0 0 0 -20 1 I I # 
-52 ellipse-curve $-1 -1 -1 $-1 60 7.3478807948841184e-015 0 -1.2246467991473532e-016 1 4.275833922458848e-031 -
20.000000000000004 -2.4492935982947065e-015 0 1 I I # 
-53 point $-1 -1 -1 $-1 80 9.7971743931788261e-015 -6.9829667222187641e-014 # 
-54 point $-1 -1 -1 $-1 39.999999999999993 4.8985871965894122e-015 0 # 
-55 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 -39.999999999999993 0 1.3965933444437528e-013 1 I I # 
-56 ellipse-curve $-1 -1 -1 $-1 0 0 0 -3.4914833611093825e-015 0 -1 -80 0 2.7931866888875051e-013 1 I I # 
End-of-ACIS-data 
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Program 1 used to execute the Raindrop Approach 
 
program DSS[WM1,WM2] 
element_array MEMORY[512]  
!The number 512 represents the maximum number of data points that will be allocated in memory 
real XX,YY,ZZ,XP,YP,ZP,XM,YM,ZM,XPZ,YPZ,ZPZ 
!The variables are declared for measuring, positioning, and z-plane points. 
  pspeed 80 
  mspeed 15 
  acc 50 
! Positioning speed, measuring speed, and acceleration parameters. 
INCH_MODE 
  XX=.0 
  YY=.0 
  ZZ=7 
!  
  ncmove  
  move (X=XX,Y=YY,Z=ZZ) 
! Enables NC mode and moves probe to position (0, 0, 7) 
 
  open ("C:\Juan\T321.txt") 
! Point coordinates are saved on a file named “T321.txt” that is located in the directory “Juan” 
  format (pick,x=meas,y=meas,z=meas) 
  file  
! File 1 contains the positioning and measuring points. An example of file 1 can be seen below. 
  openf (f1,"C:\Juan\PM_T321.TXT") 
  reset (f1) 
! File 2 contains the z-plane points. An example of the file 2 can be seen below. 
  openf (f2,"C:\Juan\Z_T321.TXT") 
  reset (f2) 
!  
! A cycle is created to obtain n number of data points 
  for I=1 to 32 by 1 
    readln (f2,XPZ,YPZ,ZPZ) 
    dy (XPZ," ",YPZ," ",ZPZ," ") 
    move (X=XPZ,Y=YPZ,Z=ZPZ) 
!  
    readln (f1,XP,YP,ZP,XM,YM,ZM) 
    dy (XP," ",YP," ",ZP," ",XM," ",YM," ",ZM," ") 
    move (X=XP,Y=YP,Z=ZP) 
!  
    msh (MEMORY[I],1) 
    movetf (X=XM,Y=YM,Z=ZM) 
!  
    move (X=XPZ,Y=YPZ,Z=ZPZ) 
  end_for  
  move (X=0,Y=0,Z=8) 
endstat  
end_program  
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File 1 contains the positioning point coordinates and the measuring point 
coordinates of the raindrop approach for a spherical form. It is important to 
mention that the file cannot contain any headers. 

-0.935 0.773 0.794 -0.806 0.667 0.685 
-0.647 0.041 1.297 -0.558 0.035 1.118 
-1.193 -0.757 0.324 -1.029 -0.653 0.280 
-0.358 -0.904 1.075 -0.309 -0.780 0.927 
0.328 -1.276 0.607 0.282 -1.100 0.523 
0.637 -0.527 1.191 0.549 -0.454 1.027 
0.396 -0.025 1.395 0.342 -0.021 1.202 
0.928 0.589 0.945 0.800 0.508 0.815 

 
File 2 contains the z-plane point coordinates of the raindrop approach for a 
spherical form. It is important to mention that the file cannot contain any headers. 

-0.9348 0.7733 1.45
-0.6472 0.04072 1.45
-1.1933 -0.7573 1.45
-0.3581 -0.9044 1.45
0.32753 -1.2757 1.45
0.63693 -0.5269 1.45
0.39632 -0.0249 1.45
0.92835 0.58915 1.45

 
Program 2 used to execute the Hexagonal Mesh Approach 
program HM[WM1,WM2] 
 element_array MEMORY[512] 
!The number 512 represents the maximum number of data points that will be allocated in memory 
  pspeed 80 
  mspeed 25 
  acc 50 
! Positioning speed, measuring speed, and acceleration parameters. 
 
  inch_mode  
  deg_angle  
  set_dim (dm=whole, a=full, arel=acute, amode=a360) 
  dy  
 
! The NC mode of the CMM is enabled and is used to move the stylus to the location of the point 
coordinates specified in the file “HM.pat” 
 
 ncmove  
 msh (MEMORY[3],25) path PT1 
endstat  
end_program  
 
#include c:\wtutor\prog\HM.PAT 
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File HM.PAT contains measuring, positioning, and mesh points of the hexagonal 
mesh approach for a spherical form. 

#path PT1 |   
P 1 1 -0.363 0.628 1.256 
P 1 1 -0.935 0.773 0.794 
M 1 1 -0.806 0.667 0.685 
P 1 1 -0.725 0.000 1.256 
P 1 1 -0.647 0.041 1.297 
M 1 1 -0.558 0.035 1.118 
P 1 1 -0.725 -1.256 0.000 
P 1 1 -1.193 -0.757 0.324 
M 1 1 -1.029 -0.653 0.279 
P 1 1 -0.363 -0.628 1.256 
P 1 1 -0.358 -0.904 1.075 
M 1 1 -0.309 -0.780 0.927 
P 1 1 0.328 -1.276 0.607 
M 1 1 0.282 -1.100 0.523 
P 1 1 0.363 -0.628 1.256 
P 1 1 0.637 -0.527 1.191 
M 1 1 0.549 -0.454 1.027 
P 1 1 0.725 0.000 1.256 
P 1 1 0.396 -0.025 1.395 
M 1 1 0.342 -0.021 1.202 
P 1 1 0.363 0.628 1.256 
P 1 1 0.928 0.589 0.945 
M 1 1 0.800 0.508 0.815 
#endpath    
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Table C.1. Dataset 1 of a cylindrical form obtained from Carr et al.’s (1995). 

Point x y z 
1 29.1831 -52.425813 0.858363 
2 -44.611479 40.126533 1.428767 
3 60.004021 0.002953 4.659634 
4 -38.031517 46.406943 4.962716 
5 -59.414689 8.367685 6.744233 
6 -39.72767 44.927386 8.152067 
7 55.019556 -23.935132 11.525362 
8 -34.039535 -49.395345 12.669581 
9 -8.525012 59.390772 13.334342 

10 34.130168 -49.375581 15.501363 
11 -57.987024 15.413912 15.770917 
12 53.851944 26.459793 19.191642 
13 -23.228283 -55.317965 19.745199 
14 -58.959058 -11.131969 19.839382 
15 57.39863 17.478407 20.471642 
16 57.378476 17.628739 21.998357 
17 -10.250952 -59.117084 22.680775 
18 -40.28493 -44.418701 22.937715 
19 50.759016 -32.045645 22.751741 
20 48.073499 -35.97318 27.101743 

 
Table C.2. Dataset 2 of a cylindrical form obtained from Carr et al.’s (1995). 

Point x y z  Point x y z 
1 -25.918505 15.109304 42.071436  21 -22.315616 20.050269 31.164982
2 -12.893256 -27.088078 56.081574  22 -22.316359 20.050938 31.164982
3 -12.893685 -27.088981 56.081574  23 1.056395 -29.982395 27.519008
4 -25.432673 -15.911603 55.82619  24 1.05636 -29.981396 27.519008
5 -25.433521 -15.912134 55.82619  25 29.953442 -1.688577 21.92032 
6 25.363036 -16.024245 45.731882  26 29.952444 -1.68852 21.92032 
7 25.36219 -16.03271 45.731882  27 -2.62016 -29.88536 19.694054
8 -20.170149 -22.206503 45.384629  28 -2.620248 -29.886356 19.694054
9 -20.171721 -22.207243 45.384629  29 -29.366428 -6.132937 13.137551

10 -25.917641 15.108801 42.071436  30 -29.367407 -6.133141 13.137551
11 -26.057635 14.866056 41.206363  31 30.001 0.001475 7.892267 
12 -26.058504 14.866552 41.206363  32 30 0.001475 7.892267 
13 28.699869 8.739422 40.731883  33 -22.304724 20.062385 4.010534 
14 28.698913 8.739131 40.731883  34 -22.305468 20.063053 4.010534 
15 25.130294 16.386834 39.235138  35 -2.34494 29.908214 2.847871 
16 25.129457 16.386287 39.235138  36 -2.345018 29.909211 2.847871 
17 28.324273 9.889165 31.782012  37 14.612286 -26.201929 2.074327 
18 28.323328 9.888835 31.782012  38 14.611799 -26.201056 2.074327 
19 17.044534 -24.688942 31.615727  39 -14.26238 -26.39288 0.461891 
20 17.043966 -24.688119 31.615727  40 -14.262855 -26.393767 0.461891 
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Table C.3. Dataset 3 of a cylindrical form obtained from Carr et al.’s (1995). 
Point x y z  Point x y z 

1 23.930322 23.878386 -41.82064  21 89.036231 21.72231 35.086999
2 -11.820859 50.421254 -15.81738  22 30.009532 -24.696147 35.870356
3 18.527457 61.577469 -13.68042  23 57.311572 -9.09605 38.123767
4 48.919097 55.614254 -13.26661  24 -26.871029 3.103967 39.48246 
5 33.207329 64.844079 -10.66548  25 -3.608026 -24.493246 39.678687
6 49.576671 65.965076 -6.501629  26 81.087477 11.573666 46.319607
7 68.59397 33.580936 -6.118165  27 -18.366214 2.837799 46.415679
8 65.713317 2.841028 3.498858  28 -3.793621 -14.263808 46.897322
9 79.257377 49.418921 4.727043  29 -18.623157 23.988046 47.691608

10 46.632786 80.517454 4.866333  30 58.416292 -4.557784 48.525368
11 75.507564 20.208045 6.298139  31 66.363729 0.636729 49.246025
12 -37.543275 31.718373 8.573268  32 2.322453 -10.802862 51.268799
13 82.820384 38.516367 9.148307  33 42.403448 -6.693162 56.567707
14 58.357492 87.161327 11.960644  34 -5.898713 21.39033 60.097056
15 96.781947 53.421231 22.908004  35 31.694971 -2.169579 63.538387
16 -4.153639 67.427229 23.451422  36 3.141412 52.730721 67.919265
17 10.366902 80.249947 26.965969  37 67.398986 16.520701 79.062822
18 84.570573 18.219363 28.224203  38 48.408528 15.833662 81.511728
19 13.598993 83.519129 30.375  39 22.371 47.845956 88.060867
20 3.553158 75.111087 30.738097  40 34.46129 41.806234 94.623903

 
Table C.4. Dataset 1 of a cylindrical form obtained from Roy et al.’s (1995). 

Point x y z  Point x y z  Point x y z 
1 -5.011 0.019 0 a 23 3.802 3.238 5 a 45 0.19 -4.989 10 
2 -4.701 1.715 0  24 4.745 1.566 5  46 -1.868 -4.641 10 
3 -3.625 3.449 0  25 4.97 0.52 5  47 -3.493 -3.58 10 
4 -2.376 4.401 0  26 4.64 -1.875 5  48 -4.641 -1.834 10 
5 0.035 4.999 0  27 3.768 -3.288 5  49 -4.989 0.001 15 
6 2.018 4.572 0  28 2.321 -4.434 5  50 -4.636 1.852 15 
7 3.901 3.115 0  29 0.001 -5.015 5  51 -3.51 3.56 15 
8 4.718 1.626 0  30 -1.712 -4.705 5  52 -1.688 4.706 15 
9 4.992 0.059 0  31 -3.278 -3.788 5  53 0.413 5 15 

10 4.726 -1.589 0  32 -4.415 -2.365 5  54 1.473 4.799 15 
11 3.815 -3.22 0  33 -4.99 0 10  55 3.798 3.291 15 
12 2.356 -4.405 0  34 -4.644 1.823 10  56 4.796 1.487 15 
13 -0.792 -4.928 0  35 -3.531 3.527 10  57 5.022 0.066 15 
14 -2.014 -4.569 0  36 -1.704 4.703 10  58 4.816 -1.399 15 
15 -3.912 -3.117 0  37 0.387 4.99 10  59 3.6 -3.472 15 
16 -4.802 -1.384 0  38 1.496 4.78 10  60 1.923 -4.605 15 
17 -5.001 0.019 5  39 3.782 3.29 10  61 0.23 -4.987 15 
18 -4.638 1.885 5  40 4.778 1.502 10  62 -1.798 -4.643 15 
19 -3.984 3.019 5  41 4.999 0.085 10  63 -3.46 -3.588 15 
20 -2.226 4.472 5  42 4.803 -1.404 10  64 -4.614 -1.878 15 
21 -0.007 4.988 5  43 3.596 -3.484 10      
22 2.219 4.472 5  44 1.913 -4.625 10      
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ANOVA Results for Spherical Form  

Main Effect Plot "Mathematical Model"
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Figure D.1. Main Effect Plot of the Factor “Mathematical Model” 

 
SAS Output Code for Spherical Form (Experiment 2) 
Model 1 = SQRT, 2 = NSQRT, 3 = NOANG, 4 = SNL, and 5 = SL. 
 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Model              5    1 2 3 4 5 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    25 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                            Sum of 
     Source                      DF         Squares     Mean Square    F Value    Pr > F 
     Model                        5      0.00008812      0.00001762       7.28    0.0006 
     Error                       19      0.00004602      0.00000242 
     Corrected Total             24      0.00013414 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.656903      45.02470      0.001556      0.003457 
 
     Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
     Model                        4      0.00008749      0.00002187       9.03    0.0003 
     Speci                        1      0.00000062      0.00000062       0.26    0.6180 
 
     Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
     Model                        4      0.00008749      0.00002187       9.03    0.0003 
     Speci                        1      0.00000062      0.00000062       0.26    0.6180 
 
                                         The GLM Procedure 

Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experiment wise error rate, but it generally has a higher  

Type II error rate than REGWQ. 
 

                            Alpha                                   0.01 
                            Error Degrees of Freedom                  19 
                            Error Mean Square                   2.422E-6 
                            Critical Value of Studentized Range  5.33342 
                            Minimum Significant Difference        0.0037 
                    Means with the same letter are not significantly different. 
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                          Tukey Grouping          Mean      N    Model 
                                  A          0.0059286      5    2 
                                  A 
                             B    A          0.0052266      5    3 
                             B    A 
                             B    A    C     0.0032334      5    5 
                             B         C 
                             B         C     0.0017038      5    4 
                                       C 
                                       C     0.0011910      5    1 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          25    Sum Weights                 25 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00138478    Variance            1.91762E-6 
                  Skewness           -0.0958608    Kurtosis            -0.6978853 
                  Uncorrected SS     0.00004602    Corrected SS        0.00004602 
                  Coeff Variation             .    Std Error Mean      0.00027696 
 
                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean     0.000000     Std Deviation            0.00138 
                       Median   0.000114     Variance              1.91762E-6 
                       Mode      .           Range                    0.00482 
                                             Interquartile Range    0.0008442 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M       1.5    Pr >= |M|   0.6900 
                          Signed Rank    S       6.5    Pr >= |S|   0.8653 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.927327    Pr < W      0.0754 
                     Kolmogorov-Smirnov    D     0.151884    Pr > D      0.1401 
                     Cramer-von Mises      W-Sq  0.138295    Pr > W-Sq   0.0329 
                     Anderson-Darling      A-Sq  0.775191    Pr > A-Sq   0.0398 
 
                                      Quantiles (Definition 5) 
                                      Quantile        Estimate 
                                      100% Max       0.0023200 
                                      99%            0.0023200 
                                      95%            0.0020320 
                                      90%            0.0020062 
                                      75% Q3         0.0004098 
                                      50% Median     0.0001136 
                                      25% Q1        -0.0004344 
                                      10%           -0.0020236 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                      Quantile        Estimate 
                                      5%            -0.0020632 
                                      1%            -0.0025006 
                                      0% Min        -0.0025006 
 
                                        Extreme Observations 
                           -------Lowest------        ------Highest------ 
                                Value      Obs             Value      Obs 
                           -0.0025006       12         0.0016202       23 
                           -0.0020632       17         0.0018724       25 
                           -0.0020236       13         0.0020062       22 
                           -0.0017822        5         0.0020320        8 
                           -0.0017422       18         0.0023200        7 
 

 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
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ANOVA Results for Cylindrical Form 
 

Main Effect Plot "Sample Size"
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Figure D.2. Main Effect Plot of the Factor “Sample Size” 
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Figure D.3. Main Effect Plot of the Factor “Mathematical Model” 

 
 



 318

 
SAS Output Code for Cylindrical Form 
Size 1 = 8, 2 = 32, 3 = 128, and 4 = 512. 
Model 1 = SQRT, 2 = NSQRT, and 3 = NL. 
 
 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Size               4    1 2 3 4 
                                 Model              3    1 2 3 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    60 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                                Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
      Model                       15    5.2678626E-6    3.5119084E-7      82.09    <.0001 
      Error                       44     1.882477E-7    4.2783568E-9 
      Corrected Total             59    5.4561103E-6 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.965498      10.47101      0.000065      0.000625 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
      Size                         3    1.3887034E-6    4.6290114E-7     108.20    <.0001 
      Model                        2    3.7720472E-6    1.8860236E-6     440.83    <.0001 
      Size*Model                   6    4.6895999E-8    7.8159999E-9       1.83    0.1158 
      Speci                        4    6.0215928E-8    1.5053982E-8       3.52    0.0141 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
      Size                         3    1.3887034E-6    4.6290114E-7     108.20    <.0001 
      Model                        2    3.7720472E-6    1.8860236E-6     440.83    <.0001 
      Size*Model                   6    4.6895999E-8    7.8159999E-9       1.83    0.1158 
      Speci                        4    6.0215928E-8    1.5053982E-8       3.52    0.0141 
 

The GLM Procedure 
Tukey's Studentized Range (HSD) Test for Zone 

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 
error rate than REGWQ. 

 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  44 
                            Error Mean Square                   4.278E-9 
                            Critical Value of Studentized Range  4.66734 
                            Minimum Significant Difference        0.0001 
 
                     Means with the same letter are not significantly different. 
 
                      Tukey Grouping          Mean      N    Size 
                                   A    0.00079961     15    4 
                                   B    0.00068665     15    3 
                                   B 
                                   B    0.00062882     15    2 
                                   C    0.00038360     15    1 
 

The GLM Procedure 
Tukey's Studentized Range (HSD) Test for Zone 

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 
error rate than REGWQ. 

 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  44 
                            Error Mean Square                   4.278E-9 
                            Critical Value of Studentized Range  4.34390 
                            Minimum Significant Difference        0.0001 
 
                    Means with the same letter are not significantly different. 
 
                     Tukey Grouping          Mean      N    Model 
                                  A    0.00080201     20    2 
                                  A 
                                  A    0.00080192     20    1 
                                  B    0.00027008     20    3 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          60    Sum Weights                 60 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00005649    Variance            3.19064E-9 
                  Skewness             0.194629    Kurtosis            0.65943151 
                  Uncorrected SS     1.88248E-7    Corrected SS        1.88248E-7 
                  Coeff Variation             .    Std Error Mean      7.29228E-6 
 
                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean            0     Std Deviation          0.0000565 
                       Median   4.483E-6     Variance              3.19064E-9 
                       Mode            .     Range                  0.0002782 
                                             Interquartile Range    0.0000735 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M         1    Pr >= |M|   0.8974 
                          Signed Rank    S         5    Pr >= |S|   0.9710 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.965908    Pr < W      0.0918 
                     Kolmogorov-Smirnov    D     0.113304    Pr > D      0.0540 
                     Cramer-von Mises      W-Sq  0.083383    Pr > W-Sq   0.1907 
                     Anderson-Darling      A-Sq  0.642394    Pr > A-Sq   0.0918 
 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     100% Max       1.49742E-04 
                                     99%            1.49742E-04 
                                     95%            1.01896E-04 
                                     90%            4.81852E-05 
                                     75% Q3         3.65968E-05 
                                     50% Median     4.48258E-06 
                                     25% Q1        -3.69316E-05 
                                     10%           -7.48697E-05 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     5%            -8.68600E-05 
                                     1%            -1.28435E-04 
                                     0% Min        -1.28435E-04 
 
                                        Extreme Observations 
                         --------Lowest-------        -------Highest------- 
                                Value      Obs               Value      Obs 
                         -1.28435E-04       46         5.82577E-05        6 
                         -1.28061E-04       47         6.85587E-05       33 
                         -8.68904E-05       49         1.35234E-04       56 
                         -8.68296E-05       50         1.35449E-04       55 
                         -7.64727E-05       48         1.49742E-04       54 

 

 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
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ANOVA Results for Conical Form 
 

Main Effect Plot "Sample Size"
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Figure D.4. Main Effect Plot of the Factor “Sample Size” 
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Figure D.5. Main Effect Plot of the Factor “Mathematical Model” 
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SAS Output Code for Conical Form  
Size 1 = 8, 2 = 32, 3 = 128, and 4 = 512. 
Model 1 = SQRT, 2 = NSQRT, and 3 = NL. 
 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Size               4    1 2 3 4 
                                 Model              3    1 2 3 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    60 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                                Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
      Model                       15      0.00027664      0.00001844      20.97    <.0001 
      Error                       44      0.00003870      0.00000088 
      Corrected Total             59      0.00031534 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.877290      31.58039      0.000938      0.002970 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00008242      0.00002747      31.24    <.0001 
      Model                        2      0.00016646      0.00008323      94.64    <.0001 
      Size*Model                   6      0.00002070      0.00000345       3.92    0.0032 
      Speci                        4      0.00000706      0.00000176       2.01    0.1102 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00008242      0.00002747      31.24    <.0001 
      Model                        2      0.00016646      0.00008323      94.64    <.0001 
      Size*Model                   6      0.00002070      0.00000345       3.92    0.0032 
      Speci                        4      0.00000706      0.00000176       2.01    0.1102 
 

The GLM Procedure 
Tukey's Studentized Range (HSD) Test for Zone 

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 
error rate than REGWQ. 

 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  44 
                            Error Mean Square                   8.794E-7 
                            Critical Value of Studentized Range  4.66734 
                            Minimum Significant Difference        0.0011 
 
                     Means with the same letter are not significantly different. 
 
                      Tukey Grouping          Mean      N    Size 
                                   A     0.0043522     15    4 
                                   A 
                                   A     0.0038297     15    3 
                                   B     0.0022529     15    2 
                                   B 
                                   B     0.0014432     15    1 
 

The GLM Procedure 
Tukey's Studentized Range (HSD) Test for Zone 

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 
error rate than REGWQ. 

 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  44 
                            Error Mean Square                   8.794E-7 
                            Critical Value of Studentized Range  4.34390 
                            Minimum Significant Difference        0.0009 
 
                    Means with the same letter are not significantly different. 
 
                     Tukey Grouping          Mean      N    Model 
                                  A     0.0044004     20    1 
                                  A 
                                  A     0.0038746     20    2 
                                  B     0.0006336     20    3 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          60    Sum Weights                 60 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00080985    Variance            6.55854E-7 
                  Skewness           0.36315884    Kurtosis            1.97047879 
                  Uncorrected SS      0.0000387    Corrected SS         0.0000387 
                  Coeff Variation             .    Std Error Mean      0.00010455 
 
                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean            0     Std Deviation          0.0008098 
                       Median   0.000029     Variance              6.55854E-7 
                       Mode            .     Range                    0.00510 
                                             Interquartile Range    0.0009998 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M         1    Pr >= |M|   0.8974 
                          Signed Rank    S       -12    Pr >= |S|   0.9305 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.973694    Pr < W      0.2204 
                     Kolmogorov-Smirnov    D     0.056367    Pr > D     >0.1500 
                     Cramer-von Mises      W-Sq  0.031779    Pr > W-Sq  >0.2500 
                     Anderson-Darling      A-Sq  0.292659    Pr > A-Sq  >0.2500 
 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     100% Max       2.83447E-03 
                                     99%            2.83447E-03 
                                     95%            1.20827E-03 
                                     90%            9.13050E-04 
                                     75% Q3         4.66967E-04 
                                     50% Median     2.92667E-05 
                                     25% Q1        -5.32858E-04 
                                     10%           -9.91708E-04 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     5%            -1.11448E-03 
                                     1%            -2.26137E-03 
                                     0% Min        -2.26137E-03 
 
                                        Extreme Observations 
                          -------Lowest-------        -------Highest------ 
                                Value      Obs              Value      Obs 
                          -0.00226137       52         0.00102283        7 
                          -0.00140297       53         0.00120337       40 
                          -0.00114363       56         0.00121317       10 
                          -0.00108533       32         0.00153087       47 
                          -0.00102713       17         0.00283447       46 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 

 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
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ANOVA Results for Frustum Form 
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Figure D.6. Main Effect Plot of the Factor “Sample Size” 

 
SAS Output Code for Frustum Form  
Size 1 = 8, 2 = 32, 3 = 128, and 4 = 512. 
Model 1 = NSQRT, and 2 = NL. 
 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Size               4    1 2 3 4 
                                 Model              2    1 2 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    40 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                                Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
      Model                       11      0.00042145      0.00003831       9.53    <.0001 
      Error                       28      0.00011260      0.00000402 
      Corrected Total             39      0.00053405 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.789155      33.08334      0.002005      0.006062 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00026365      0.00008788      21.85    <.0001 
      Model                        1      0.00000116      0.00000116       0.29    0.5948 
      Size*Model                   3      0.00000158      0.00000053       0.13    0.9409 
      Speci                        4      0.00015506      0.00003876       9.64    <.0001 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00026365      0.00008788      21.85    <.0001 
      Model                        1      0.00000116      0.00000116       0.29    0.5948 
      Size*Model                   3      0.00000158      0.00000053       0.13    0.9409 
      Speci                        4      0.00015506      0.00003876       9.64    <.0001 
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                                         The GLM Procedure 
                           Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 

error rate than REGWQ. 
 

                            Alpha                                   0.01 
                            Error Degrees of Freedom                  28 
                            Error Mean Square                   4.022E-6 
                            Critical Value of Studentized Range  4.82959 
                            Minimum Significant Difference        0.0031 
 
                    Means with the same letter are not significantly different. 
 
                        Tukey Grouping          Mean      N    Size 
                                     A     0.0093670     10    4 
                                     A 
                                B    A     0.0074200     10    3 
                                B 
                                B    C     0.0048955     10    2 
                                     C 
                                     C     0.0025638     10    1 
 
                                         The GLM Procedure 
                           Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 

error rate than REGWQ. 
 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  28 
                            Error Mean Square                   4.022E-6 
                            Critical Value of Studentized Range  3.90784 
                            Minimum Significant Difference        0.0018 
 
                    Means with the same letter are not significantly different. 
 
                     Tukey Grouping          Mean      N    Model 
                                  A     0.0062322     20    1 
                                  A 
                                  A     0.0058910     20    2 
 
 

 

 
 
 
 



 329

 
 

 
 

                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          40    Sum Weights                 40 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00169919    Variance            2.88725E-6 
                  Skewness           0.69917819    Kurtosis             0.3363695 
                  Uncorrected SS      0.0001126    Corrected SS         0.0001126 
                  Coeff Variation             .    Std Error Mean      0.00026867 
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                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean      0.00000     Std Deviation            0.00170 
                       Median   -0.00047     Variance              2.88725E-6 
                       Mode       .          Range                    0.00757 
                                             Interquartile Range      0.00237 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M        -2    Pr >= |M|   0.6358 
                          Signed Rank    S       -12    Pr >= |S|   0.8742 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.944106    Pr < W      0.0476 
                     Kolmogorov-Smirnov    D     0.139851    Pr > D      0.0471 
                     Cramer-von Mises      W-Sq  0.133726    Pr > W-Sq   0.0393 
                     Anderson-Darling      A-Sq  0.762561    Pr > A-Sq   0.0446 
 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     100% Max       0.004924012 
                                     99%            0.004924012 
                                     95%            0.003038422 
                                     90%            0.002080749 
                                     75% Q3         0.001214835 
                                     50% Median    -0.000467704 
                                     25% Q1        -0.001153955 
                                     10%           -0.001896101 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     5%            -0.002265400 
                                     1%            -0.002642185 
                                     0% Min        -0.002642185 
 
                                        Extreme Observations 
                          -------Lowest-------        -------Highest------ 
                                Value      Obs              Value      Obs 
                          -0.00264219       12         0.00177321       14 
                          -0.00249574       37         0.00238829       36 
                          -0.00203506       11         0.00292035       21 
                          -0.00196031       39         0.00315649       22 
                          -0.00183190       33         0.00492401       35 

 

 
 

The UNIVARIATE Procedure 
Variable:  resid 
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ANOVA Results for Torus Form (Experiment 1) 
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Figure D.7. Main Effect Plot of the Factor “Sample Size” 
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Figure D.8. Main Effect Plot of the Factor “Mathematical Model” 

 
 
SAS Output Code for Torus Form (Experiment 1) 
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Size 1 = 8, 2 = 32, 3 = 128, 4 = 512. 
Model 1 = SQRT, 2 = NSQRT, 3 = Thesis, and 4 = NL. 

 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Size               4    1 2 3 4 
                                 Model              4    1 2 3 4 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    80 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                                Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
      Model                       19      0.00007571      0.00000398       9.39    <.0001 
      Error                       60      0.00002547      0.00000042 
      Corrected Total             79      0.00010118 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.748248      58.14773      0.000652      0.001121 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00003061      0.00001020      24.03    <.0001 
      Model                        3      0.00001150      0.00000383       9.03    <.0001 
      Size*Model                   9      0.00000361      0.00000040       0.95    0.4938 
      Speci                        4      0.00002999      0.00000750      17.66    <.0001 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
      Size                         3      0.00003061      0.00001020      24.03    <.0001 
      Model                        3      0.00001150      0.00000383       9.03    <.0001 
      Size*Model                   9      0.00000361      0.00000040       0.95    0.4938 
      Speci                        4      0.00002999      0.00000750      17.66    <.0001 
 
                                         The GLM Procedure 
                           Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 

error rate than REGWQ. 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  60 
                            Error Mean Square                   4.245E-7 
                            Critical Value of Studentized Range  4.59418 
                            Minimum Significant Difference        0.0007 
 
                    Means with the same letter are not significantly different. 
 
                        Tukey Grouping          Mean      N    Size 
                                     A     0.0019204     20    4 
                                     A 
                                B    A     0.0012930     20    3 
                                B 
                                B          0.0010748     20    2 
                                     C     0.0001939     20    1 
 
                                         The GLM Procedure 
                           Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 

error rate than REGWQ. 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  60 
                            Error Mean Square                   4.245E-7 
                            Critical Value of Studentized Range  4.59418 
                            Minimum Significant Difference        0.0007 
 
                     Means with the same letter are not significantly different. 
 
                        Tukey Grouping          Mean      N    Model 
                                     A     0.0017225     20    4 
                                     A 
                                B    A     0.0011413     20    3 
                                B 
                                B          0.0009046     20    1 
                                B 
                                B          0.0007137     20    2 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          80    Sum Weights                 80 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00056783    Variance            3.22427E-7 
                  Skewness           0.95402386    Kurtosis            3.78794771 
                  Uncorrected SS     0.00002547    Corrected SS        0.00002547 
                  Coeff Variation             .    Std Error Mean      0.00006348 
 
                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean            0     Std Deviation          0.0005678 
                       Median   0.000011     Variance              3.22427E-7 
                       Mode            .     Range                    0.00355 
                                             Interquartile Range    0.0005662 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M         3    Pr >= |M|   0.5764 
                          Signed Rank    S       -37    Pr >= |S|   0.8604 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.908517    Pr < W     <0.0001 
                     Kolmogorov-Smirnov    D     0.143549    Pr > D     <0.0100 
                     Cramer-von Mises      W-Sq  0.331572    Pr > W-Sq  <0.0050 
                     Anderson-Darling      A-Sq  2.014533    Pr > A-Sq  <0.0050 
 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     100% Max       2.33686E-03 
                                     99%            2.33686E-03 
                                     95%            1.00671E-03 
                                     90%            4.19396E-04 
                                     75% Q3         2.48705E-04 
                                     50% Median     1.07669E-05 
                                     25% Q1        -3.17463E-04 
                                     10%           -6.19248E-04 
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                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     5%            -9.89547E-04 
                                     1%            -1.21439E-03 
                                     0% Min        -1.21439E-03 
 
                                        Extreme Observations 
                         --------Lowest-------        -------Highest------- 
                                Value      Obs               Value      Obs 
                         -0.001214390       17         0.000777881       80 
                         -0.001149400       18         0.001235545       39 
                         -0.001116620       19         0.001420031       77 
                         -0.000993539       75         0.001584106       78 
                         -0.000985556       20         0.002336857       79 

 

 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
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ANOVA Results for Torus Form (Experiment 2) 
 

Main Effect Plot "Mathematical Model"
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Figure D.9. Main Effect Plot of the Factor “Mathematical Model” 

 
SAS Output Code for Torus Form (Experiment 2) 
Model 1 = SQRT, 2 = NSQRT, 3 = Thesis, and 4 = NL. 

 
                                         The GLM Procedure 
                                      Class Level Information 
                                 Class         Levels    Values 
                                 Model              4    1 2 3 4 
                                 Speci              5    1 2 3 4 5 
 
                                    Number of observations    20 
 
                                         The GLM Procedure 
Dependent Variable: Zone 
                                                Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
      Model                        7      0.00241127      0.00034447      54.57    <.0001 
      Error                       12      0.00007575      0.00000631 
      Corrected Total             19      0.00248702 
 
                         R-Square     Coeff Var      Root MSE     Zone Mean 
                         0.969543      12.99751      0.002512      0.019330 
 
      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
      Model                        3      0.00238934      0.00079645     126.17    <.0001 
      Speci                        4      0.00002193      0.00000548       0.87    0.5105 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
      Model                        3      0.00238934      0.00079645     126.17    <.0001 
      Speci                        4      0.00002193      0.00000548       0.87    0.5105 
 
                                         The GLM Procedure 
                           Tukey's Studentized Range (HSD) Test for Zone 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II 

error rate than REGWQ. 
                            Alpha                                   0.01 
                            Error Degrees of Freedom                  12 
                            Error Mean Square                   6.312E-6 
                            Critical Value of Studentized Range  5.50160 
                            Minimum Significant Difference        0.0062 
 
                    Means with the same letter are not significantly different. 
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                     Tukey Grouping          Mean      N    Model 
                                  A      0.028925      5    1 
                                  A 
                                  A      0.028342      5    3 
                                  B      0.018135      5    2 
                                  C      0.001919      5    4 

 

 
 

 
 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                              Moments 
                  N                          20    Sum Weights                 20 
                  Mean                        0    Sum Observations             0 
                  Std Deviation      0.00199668    Variance            3.98675E-6 
                  Skewness           0.34217002    Kurtosis            0.23910872 
                  Uncorrected SS     0.00007575    Corrected SS        0.00007575 
                  Coeff Variation             .    Std Error Mean      0.00044647 
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                                     Basic Statistical Measures 
                           Location                    Variability 
                       Mean      0.00000     Std Deviation            0.00200 
                       Median   -0.00015     Variance              3.98675E-6 
                       Mode       .          Range                    0.00843 
                                             Interquartile Range      0.00278 
 
                                     Tests for Location: Mu0=0 
                          Test           -Statistic-    -----p Value------ 
                          Student's t    t         0    Pr > |t|    1.0000 
                          Sign           M        -1    Pr >= |M|   0.8238 
                          Signed Rank    S        -1    Pr >= |S|   0.9854 
 
                                        Tests for Normality 
                     Test                  --Statistic---    -----p Value------ 
                     Shapiro-Wilk          W     0.984446    Pr < W      0.9780 
                     Kolmogorov-Smirnov    D     0.096448    Pr > D     >0.1500 
                     Cramer-von Mises      W-Sq  0.024815    Pr > W-Sq  >0.2500 
                     Anderson-Darling      A-Sq  0.173169    Pr > A-Sq  >0.2500 
 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     100% Max       0.004550377 
                                     99%            0.004550377 
                                     95%            0.003542628 
                                     90%            0.002534137 
                                     75% Q3         0.001378199 
                                     50% Median    -0.000147198 
                                     25% Q1        -0.001403924 
                                     10%           -0.002256198 
                                      The UNIVARIATE Procedure 
                                          Variable:  resid 
                                      Quantiles (Definition 5) 
                                     Quantile          Estimate 
                                     5%            -0.003075391 
                                     1%            -0.003879819 
                                     0% Min        -0.003879819 
 
                                        Extreme Observations 
                          -------Lowest-------        -------Highest------ 
                                Value      Obs              Value      Obs 
                          -0.00387982        1         0.00177772       14 
                          -0.00227096       18         0.00186951       10 
                          -0.00224143        9         0.00253340       17 
                          -0.00174253        6         0.00253488        3 
                          -0.00142709        7         0.00455038        5 

 

 
 


