
AraNLP: A Java-based Library for the Processing of Arabic Text

Maha Althobaiti, Udo Kruschwitz, Massimo Poesio
School of Computer Science and Electronic Engineering

University of Essex
Colchester, UK

{mjaltha, udo, poesio}@essex.ac.uk

Abstract
We present a free, Java-based library named “AraNLP” that covers various Arabic text preprocessing tools. Although a good number
of tools for processing Arabic text already exist, integration and compatibility problems continually occur. AraNLP is an attempt to
gather most of the vital Arabic text preprocessing tools into one library that can be accessed easily by integrating or accurately adapting
existing tools and by developing new ones when required. The library includes a sentence detector, tokenizer, light stemmer, root
stemmer, part-of-speech tagger (POS-tagger), word segmenter, normalizer, and a punctuation and diacritic remover.

Keywords: Arabic Natural Language Processing, Java, Tools

1. Introduction
Languages with extensive morphological features require
critical preprocessing in preparation for being subjected to
Natural Language Processing (NLP) techniques. Arabic,
a highly derivational and inflectional language, is charac-
terised by a complex set of morphological features includ-
ing gender, number, person, case, state, mood, and voice.
In addition, Arabic has a set of clitics, which attach to the
stem after affixes such as conjunctions, prepositions, future
marks, definite articles, and pronouns.
The rich morphology of Arabic makes preprocessing the
text an essential step for any Arabic NLP application.
Moreover, word- and sentence-level preprocessing might
differ from one NLP application to another within the same
NLP task. For example, it has been shown that stemming
is particularly effective for morphologically complex lan-
guages (Pirkola, 2001). Larkey et al. (2002), however, in-
vestigated the effectiveness of various degrees of stemming
for both mono- and cross-language Arabic Information Re-
trieval (IR). Thus, many light stemmers were built so that
each one of them removes a different set of attachable cli-
tics and suffixes from the Arabic word. Their study found
that a light stemmer, which removes stop words, definite ar-
ticles, and the conjunction clitic (wa, ð, ‘and’)1 from the be-
ginning of words, and a small number of suffixes from the
end of words, is more effective for cross-language retrieval
than a root stemmer, which searches for the root of each
word. Habash and Sadat (2006) investigated the effect of
different word-level preprocessing decisions for Arabic on
Statistical Machine Translation (SMT) quality. They found
that splitting off proclitics alone is most effective for large
amounts of training data, while English-like tokenization is
best when working with small amounts of training data.
A good number of tools are available for preparing Arabic
text and developing Arabic NLP systems. These tools, in
comparison with other languages, are still limited in cov-
erage (Shaalan and Raza, 2009). In addition, integration

1Throughout the entire paper, Arabic words are represented as
follows: (Qalam transliteration, Arabic word, ‘English transla-
tion’).

and compatibility problems might occur with some tools.
Thus, Arabic NLP researchers find themselves either mod-
ifying the existing processing tools to suit their needs, or
building their own pipeline that consists of essential text
preparation tools arranged in a particular order, depending
on the application’s requirements. Therefore, providing a
library equipped with all or most of the tools essential for
the processing of Arabic text (e.g., tokenization, sentence
detection, word segmenter, stemming, POS-tagging), will
make it possible to move Arabic NLP forward and to facili-
tate the reuse of already existing preprocessing algorithmic
resources.
In this paper we present AraNLP, a Java-based toolkit for
the processing of Arabic text. It supports the most im-
portant preprocessing steps, such as diacritic and punctua-
tion removal, tokenization, sentence segmentation, part-of-
speech tagging, root stemming, light stemming, and word
segmentation. These tools are usually required to prepare
the text for more advanced NLP tasks. Figure 1 illustrates a
typical processing pipeline applying the tools provided by
AraNLP. The goal of AraNLP is to gather most of the vi-
tal Arabic text preprocessing tools into one library that can
be accessed easily. We incorporated missing tools and in-
cluded existing algorithmic resources. AraNLP has already
been used by Althobaiti et al. (2013) to prepare the Arabic
text for their experiment and it successfully preprocessed
the corpus. The library is available free online2.
The remainder of this paper is structured as follows: Sec-

tion 2 includes background information on Arabic and its
morphological characteristics. Section 3 provides a de-
tailed explanation of the processing tools included in the
AraNLP library. Finally, the conclusion features our future
plans.

2. The Characteristics of Arabic
2.1. Arabic Morphology
Arabic morphology is studied more than any other aspect
of the language, because it is an essential and complex is-
sue that concerns everyone developing Arabic NLP. In gen-

2https://sites.google.com/site/mahajalthobaiti/resources

4134

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/74370980?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Typical processing pipeline of AraNLP

eral, morphology means the study of word structure or form
(Ritchey, 1998). Arabic’s rich morphology interacts with
both orthography and syntax. The primary concept in mor-
phology is the morpheme, the smallest unit of meaning in a
language. For example, the word (daarswn, 	

àñ�P@X, ‘schol-

ars’) consists of two morphemes: (daars, �P@X, ‘scholar’)

and (wn, 	
àð, ‘suffix for masculine plural’). There are

three essential types of morphemes that concatenate to form
words in Arabic:

• Stem: The term “stem” has two slightly different
meanings. First, a stem can be the core part of a word
that expresses the basic meaning and cannot be further
divided into smaller morphemes (Payne, 2006). For
example, the stem of the Arabic word (musaafirwn,
	
àðQ

	
¯A�Ó, ‘travellers’) is (safar, Q

	
®�, ‘travel’). This

usage has been followed by different studies in or-
der to build stemmers for Arabic, like Khoja’s stem-
mer (Khoja and Garside, 1999). Second, stem can
refer to the part of the word that is common in all
of its inflected forms (Kroeger, 2005). According to
the second definition, the stem of the Arabic word
(musaafirwn, 	

àðQ
	
¯A�Ó, ‘travellers’) is (musaafir, Q

	
¯A�Ó,

‘traveller’).

• Affixes: Affixes attach to the stem. There are three
types of affixes: (a) prefixes that attach before the
stem, (b) suffixes that attach after the stem, and (c)
circumfixes that enclose the stem.

• Clitics: Clitics are morphemes that attach to the stem
after affixes. A clitic has the syntactic characteristics
of a word but is based phonologically on another
word (Loos et al., 2004). There are several possible
Arabic clitics that are distinguishable based on their
position in the word. Proclitics come at the beginning
of words. They usually represent conjunctions such
as (wa, ð, ‘and’), (bi, �K. , ‘with’), (fa, �

	
¯, ‘then’), (ka,

�», ‘as’), and (li, �Ë, ‘for’). Enclitics come at the end
of words. They usually represent pronouns such as
(kumaa, AÒ», ‘your’), (humaa, AÒë, ‘their’), and (ye, ø

,

‘my’). The following illustration shows how affixes
and clitics attach to words:

2.1.1. Arabic Derivational and Inflectional Features
Arabic is a highly derivational and inflected language.
These properties ease the process of expanding the Ara-
bic vocabulary by using only the roots and the morpho-
logical patterns. There are approximately 10,000 indepen-
dent roots and 85% of Arabic words are derived from trilit-
eral roots (de Roeck and Al-Fares, 2000). Thus, new Ara-
bic words are generated by applying derivational patterns
to root forms. The Arabic language’s derivational and in-
flected nature makes it possible to arrange Arabic words
according to the roots from which they are derived.
Derivation is the process by which new words are cre-
ated. Three types of morphemes are required to create a
word templatic stem: roots, patterns, and vocalisms. The
root morpheme consists of three or four radicals3, and in
rare cases up to five. A root expresses a meaning that is
shared amongst all of its derivations. For example, the
root morpheme (� � P � X, ‘d-r-s’) ‘studying-relating’ has
many derivations, which share the same meaning, such
as (daras, �PX, ‘to study’), (daaris, �P@X, ‘student’), (di-

raasah, �
é�@PX, ‘studying’), (tadrys, ��
PY

�
K, ‘teaching’), and

(madaars, �P@YÓ, ‘schools’). The vocalism morpheme de-
termines the short vowels to be used within patterns. There
are three short vowels in Arabic: fatha (��, ‘a’), damma (��,

‘u’), and kasra (��, ‘i’). The pattern morpheme is a template
in which vocalisms and root radicals are included. In the
following examples a pattern is represented using a string
of letters and numbers to mark where root radicals and vo-
calisms are inserted (Habash, 2010). For example, the pat-
tern 1V2V3 indicates that there are three root radicals and
two vocalisms in the same order as it is in the pattern. A
pattern can also contain additional consonants or long vow-
els. For example,‘tV1aa2V3’ contains a constant ‘t’ and a
long vowel ‘aa’. Table 1 provides some examples of stem
construction.
The derivation process can be summarised with the follow-
ing equation:
TemplaticStem = Root+ Pattern+ vocalisms.
In inflectional morphology, the lexical category and the
core meaning of the word remains unchanged, but the ex-
tensions are always variable depending on a set of feasible
features. In Arabic, four inflectional features are restricted
to verbs. The following list illustrates the features applied
to verbs and their values.

3Radicals is the term used when talking about root to mean
consonants making up the root

4135

Table 1: Examples of word stems derived from their roots

• Aspect: perfective, imperfective, imperative

• Mood: indicative, subjunctive, jussive

• Person: 1st person, 2nd person, 3rd person

• Voice: active, passive

The inflectional features, which are applied only to Arabic
nouns and their possible values are as follows:

• Case: nominative, accusative, genitive

• State: definite, indefinite

Moreover, the morphological features for verbs and
nouns/adjectives are as follows:

• Gender: feminine, masculine

• Number: singular, dual, plural

We took one word stem (kaatib, I.
�
KA¿, ‘writer’) derived from

a root as explained in Table 1. Taking into account that this
word is a noun, it can be inflected for gender, number, case,
and state. Table 2 shows some examples of words inflected
from the stem (kaatib, I.

�
KA¿, ‘writer’).

Table 2: Examples of words inflected from the stem

3. The Modules
3.1. Sentence Boundary Detection
Sentence boundary detection is the process of isolating in-
dependent sentences. Finding the correct sentence bound-
aries is more important for some NLP task than others, and
more critical for some languages and colloquial dialects
than others, as well. This is due to the ambiguity of punc-
tuation marks, and the misuse of these marks in some cases

(Grefenstette and Tapanainen, 1994). Many Arabic NLP
studies rely on known Arabic sentence separators (, ; : . ?)
to segment raw text into sentences, and even depend on syn-
tactic analysis to resolve the ambiguity of punctuation, as
in the study of Ouersighni (2001). However, we found no
study on processing Modern Standard Arabic (MSA) that
provides evaluation results for the sentence detectors they
used.
Depending purely on a few rules and one’s intuition that
some punctuation marks, more often than not, are used to
delimit sentences is not an optimal solution, especially for
NLP tasks to which sentence detection is crucial. There-
fore, we decided to build a maximum entropy model4 for
identifying sentence boundaries in raw Arabic text. The
corpus on which the model has been trained consists of
1,838 sentences collected from 59 Arabic Wikipedia doc-
uments of various genres. According to the machine learn-
ing package, the input format of the training data should be
one sentence per line. Contextual features of the potential
sentence boundary, including the tokens preceding and fol-
lowing the token that contains the end-of-sentence charac-
ter and the spaces that delimited the tokens, are used5. The
trained model performed well on a testing corpus made up
of 871 sentences, with 0.97 precision and recall reaching
nearly 0.98.

3.2. Tokenization
The standard pre-processing step for many NLP tasks is to-
kenization, which divides a string of written language into
its component tokens. For less complex languages, tok-
enization usually involves splitting punctuation, and some
affixes off of the words. On the other hand, morphologi-
cally rich languages, like Arabic, require a more extensive
tokenization process to separate different types of clitics
and particles from the word. This complex tokenization
is usually called word segmentation (Green and DeNero,
2012). The word segmenter provided by AraNLP is dis-
cussed in detail in Section 3.4.
More relevant to our current topic is simple tokenization,
which only splits off punctuation and non-alphanumeric
characters from words. For example, the word (faransaa.,
. A�

	
�Q

	
¯, ‘France.’) is separated into two tokens ‘ A�

	
�Q

	
¯’ and ‘.’.

Although this type of tokenization may seem simple and
require no disambiguation, there are some NLP tasks for
which it may be unsuitable, like Named Entity Recognition
(NER). Occasionally, punctuation and numbers appear in
the names of entities such as product names and numbers
(e.g., ’Olympus SP-820UZ digital camera’). The names of
these types of NEs are translated into Arabic with the same
numbers and punctuation. In addition, specific domains
(e.g., University domain) introduce new types of entities
(e.g., course code and room numbers) that contain punc-
tuation and other symbols that should be considered single
tokens (Althobaiti et al., 2012). Thus, it is necessary to take
into account the careful separation of non-alphanumeric

4The Maxent machine learning package, available as part of
the OpenNLP project was used to train both Sentence Detector
and Tokenizer

5http://svn.apache.org/repos/asf/opennlp/trunk/opennlp-
tools/src

4136

characters from the words. To address this issue, we built
a model that detects token boundaries using MaxEnt ma-
chine learning. The training corpus we used consists of
around 52,000 tokens from the Arabic Wikipedia collec-
tion. The training algorithm uses contextual features such
as the two characters preceding and following the position
where a space might be added, the tokens preceding and
following that position without crossing sentence bound-
aries, and class information about the preceding and follow-
ing two characters (e.g., letters, numbers, end-of-sentence
characters). A testing corpus with 21,000 tokens was used
to evaluate the trained tokenizer, which achieved a 0.97 pre-
cision and recall score.

3.3. Stemming
Stemming is the process of reducing derived or inflected
words to their stems or original roots. Stemming is con-
sidered a key step in many IR applications and is a com-
mon component in almost any text mining system. In fact,
stemming is essential for Arabic IR (Croft et al., 2010).
Research has shown that Arabic stemming is challenging
because of its highly inflectional and derivational nature
(Aljlayl and Frieder, 2002; Larkey et al., 2007). In addi-
tion, language independent stemmers, which focus on suf-
fix removal, have proved useless to the Arabic language
(Larkey et al., 2002). The work on stemming can be di-
vided into two main types, according to the aims of the
stemming process. Some work tries to reduce the words to
their original roots (root-extraction stemmers), while other
work aims to extract and remove affixes (light stemmers).
Each type of stemmer has its own significance. In other
words, a stemmer that performs well with certain applica-
tions may perform poorly with others (Aljlayl and Frieder,
2002; El-Beltagy and Rafea, 2011).
AraNLP supports the two types of stemmers in order to en-
compass all potential needs. We implemented several ver-
sions of light stemming akin to those suggested by Larkey
et al. (2002). They tried to remove strings that appeared as
affixes more often than they appeared at the beginning or
end of Arabic words without affixes. Their light stemming
versions have been thoroughly tested and proved efficient
for NLP tasks such as NER (Abdul-Hamid and Darwish,
2010).
As for the root stemmer, we incorporated the algorithm pro-
vided by Khoja and Garside (1999). They relied on mor-
phological analysis to develop their stemmer by first re-
moving layers of prefixes and suffixes, and then checking
a set of roots and patterns to specify whether the remain-
der was a known root with a known pattern. This stemmer
proved sufficient, as it helps to improve the performance
of some systems (Larkey and Connell, 2006). The Khoja
Stemmer has been modified, so that it can be used easily
within our AraNLP library. We also exempted ‘stop words’
from stemming instead of removing them, as in the Khoja
Stemmer. We used the same list of 168 Arabic stop words
provided by Khoja and Garside.

3.4. Word Segmentation & POS Tagging
As already mentioned, Arabic is a highly morphological
language with a considerable number of bound clitics and

affixes such as conjunctions, particles, prepositions, and
pronouns. Segmenting bound clitics and affixes reduces
data sparsity and simplifies analyzing the text syntactically.
These benefits are extremely useful for some NLP tasks
such as POS tagging. A large number of possible seg-
mentation levels6 can be applied to Arabic text, accord-
ing to the types of clitics to be split. For example, a shal-
low segmenter may only separate conjunctions and prepo-
sitions from the word. More complex segmentation may
break up the word into its stem and different affixes (e.g.,
conjunctions, interrogative clitics, definite articles, future
verbal particle). Examples of available Arabic NLP tools
that perform clitic tokenization are (MADA+TOKEN)7,
and AMIRA8.
Our library links up to the Stanford Arabic word segmenter
and POS tagger. The segmenter produces the three Penn
Arabic Treebank (PATB) clitic segmentations: conjunc-
tions, prepositions, and pronouns. The main advantage of
this word segmenter is that it processes raw text quickly in
comparison to other word segmenters, as its implementa-
tion is based on a sequence classifier (Conditional Random
Fields). The Stanford POS tagger is based on a maximum-
entropy technique. We noticed that the Arabic POS tagger
quality increased when the text is segmented in order to
separate bound clitics from words. In AraNLP, you can use
the POS tagger directly, as word segmentation is carried out
automatically before POS tagging.

3.5. Arabic Normalization
A large number of NLP tasks require the text be free of
punctuation or diacritics, if not both. Therefore, we im-
plemented a simple tool to remove punctuation and diacrit-
ics. It removes all three forms of diacritics, as suggested
by Diab et al. (2007): Vowel Diacritics, Nunation Diacrit-
ics and the Shadda. The tool removes the following default
punctuation: commas (,), semi-colons (;), colons (:), ex-
clamation points (!), question marks (?), hyphens (-), En
dashes (–), apostrophes (’), points of ellipsis (...), Arabic
commas (,), Arabic semi-colons (;), and Arabic question

marks (?).
For many NLP applications, another issue that should be
addressed in raw Arabic text is inconsistent variations. For
example, different forms of alif (@

, @ ,

�
@ , @) might be writ-

ten interchangeably; another example is alif maqsurah and
regular dotted Yaa’ (ø

, ø) which are usually used inter-

changeably at the final position of the word. The same is
true for taa marbutah and haa (è ,

�
è). These misspelling er-

rors in Arabic affect 11% of all words in the Penn Ara-
bic Treebank (PATB) (Habash, 2010). AraNLP provides
a different level of orthographic normalization that can be
carried out on Arabic text to reduce noise and data spar-
sity. This includes normalization of the hamzated alif to a
bare alif (alif without hamzah), normalization of taa marbu-
tah to haa, normalization of the dotless yaa (alif maksura)

6It is also called segmentations/decliticization schemes
(Habash, 2010).

7https://flintbox.com/public/project/8348
8https://www.flintbox.com/public/project/8335/

4137

to yaa, and the removal of tatweel (stretching character).
AraNLP enables the user to customize the level of normal-
ization according to the application’s need. In addition, the
punctuation can easily be added or deleted from the list of
punctuation marks.

4. Conclusion
AraNLP provides developers with the essential modules for
processing raw Arabic text, which can be used together or
individually. The modules can be rearranged to specially
design pipelines according to the particular requirements
of any NLP task. The output of each module can easily be
used as input for the next one. The library itself is platform-
independent and uses Unicode to represent Arabic charac-
ters inside Java classes in order to avoid compatibility prob-
lems with any integrated development environment.
In future, we plan to develop and incorporate more essen-
tial tools for NLP applications in order to produce a more
comprehensive Java-based library for Arabic NLP.

5. Acknowledgements
We would like to thank three anonymous reviewers for their
valuable comments and constructive suggestions, which
helped us to revise the paper.

6. References
Abdul-Hamid, A. and Darwish, K. (2010). Simplified fea-

ture set for Arabic Named Entity Recognition. In Pro-
ceedings of the 2010 Named Entities Workshop, pages
110–115. Association for Computational Linguistics.

Aljlayl, M. and Frieder, O. (2002). On Arabic search: im-
proving the retrieval effectiveness via a light stemming
approach. In Proceedings of the eleventh international
conference on Information and knowledge management,
pages 340–347. ACM.

Althobaiti, M., Kruschwitz, U., and Poesio, M. (2012).
Identifying Named Entities on a University Intranet. In
Computer Science and Electronic Engineering Confer-
ence (CEEC), 2012 4th, pages 94–99. IEEE.

Althobaiti, M., Kruschwitz, U., and Poesio, M. (2013). A
Semi-supervised Learning Approach to Arabic Named
Entity Recognition. In Proceedings of the International
Conference Recent Advances in Natural Language Pro-
cessing RANLP 2013, pages 32–40, Hissar, Bulgaria,
September. INCOMA Ltd. Shoumen, BULGARIA.

Croft, W., Metzler, D., and Strohman, T. (2010). Search
Engines: Information Retrieval in Practice. Alternative
Etext Formats. ADDISON WESLEY Publishing Com-
pany Incorporated.

de Roeck, A. and Al-Fares, W. (2000). A morphologi-
cally sensitive clustering algorithm for identifying Ara-
bic roots. In Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, pages 199–
206. Association for Computational Linguistics.

Diab, M., Ghoneim, M., and Habash, N. (2007). Arabic
diacritization in the context of statistical machine trans-
lation. In Proceedings of MT-Summit.

El-Beltagy, S. and Rafea, A. (2011). An accuracy-
enhanced light stemmer for Arabic text. ACM Trans-
actions on Speech and Language Processing (TSLP),
7(2):2.

Green, S. and DeNero, J. (2012). A class-based agreement
model for generating accurately inflected translations. In
Proceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics: Long Papers-Volume
1, pages 146–155. Association for Computational Lin-
guistics.

Grefenstette, G. and Tapanainen, P. (1994). What is a
Word, what is a Sentence?: Problems of Tokenisation.
Rank Xerox Research Centre.

Habash, N. and Sadat, F. (2006). Arabic preprocessing
schemes for statistical machine translation. In Proceed-
ings of the Human Language Technology Conference of
the NAACL., pages 49–52. ACL.

Habash, N. Y. (2010). Introduction to Arabic natural lan-
guage processing. Synthesis Lectures on Human Lan-
guage Technologies, 3(1):1–187.

Khoja, S. and Garside, R. (1999). Stem-
ming Arabic Text. Lancaster, UK, Com-
puting Department, Lancaster University.
http://zeus.cs.pacificu.edu/shereen/research.htm.

Kroeger, P. (2005). Analyzing Grammar: An Introduction.
Cambridge University Press.

Larkey, L. S. and Connell, M. E. (2006). Arabic informa-
tion retrieval at UMass in TREC-10. Technical report,
DTIC Document.

Larkey, L. S., Ballesteros, L., and Connell, M. E. (2002).
Improving stemming for Arabic Information Retrieval:
light stemming and co-occurrence analysis. In Proceed-
ings of the 25th annual international ACM SIGIR con-
ference on Research and development in information re-
trieval, pages 275–282. ACM.

Larkey, L., Ballesteros, L., and Connell, M. (2007). Light
Stemming for Arabic Information Retrieval. In Soudi,
A., Bosch, A. d., and Neumann, G., editors, Arabic Com-
putational Morphology, volume 38 of Text, Speech and
Language Technology, pages 221–243. Springer Nether-
lands.

Loos, E., Anderson, S., Day, D., Jordan, P., and Wingate,
J. (2004). Glossary of linguistic terms, volume 29. SIL
International.

Ouersighni, R. (2001). A major offshoot of the DIINAR-
MBC project: AraParse, a morphosyntactic analyzer for
unvowelled Arabic texts. In ACL 39th Annual Meeting,
pages 9–16.

Payne, T. E. (2006). Exploring language structure: a stu-
dent’s guide. Cambridge University Press.

Pirkola, A. (2001). Morphological typology of languages
for IR. volume 57, pages 330–348. MCB UP Ltd.

Ritchey, T. (1998). General morphological analysis. In
16th EURO Conference on Operational Analysis.

Shaalan, K. and Raza, H. (2009). NERA: Named entity
recognition for Arabic. volume 60, pages 1652–1663.
Wiley Online Library.

4138

