617 research outputs found

    A Computational Lexicon and Representational Model for Arabic Multiword Expressions

    Get PDF
    The phenomenon of multiword expressions (MWEs) is increasingly recognised as a serious and challenging issue that has attracted the attention of researchers in various language-related disciplines. Research in these many areas has emphasised the primary role of MWEs in the process of analysing and understanding language, particularly in the computational treatment of natural languages. Ignoring MWE knowledge in any NLP system reduces the possibility of achieving high precision outputs. However, despite the enormous wealth of MWE research and language resources available for English and some other languages, research on Arabic MWEs (AMWEs) still faces multiple challenges, particularly in key computational tasks such as extraction, identification, evaluation, language resource building, and lexical representations. This research aims to remedy this deficiency by extending knowledge of AMWEs and making noteworthy contributions to the existing literature in three related research areas on the way towards building a computational lexicon of AMWEs. First, this study develops a general understanding of AMWEs by establishing a detailed conceptual framework that includes a description of an adopted AMWE concept and its distinctive properties at multiple linguistic levels. Second, in the use of AMWE extraction and discovery tasks, the study employs a hybrid approach that combines knowledge-based and data-driven computational methods for discovering multiple types of AMWEs. Third, this thesis presents a representative system for AMWEs which consists of multilayer encoding of extensive linguistic descriptions. This project also paves the way for further in-depth AMWE-aware studies in NLP and linguistics to gain new insights into this complicated phenomenon in standard Arabic. The implications of this research are related to the vital role of the AMWE lexicon, as a new lexical resource, in the improvement of various ANLP tasks and the potential opportunities this lexicon provides for linguists to analyse and explore AMWE phenomena

    Open-source resources and standards for Arabic word structure analysis: Fine grained morphological analysis of Arabic text corpora

    Get PDF
    Morphological analyzers are preprocessors for text analysis. Many Text Analytics applications need them to perform their tasks. The aim of this thesis is to develop standards, tools and resources that widen the scope of Arabic word structure analysis - particularly morphological analysis, to process Arabic text corpora of different domains, formats and genres, of both vowelized and non-vowelized text. We want to morphologically tag our Arabic Corpus, but evaluation of existing morphological analyzers has highlighted shortcomings and shown that more research is required. Tag-assignment is significantly more complex for Arabic than for many languages. The morphological analyzer should add the appropriate linguistic information to each part or morpheme of the word (proclitic, prefix, stem, suffix and enclitic); in effect, instead of a tag for a word, we need a subtag for each part. Very fine-grained distinctions may cause problems for automatic morphosyntactic analysis – particularly probabilistic taggers which require training data, if some words can change grammatical tag depending on function and context; on the other hand, finegrained distinctions may actually help to disambiguate other words in the local context. The SALMA – Tagger is a fine grained morphological analyzer which is mainly depends on linguistic information extracted from traditional Arabic grammar books and prior knowledge broad-coverage lexical resources; the SALMA – ABCLexicon. More fine-grained tag sets may be more appropriate for some tasks. The SALMA –Tag Set is a theory standard for encoding, which captures long-established traditional fine-grained morphological features of Arabic, in a notation format intended to be compact yet transparent. The SALMA – Tagger has been used to lemmatize the 176-million words Arabic Internet Corpus. It has been proposed as a language-engineering toolkit for Arabic lexicography and for phonetically annotating the Qur’an by syllable and primary stress information, as well as, fine-grained morphological tagging

    Proceedings

    Get PDF
    Proceedings of the Workshop on Annotation and Exploitation of Parallel Corpora AEPC 2010. Editors: Lars Ahrenberg, Jörg Tiedemann and Martin Volk. NEALT Proceedings Series, Vol. 10 (2010), 98 pages. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15893

    A Latent Morphology Model for Open-Vocabulary Neural Machine Translation

    Get PDF
    Translation into morphologically-rich languages challenges neural machine translation (NMT) models with extremely sparse vocabularies where atomic treatment of surface forms is unrealistic. This problem is typically addressed by either pre-processing words into subword units or performing translation directly at the level of characters. The former is based on word segmentation algorithms optimized using corpus-level statistics with no regard to the translation task. The latter learns directly from translation data but requires rather deep architectures. In this paper, we propose to translate words by modeling word formation through a hierarchical latent variable model which mimics the process of morphological inflection. Our model generates words one character at a time by composing two latent representations: a continuous one, aimed at capturing the lexical semantics, and a set of (approximately) discrete features, aimed at capturing the morphosyntactic function, which are shared among different surface forms. Our model achieves better accuracy in translation into three morphologically-rich languages than conventional open-vocabulary NMT methods, while also demonstrating a better generalization capacity under low to mid-resource settings.Comment: Published at ICLR 202

    A Joint Matrix Factorization Analysis of Multilingual Representations

    Full text link
    We present an analysis tool based on joint matrix factorization for comparing latent representations of multilingual and monolingual models. An alternative to probing, this tool allows us to analyze multiple sets of representations in a joint manner. Using this tool, we study to what extent and how morphosyntactic features are reflected in the representations learned by multilingual pre-trained models. We conduct a large-scale empirical study of over 33 languages and 17 morphosyntactic categories. Our findings demonstrate variations in the encoding of morphosyntactic information across upper and lower layers, with category-specific differences influenced by language properties. Hierarchical clustering of the factorization outputs yields a tree structure that is related to phylogenetic trees manually crafted by linguists. Moreover, we find the factorization outputs exhibit strong associations with performance observed across different cross-lingual tasks. We release our code to facilitate future research.Comment: Accepted to Findings of EMNLP 202

    AraNLP: A Java-based library for the processing of Arabic text

    Get PDF
    We present a free, Java-based library named "AraNLP" that covers various Arabic text preprocessing tools. Although a good number of tools for processing Arabic text already exist, integration and compatibility problems continually occur. AraNLP is an attempt to gather most of the vital Arabic text preprocessing tools into one library that can be accessed easily by integrating or accurately adapting existing tools and by developing new ones when required. The library includes a sentence detector, tokenizer, light stemmer, root stemmer, part-of-speech tagger (POS-tagger), word segmenter, normalizer, and a punctuation and diacritic remover
    corecore