1,024 research outputs found

    Oscillatory Control over Representational States in Working Memory

    Get PDF
    In the visual world, attention is guided by perceptual goals activated in visual working memory (VWM). However, planning multiple-task sequences also requires VWM to store representations for future goals. These future goals need to be prevented from interfering with the current perceptual task. Recent findings have implicated neural oscillations as a control mechanism serving the implementation and switching of different states of prioritization of VWM representations. We review recent evidence that posterior alpha-band oscillations underlie the flexible activation and deactivation of VWM representations and that frontal delta-to-theta-band oscillations play a role in the executive control of this process. That is, frontal delta-to-theta appears to orchestrate posterior alpha through long-range oscillatory networks to flexibly set up and change VWM states during multitask sequences

    L’influence de l'anticipation sur les modulations de puissance dans la bande de fréquence bêta durant la préparation du mouvement et L'effet de la variance dans les rétroactions sensorielles sur la rétention à court terme

    Get PDF
    La production du mouvement est un aspect primordial de la vie qui permet aux organismes vivants d'interagir avec l'environnement. En ce sens, pour être efficaces, tous les mouvements doivent être planifiés et mis à jour en fonction de la complexité et de la variabilité de l'environnement. Des chercheurs du domaine du contrôle moteur ont étudié de manière approfondie les processus de planification et d’adaptation motrice. Puisque les processus de planification et d'adaptation motrice sont influencés par la variabilité de l'environnement, le présent mémoire cherche à fournir une compréhension plus profonde de ces deux processus moteurs à cet égard. La première contribution scientifique présentée ici tire parti du fait que les temps de réaction (TR) sont réduits lorsqu'il est possible d'anticiper l’objectif moteur, afin de déterminer si les modulations de TR associées à l'anticipation spatiale et temporelle sont sous-tendues par une activité préparatoire similaire. Cela a été fait en utilisant l'électroencéphalographie (EEG) de surface pour analyser l'activité oscillatoire dans la bande de fréquence bêta (13 - 30 Hz) au cours de la période de planification du mouvement. Les résultats ont révélé que l'anticipation temporelle était associée à la désynchronisation de la bande bêta au-dessus des régions sensorimotrices controlatérales à la main effectrice, en particulier autour du moment prévu de l'apparition de la cible. L’ampleur de ces modulations était corrélée aux modulations de TR à travers les participants. En revanche, l'anticipation spatiale a augmenté de manière sélective la puissance de la bande bêta au-dessus des régions pariéto-occipitales bilatérales pendant toute la période de planification. Ces résultats suggèrent des états de préparation distinct en fonction de l’anticipation temporelle et spatiale. D’un autre côté, le deuxième projet traite de la façon dont la variabilité de la rétroaction sensorielle interfère avec la rétention à court terme dans l’étude de l’adaptation motrice. Plus précisément, une tâche d'adaptation visuomotrice a été utilisée au cours de laquelle la variance des rotations a été manipulée de manière paramétrique à travers trois groupes, et ce, tout au long de la période d’acquisition. Par la suite, la rétention de cette nouvelle relation visuomotrice a été évaluée. Les résultats ont révélé que, même si le processus d'adaptation était robuste à la manipulation de la variance, la rétention à court terme était altérée par des plus hauts niveaux de variance. Finalement, la discussion a d'abord cherché à intégrer ces deux contributions en revisitant l'interprétation des résultats sous un angle centré sur l'incertitude et en fournissant un aperçu des potentielles représentations internes de l'incertitude susceptibles de sous-tendre les résultats expérimentaux observés. Par la suite, une partie de la discussion a été réservée à la manière dont le champ du contrôle moteur migre de plus en plus vers l’utilisation de tâches et d’approches expérimentales plus complexes, mais écologiques aux dépends des tâches simples, mais quelque peu dénaturées que l’on retrouve dans les laboratoires du domaine. La discussion a été couronnée par une brève proposition allant dans ce sens.Abstract: Motor behavior is a paramount aspect of life that enables the living to interact with the environment through the production of movement. In order to be efficient, movements need to be planned and updated according to the complexity and the ever-changing nature of the environment. Motor control experts have extensively investigated the planning and adaptation processes. Since both motor planning and motor adaptation processes are influenced by variability in the environment, the present thesis seeks to provide a deeper understanding of both these motor processes in this regard. More specifically, the first scientific contribution presented herein leverages the fact that reaction times (RTs) are reduced when the anticipation of the motor goal is possible to elucidate whether the RT modulations associated with temporal and spatial anticipation are subtended by similar preparatory activity. This was done by using scalp electroencephalography (EEG) to analyze the oscillatory activity in the beta frequency band (13 – 30 Hz) during the planning period. Results revealed that temporal anticipation was associated with beta-band desynchronization over contralateral sensorimotor regions, specifically around the expected moment of target onset, the magnitude of which was correlated with RT modulations across participants. In contrast, spatial anticipation selectively increased beta-band power over bilateral parieto-occipital regions during the entire planning period, suggesting that distinct states of preparation are incurred by temporal and spatial anticipation. Additionally, the second project addressed how variance in the sensory feedback interferes with short-term retention of motor adaptation. Specifically, a visuomotor adaptation task was used during which the variance of exposed rotation was parametrically manipulated across three groups, and retention of the adapted visuomotor relationship was assessed. Results revealed that, although the adaptation process was robust to the manipulation of variance, the short-term retention was impaired. The discussion first sought to integrate these two projects by revisiting the interpretation of both projects under the scope of uncertainty and by providing an overview of the internal representation of uncertainty that might subtend the experimental results. Subsequently, a part of the discussion was reserved to allude how the motor control field is transitioning from laboratory-based tasks to more naturalistic paradigms by using approaches to move motor control research toward real-world conditions. The discussion culminates with a brief scientific proposal along those lines

    Language–motor interference reflected in MEG beta oscillations

    Get PDF
    AbstractThe involvement of the brain's motor system in action-related language processing can lead to overt interference with simultaneous action execution. The aim of the current study was to find evidence for this behavioural interference effect and to investigate its neurophysiological correlates using oscillatory MEG analysis. Subjects performed a semantic decision task on single action verbs, describing actions executed with the hands or the feet, and abstract verbs. Right hand button press responses were given for concrete verbs only. Therefore, longer response latencies for hand compared to foot verbs should reflect interference. We found interference effects to depend on verb imageability: overall response latencies for hand verbs did not differ significantly from foot verbs. However, imageability interacted with effector: while response latencies to hand and foot verbs with low imageability were equally fast, those for highly imageable hand verbs were longer than for highly imageable foot verbs. The difference is reflected in motor-related MEG beta band power suppression, which was weaker for highly imageable hand verbs compared with highly imageable foot verbs. This provides a putative neuronal mechanism for language–motor interference where the involvement of cortical hand motor areas in hand verb processing interacts with the typical beta suppression seen before movements. We found that the facilitatory effect of higher imageability on action verb processing time is perturbed when verb and motor response relate to the same body part. Importantly, this effect is accompanied by neurophysiological effects in beta band oscillations. The attenuated power suppression around the time of movement, reflecting decreased cortical excitability, seems to result from motor simulation during action-related language processing. This is in line with embodied cognition theories

    Brain Rhythms in Object Recognition and Manipulation

    Get PDF
    Our manual interactions with objects represent the most fundamental activity in our everyday life. Whereas the grasp of an object is driven by the perceptual senses, using an object for its function relies on learnt experience to retrieve. Recent theories explain how the brain takes decisions based on perceptual information, yet the question of how does it retrieve object knowledge to use tools remains unanswered. Discovering the neuronal implementation of the retrieval of object knowledge would help understanding praxic impairments and provide appropriate neurorehabilitation. This thesis reports five investigations on the neuronal oscillatory activity involved in accessing object knowledge. Employing an original paradigm combining EEG recordings with tool use training in virtual reality, I demonstrated that beta oscillations are crucial to the retrieval of object knowledge during object recognition. Multiple evidence points toward an access to object knowledge during the 300 to 400 ms of visual processing. The different topographies of the beta oscillations suggest that tool knowledge is encoded in distinct brain areas but generally located within the left hemisphere. Importantly, learning action information about an object has consequences on its manipulations. Multiplying tool use knowledge about an object increases the beta desynchronization and slows down motor control. Furthermore, the present data report an influence of language on object manipulations and beta oscillations, in a way that learning the name of an object speeds up its use while impedes its grasp. This shred of evidence led to the formulation of three testable hypotheses extending contemporary theories of object manipulation and semantic memory. First, the preparation of object transportation or use could be distinguished by the synchronization/desynchronization patterns of mu and beta rhythms. Second, action competitions originate from both perceptuo-motor and memory systems. Third, accessing to semantic object knowledge during object processing could be indexed by the bursts of desynchronization of high-beta oscillations in the brain.MSCA-ETN SECURE [642667

    Manual dexterity: functional lateralisation patterns and motor efficiency

    Get PDF
    Manual tasks are an important goal-directed ability. In this EEG work, we studied how handedness affects the hemispheric lateralisation patterns during performance of visually-driven movements with either hand. The neural correlates were assessed by means of EEG coherence whereas behavioural output was measured by motor error. The EEG data indicated that left- and right-handers showed distinct recruitment patterns. These involved local interactions between brain regions as well as more widespread associations between brain systems. Despite these differences, brain-behaviour correlations highlighted that motor efficiency depended on left-sided brain regions across groups. These results suggest that skilled hand motor control relies on different neural patterns as a function of handedness whereas behavioural efficiency is linked with the left hemisphere. In conclusion, the present findings add to our understanding about principles of lateralised organisation as a function of handedness

    Frequency shifts and depth dependence of premotor beta band activity during perceptual decision-making

    Get PDF
    Neural activity in the premotor and motor cortices shows prominent structure in the beta frequency range (13–30 Hz). Currently, the behavioral relevance of this beta band activity (BBA) is debated. The underlying source of motor BBA and how it changes as a function of cortical depth are also not completely understood. Here, we addressed these unresolved questions by investigating BBA recorded using laminar electrodes in the dorsal premotor cortex of 2 male rhesus macaques performing a visual reaction time (RT) reach discrimination task. We observed robust BBA before and after the onset of the visual stimulus but not during the arm movement. While poststimulus BBA was positively correlated with RT throughout the beta frequency range, prestimulus correlation varied by frequency. Low beta frequencies (∼12–20 Hz) were positively correlated with RT, and high beta frequencies (∼22–30 Hz) were negatively correlated with RT. Analysis and simulations suggested that these frequency-dependent correlations could emerge due to a shift in the component frequencies of the prestimulus BBA as a function of RT, such that faster RTs are accompanied by greater power in high beta frequencies. We also observed a laminar dependence of BBA, with deeper electrodes demonstrating stronger power in low beta frequencies both prestimulus and poststimulus. The heterogeneous nature of BBA and the changing relationship between BBA and RT in different task epochs may be a sign of the differential network dynamics involved in cue expectation, decision-making, motor preparation, and movement execution.Published versio

    Visual salience of the stop signal affects the neuronal dynamics of controlled inhibition

    Get PDF
    The voluntary control of movement is often tested by using the countermanding, or stop-signal task that sporadically requires the suppression of a movement in response to an incoming stop-signal. Neurophysiological recordings in monkeys engaged in the countermanding task have shown that dorsal premotor cortex (PMd) is implicated in movement control. An open question is whether and how the perceptual demands inherent the stop-signal affects inhibitory performance and their underlying neuronal correlates. To this aim we recorded multi-unit activity (MUA) from the PMd of two male monkeys performing a countermanding task in which the salience of the stop-signals was modulated. Consistently to what has been observed in humans, we found that less salient stimuli worsened the inhibitory performance. At the neuronal level, these behavioral results were subtended by the following modulations: when the stop-signal was not noticeable compared to the salient condition the preparatory neuronal activity in PMd started to be affected later and with a less sharp dynamic. This neuronal pattern is probably the consequence of a less efficient inhibitory command useful to interrupt the neural dynamic that supports movement generation in PMd
    • …
    corecore