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ABSTRACT

Machine Translation of Arabic Dialects

Wael Salloum

This thesis discusses different approaches to machine translation (MT) from Dialectal

Arabic (DA) to English. These approaches handle the varying stages of Arabic dialects in

terms of types of available resources and amounts of training data. The overall theme of this

work revolves around building dialectal resources and MT systems or enriching existing

ones using the currently available resources (dialectal or standard) in order to quickly and

cheaply scale to more dialects without the need to spend years and millions of dollars to

create such resources for every dialect.

Unlike Modern Standard Arabic (MSA), DA-English parallel corpora is scarcely avail-

able for few dialects only. Dialects differ from each other and from MSA in orthography,

morphology, phonology, and to some lesser degree syntax. This means that combining all

available parallel data, from dialects and MSA, to train DA-to-English statistical machine

translation (SMT) systems might not provide the desired results. Similarly, translating di-

alectal sentences with an SMT system trained on that dialect only is also challenging due to

different factors that affect the sentence word choices against that of the SMT training data.

Such factors include the level of dialectness (e.g., code switching to MSA versus dialectal

training data), topic (sports versus politics), genre (tweets versus newspaper), script (Ara-

bizi versus Arabic), and timespan of test against training. The work we present utilizes any

available Arabic resource such as a preprocessing tool or a parallel corpus, whether MSA

or DA, to improve DA-to-English translation and expand to more dialects and sub-dialects.



The majority of Arabic dialects have no parallel data to English or to any other foreign

language. They also have no preprocessing tools such as normalizers, morphological ana-

lyzers, or tokenizers. For such dialects, we present an MSA-pivoting approach where DA

sentences are translated to MSA first, then the MSA output is translated to English using

the wealth of MSA-English parallel data. Since there is virtually no DA-MSA parallel data

to train an SMT system, we build a rule-based DA-to-MSA MT system, ELISSA, that uses

morpho-syntactic translation rules along with dialect identification and language modeling

components. We also present a rule-based approach to quickly and cheaply build a dialectal

morphological analyzer, ADAM, which provides ELISSA with dialectal word analyses.

Other Arabic dialects have a relatively small-sized DA-English parallel data amount-

ing to a few million words on the DA side. Some of these dialects have dialect-dependent

preprocessing tools that can be used to prepare the DA data for SMT systems. We present

techniques to generate synthetic parallel data from the available DA-English and MSA-

English data. We use this synthetic data to build statistical and hybrid versions of ELISSA

as well as improve our rule-based ELISSA-based MSA-pivoting approach. We evaluate our

best MSA-pivoting MT pipeline against three direct SMT baselines trained on these three

parallel corpora: DA-English data only, MSA-English data only, and the combination of

DA-English and MSA-English data. Furthermore, we leverage the use of these four MT

systems (the three baselines along with our MSA-pivoting system) in two system combi-

nation approaches that benefit from their strengths while avoiding their weaknesses.

Finally, we propose an approach to model dialects from monolingual data and limited

DA-English parallel data without the need for any language-dependent preprocessing tools.

We learn DA preprocessing rules using word embedding and expectation maximization.

We test this approach by building a morphological segmentation system and we evaluate

its performance on MT against the state-of-the-art dialectal tokenization tool.
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Chapter 1

Introduction

A language can be described as a set of dialects, among which one "standard variety" has

a special representative status.1 The standard variety and the other dialects typically differ

lexically and phonologically, but can also differ morphologically and syntactically. The

type and degree of differences varies from language to another. Some dialects co-exist

with the standard variety in a diglossic relationship (Ferguson, 1959) where the standard

and the dialect occupy different roles, e.g., formal vs informal registers. Additionally,

there are different degrees of dialect-switching that take place in such languages which

puts sentences on a dialectness spectrum.

Non-standard dialects are the languages that people speak at home and in their com-

munities. These colloquial spoken varieties have been confined to spoken form in the past;

however, the emergence of online communities since the early 2000s has made these di-

alects ubiquitous in informal written genres such as social media. For any artificial intelli-

gence (AI) system to draw insights from such genres, it needs to know how to process such

informal dialects. Furthermore, while the recent advances in automatic speech recognition

has passed the usability threshold for personal assistant software for many languages, these

1The line between "language" and dialects is often a political question; this is beautifully highlighted by
the quip A language is a dialect with an army and navy often attributed to Linguist Max Weinreich.
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products must consider the colloquial varieties the preferred form for dictation to be usable

for diglossic languages.

Despite being ubiquitous and increasingly vital to AI applications’ usability, most non-

standard dialects are resource-poor compared to their standard variety. For statistical ma-

chine translation (SMT), which relies on the existence of parallel data, translating from

non-standard dialects is a challenge. Common approaches to address this challenge in-

clude: pivoting on the standard variety, extending tools of the standard variety to cover

dialects, noisy collection of dialectal training data, or simple pooling of resources for dif-

ferent dialects. In this thesis, we work on Arabic, is a prototypical diglossic language, and

we present various approaches to deal with the limited resources available for its dialects.

We tailor our solutions to the type and amount of resources available for dialects in terms

of parallel data or preprocessing tools.

In this chapter, we give a short introduction to some machine translation (MT) tech-

niques we use in our approaches. We also introduce Arabic and its dialects and the chal-

lenges they pose to natural language processing (NLP) in general and MT in particular.

Finally, we present a summary of our contributions to the topic of machine translation of

Arabic dialect.

1.1 Introduction to Machine Translation

A Machine Translation system (Hutchins, 1986; Koehn, 2009) takes content in one lan-

guage as input and automatically produces a translation of that content in another language.

Researchers have experimented with different types of content, like text and audio, and dif-

ferent levels of content granularity, like sentences, paragraphs, and documents. In this work

we are only interested in text-based sentence-level MT.
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Rule-Based versus Statistical Machine Translation. A Rule-Based (or, Knowledge-

Based) Machine Translation (RBMT) system (Nirenburg, 1989) utilizes linguistic knowl-

edge about the source and target languages in the form of rules that are executed to trans-

form input content into its output equivalents. Statistical Machine Translation (SMT)

(Brown et al., 1990), on the other hand, builds statistical models from a collection of data

(usually in the form of sentence-aligned parallel corpus). It later uses those models to trans-

late source language content to target language. While RBMT is thought of as a traditional

approach to MT, it is still effective for languages with limited parallel data, also known

as, low-resource language pairs. Additionally, new hybrid approaches have emerged to

combine RBMT and SMT in situations where both fail to achieve a satisfactory level of

accuracy and fluency.

Statistical Machine Translation: Phrase-based versus Neural. Phrase-based models

to statistical machine translation (PBSMT) (Zens et al., 2002; Koehn et al., 2003; Och and

Ney, 2004) give the state-of-the-art performance for most languages. The deep learning

wave has recently reached the machine translation field. Many interesting network archi-

tectures have been proposed and have outperformed Phrase-Based SMT with large margins

on language pairs like French-English and German-English. The caveat is that these mod-

els require enormous amounts of parallel data; e.g., in the case of French-English, they’re

trained on hundreds of millions of words. As of the time of writing this thesis, training

NMT models on relatively small amounts of parallel data results in hallucinations. Our

published research we present in this thesis was published before the advances in NMT.

We have not used NMT in this work, mainly because our training data is relatively small

and because our approaches do not depend necessarily on PBSMT; instead, they use PB-

SMT to extrinsically evaluate the effect of the preprocessing tools we create on machine

translation quality. In this work, whenever we mention SMT we mean PBSMT.
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System Combination. A Machine Translation System Combination approach combines

the output of multiple MT system in order to achieve a better overall performance (Och et

al., 2004; Rosti et al., 2007; Karakos et al., 2008; He et al., 2008). The combination could

be achieved by selecting the best output hypothesis or by combining them on the word or

phrase level using techniques such as confusion network or lattice decoding to list a few.

I will discuss more topics and techniques in machine translation relevant to my work in

Chapter 2.

1.2 Introduction to Arabic and its Challenges for NLP

Arabic is a Central Semitic language that goes back to the Iron Age (Al-Jallad, 2017) and

is now by far the most widely spoken Afro-Asiatic language. Contemporary Arabic is a

collection of varieties that are spoken by as many as 422 million speakers, of which 290

million are native speakers, making Arabic the fifth most spoken language in the world in

both native speakers and total speakers rankings.

1.2.1 Arabic as a Prototypical Diglossic Language

The sociolinguistic situation of Arabic provides a prime example of diglossia where these

two distinct varieties of Arabic co-exist and are used in different social contexts. This

diglossic situation facilitates code-switching in which a speaker switches back and forth

between the two varieties, sometimes even within the same sentence. Despite not being

the native language for any group of people, Modern Standard Arabic is widely taught at

schools and universities and is used in most formal speech and in the writing of most books,

newsletters, governmental documents, and other printed material. MSA is sometimes used

in broadcasting, especially in the news genre. Unlike MSA, Arabic dialects are spoken as

a first language and are used for nearly all everyday speaking situations, yet they do not

have standard orthography.
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1.2.2 Modern Standard Arabic Challenges

The Arabic language is quite challenging for natural language processing tasks. Arabic is a

morphologically complex language which includes rich inflectional morphology, expressed

both templatically and affixationally, and several classes of attachable clitics. For example,

the Arabic word Aî
	
EñJ.

�
JºJ
�ð w+s+y-ktb-wn+hA2 ‘and they will write it’ has two proclitics

(+ð w+ ‘and’ and +� s+ ‘will’), one prefix -ø



y- ‘3rd person’, one suffix 	
àð- -wn ‘mas-

culine plural’ and one pronominal enclitic Aë+ +hA ‘it/her’. Additionally, Arabic is written

with optional diacritics that specify short vowels, consonantal doubling and the nunation

morpheme. The absence of these diacritics together with the language’s rich morphology

lead to a high degree of ambiguity: e.g., the Buckwalter Arabic Morphological Analyzer

(BAMA) produces an average of 12 analyses per word. Moreover, some Arabic letters are

often spelled inconsistently which leads to an increase in both sparsity (multiple forms of

the same word) and ambiguity (same form corresponding to multiple words), e.g., variants

of Hamzated Alif,


@ > or @



<, are often written without their Hamza (Z ’): @ A; and the Alif-

Maqsura (or dotless Ya) ø Y and the regular dotted Ya ø



y are often used interchangeably

in word final position (El Kholy and Habash, 2010). Arabic complex morphology and am-

biguity are handled using tools for analysis, disambiguation and tokenization (Habash and

Rambow, 2005; Diab et al., 2007).

1.2.3 Dialectal Arabic Challenges

Contemporary Arabic is a collection of varieties: MSA, which has a standard orthography

and is used in formal settings, and DAs, which are commonly used informally and with

increasing presence on the web, but which do not have standard orthographies. There are

several DA varieties which vary primarily geographically, e.g., Levantine Arabic, Egyptian

2Arabic transliteration is in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
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Arabic, etc (Habash, 2010).

DAs differ from MSA phonologically, morphologically and to some lesser degree syn-

tactically. The differences between MSA and DAs have often been compared to Latin and

the Romance languages (Habash, 2006). The morphological differences are most notice-

ably expressed in the use of clitics and affixes that do not exist in MSA. For instance,

the Levantine and Egyptian Arabic equivalent of the MSA example above is AëñJ.
�
JºJ
kð

w+H+y-ktb-w+hA ‘and they will write it’3. The optionality of vocalic diacritics helps hide

some of the differences resulting from vowel changes; compare the diacritized forms: Lev-

antine wHayuktubuwhA, Egyptian waHayiktibuwhA and MSA wasayaktubuwnahA (Sal-

loum and Habash, 2011). It is important to note that Levantine and Egyptian differ a lot in

phonology, but the orthographical choice of dropping short vowels (expressed as diacritics

in Arabic script) bridges the gab between them. However, when writing Arabic in Latin

script, known as Arabizi, which is an orthographical choice picked by many people mainly

in social media discussions, chat and SMS genres, phonology is expressed by Latin vowels,

which brings back the gap between dialects and sub-dialects.

All of the NLP challenges of MSA described above are shared by DA. However, the

lack of standard orthographies for the dialects and their numerous varieties causes sponta-

neous orthography, which poses new challenges to NLP (Habash et al., 2012b). Addition-

ally, DAs are rather impoverished in terms of available tools and resources compared to

MSA; e.g., there is very little parallel DA-English corpora and almost no MSA-DA paral-

lel corpora. The number and sophistication of morphological analysis and disambiguation

tools in DA is very limited in comparison to MSA (Duh and Kirchhoff, 2005; Habash and

Rambow, 2006; Abo Bakr et al., 2008; Habash et al., 2012a). MSA tools cannot be ef-

fectively used to handle DA: (Habash and Rambow, 2006) report that less than two-thirds

of Levantine verbs can be analyzed using an MSA morphological analyzer; and (Habash

3Another spelling variation for Egyptian Arabic is to spell the word as AëñJ.
�
JºJ
ëð w+h+y-ktb-w+hA.
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et al., 2012a) report that 64% of Egyptian Arabic words are analyzable using an MSA

analyzer.

1.2.4 Dialectness, Domain, Genre, and Timespan

In addition to the previous challenges, other aspects contribute to the challenges of Arabic

NLP in general and MT in particular like the level of sentence dialectness, and the sen-

tence domain and genre. Habash et al. (2008) defines five levels of sentence dialectness:

1) perfect MSA, 2) imperfect MSA, 3) Arabic with full dialect switching, 4) dialect with

MSA incursions, and 5) pure dialect. These five levels create confusions to MT systems

and increase errors in preprocessing tools like tokenizers. They also raise the question of

whether or how to use the huge collection of MSA-English parallel corpora in training a

DA-English SMT. If added on top of the limited DA-English data it could hurt the transla-

tion quality of some sentences while helping others based on their level of dialectness.

Similarly, the domain and the genre of the sentence will increase challenges for MT.

The task of translating content of news, news wire, weblog, chat, SMS, emails, and speech

transcripts will require more DA-English training data of the already limited parallel cor-

pora. Add on top of that the timespan of the training data versus the dev/test sets. For

example, consider a test set that uses recent terminology related to Arab Spring events,

politicians, places, and recent phrases and terminology that are never mentioned in the

older training data.

1.2.5 Overview and Challenges of Dialect-Foreign Parallel Data

Arabic dialects are in different states in terms of the amount of dialect-foreign parallel

data. The Defense Advanced Research Projects Agency (DARPA), as part of its projects

concerning with machine translation of Arabic and its dialects to English: Global Au-

tonomous Language Exploitation (GALE) and Broad Operational Language Translation

7



(BOLT), has provided almost all of the DA-English parallel data available at the time of

writing this thesis. The Egyptian-English language pair has the largest amount of par-

allel data ∼2.4MW (million words), followed by Levantine-English with ∼1.5MW, both

provided by DARPA’s BOLT. Other dialect-English pairs, like Iraqi-English, have smaller

parallel corpora while the majority of dialects and subdialects have no parallel corpora

whatsoever.

Modern Standard Arabic (MSA) has a wealth of MSA-English parallel data amount-

ing to hundreds of millions of words. The majority of this data, however, is originated

from the United Nations (UN) parallel corpus which is a very narrow genre that could hurt

the quality of MT on other genres when combined with other, smaller, domain-specific

parallel corpora. We have trained an SMT system on over two hundred million words of

parallel corpora that include the UN corpus as part of NIST OpenMT Eval 2012 compe-

tition. When we tested this system in an MSA-pivoting approach to DA-to-English MT,

it performed worse than a system trained on a subset of the corpora that excludes the UN

corpus. Other sources for MSA-English data come from the news genre in general. While

DARPA’s GALE program provides about ∼49.5MW of MSA-English data mainly in the

news domain, it is important to note that it comes from data collected before the year 2009

since this affects the translation quality of MSA sentences discussing later events such as

the Egyptian revolution of 2011.

1.3 Contributions

In this section we present the research contributions of this dissertation along with the

released tools which we developed as part of this work.
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1.3.1 Thesis Contributions

In the work presented in this thesis, we are concerned with improving the quality of Di-

alectal Arabic to English machine translation. We propose approaches to handle different

dialects based on their resource availability situation. By resources we mean DA-English

parallel data and DA-specific preprocessing tools such as morphological analyzers and

tokenizers. We do not consider labeled data such as treebanks since these resources are

used to train preprocessing tools. We build tools and resources that use and extend the cur-

rently available resources to quickly and cheaply scale to more dialects and sub-dialects.

Figure 1.1 shows a layout of the different settings of Arabic dialects in terms of resource

availability. The columns represent the unavailability or availability of DA preprocessing

tools while the rows represent the unavailability or availability of DA-English parallel data.

This layout results in four quadrants that display an overview of our contributions in the

four DA settings. Figure 1.2 displays diagrams representing our baselines and approaches

in the four quadrants. Figures 1.3, 1.4, 1.5, and 1.6 follow the same 4-quadrant layout

and display the diagrams, baselines and approaches of each quadrant. This dissertation

is divided into three parts discussing three quadrants out of the four. We don’t discuss

quadrant 2 in details since it can be achieved from quadrant 1 by creating DA tools.

In the first part, we propose solutions to handle dialects with no resources (Part-I).

Figure 1.3 shows an overview of baselines and contributions in this part. The available

resources in this case are parallel corpora and preprocessing tools for Arabic varieties other

than this dialect. In our case study, we have MSA-English data and an MSA preprocessing

tool, MADA (Habash and Rambow, 2005; Roth et al., 2008). The best baseline we can get

is by preprocessing (normalizing, tokenizing) the MSA side of the parallel data with the

available tools and training an SMT system on it.

• ADAM and morphological tokenization. The biggest challenge for translating

these dialects with an MSA-to-English SMT system is the large number of out-of-
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vocabulary (OOV) words. This is largely caused by dialectal morphemes attaching

to words many of which come from MSA. A quick and cheap approach to handle

OOVs of these dialects is to build a morphological segmentation or tokenization tool

to break morphologically-complex words into simpler, more frequent, tokens. For

this purpose, we propose ADAM which extends an existing morphological analyzer

for Modern Standard Arabic to cover a few dialects. We show how tokenizing a di-

alectal input sentence with ADAM can improve its MT quality when translating with

an MSA-to-English SMT system.

• ELISSA and MSA-pivoting. If we can translate dialectal words and phrases to their

MSA equivalents, instead of just tokenizing them, perhaps the MSA-to-English SMT

system can have a better chance translating them. There is virtually no DA-MSA

parallel data to train an SMT system. Therefore, we propose a rule-based DA-to-

MSA MT system called ELISSA. ELISSA identifies dialectal words and phrases

that need to be translated, and uses ADAM in a morpho-syntactical analysis-transfer-

generation approach to produce a lattice of MSA options. ELISSA, then, scores and

decodes this lattice with an MSA language model. The output of ELISSA is then

tokenized by MADA to be translated by the MSA-to-English SMT system. It is

important to note that ELISSA can be used as in the context where a dialect has a

DA preprocessing tools but no DA-English data. In that case we can replace ADAM

inside ELISSA with the DA-specific analyzer.

In the second part (Part-II), which represents the third quadrant, we concern with di-

alects that have parallel data as well as preprocessing tools. Figure 1.4 and Figure 1.5

display our baselines and approaches for Part-II in the third quadrant. The DA-English

parallel data and preprocessing tools allow for the creation of better baselines than the

MSA-to-English SMT system. The questions are whether an MSA-pivoting approach can

10



still improve over a direct-translation SMT system, and whether adding the MSA-English

data to the DA-English data can improve or hurt the SMT system’s performance.

• Synthetic parallel data generation. Using the MSA-English parallel corpora and

the DA-to-MSA MT system (ELISSA) we had from the first part, we implement

two sentence-level pivoting techniques to generate synthetic MSA side for the DA-

English data.

• Statistical/hybrid ELISSA and improved MSA-pivoting. We use this DA-

MSAsynthetic-English parallel data to build statistical and hybrid versions of ELISSA

as well as improve the MSA-pivoting approach.

• System combination. We compare the best MSA-pivoting system to three direct

translation SMT systems: one trained on DA-English corpus only, one trained on

MSA-English corpus only, and one trained on the two corpora combined. Instead

of choosing one best system from the four, we present two system combination ap-

proaches to utilize these systems in a way the benefits from their strengths while

avoiding their weaknesses.
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In the third and final part, we present an approach to scale to more dialects. This

part concerns with dialects with some parallel data and no processing tools. In fact, our

approach choses to ignore any existing dialect-specific preprocessing tools (including MSA

ones) and tries, instead, to learn unified tools for all dialects. To do so, it relies heavily on

an abundant resource: monolingual text, in addition to any available DA-English corpora.

Figure 1.6 displays our baselines and approaches to Part-III in the fourth quadrant. We

present a morphological segmentation system as an example of our approach. A system like

this provides a huge boost to MT since it dramatically reduces the size of the vocabulary.

Additionally, it maps OOV words to in-vocabulary (INV) words.

• Learning morphological segmentation options from monolingual data. A mor-

phological segmentation system needs a tool that provides a list of segmentation

options for an input word. We present an unsupervised learning approach to build

such a tool from word embeddings learned from monolingual data. This tool pro-

vides morphological segmentation options weighted, out-of-context, using expecta-

tion maximization.

• Morphological segmentation for MT purposes. We use the tool above to label

select words in the DA side of the DA-English parallel data with a segmentation op-

tion that best aligns to the translation on the English side. We train context-sensitive

and context-insensitive supervised segmentation systems on this automatically la-

beled data. Usually, after training a supervised tokenization system on a human

labeled treebank, researchers experiment with different tokenization schemes to find

out which one performs better on MT. Our decision in using token alignments to

the English side as a factor in deciding on the best segmentation choice while au-

tomatically labeling the data biases our system toward generating tokens that better

align and translate to English words. This allows our segmenter to approach a better

segmentation scheme tailored to the target language.
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The contributions of this dissertation can be extended to a wider applications outside

of Arabic Dialect NLP and machine translation. Some of the insights can be used for NLP

or MT of other languages with dialects and diglossia. Moreover, some of the techniques

presented can be used for different genres in the same language. Furthermore, some of

our approaches for handling low resource languages can be extended to handle other low

resource or morphologically-complex languages.

1.3.2 Released Tools

During the work on this thesis, we developed and release the following resources:

1. ADAM. An Analyzer of Dialectal Arabic Morphology. Available from Columbia

University.

2. ELISSA. A Dialectal to Standard Arabic Machine Translation System. Available

from the Linguistic Data Consortium.

3. A Modern Standard Arabic Closed-Class Word List. Available from Columbia Uni-

versity.

I also participated in the following resources:

1. Tharwa. A Large Scale Dialectal Arabic - Standard Arabic - English Lexicon. Avail-

able from Columbia University.

2. SPLIT. Smart Preprocessing (Quasi) Language Independent Tool. Available from

Columbia University.

1.3.3 Note on Data Sets

Since most of this work was supported by two DARPA programs, GALE and BOLT, differ-

ent data sets and parallel corpora became available at different points of those programs. As
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a result, the systems evaluated in this thesis have been trained and/or evaluated on slightly

different data sets. Rerunning all experiments with a unified data set is time consuming

and should not change the conclusions of this work.

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2 we discuss the literature related to the our

work. The main body of this thesis is divided into three parts as discussed in Section 1.3.

Part-I includes Chapter 3, where we present ADAM, our dialectal morphological ana-

lyzer, and Chapter 4, where we describe ELISSA and evaluate the MSA-pivoting appraoch.

Part-II consists of two chapters: 5 and 6. In Chapter 5 we present techniques to generate

synthetic parallel data and we discuss Statistical ELISSA and Hybrid ELISSA. We also

evaluate different MSA-pivoting approaches after adding the new data and tools. In Chap-

ter 6 we evaluate competing approaches to DA-to-English MT and we present two system

combination approaches to unite them.

Part-III includes Chapter 7 which discusses our scalable approach to dialect model-

ing from limited DA-English parallel data and presents a morphological segmenter. We

conclude and present future work directions in Chapter 8.
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Chapter 2

Related Work

In this chapter, we discuss the literature on natural language processing (NLP) and machine

translation of Arabic dialects and related topics.

2.1 Introduction to Machine Translation

A Machine Translation system (Hutchins, 1986; Koehn, 2009) takes content in one lan-

guage as input and automatically produces a translation of that content in another language.

Researchers have experimented with different types of content, like text and audio, and dif-

ferent levels of content granularity, like sentences, paragraphs, and documents. In this work

we are only interested in text-based sentence-level MT.

2.1.1 Rule-Based versus Statistical Machine Translation

A Rule-Based (or, Knowledge-Based) Machine Translation (RBMT) system (Nirenburg,

1989) utilizes linguistic knowledge about the source and target languages in the form of

rules that are executed to transform input content into its output equivalents. Statistical

Machine Translation (SMT) (Brown et al., 1990), on the other hand, builds statistical mod-

els from a collection of data (usually in the form of sentence-aligned parallel corpus). It
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later uses those models to translate source language content to target language. Phrase-

based models to statistical machine translation (PBSMT) (Zens et al., 2002; Koehn et al.,

2003; Och and Ney, 2004) give the state-of-the-art performance for most languages.

While RBMT is thought of as a traditional approach to MT, it is still effective for

languages with limited parallel data, also known as, low-resource language pairs. Addi-

tionally, new hybrid approaches have emerged to combine RBMT and SMT in situations

where both fail to achieve a satisfactory level of accuracy and fluency.

2.1.2 Neural Machine Translation (NMT)

The deep learning wave has recently reached the machine translation field. Many interest-

ing network architectures have been proposed and have outperformed Phrase-Based SMT

with large margins on language pairs like French-English and German-English. The caveat

is that these models require enormous amounts of parallel data; e.g., in the case of French-

English, they’re trained on hundreds of millions of words. Creating that amount of profes-

sional translations for a language pair costs hundreds of millions of dollars. As of the time

of writing this thesis, training NMT models on relatively small amounts of parallel data

results in hallucinations.

Almahairi et al. (2016) presents one of the early research on NMT for the Arabic lan-

guage. They compare Arabic-to-English and English-to-Arabic NMT models to their

phrase-based SMT equivalents with different preprocessing techniques for the Arabic side

such as normalization and morphological tokenization. It is also important to note that the

focus of this work is on Modern Standard Arabic (MSA) and not on dialectal Arabic. Their

systems were trained on 33 million tokens on the MSA side, which is considered relatively

large in terms of MT training data. Their results show that phrase-based SMT models

outperform NMT models in both directions on in-domain test sets. However, NMT mod-

els outperform PBSMT on an out-of-domain test set in the English-to-Arabic direction.
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Their research also shows that neural MT models significantly benefit from morphological

tokenization.

Our published research we present in this thesis was published before the advances in

NMT. We have not used NMT in this work, mainly because our training data is relatively

small and because our approaches do not depend necessary on PBSMT; instead, they use

PBSMT to extrinsically evaluate the effect of the preprocessing tools we create on machine

translation quality. In this work, whenever we mention SMT we mean PBSMT.

2.2 Introduction to Arabic and its Challenges for NLP

Arabic is a Central Semitic language that goes back to the Iron Age and is now by far

the most widely spoken Afro-Asiatic language. Contemporary Arabic is a collection of

varieties that are spoken by as many as 422 million speakers, of which 290 million are

native speakers, making Arabic the fifth most spoken language in the world in both native

speakers and total speakers rankings.

2.2.1 A History Review of Arabic and its Dialects

Standard Arabic varieties. Scholars distinguish between two standard varieties of Ara-

bic: Classical Arabic and Modern Standard Arabic. Classical Arabic is the language used

in the Quran. Its orthography underwent fundamental changes in the early Islamic era such

as adding dots to distinguish letters and adding diacritics to express short vowels. In the

early 19th century, Modern Standard Arabic (MSA) was developed from Classical Arabic

to become the standardized and literary variety of Arabic and is now one of the six official

languages of the United Nations.

Dialectal Arabic varieties. Dialectal Arabic, also known as Colloquial Arabic, refers to

many regional dialects that evolved from Classical Arabic, sometimes independently from
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each other. They are heavily influenced by the indigenous languages that existed before

the Arab conquest of those regions and co-existed with Arabic thereafter. For example,

Aramaic and Syriac influenced Levantine, Coptic influenced Egyptian, and Berber influ-

enced Moroccan. Furthermore, due to the occupation of most of these regions by foreign

countries, the dialects were influenced, to varying degrees, by foreign languages such as

Turkish, French, English, Italian, and Spanish. These factors led to huge divisions between

Arabic dialects to a degree where some varieties such as the Maghrebi dialects, for exam-

ple, are unintelligible to a speaker of a Levantine dialect. Figure 2.1 shows different Arabic

dialects and their geographical regions in the Arab world. Table 2.1 shows regional group-

ing of major Arabic dialects, although it is important to note that these major dialects may

have sub-dialects.
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2.2.2 Arabic as a Prototypical Diglossic Language

The sociolinguistic situation of Arabic provides a prime example of diglossia where these

two distinct varieties of Arabic co-exist and are used in different social contexts. This

diglossic situation facilitates code-switching in which a speaker switches back and forth

between the two varieties, sometimes even within the same sentence. Despite not being

the native language for any group of people, Modern Standard Arabic is widely taught at

schools and universities and is used in most formal speech and in the writing of most books,

newsletters, governmental documents, and other printed material. MSA is sometimes used

in broadcasting, especially in the news genre. Unlike MSA, Arabic dialects are spoken as

a first language and are used for nearly all everyday speaking situations, yet they do not

have standard orthography.

2.2.3 Modern Standard Arabic Challenges

The Arabic language is quite challenging for natural language processing tasks. Arabic

is a morphologically complex language which includes rich inflectional morphology, ex-

pressed both templatically and affixationally, and several classes of attachable clitics. For

example, the Modern Standard Arabic (MSA) word Aî
	
EñJ.

�
JºJ
�ð w+s+y-ktb-wn+hA1 ‘and

they will write it’ has two proclitics (+ð w+ ‘and’ and +� s+ ‘will’), one dprefix -ø



y-

‘3rd person, imperfective’, one suffix 	
àð- -wn ‘masculine plural’ and one pronominal en-

clitic Aë+ +hA ‘it/her’. Additionally, Arabic is written with optional diacritics that specify

short vowels, consonantal doubling and the nunation morpheme2. The absence of these

diacritics together with the language’s rich morphology lead to a high degree of ambiguity:

1Arabic transliteration is in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).

2In Arabic, and some other semitic languages, the nunation morpheme is one of three vowel diacritics
that attaches to the end of a noun or adjective to indicate that the word ends in an alveolar nasal without the
need to add the letter Nūn ( 	

à ‘n’).
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Regional Group Dialect

Levantine Region

Central Levantine Arabic (Central Syrian, Lebanese)
North Syrian Arabic (e.g., Aleppo and Tripoli dialects)
Cypriot Maronite Arabic
South Levantine Arabic (Jordanian, Palestinian)
Druz Arabic
Alawite Arabic
Levantine Bedawi Arabic

Egyptian Region
Egyptian Arabic (Cairo, Alexandria, and Port Said varieties)
Sa’idi Arabic

Sudanese Region

Sudanese Arabic
Chadian Arabic
Juba Arabic
Nubi Arabic

Mesopotamian Region
South (Gelet) Mesopotamian Arabic (Baghdadi Arabic,

Euphrates (Furati) Arabic)
North (Qeltu) Mesopotamian Arabic (Mosul, Judeo-Iraqi)

Arabian Peninsula Region

Gulf Arabic (Omani, Dhofari, Shihhi, Kuwaiti)
Yemeni Arabic (Sanaani, Hadhrami, Tihamiyya, Ta’izzi-Adeni,

Judeo-Yemeni)
Hejazi Arabic
Najdi Arabic
Bareqi Arabic
Baharna Arabic
Northwest Arabian Arabic (Eastern Egyptian Bedawi,

South Levantine Bedawi, and North Levantine Bedawi)

Maghrebi Region

Moroccan Arabic
Tunisian Arabic
Algerian Arabic
Libyan Arabic
Hassaniya Arabic
Algerian Saharan Arabic
Maghrebi varieties of Judeo-Arabic (Judeo-Tripolitanian,

Judeo-Moroccan, Judeo-Tunisian)
Western Egyptian Bedawi Arabic

Central Asian
Khorasani Arabic
Tajiki Arabic
Uzbeki Arabic

Western
Andalusian
Siculo-Arabic (Maltese, Sicilian)

Table 2.1: Regional groups of Arabic and their dialects.
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e.g., the Buckwalter Arabic Morphological Analyzer (BAMA) produces an average of 12

analyses per word. Moreover, some Arabic letters are often spelled inconsistently which

leads to an increase in both sparsity (multiple forms of the same word) and ambiguity (same

form corresponding to multiple words), e.g., variants of Hamzated Alif,


@ > or @



<, are often

written without their Hamza (Z ’): @ A; and the Alif-Maqsura (or dotless Ya) ø Y and the

regular dotted Ya ø



y are often used interchangeably in word final position (El Kholy and

Habash, 2010). Arabic complex morphology and ambiguity are handled using tools for

analysis, disambiguation and tokenization (Habash and Rambow, 2005; Diab et al., 2007).

2.2.4 Dialectal Arabic Challenges

Contemporary Arabic is a collection of varieties: MSA, which has a standard orthography

and is used in formal settings, and DAs, which are commonly used informally and with

increasing presence on the web, but which do not have standard orthographies. There are

several DA varieties which vary primarily geographically, e.g., Levantine Arabic, Egyptian

Arabic, etc (Habash, 2010).

DAs differ from MSA phonologically, morphologically and to some lesser degree syn-

tactically. The differences between MSA and DAs have often been compared to Latin and

the Romance languages (Habash, 2006). The morphological differences are most notice-

ably expressed in the use of clitics and affixes that do not exist in MSA. For instance,

the Levantine and Egyptian Arabic equivalent of the MSA example above is AëñJ.
�
JºJ
kð

w+H+y-ktb-w+hA ‘and they will write it’3. The optionality of vocalic diacritics helps hide

some of the differences resulting from vowel changes; compare the diacritized forms: Lev-

antine wHayuktubuwhA, Egyptian waHayiktibuwhA and MSA wasayaktubuwnahA (Sal-

loum and Habash, 2011). It is important to note that Levantine and Egyptian differ a lot in

phonology, but the orthographical choice of dropping short vowels (expressed as diacritics

3Another spelling variation for Egyptian Arabic is to spell the word as AëñJ.
�
JºJ
ëð w+h+y-ktb-w+hA.
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in Arabic script) bridges the phonological gab between them. However, when writing Ara-

bic in Latin script, known as Arabizi, which is an orthographical choice picked by many

people mainly in social media discussions, chat and SMS genres, phonology is expressed

by Latin vowels, which brings back the gap between dialects and sub-dialects.

All of the NLP challenges of MSA described above are shared by DA. However, the

lack of standard orthographies for the dialects and their numerous varieties causes sponta-

neous orthography, which poses new challenges to NLP (Habash et al., 2012b). Addition-

ally, DAs are rather impoverished in terms of available tools and resources compared to

MSA; e.g., there is very little parallel DA-English corpora and almost no MSA-DA paral-

lel corpora. The number and sophistication of morphological analysis and disambiguation

tools in DA are very limited in comparison to MSA (Duh and Kirchhoff, 2005; Habash

and Rambow, 2006; Abo Bakr et al., 2008; Habash et al., 2012a). MSA tools cannot be

effectively used to handle DA: (Habash and Rambow, 2006) report that less than two-thirds

of Levantine verbs can be analyzed using an MSA morphological analyzer; and (Habash

et al., 2012a) report that 64% of Egyptian Arabic words are analyzable using an MSA

analyzer.

2.2.5 Dialectness, Domain, Genre, and Timespan

In addition to the previous challenges, other aspects contribute to the challenges of Arabic

NLP in general and MT in particular like the level of sentence dialectness, and the sentence

domain and genre. Habash et al. (2008) define five levels of sentence dialectness: 1) per-

fect MSA, 2) imperfect MSA, 3) Arabic with full dialect switching, 4) dialect with MSA

incursions, and 5) pure dialect. These five levels create confusions to MT systems and in-

crease errors in preprocessing tools like tokenizers. They also raise the question of whether

or how to use the huge collection of MSA-English parallel corpora in training a DA-English

SMT. If added on top of the limited DA-English data it could hurt the translation quality of
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some sentences while helping others based on their level of dialectness.

Similarly, the domain and the genre of the sentence will increase challenges for MT.

The task of translating content of news, news wire, weblog, chat, SMS, emails, and speech

transcripts will require more DA-English training data of the already limited parallel cor-

pora. Add on top of that the timespan of the training data versus the dev/test sets. For

example, consider a test set that uses recent terminology related to Arab Spring events,

politicians, places, and recent phrases and terminology that are never mentioned in the

older training data.

2.2.6 Overview and Challenges of Dialect-Foreign Parallel Data

Arabic dialects are in different states in terms of the amount of dialect-foreign parallel

data. The Defense Advanced Research Projects Agency (DARPA), as part of its projects

concerning with machine translation of Arabic and its dialects to English: Global Au-

tonomous Language Exploitation (GALE) and Broad Operational Language Translation

(BOLT), has provided almost all of the DA-English parallel data available at the time of

writing this thesis. The Egyptian-English language pair has the largest amount of par-

allel data ∼2.4MW (million words), followed by Levantine-English with ∼1.5MW, both

provided by DARPA’s BOLT. Other dialect-English pairs, like Iraqi-English, have smaller

parallel corpora while the majority of dialects and subdialects have no parallel corpora

whatsoever.

Modern Standard Arabic (MSA) has a wealth of MSA-English parallel data amount-

ing to hundreds of millions of words. The majority of this data, however, is originated

from the United Nations (UN) parallel corpus which is a very narrow genre that could hurt

the quality of MT on other genres when combined with other, smaller, domain-specific

parallel corpora. We have trained an SMT system on over two hundred million words of

parallel corpora that include the UN corpus as part of NIST OpenMT Eval 2012 compe-
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tition. When we tested this system in an MSA-pivoting approach to DA-to-English MT,

it performed worse than a system trained on a subset of the corpora that excludes the UN

corpus. Other sources for MSA-English data come from the news genre in general. While

DARPA’s GALE program provides about ∼49.5MW of MSA-English data mainly in the

news domain, it is important to note that it comes from data collected before the year 2009

since this affects the translation quality of MSA sentences discussing later events such as

the Egyptian revolution of 2011.

2.3 Dialectal Arabic Natural Language Processing

2.3.1 Extending Modern Standard Arabic Resources

Much work has been done in the context of MSA NLP (Habash, 2010). Specifically for

Arabic-to-English SMT, the importance of tokenization using morphological analysis has

been shown by many researchers (Lee, 2004; Zollmann et al., 2006; Habash and Sadat,

2006). For the majority of Arabic dialects, dialect-specific NLP resources are non-existent

or in their early stages. Several researchers have explored the idea of exploiting existing

MSA rich resources to build tools for DA NLP, e.g., Chiang et al. (2006) built syntactic

parsers for DA trained on MSA treebanks. Such approaches typically expect the presence

of tools/resources to relate DA words to their MSA variants or translations. Given that DA

and MSA do not have much in terms of parallel corpora, rule-based methods to translate

DA-to-MSA or other methods to collect word-pair lists have been explored. For example,

Abo Bakr et al. (2008) introduced a hybrid approach to transfer a sentence from Egyptian

Arabic into MSA. This hybrid system consisted of a statistical system for tokenizing and

tagging, and a rule-based system for constructing diacritized MSA sentences. Moreover,

Al-Sabbagh and Girju (2010) described an approach of mining the web to build a DA-to-

MSA lexicon. In the context of DA-to-English SMT, Riesa and Yarowsky (2006) presented
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a supervised algorithm for online morpheme segmentation on DA that cut the OOVs by

half.

2.3.2 Dialectal Arabic Morphological Analysis

There has been a lot of work on Arabic morphological analysis with a focus on MSA

(Beesley et al., 1989; Kiraz, 2000; Buckwalter, 2004; Al-Sughaiyer and Al-Kharashi, 2004;

Attia, 2008; Graff et al., 2009; Altantawy et al., 2011; Attia et al., 2013). By comparison,

only a few efforts have targeted DA morphology (Kilany et al., 2002; Habash and Rambow,

2006; Abo Bakr et al., 2008; Salloum and Habash, 2011; Mohamed et al., 2012; Habash et

al., 2012a; Hamdi et al., 2013).

Efforts for Modeling dialectal Arabic morphology generally fall in two camps. First

are solutions that focus on extending MSA tools to cover DA phenomena. For exam-

ple, (Abo Bakr et al., 2008) and (Salloum and Habash, 2011) extended the BAMA/SAMA

databases (Buckwalter, 2004; Graff et al., 2009) to accept DA prefixes and suffixes. Such

efforts are interested in mapping DA text to some MSA-like form; as such they do not

model DA linguistic phenomena. These solutions are fast and cheap to implement.

The second camp is interested in modeling DA directly. However, the attempts at

doing so are lacking in coverage in one dimension or another. The earliest effort on Egyp-

tian that we know of is the Egyptian Colloquial Arabic Lexicon (Kilany et al., 2002).

This resource was the base for developing the CALIMA Egyptian morphological analyzer

(Habash et al., 2012a; Habash et al., 2013). Another effort is the work by (Habash and

Rambow, 2006) which focuses on modeling DAs together with MSA using a common

multi-tier finite-state-machine framework. Mohamed et al. (2012) annotated a collection

of Egyptian for morpheme boundaries and used this data to develop an Egyptian tokenizer.

Eskander et al. (2013b) presented a method for automatically learning inflectional classes

and associated lemmas from morphologically annotated corpora. Hamdi et al. (2013) takes
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advantage of the closeness of MSA and its dialects to build a translation system from

Tunisian Arabic verbs to MSA verbs. Eskander et al. (2016a) presents an approach to an-

notating words with a conventional orthography, a segmentation, a lemma and a set of

features. They use these annotations to predict unseen morphological forms, which are

used, along with the annotated forms, to create a morphological analyzer for a new dialect.

The second approach to modeling Arabic dialect morphology usually results in better

quality morphological analyzers compared to the shallow techniques presented by the first

camp. However, they are expensive and need a lot more resources and efforts. Furthermore,

they are harder to extend to new dialects since they require annotated training data and/or

hand-written rules for each new dialect.

The work we present in Chapter 3 is closer to the first camp. We present detailed

evaluations of coverage and recall against two state-of-the art systems: SAMA for MSA and

CALIMA for Egyptian Arabic. The work we present in Chapter 7 falls under the second

camp in that it tries to model dialects directly from monolingual data and some parallel

corpora.

Morphological Tokenization for Machine Translation. Reducing the size of the vocab-

ulary by tokenization morphologically complex words proves to be very beneficial for any

statistical NLP system in general, and MT in particular. Many researchers have explored

ways to come up with a good tokenization scheme for Arabic when translating to English

(Maamouri et al., 2004; Sadat and Habash, 2006). While SMT systems typically use one

tokenization scheme for the whole Arabic text, Zalmout and Habash (2017) experimented

with different tokenization schemes for different words in the same Arabic text. They

evaluated their approach on SMT from Arabic to five foreign languages varying in their

morphological complexity: English, French, Spanish, Russian and Chinese. Their work

showed that these different target languages require different source language tokenization

schemes. It also showed that combining different tokenization options while training the
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SMT system improves the overall performance, and considering all tokenization options

while decoding further enhances the performance. Our work in Chapter 7 is similar to

Zalmout and Habash (2017)’s work in that the segmentation of a word is influenced by the

target language (in our case English) and this can change if the target language changes.

We differ from that work in that we do not use tokenization schemes or combine them;

instead, we learn to segment words, and that segmentation is dependent on the word itself

and on the context of that word.

2.3.3 Dialect Identification

For token level dialect identification, Biadsy et al. (2009) present a system that iden-

tifies dialectal words in speech and their dialect of origin through the acoustic sig-

nals. In Elfardy et al. (2013) the authors perform token-level dialect identification by

casting the problem as a code-switching problem and treating MSA and Egyptian Di-

alectal Arabic as two different languages. For sentence level dialect identification,

in Elfardy and Diab (2013), the same authors, use features from their token-level sys-

tem to train a classifier that performs sentence-level Dialectal Arabic Identification.

Zaidan and Callison-Burch (2011) crawl a large dataset of MSA-DA news’ commentaries.

The authors annotate part of the dataset for sentence-level dialectness on Amazon Mechan-

ical Turk and employ a language modeling (LM) approach to solve the problem. (Akbacak

et al., 2011) used dialect-specific and cross-dialectal phonotactic models that use Support

Vector Machines and Language Models to classify four Arabic dialects: Levantine, Iraqi,

Gulf and Egyptian.

2.4 Machine Translation of Dialects

Dialects present many challenges to MT due to their spontaneous, unstandardized nature

and the scarcity of their resources. In this section we discuss different approaches to handle
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dialects.

2.4.1 Machine Translation for Closely Related Languages.

Using closely related languages has been shown to improve MT quality when resources

are limited. Hajič et al. (2000) argued that for very close languages, e.g., Czech and Slo-

vak, it is possible to obtain a better translation quality by using simple methods such as

morphological disambiguation, transfer-based MT and word-for-word MT. Zhang (1998)

introduced a Cantonese-Mandarin MT that uses transformational grammar rules. In the

context of Arabic dialect translation, Sawaf (2010) built a hybrid MT system that uses

both statistical and rule-based approaches for DA-to-English MT. In his approach, DA is

normalized into MSA using a dialectal morphological analyzer. In this work, we present

a rule-based DA-MSA system to improve DA-to-English MT. Our approach used a DA

morphological analyzer (ADAM) and a list of hand-written morphosyntactic transfer rules.

This use of “resource-rich” related languages is a specific variant of the more general ap-

proach of using pivot/bridge languages (Utiyama and Isahara, 2007; Kumar et al., 2007).

In the case of MSA and DA variants, it is plausible to consider the MSA variants of a DA

phrase as monolingual paraphrases (Callison-Burch et al., 2006; Du et al., 2010). Also re-

lated is the work by Nakov and Ng (2011), who use morphological knowledge to generate

paraphrases for a morphologically rich language, Malay, to extend the phrase table in a

Malay-to-English SMT system.

2.4.2 DA-to-English Machine Translation

Two approaches have emerged to alleviate the problem of DA-English parallel data

scarcity: using MSA as a bridge language (Sawaf, 2010; Salloum and Habash, 2011; Sal-

loum and Habash, 2013; Sajjad et al., 2013), and using crowd sourcing to acquire parallel

data (Zbib et al., 2012).
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Pivoting Approaches.

Sawaf (2010) built a hybrid MT system that uses both statistical and rule-based approaches

to translate both DA and MSA to English. In his approach, DA is normalized into MSA

using a character-based normalizer, MSA and DA-specific morphological analyzers, and

a class-based n-gram language model to classify words into 16 dialects (including MSA).

These components produce a lattice annotated with probabilities and morphological fea-

tures (POS, stem, gender, etc.), which is then n-best decoded with character-based and

word-based, DA and MSA language models. The 1-best sentence is then translated to En-

glish with the hybrid MT system. He also showed an improvement of up to 1.6% BLEU

by processing the SMT training data with his technique.

Sajjad et al. (2013) applied character-level transformation to reduce the gap between

DA and MSA. This transformation was applied to Egyptian Arabic to produce EGY data

that looks similar to MSA data. They reduced the number of OOV words and spelling

variations and improved translation output.

Cheaply Obtaining DA-English Parallel Data

Zbib et al. (2012) demonstrated an approach to cheaply obtain DA-English data via Ama-

zon’s Mechanical Turk (MTurk). They create a DA-English parallel corpus of 1.5M words

and used it along with a 150M MSA-English parallel corpus to create the training cor-

pora of their SMT systems. They create a DA-English parallel corpus of 1.5M words

and trained an SMT system on it. They built another SMT system from this corpus aug-

mented with a 150M MSA-English parallel corpus to study the effect of the size of DA

data and the noise MSA may cause. They found that the DA-English system outperforms

the DA+MSA-English even though the ratio of DA data size to MSA data size is 1:100.

They also used MTurk to translate their dialectal test set to MSA in order to compare to the

MSA-pivoting approach. They showed that even though pivoting on MSA (produced by
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Human translators in an oracle experiment) can reduce OOV rate to 0.98% from 2.27% for

direct translation (without pivoting), it improves by 4.91% BLEU while direct translation

improves by 6.81% BLEU over their 12.29% BLEU baseline (direct translation using the

150M MSA system). They concluded that simple vocabulary coverage is not sufficient and

the domain mismatch is a more important problem.

Our research in Part-I falls under the first category – pivoting on MSA. In Part-II we

present a combination of the two approaches.

2.5 Machine Translation System Combination

The most popular approach to MT system combination involves building confusion net-

works from the outputs of different MT systems and decoding them to generate new trans-

lations (Rosti et al., 2007; Karakos et al., 2008; He et al., 2008; Xu et al., 2011). Other

researchers explored the idea of re-ranking the n-best output of MT systems using differ-

ent types of syntactic models (Och et al., 2004; Hasan et al., 2006; Ma and McKeown,

2013). While most researchers use target language features in training their re-rankers,

others considered source language features (Ma and McKeown, 2013).

Most MT system combination work uses MT systems employing different techniques

to train on the same data. However, in the system combination work we present in this

thesis (Chapter 6), we use the same MT algorithms for training, tuning, and testing, but we

vary the training data, specifically in terms of the degree of source language dialectness.

Our approach runs a classifier trained only on source language features to decide which

system should translate each sentence in the test set, which means that each sentence goes

through one MT system only.
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2.6 Morphological Segmentation

In this section we present a brief review of the literature on supervised and unsupervised

learning approaches to morphological segmentation.

2.6.1 Supervised Learning Approaches to Morphological

Segmentation

Supervised learning techniques, like MADA, MADA-ARZ and AMIRA (Habash and Ram-

bow, 2005; Habash et al., 2013; Diab et al., 2007; Pasha et al., 2014), have performed well

on the task of morphological tokenization for Arabic machine translation. They require

hand-crafted morphological analyzers, such as SAMA (Graff et al., 2009), or at least an-

notated data to train such analyzers, such as CALIMA (Habash et al., 2012c), in addition

to treebanks to train tokenizers. This is expensive and time consuming; thus, hard to scale

to different dialects.

2.6.2 Unsupervised Learning Approaches to Morphological

Segmentation

Given the wealth of unlabeled monolingual text freely available on the Internet, many un-

supervised learning algorithms (Creutz and Lagus, 2002; Stallard et al., 2012; Narasimhan

et al., 2015) took advantage of it and achieved outstanding results, although not to a degree

where they outperform supervised methods, at least on DA to the best of our knowledge.

Traditional approaches to unsupervised morphological segmentation, such as MORFES-

SOR (Creutz and Lagus, 2002; Creutz and Lagus, 2007), use orthographic features of word

segments (prefix, stem, and suffix). Eskander et al. (2016b) uses Adaptor Grammars for

unsupervised learning of language-independent morphological segmentation.

Many researchers worked on integrating semantics in the learning of morphology
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(Schone and Jurafsky, 2000; Narasimhan et al., 2015) especially with the advances in neu-

ral network based distributional semantics (Narasimhan et al., 2015; Wu et al., 2016).

Wu et al. (2016) adopts a data-driven approach to learn a wordpiece model (WPM) which

generates a deterministic segmentation for any character sequence. This model breaks

words into pieces while inserting a special character that guarantees the unambiguous

recovery of the original character sequence. These wordpieces provide a morphological

model that is especially helpful in the case of out-of-vocabulary (OOV) or rare words.

In Part-III, we present an unsupervised learning approach to morphological segmen-

tation. This model is driven by Arabic semantic, learned with distributional semantics

models from large quantities of Arabic monolingual data, as well as English semantics,

learned by pivoting on English words in an automatically-aligned Arabic-English parallel

corpus.
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Part I

Translating Dialects with No Dialectal

Resources
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Chapter 3

Analyzer for Dialectal Arabic

Morphology (ADAM)

In this chapter, we discuss a quick and cheap way to extend existing dialectal morphological

analyzers to create analyzers for dialects that have no resources. We present an intrinsic

evaluation of this analyzer and compare it to the base analyzer it extended. We also present

an extrinsic evaluation in which an NT pipeline uses this analyzer to tokenize dialectal

words to help produce better translations.

3.1 Introduction

Arabic dialects, or the local primarily spoken varieties of Arabic, have been receiving in-

creasing attention in the field of natural language processing (NLP). An important chal-

lenge for work on these dialects is to create morphological analyzers, or tools that provide

for a particular written word all of its possible analyses out of context. While Modern

Standard Arabic (MSA) has many such resources (Graff et al., 2009; Smrž, 2007; Habash,

2007), Dialectal Arabic (DA) is quite impoverished (Habash et al., 2012a). Furthermore,

MSA and the dialects are quite different morphologically: (Habash et al., 2012a) report
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that only 64% of Egyptian Arabic words are analyzable using an MSA analyzer. So, using

MSA resources for processing the dialects will have limited value. And, as for any lan-

guage or dialect, developing good large scale coverage lexicons and analyzers can take a

lot of time and effort.

In this chapter, we present ADAM (Analyzer for Dialectal Arabic Morphology). ADAM

is a poor man’s solution to developing a quick and dirty morphological analyzer for di-

alectal Arabic. ADAM can be used as is or can function as the first step in bootstrapping

analyzers for Arabic dialects. It covers all part-of-speech (POS) tags just like any other

morphological analyzer; however, since we use ADAM mainly to process text, we do not

model phonological difference between Arabic dialects and we do not evaluate the differ-

ence in phonology. In this work, we apply ADAM extensions to MSA clitics to generate

proclitics and enclitics for different Arabic dialects. This technique can also be applied to

stems to generate dialectal stems; however, we do not do that in this work.

3.2 Motivation

ADAM is intended to be used on dialectal Arabic text to improve Machine Translation (MT)

performance; thus, we focus on orthography as opposed to phonology. While consonants

and long vowels are written in Arabic as actual letters, short vowels are optional diacritics

over or under the letters. This leads to people ignoring short vowels in writing since the

interpretation of the word can be inferred from the context. Even when people write short

vowels, they are inconsistent and the short vowels might end up over or under the wrong

letter due to visual difficulties. Research in MT, therefore, tends to drop short vowels

completely and since ADAM is built to improve MT performance, we choose to drop short

vowels from ADAM.

Morphemes of different Arabic dialects (at least the ones we are addressing in this

work: Levantine, Egyptian, and Iraqi) usually share similar morpho-syntactic behavior
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such as future particles, progressive particle, verb negation, pronouns, indirect object pro-

nouns, and propositions. Furthermore, many morphemes are shared among these dialects

especially when dropping short vowels. Therefore, modeling orthographic morphology of

multiple dialects in one system seems reasonable. When querying ADAM, the user has the

option to specify the dialect of the query word to exclude other dialects’ readings.

In an analysis we did in Salloum and Habash (2011), we found that 26% of out-of-

vocabulary (OOV) terms in dialectal corpora have MSA readings or are proper nouns. The

rest, 74%, are dialectal words. We classify the dialectal words into two types: words that

have MSA-like stems and dialectal affixational morphology (affixes/clitics) and those that

have dialectal stem and possibly dialectal morphology. The former set accounts for almost

half of all OOVs (49.7%) or almost two thirds of all dialectal OOVs. In this work, we

only target dialectal affixational morphology cases as they are the largest class involving

dialectal phenomena that do not require extension to stem lexica.

3.3 Approach

In this section, we describe our approach for developing ADAM.

3.3.1 Databases

ADAM is built on top of SAMA databases (Graff et al., 2009). The SAMA databases contain

three tables of Arabic stems, complex prefixes and complex suffixes and three additional

tables with constraints on matching them. We define a complex prefix as the full sequence

of prefixes/proclitics that may appear at the beginning of a word. Complex suffixes are

defined similarly. MSA, according to the SAMA databases, has 1,208 complex prefixes and

940 complex suffixes, which are made up of 49 simple prefixes and 177 simple suffixes,

respectively. The number of combinations in prefixes is a lot bigger than in suffixes, which

explains the different proportions of complex affixes to simple affixes.
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ADAM follows the same database format of the ALMOR morphological ana-

lyzer/generator (Habash, 2007), which is the rule-based component of the MADA system

for morphological analysis and disambiguation of Arabic (Habash and Rambow, 2005;

Roth et al., 2008). As a result, ADAM outputs analyses as lemma and feature-value pairs

including clitics. This makes it easier to replace ALMOR database with ADAM database in

any MSA NLP system that uses ALMOR to extended to the dialects processed by ADAM.

The model, however, has to be re-trained on dialectal data. For example, MADA can be ex-

tended to Levantine by plugging ADAM database in place of ALMOR database and training

MADA on Levantine TreeBank.

3.3.2 SADA Rules

We extend the SAMA database through a set of rules that add Levantine, Egyptian, and

Iraqi dialectal affixes and clitics to the database. We call this Standard Arabic to Dialectal

Arabic mapping technique SADA.1 To add a dialectal affix (or clitic), we first look for

an existing MSA affix with the same morpho-syntactic behavior, and then write a rule (a

regular expression) that captures all instances of this MSA affix (either by itself or within

complex affixes) and replace them with the new dialectal affix. In addition to changing

the surface form of the MSA affix, we change any feature in the retrieved database entry

if needed such as Part-Of-Speech (POS), proclitics and enclitics, along with adding new

features if needed such as ‘dia’ that gives the dialect of this new dialectal affix. Finally,

the new updated database entries are added to the database while preserving the original

entries to maintain analyzing MSA words.

1SADA, øY�, SadY, means ’echo’ in Arabic.
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Scaling ADAM to more dialects

SADA rules were created by the author of this thesis who is a native speaker of Levantine

Arabic with good knowledge about Egyptian and Iraqi. Writing the rules took around

70 hours of work and did not require any computer science knowledge. The task does

not require a linguist either, any native speaker with basic understanding of morphology

(especially POS) can write these rules. Therefore, using crowdsourcing, ADAM can be

extended easily and cheaply to other dialects or sub-dialects compared to other approaches

(such as MAGEAD and CALIMA) that may take months if not years to cover a new dialect.

Moreover, since SADA rules can be applied to any ALMOR-like database, both MAGEAD

and CALIMA can be extended by SADA to create a version of ADAM superior to these

analyzers. We extend CALIMA with SADA and evaluate it in Section 3.4.

Analysis of dialectal data

To come up with the list of rules, we started with a list of highly-frequent dialectal words

we acquired from Raytheon BBN Technologies in 2010. The process of creating the word

list started by extracting all the words that are in annotated non-MSA regions in the GALE

transcribed audio data (about 2000 hours) and intersecting them with words in the GALE

web data (Webtext). Normally, many of these words are MSA and had to be excluded

automatically and manually to ended up with a list of 22,965 types (821,700 tokens) that

are, for the most part, dialectal words. Each dialectal word occurred with different fre-

quencies in the two corpora above. The maximum of the two frequencies was picked as

the word frequency and the list was ordered according to this frequency. We annotated

the top 1000 words in this list for dialect and POS to study the dialectal phenomena we

are dealing with. We analyzed the morphology of these words to identify the frequent

types of morphemes and their spelling variations along with the common morphemes and

shared morpho-syntactic behavior among dialects. This analysis led the creation of the
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first version of SADA rules. New rules were added later after getting more dialectal text to

analyze.

Classes of extensions

We classify our extensions of SADA into two classes: dialectal affixes with comparable

MSA equivalents and dialectal affixes that have no MSA equivalent. We discuss these

classes by presenting two examples, one for each class.

For the first type, we consider the dialectal future prefix +k H+ ‘will’ (and its or-

thographical variations: the Levantine +kP rH+ and the Egyptian +ë h+. This pre-

fix has a similar behavior to the standard Arabic future particle +� s+. As such,

an extension rule would create a copy of each occurrence of the MSA prefix and re-

place it with the dialectal prefix. SADA uses this rule to extend the SAMA database

and adds the prefix Ha/FUT_PART and many other combinations involving it, e.g.,

wa/PART+Ha/FUT_PART+ya/IV3MS, Ha/FUT_PART+na/IV1P, etc.

For the second type, we consider the Levantine dialect demonstrative prefix +ë h+

’this/these’ that attaches to nouns on top of the determiner particle +Ë @ Al+ ’the’. Since

this particle has no equivalent in MSA, we have a rule that extends the determiner particle

+Ë @ Al+ ’the’ to allow the new particle to attach to it. This is equivalent to having a new

particle +Ë Aë hAl+ ’this/these the’ that appears wherever the determiner particle is allowed

to appear.

The rules (1,021 in total) introduce 16 new dialectal prefixes (plus spelling variants and

combinations) and 235 dialectal suffixes (again, plus spelling variants and combinations).

Table 3.1 presents a sample of the new proclitics/enclitics added by SADA.

As an example of ADAM output, consider the second set of rows in Figure 3.1, where a

single analysis is shown.
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Prefix Dialect POS Comments
b L,E PROG_PART Simple present
mn L PROG_PART Simple present (with n/IV1P)
d I PROG_PART Simple present
Em, Eb L PROG_PART Continuous tense
H M FUT_PART Future particle
h E FUT_PART Future particle
rH L FUT_PART Future particle
mA, m M NEG_PART Negation
t L JUS_PART ‘in order to’
hAl L,I DEM_DET_PART ‘this/these’ the
E L,I PREP_PART ‘on/to/about’
EAl, El M PREP_DET_PART ‘on/to/about the’
yA M VOC_PART Vocative particle
Suffix Dialect POS Comments
l+[pronPGN ] Dia. PREP+VSUFF_IO:[PGN ] Indirect object, e.g., lw, lhA, etc.
$ E,L NEG_PART Negation suffix
$ I PRON_2MS Suffixing pronoun
j I PRON_2FS Suffixing pronoun
ky L PRON_2FS When preceded by a long vowel
yk L PRON_2FS When preceded by a short vowel
ww L VSUFF_SUBJ:3P+VSUFF_DO:3MS Suffix: subject is 3P, object is

3MS

Table 3.1: An example list of dialectal affixes added by SADA. ‘L’ is for Levantine, ‘E’ for
Egyptian, ‘I’ for Iraqi, and ‘M’ for multi-dialect. PNG is for Person-Number-Gender.

Levantine Word ñÊJ.
�
JºJ
kAÓð wmAHyktblw

English Equiv. ‘And he will not write to him’
Analysis: Proclitics [ Lemma & Features ] Enclitics

Levantine: w+ mA+ H+ yktb +l +w
POS: conj+ neg+ fut+ [katab IV subj:3MS voice:act] +prep +pron3MS

English: and+ not+ will+ he writes +to +him

Figure 3.1: An example illustrating the ADAM analysis output for a Levantine Arabic word.

3.4 Intrinsic Evaluation

In this section we evaluate ADAM against two state-of-the-art morphological analyzers:

SAMA (v 3.1) (Graff et al., 2009) for MSA and CALIMA (v0.6) (Habash et al., 2012a) for

Egyptian Arabic. We apply the SADA extensions to both SAMA and CALIMA to produce

two ADAM versions: ADAMsama and ADAMcalima.

We compare the performance of the four analyzers on two metric: out-of-vocabulary

(OOV) rate and in-context part-of-speech recall. We consider data collections from Levan-
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tine and Egyptian Arabic. In this work we do not evaluate on Iraqi.

3.4.1 Evaluation of Coverage

Data Set Levantine Egyptian
Word Count Type Token Type Token

137,257 1,132,855 315,886 2,670,520
System Metric Type Token Type Token
SAMA OOV Rate 35.5% 16.1% 47.2% 14.0%

ADAMsama OOV Rate 16.1% 5.5% 33.4% 7.0%
CALIMA OOV Rate 20.4% 6.9% 34.4% 7.2%

ADAMcalima OOV Rate 15.6% 5.3% 32.3% 6.6%

Table 3.2: Coverage evaluation of the four morphological analyzers on the Levantine and
Egyptian side of MT training data in terms of Types and Tokens OOV Rate.

We compare the performance of the four analyzers outlined above in terms of their OOV

rate: the percentage of analyzable types or tokens out of all types or tokens, respectively.

This metric does not guarantee the correctness of the analyses, just that an analysis is

available. For tasks such as undiacritized tokenization, this may actually be sufficient in

some cases.

For evaluation, we use the dialectal side of the DA-English parallel corpus.2 This DA

side contains ∼3.8M untokenized words of which ∼2.7M tokens (and ∼315K types) are

in Egyptian Arabic and ∼1.1M tokens (and ∼137K types) are in Levantine Arabic.

Table 3.2 shows the performance of the four morphological analyzers on both Levantine

and Egyptian data in terms of type and token OOV rates. ADAMsama and ADAMcalima im-

prove over the base analyzers they extend (SAMA and CALIMA, respectively). For SAMA,

ADAMsama reduces the OOV rates by over 50% in types and 66% in tokens for Levan-

tine. The respective values for Egyptian Arabic types and tokens are 29% and 50%. The

performance of ADAMsama is quite competitive with CALIMA, a system that took years

2This part of the thesis assume that DA-English for the target dialects do not exist. We are using the DA
side of this corpus for evaluation only.
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and a lot of resources to develop. The OOV rates on Egyptian Arabic for ADAMsama and

CALIMA are almost identical; but ADAMsama outperforms CALIMA on Levantine Arabic,

which CALIMA was not designed for. Furthermore, ADAMcalima improves over CALIMA

although by a smaller percentage, suggesting that the ADAM approach can be useful even

with well developed dialectal analyzers.

3.4.2 Evaluation of In-context Part-of-Speech Recall

We evaluate the four analyzers discussed above in terms of their in-context POS recall

(IPOSR). IPOSR is defined as the percentage of time an analyzer produces an analy-

sis with the correct POS in context among the set of analyses for a particular word. To

compute IPOSR, we need manually annotated data sets: the Levantine Arabic TreeBank

(LATB) (Maamouri et al., 2006) and the Egyptian Arabic (ARZ) TreeBank (Eskander et

al., 2013a).3 We report IPOSR in terms of types and tokens for Levantine and Egyptian on

the four analyzers in Table 3.3

Data Set Levantine TB Egyptian TB
Word Count Type* Token Type* Token

4,201 19,925 65,064 309,386
System Metric Type* Token Type* Token
SAMA OOV Rate 17.1% 9.8% 20.3% 8.4%

POS Recall 68.3% 64.6% 60.0% 75.1%
ADAMsama OOV Rate 2.8% 1.2% 7.6% 2.0%

POS Recall 86.7% 79.7% 75.5% 91.4%
CALIMA OOV Rate 3.8% 1.7% 5.6% 1.6%

POS Recall 86.0% 80.2% 85.4% 94.7%
ADAMcalima OOV Rate 2.5% 1.0% 5.2% 1.4%

POS Recall 87.8% 80.7% 85.5% 94.7%

Table 3.3: Correctness evaluation of the four morphological analyzers on the Levantine
and Egyptian TreeBanks in terms of Types and Tokens. Type* is the number of unique
word-POS pairs in the treebank.

3This part of the thesis assume that tools and treebanks for the target dialects do not exist. We are using
these DA treebanks for evaluation only.

51



We observe, first of all, that the OOV rates in the treebank data are much less than OOV

rates in the data we used in the previous section on coverage evaluation. The reduction in

OOV rate using the dialectal analyzers (beyond SAMA) is also more intense. This may

be a result of the treebank data being generally cleaner and less noisy than the general

corpus data we used. Next, we observe that SAMA has very low IPOSR rate that are

consistent we previous research cited above. ADAMsama improves the overall IPOSR for

both Levantine and Egyptian Arabic by about 27% and 23% relative for types and tokens,

respectively. ADAM and CALIMA are almost tied in performance in Levantine Arabic;

but CALIMA outperforms ADAM for Egyptian Arabic as expected. Finally, ADAMcalima

improves a bit more on CALIMA for Levantine Arabic, and make less of an impact for

Egyptian Arabic. All of this suggests that the ADAM solution is quite competitive with

state-of-the-art analyzers given the ease and speed in which it was created. ADAM can

make a good bootstrapping method for annotation of dialectal data or for building more

linguistically precise dialectal resources.

We should point out that this recall-oriented evaluation ignores possible differences in

precision which are likely to result from the fact that the ADAM method tends to produce

more analyses per word than the original analyzers it extends. In fact, in the case of Egyp-

tian Arabic, ADAMsama produces 21.8 analyses per word as compared to SAMA’s 13.9;

and ADAMcalima produces 31.4 analyses per word as opposed to CALIMA’s 26.3. Without

a full, careful and large-scale evaluation of the produced analyses, it is hard to quantify the

degree of correctness or plausibility of the ADAM analyses.

3.5 Extrinsic Evaluation

In this section we evaluate the use of ADAMsama to tokenize dialectal sentences before

translating them with an MSA-to-English SMT system. We do not evaluate ADAMcalima

since a DA-specific tool like CALIMA is not supposed to exist in this part of the thesis.
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This part assumes that only MADA (which uses SAMA internally) is available and can be

used to build a baseline MT system.

3.5.1 Experimental Setup

We use the open-source Moses toolkit (Koehn et al., 2007) to build a phrase-based SMT

system trained on mostly MSA data (64M words on the Arabic side) obtained from several

LDC corpora including very limited DA data. Our system uses a standard phrase-based

architecture. The parallel corpus is word-aligned using GIZA++ (Och and Ney, 2003a).

Phrase translations of up to 10 words are extracted in the Moses phrase table. The lan-

guage model for our system is trained on the English side of the bitext augmented with

English Gigaword (Graff and Cieri, 2003). We use a 5-gram language model with modi-

fied Kneser-Ney smoothing. Feature weights are tuned to maximize BLEU on the NIST

MTEval 2006 test set using Minimum Error Rate Training (Och, 2003). The English data

is tokenized using simple punctuation-based rules. The Arabic side is segmented accord-

ing to the Arabic Treebank (ATB) tokenization scheme (Maamouri et al., 2004) using the

MADA+TOKAN morphological analyzer and tokenizer v3.1 (Habash and Rambow, 2005;

Roth et al., 2008). The Arabic text is also Alif/Ya normalized. MADA-produced Arabic

lemmas are used for word alignment. Results are presented in terms of BLEU (Papineni

et al., 2002) and METEOR (Banerjee and Lavie, 2005). All evaluation results are case

insensitive.

3.5.2 The Dev and Test Sets

Our devtest set consists of sentences containing at least one non-MSA segment (as anno-

tated by LDC)4 in the Dev10 audio development data under the DARPA GALE program.

The data contains broadcast conversational (BC) segments (with three reference transla-

4http://www.ldc.upenn.edu/
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tions), and broadcast news (BN) segments (with only one reference, replicated three times).

The data set contained a mix of Arabic dialects: Iraqi, Levantine, Gulf, and Egyptian.

The particular nature of the devtest being transcripts of audio data adds some challenges

to MT systems trained on primarily written data in news genre. For instance, each of the

source and references in the devtest set contained over 2,600 uh-like speech effect words

(uh/ah/oh/eh), while the baseline translation system we used only generated 395. This led

to severe brevity penalty by the BLEU metric. As such, we removed all of these speech

effect words in the source, references and our MT system output.

Another similar issue was the overwhelming presence of commas in the English refer-

ence compared to the Arabic source: each reference had about 14,200 commas, while the

source had only 64 commas. Our MT system baseline predicted commas in less than half

of the reference cases. Similarly we remove commas from the source, references, and MT

output. We do this to all the systems we compare in this paper.

We split this devtest set into two sets: a development set (dev) and a blind test set (test),

and we call them speech-dev and speech-test, respectively. The splitting is done randomly

at the document level. The dev set has 1,496 sentences with 32,047 untokenized Arabic

words. The test set has 1,568 sentences with 32,492 untokenized Arabic words.

3.5.3 Machine Translation Results

We present the results of our ADAMsama-based MT pipeline against a baseline system.

The baseline system is an SMT system trained on 64M words of MSA-English data5. The

baseline system uses MADA to ATB-tokenize the training, tuning, and dev/test sets.

The ADAM-based MT Approach. For our system, we use the same SMT system as the

baseline where the training and tuning sets were tokenized by MADA. However, we handle

5This data is provided by DARPA GALE and is mostly MSA with dialectal inclusions.
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the evaluation sets differently. We first process an evaluation set sentence with MADA

like in the baseline, then we send out-of-vocabulary (OOV) words to ADAMsama to obtain

their analyses. These OOV words have no chance of getting translated otherwise, so they

are a safe bet. To produce the tokens in a way consistent with the training data which is

ATB-tokenized with MADA that uses an internal system called TOKAN for tokenization of

analyses, we create a version of TOKAN, TOKAND, that can handle dialectal analysis. We

send ADAMsama analyses to TOKAND which produce the final tokens. Although this may

create implausible output for many cases, it is sufficient for some, especially through the

system’s natural addressing of orthographic variations. Also, splitting dialectal clitics from

an MSA (or MSA-like) stem is sometimes all it takes for that stem to have a chance to be

translated.

Results on the development set. Table 3.4 shows the results of our system, ADAMsama

tokenization, against the baseline in terms of BLEU and METEOR. The first column lists

the two systems while the second column shows results on our development set: speech-

dev. Our system improves over the baseline by 0.41% BLEU and 0.53% METEOR. All

results are statistically significant against the baseline as measured using paired bootstrap

resampling (Koehn, 2004b).

Results on the blind test set. The third column of Table 3.4 present results on our blind

test set: speech-test. We achieve consistent results with the development set: 0.36% BLEU

and 0.55% METEOR.

3.6 Conclusion and Future Work

In this chapter, we presented ADAM, an analyzer of dialectal Arabic morphology, that can

be quickly and cheaply created by extending existing morphological analyzers for MSA or
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Test Sets speech-dev speech-test
BLEU Diff. METEOR Diff. BLEU Diff. METEOR Diff.

Baseline 37.20 0.00 53.65 0.00 38.18 0.00 53.92 0.00
ADAMsama tokenization 37.61 0.41 54.18 0.53 38.54 0.36 54.47 0.55

Table 3.4: Results for the dev set (speech-dev) and the blind test set (speech-test) in terms
of BLEU and METEOR. The ‘Diff.’ column shows result differences from the baseline.
The rows of the table are the two MT systems: baseline (where text was tokenized by
MADA) and ADAM tokenization (where input was tokenized by ADAMsama).

other Arabic varieties. The simplicity of ADAM rules makes it easy to use crowdsourcing

to scale ADAM to cover dialects and sub-dialects. We presented our approach to extending

MSA clitics and affixes with dialectal ones although the ADAM technique can be used to

extend stems as well. We did intrinsic and extrinsic evaluations of ADAM. The intrinsic

evaluation showed ADAM performance against an MSA analyzer, SAMA, and a dialectal

analyzer, CALIMA, in terms of coverage and in-context POS recall. Finally, we showed

how using ADAM to tokenize dialectal OOV words can significantly improve the translation

quality of an MSA-to-English SMT system. This means that ADAM can be a cheap option

that can be implemented quickly for any Arabic dialect that has no dialectal tools or DA-

English parallel data.

In the future, we plan to extend ADAM coverage of the current dialects and extend

ADAM to cover new dialects. We expect this to not be too hard since the most dialectal

phenomena are shared among Arabic dialects. We also plan to add dialectal stems in two

ways:

1. Copying and modifying MSA stems with SADA-like rules. The mutations of

many dialectal stems from MSA stems follow certain patterns than can be captured

with SADA-like rules. For example, for a verb that belongs to a three-letter root with

duplicate last letter (e.g., Hbb ‘to love’ and rdd ‘to reply’), the stem that forms the

verb with first person subject (e.g., in MSA, >aHobabotu ‘I love’ and radadotu ‘I

reply’) is relaxed with a ‘y’ in Egyptian and Levantine (e.g, Hab∼ayt and rad∼ayt).
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2. Importing DA-MSA Lexicons. DA-MSA dictionaries and lexicons, whether on the

surface form level or the lemma level, can be selectively imported to ADAM database.
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Chapter 4

Pivoting with Rule-Based DA-to-MSA

Machine Translation System (ELISSA)

4.1 Introduction

In Chapter 3 we discussed an approach to translating dialects with no DA-English parallel

data and no dialectal preprocessing tools. The approach relies on a DA morphological

analyzer, ADAM, that can be built quickly and cheaply, and uses it to tokenize OOV DA

words. In this chapter we present another approach that uses this dialectal analyzer, but

instead of just tokenizing, it translates DA words and phrases to MSA. Therefore, this

approach pivots on MSA to translates dialects to English. For this purpose, we build a DA-

to-MSA machine translation system, ELISSA, which executes morpho-syntactic translation

rules on ADAM’s analyses to generate an MSA lattice that is, then, decoded with a language

model. ELISSA can use any DA morphological analyzer which means that this MSA-

pivoting approach can be used for dialects with no DA-English data yet have morphological

analyzers. In that scenario, building ADAM is not required.
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4.2 Motivation
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Reference

In this case, they will not write on his profile wall and they do not want him to send them
comments because he did not tell them when he will go to the country.

Google Translate
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fy h*h AlHAlp ln yktbwA lh ElY HA}T SfHth Al$xSyp wlA yrydwnh >n yrsl lhm tElyqAt l>nh
lm yxbrhm mtY sy*hb <lY Albld.

Google Translate
Feb. 2013 In this case it would not write to him on the wall of his own and do not want to send their

comments because he did not tell them when going to the country.
Jan. 2018 In this case they will not write him on the wall of his personal page and do not want him to

send them comments because he did not tell them when he would go to the country.

Table 4.1: A motivating example for DA-to-English MT by pivoting (bridging) on MSA.
The top half of the table displays a DA sentence, its human reference translation and the
output of Google Translate. We present Google Translate output as of 2013 (when our pa-
per that includes this example was published) and as of 2018 where this thesis was written.
The bottom half of the table shows the result of human translation into MSA of the DA
sentence before sending it to Google Translate.

Table 4.1 shows a motivating example of how pivoting on MSA can dramatically im-

prove the translation quality of a statistical MT system that is trained on mostly MSA-to-

English parallel corpora. In this example, we use Google Translate’s online Arabic-English

SMT system.We present Google Translate’s output as of two different dates. The first date

is February 21, 2013 when we tested the system for a paper that introduced this example

(Salloum and Habash, 2013). The second data is January 2, 2018 before this thesis was sub-

mitted. We believe that the 2013 system was a phrase-based SMT system while the 2018

system might have included neural MT models. We constructed this example to showcase

different dialectal orthographic and morpho-syntactic phenomena on the word and phrase
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levels which we will discuss later in this chapter. As a result, this example can be classified

as pure dialect on the levels of dialectness spectrum discussed in Chapter 1. This made

this example particularly hard for Google Translate, although it was not our intention. We

have seen Google Translate translates some dialectal words and fails on others before. So

it could have some dialectal inclusions in its data but we do not know the amount or the

dialects.

The table is divided into two parts. The top part shows a dialectal (Levantine) sentence,

its reference translation to English, and its Google Translate translations. The 2013 Google

Translate translation clearly struggles with most of the DA words, which were probably

unseen in the training data (i.e., out-of-vocabulary – OOV) and were considered proper

nouns (transliterated and capitalized).

The 2018 Google Translate translation is much more imaginative. This could be due to

the use of neural MT (NMT) models. Outside of ‘case’ and ‘personal page’, the translation

has nothing to do with the input sentence. Recent work on neural MT uses character based

models which help with spelling errors and variations, and to a lesser degree, morphology;

however, they have major drawbacks for dialectal Arabic due to spontaneous orthography

and dropping of short vowels which causes most words to be one letter away from an-

other, completely unrelated, word. Similarly, many neural MT models use autoencoders to

compress the input sentence into a compact representation (attention mechanisms) which

is then decoded with an autodecoder to generate the target sentence. While this network

captures the semantics of the input and often generates syntactically sound sentences, it

tends to hallucinate, especially with limited amounts of training data. The output that the

2018 Google Translate system provides for the DA source sentence suggests that it is prob-

ably using NMT models, especially that when we remove only the period from the end of

the DA sentence above, the 2018 Google Translate produces this translation: ‘In this case,

what is the problem?’.
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Although the output of the two versions of Google Translate differs widely, the conclu-

sion stays the same. The lack of DA-English parallel corpora suggests pivoting on MSA

can improve the translation quality. In the bottom part of the table, we show a human MSA

translation of the DA sentence above and its Google translations. We see that the results are

quite promising. The goal of ELISSA is to model this DA-MSA translation automatically.

In Section 4.7.1, we revisit this example to discuss ELISSA’s performance on it. We show

its output and its corresponding Google translation in Table 4.3.

4.3 The ELISSA Approach

Since there is virtually no DA-MSA parallel data to train an SMT system, we resort to

building a rule-based DA-to-MSA MT system, with some statistical components, we call

ELISSA.1 ELISSA relies on the existence of a DA morphological analyzer, a list of hand-

written transfer rules, and DA-MSA dictionaries to create a mapping of DA to MSA words

and phrases. The mapping is used to construct an MSA lattice of possible sentences which

is then scored with a language model to rank and select the output MSA translations.

Input and Output. ELISSA supports untokenized (raw) input only. ELISSA supports

three types of output: top-1 choice, an n-best list or a map file that maps source

words/phrases to target phrases. The top-1 and n-best lists are determined using an un-

tokenized MSA language model to rank the paths in the MSA translation output lattice.

This variety of output types makes it easy to plug ELISSA with other systems and to use

it as a DA preprocessing tool for other MSA systems, e.g., MADA (Habash and Rambow,

2005), AMIRA (Diab et al., 2007), or MADAMIRA (Pasha et al., 2014).

1In the following chapters, we refer to this version of ELISSA as Rule-Based ELISSA to distinguish it
from Statistical ELISSA and Hybrid ELISSA that we build with the help of pivoting techniques that use the
DA-English parallel data available in those chapters.
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Figure 4.1: This diagram highlights the different steps inside ELISSA and some of its third-
party dependencies. ADAM and TOKAN are packaged with ELISSA.
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Components. ELISSA’s approach consists of three major steps preceded by a prepro-

cessing and normalization step, that prepares the input text to be handled (e.g., UTF-8

cleaning, Alif/Ya normalization, word-lengthening normalization), and followed by a post-

processing step, that produces the output in the desired form (e.g., encoding choice). The

three major steps are:

1. Selection. Identify the words and phrases to handle, e.g., dialectal or OOV words, or

phrases with multi-word morpho-syntactic phenomena.

2. Translation. Provide MSA paraphrases of the selected words and phrases to form

an MSA lattice.

3. Language Modeling. Pick the n-best fluent sentences from the generated MSA

lattice after scoring with a language model.

In the following sections we will discus these components in details.

4.4 Selection

In the first step, ELISSA identifies which words or phrases to paraphrase and which words

or phrases to leave as is. ELISSA provides different methods (techniques) for selection,

and can be configured to use different subsets of them. In Section 4.8 we use the term

"selection mode" to denote a subset of selection methods. Selection methods are classified

into Word-based selection and Phrase-based selection.

4.4.1 Word-based selection

Methods of this type fall in the following categories:

a. User token-based selection: The user can mark specific words for selection using the

tag ‘/DIA’ (stands for ‘dialect’) after each word to select. This allows for the use of
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dialectal identification systems, such as AIDA (Elfardy and Diab, 2012), to pre-select

dialectal words.

b. User type-based selection: The user can specify a list of words to select from, e.g.,

OOVs. Also the user can provide a list of words and their frequencies and specify a

cut-off threshold to prevent selecting a frequent word.

c. Morphology-based word selection: ELISSA uses ADAM (Salloum and Habash, 2011)

to select dialectal words. The user can choose between selecting words that have DA

analyses only (DIAONLY mode) or words with both DA and MSA analyses (DIAMSA

mode).

d. Dictionary-based selection: ELISSA selects words based on their existence in the DA

side of our DA-MSA dictionaries. This is similar to User type-based selection above,

except that we use these dictionaries in the translation component.

e. All: ELISSA selects every word in an input sentence.

4.4.2 Phrase-based selection

Rule Category Selection Examples Translation Examples
Dialectal Idafa A

	
J«A

�
JK. ú




	
æ£ñË@

�
��
m.

Ì'@ Aljy$ AlwTny btAEnA ú



	
æ£ñË@ A

	
J

�
��
k. jy$nA AlwTny

‘the-army the-national ours’ ‘our-army the-national’
Verb + flipped direct 	áëAK
 AêËQå

	
�k HDrlhA yAhn AêË ÑëQå

	
�k HDrhm lhA

and indirect objects ‘he-prepared-for-her them’ ‘he-prepared-them for-her’
Special dialectal AëAK
 @ ðYK. bdw AyAhA AëYK
QK
 yrydhA
expressions ‘his-desire her’ ‘he-desires-her’
Negation + verb ñËñJ.

�
JºJ
k AÓð wmA Hyktbwlw éË @ñJ.

�
JºK


	áËð wln yktbwA lh
‘and-not they-will-write-to-him’ ‘and-will-not they-write to-him’

Negation + �
éJ


�
¯B

�
�Ô

	
¯ fm$ lAqyp Ym.

�
�
' C

	
¯ flA tjd

agent noun ‘so-not finding’ ‘so-not she-finds’
Negation + Õ»Y« AÓ mA Edkm ÕºK
YË ��
Ë lys ldykm
closed-class words ‘not with-you’ ‘not with-you’

Table 4.2: Examples of some types of phrase-based selection and translation rules.
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This selection type uses hand-written rules to identify dialectal multi-word construc-

tions that are mappable to single or multi-word MSA constructions. The current count

of these rules is 25. Table 4.2 presents some rule categories (first column) and related

examples (second column).

In the current version of ELISSA, Phrase-based selection has precedence over word-

based selection methods. We evaluate different settings for the selection step in Section 4.8.

4.5 Translation

In this step, ELISSA translates the selected words and phrases to their MSA equivalent

paraphrases. The specific type of selection determines the type of the translation, e.g.,

phrase-based selected words are translated using phrase-based translation rules. The MSA

paraphrases are then used to form an MSA lattice.

4.5.1 Word-based translation

This category has two types of translation techniques. The surface translation uses DA-to-

MSA surface-to-surface (S2S) transfer rules (TRs) which depend on DA-MSA dictionaries.

The deep (morphological) translation uses the classic rule-based machine translation flow:

analysis, transfer and generation, which is similar to generic transfer-based MT (Dorr et

al., 1999).

Morphological Analysis. In this step, we use a dialectal morphological analyzer, ADAM,

which provides ELISSA with a set of analyses for each dialectal word in the form of lemma

and features. These analyses will be processed in the next step, Transfer. ADAM only han-

dles dialectal affixes and clitics, as opposed to dialectal stems. However, ADAM provides a

backoff mode when it tries to guess the dialectal stem from the word and it provides a fake
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Dialect Word ñÊJ.
�
JºJ
kAÓð wmAHyktblw ‘And he will not write for him’

Analysis Proclitics [ Lemma & Features ] Enclitics
w+ mA+ H+ yktb +l +w

conj+ neg+ fut+ [katab IV subj:3MS voice:act] +prep +pron3MS

and+ not+ will+ he writes +for +him
Transfer Word 1 Word 2 Word 3

Proclitics [ L & F ] [ Lemma & Features ] [ L & F ] Enclitic
conj+ [ lan ] [katab IV subj:3MS voice:act] [ li ] +pron3MS

and+ will not he writes for +him
Generation w+ ln yktb l +h

MSA Phrase éË I.
�
JºK


	áËð wln yktb lh ‘And he will not write for him’

Figure 4.2: An example illustrating the analysis-transfer-generation steps to translate a
word with dialectal morphology into its MSA equivalent phrase. This is an extention to the
example presented in Figure 3.1 and discussed in Chapter 3. ‘[ L & F ]’ is an abbreviation
of ‘[ Lemma & Features ]’

lemma with the analysis (the lemma is the stem appended with ‘_0’). This backoff mode

is used in the next step to map a dialectal lemma to its MSA lemma translations.

Morphosyntactic Transfer. In the transfer step, we map ADAM’s dialectal analyses to

MSA analyses. This step is implemented using a set of morphosyntactic transfer rules

(TRs) that operate on the lemma and feature representation produced by ADAM. These

TRs can change clitics, features or lemma, and even split up the dialectal word into multiple

MSA word analyses. Crucially the input and output of this step are both in the lemma and

feature representation. A particular analysis may trigger more than one rule resulting in

multiple paraphrases. This only adds to the fan-out which started with the original dialectal

word having multiple analyses.

ELISSA uses two types of TRs: lemma-to-lemma (L2L) TRs and features-to-features

(F2F) TRs. L2L TRs simply change the dialectal lemma to an MSA lemma. These rules are

extracted from entries in the DA-to-MSA dictionaries where Buckwalter MSA lemmas can

be extracted. The dialectal lemma is formatted to match ADAM’s guesses (stem appended

with ‘_0’). F2F transfer rules, on the other hand, are more complicated. As examples,

two F2F TRs which lead to the transfer output shown in the third set of rows in Figure 4.2
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(built on top of Figure 3.1 discussed in Chapter 3) can be described as follows (with the

declarative form presented in Figure 4.3):

• If the dialectal analysis shows a negation proclitic and the verb is perfective, remove

the negation proclitic from the verb and create a new word, the MSA negative-past

particle ÕË lm, to precede the current word and which inherits all proclitics preceding

the negation proclitics. Change the verb’s tense to imperfective and mood to jussive.

• If the dialectal analysis shows the dialectal indirect object enclitic, remove it from

the word and create a new word to follow the current word, and modify the word

with an enclitic pronoun that matches the features of the indirect object enclitic. The

new word could be one of these two preposition: úÍ@


<lY ‘to’ and +Ë l ‘to’, resulting

in two options in the final lattice. Alternatively, the rule should add a third option of

dropping the preposition and the indirect object.

Morphological Generation. In this step, we generate Arabic words from all analy-

ses produced by the previous steps. The generation is done using the general tok-

enizer/generator TOKAN (Habash, 2007) to produce the surface form words. Although

TOKAN can accommodate generation in specific tokenizations, in the work we report here

we generate only in untokenized form. Any subsequent tokenization is done in a post-

processing step (see Figure 4.1 and the discussion in Section 4.3). The various generated

forms are used to construct the map files and word lattices. The lattices are then input to

the language modeling step presented next.

4.5.2 Phrase-based translation

Unlike the word-based translation techniques which map single DA words to single or

multi-word MSA sequences, this technique uses hand-written multi-word transfer rules that
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F2F-TR: prc1:\S+_neg asp:p
# A rule that is triggered wihen a perfective verb has any negation
# particle. The ‘\S+’ is a regular expression that matches any none
# white space sequence.

{
before ( # Insert a word before:

insert ( lm )
# Insert ‘lm’, an MSA word for negation in the past.

) # and:
inside ( # Apply to the main word:

update ( prc1:0 asp:i mod:j )
# Clearing prc1 removes the negation particle from the verb.
# ‘asp:i mod:j’ makes the verb imperfective and jussive.

)
}

F2F-TR: enc0:l(\S+)_prep(\S+)
# E.g., if enc0:l3ms_prepdobj (the ‘l’ preposition with a 3rd person
# masculine singular indirect object), copy the text captured by the
# two (\S+) to $1 and $2 variables (in the same order).

{
inside ( # Apply to the main word:

update( enc0:0 )
# Clearing enc0 removes the preposition and its pronoun.

) # and:
after ( # Add words after:

insert( l_prep | <lY | EPSILON )
# Add these words as alternatives in the lattice.
# EPSILON means do not add an arc in the lattice.

update( enc0:$1_pron )
# This update is applied to the inserted words: l_prep and <lY.
# enc0:$1_pron uses $1 variable copied from the rule’s header,
# enc0:l(\S+)_prep(\S+); e.g., $1=3ms results in enc0:3ms_pron.
# This update sets enc0 of both l_prep and <lY to $1_pron; e.g.,
# enc0:3ms_pron will generate ‘lh’ and ‘<lyh’, respectively.

)
}

Figure 4.3: An example presenting two feature-to-freature transfer rules (F2F-TR). The
rule can have one or more of these three sections: before, inside, and after. Each section
can have one or more of these two functions: insert (to insert a new word in this section)
and update (to update the word in this section). The ‘#’ symbol is used for line comments.
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DA Phrase Bñk@P AÓð wmA rAHwlA ‘And they did not go to her’

Analysis Word 1 Word 2
Proclitics [Lemma & Features] [Lemma & Features] [Lemma & Features] Enclitic

w+ mA rAHw +l +A
conj+ [neg] [rAH PV subj:3MP] +prep +pron3FS

and+ not they go +to +her
Transfer Word 1 Word 2 Word 3

Proclitics [Lemma & Features] [Lemma & Features] [Lemma & Features] Enclitic
conj+ [ lam ] [*ahab IV subj:3MP] [ <lY ] +pron3FS

and+ did not they go to +her
Generation w+ lm y*hbwA <ly +hA

MSA Phrase AîD
Ë @

@ñJ.ë

	
YK
 ÕËð wlm y*hbwA <lyhA ‘And they did not go to her’

Figure 4.4: An example illustrating the analysis-transfer-generation steps to translate a
dialectal multi-word phrase into its MSA equivalent phrase.

map multi-word DA constructions to single or multi-word MSA constructions. In the cur-

rent system, there are 47 phrase-based transfer rules. Many of the word-based morphosyn-

tactic transfer rules are re-used for phrase-based translation. Figure 4.4 shows an example

of a phrase-based morphological translation of the two-word DA sequence Bñk@P AÓð wmA

rAHwlA ‘And they did not go to her’. If these two words were spelled as a single word,

Bñk@PAÓð wmArAHwlA, we would still get the same result using the word-based translation

technique only. Table 4.2 shows some rule categories along with selection and translation

examples.

4.6 Language Modeling

The language model (LM) component uses the SRILM lattice-tool for weight assignment

and n-best decoding (Stolcke, 2002). ELISSA comes with a default 5-gram LM file trained

on ∼200M untokenized Arabic words of Arabic Gigaword (Parker et al., 2009). Users

can specify their own LM file and/or interpolate it with our default LM. This is useful for

adapting ELISSA’s output to the Arabic side of the training data.
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Human
Reference

In this case, they will not write on his profile wall and they do not want him to send them
comments because he did not tell them when he will go to the country.

Google Translate
Feb. 2013 Bhalhalh Hi Hictpoulo Ahat Profile Tbau not hull Weah Abatln Comintat Anu Mabarhun

Oamta welcomed calls them Aalbuld.
Jan. 2018 In the case of Hae Ma Hiktpulo, the personal page of the personal page, they followed him,

and they did not know what to do.
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Google Translate
Feb. 2013 In this case it would not write to him on the wall of his own and do not want to send them

comments that he did not tell them when going to the country.
Jan. 2018 In this case they will not write him on the wall of his personal page and do not want him to

send them comments because he did not tell them when he will go to the country.

Table 4.3: Revisiting our motivating example, but with ELISSA-based DA-to-MSA middle
step. ELISSA’s output is Alif/Ya normalized. Parentheses are added for illustrative reasons
to highlight how multi-word DA constructions are selected and translated. Superscript
indexes link the selected words and phrases with their MSA translations.

4.7 Intrinsic Evaluation: DA-to-MSA Translation

Quality

To evaluate ELISSA’s MSA output, we first revisit our motivating example and then per-

form a manual error analysis on the dev set.

4.7.1 Revisiting our Motivating Example

We revisit our motivating example in Section 4.2 and show automatic MSA-pivoting

through ELISSA. Table 4.3 is divided into two parts. The first part is copied from Ta-

ble 4.1 for convenience. The second part shows ELISSA’s output on the dialectal sentence

and its Google Translate translations. Parentheses are added for illustrative reasons to high-

light how multi-word DA constructions are selected and translated by ELISSA. Superscript
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indexes link the selected words and phrases with their MSA translations. ELISSA MSA

output is near perfect and it helps the 2018 Google Translate system to produce near per-

fect English.

4.7.2 Manual Error Analysis

Statistical machine translation systems are very robust; therefore, meddling with their input

might result in undesired consequences. When building ELISSA we paid careful attention

to selecting dialectal words and phrases to handle in a given DA sentence. We required two

conditions:

1. Words and phrases that need to be handled. This happens when when ELISSA

does not have enough confidence in the Arabic-to-English SMT system’s ability to

translate them. For example, selecting the very frequent dialectal word I. £ Tb,

which is often used to start a sentences (as in the English use of ‘well’ (exclamation),

‘but’, or ‘so’) or just to take turn in or interrupt a conversation, will probably result in

bad translations for two reasons: 1) the SMT systems probably has seen this word in

various context and knows well how to translate it to English; and 2) the word shares

the same surface form with the Arabic word for ‘medicine’ (the only difference is

a short vowel which is not spelled), which could result in translating ‘medicine’ to

‘so’.

2. Words and phrase that ELISSA knows how to handle. ELISSA selects words and

phrases that the Translation component can translate. For example, if ELISSA se-

lects a phrase with a dialectal phenomena that is not implemented in the Translation

component, unrelated rules could fire on part or all of the phrase and generate wrong

output.

For these reasons, we are interested in evaluating ELISSA’s accuracy (precision) in se-
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lecting and translating DA words and phrases. We do not evaluate recall since ELISSA

intentionally ignores some DA words and phrases. We conducted a manual error analy-

sis on the speech-dev set comparing ELISSA’s input to its output using our best system

settings from the experiments above. Out of 708 affected sentences, we randomly se-

lected 300 sentences (42%). Out of the 482 handled tokens, 449 (93.15%) tokens have

good MSA translations, and 33 (6.85%) tokens have wrong MSA translations. Most of

the wrong translations are due to spelling errors, proper nouns, and weak input sentence

fluency (especially due to speech effect). This analysis clearly validates ELISSA’s MSA

output. Of course, a correct MSA output can still be mistranslated by the MSA-to-English

MT system if it is not in the vocabulary of the system’s training data.

4.8 Extrinsic Evaluation: DA-English MT

In the following subsections, we evaluate our ELISSA-based MSA-pivoting approach.

4.8.1 The MSA-Pivoting Approach

MSA Lattice Output as Input to Arabic-English SMT. In Salloum and Habash (2011)

we presented the first version of ELISSA used in an MSA-pivoting pipeline where the MSA

lattice is passed to the MSA-to-English SMT system without decoding. Although ELISSA

can produce lattices as output, we do not evaluate this approach here. For more information,

please refer to Salloum and Habash (2011).

MSA Top-1 Output as Input to Arabic-English SMT. In all the experiments in this

work, we run the DA sentence through ELISSA to generate a top-1 MSA translation, which

we then tokenize through MADA before sending to the MSA-English SMT system. Our

baseline is to not run ELISSA at all; instead, we send the DA sentence through MADA

before applying the MSA-English MT system.
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4.8.2 Experimental Setup

We discuss the data and the tools used for this evaluation.

MT Tools and Training Data

We use the open-source Moses toolkit (Koehn et al., 2007) to build a phrase-based SMT

system trained on mostly MSA data (64M words on the Arabic side) obtained from several

LDC corpora including some limited DA data. Our system uses a standard phrase-based

architecture. The parallel corpus is word-aligned using GIZA++ (Och and Ney, 2003a).

Phrase translations of up to 10 words are extracted in the Moses phrase table. The lan-

guage model for our system is trained on the English side of the bitext augmented with

English Gigaword (Graff and Cieri, 2003). We use a 5-gram language model with modi-

fied Kneser-Ney smoothing. Feature weights are tuned to maximize BLEU on the NIST

MTEval 2006 test set using Minimum Error Rate Training (Och, 2003). This is only done

on the baseline systems. The English data is tokenized using simple punctuation-based

rules. The Arabic side is segmented according to the Arabic Treebank (ATB) tokenization

scheme (Maamouri et al., 2004) using the MADA+TOKAN morphological analyzer and

tokenizer v3.1 (Habash and Rambow, 2005; Roth et al., 2008). The Arabic text is also

Alif/Ya normalized. MADA-produced Arabic lemmas are used for word alignment. Re-

sults are presented in terms of BLEU (Papineni et al., 2002). All evaluation results are case

insensitive.

The Dev and Test Sets

We use the same development (dev) and test sets used in Chapter 3 which we call speech-

dev and speech-test, respectively. We remind the reader that these two sets consist of

speech transcriptions of multi-dialect (Iraqi, Levantine, Gulf, and Egyptian) broadcast con-

versational (BC) segments (with three reference translations), and broadcast news (BN)
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segments (with only one reference, replicated three times).

We also evaluate on two web-crawled blind test sets: the Levantine test set presented in

Zbib et al. (2012) (we will call it web-lev-test) and the Egyptian Dev-MT-v2 development

data of the DARPA BOLT program (we will call it web-egy-test). The web-egy-test has

two references while the web-lev-test has only one reference.

The speech-dev set has 1,496 sentences with 32,047 untokenized Arabic words. The

speech-test set has 1,568 sentences with 32,492 untokenized Arabic words. The web-lev-

test set has 2,728 sentences with 21,179 untokenized Arabic words. The web-egy-test set

has 1,553 sentences with 21,495 untokenized Arabic words.

ELISSA Settings

Test Set speech-dev
BLEU Diff.

Baseline 37.20 0.00
Select: OOV 37.75 0.55
Select: ADAM 37.88 0.68
Select: OOV U ADAM 37.89 0.69
Select: DICT 37.06 -0.14
Select: OOV U ADAM U DICT 37.53 0.33
Select: (OOV U ADAM) - (Freq >= 50) 37.96 0.76
Select: (OOV U ADAM U DICT) - (Freq >= 50) 38.00 0.80
Select: Phrase; (OOV U ADAM) 37.99 0.79
Select: Phrase; ((OOV U ADAM) - (Freq >= 50)) 38.05 0.85
Select: Phrase; ((OOV U ADAM U DICT) - (Freq >= 50)) 38.10 0.90

Table 4.4: Results for the speech-dev set in terms of BLEU. The ‘Diff.’ column shows re-
sult differences from the baseline. The rows of the table are the different systems (baseline
and ELISSA’s experiments). The name of the system in ELISSA’s experiments denotes the
combination of selection method. In all ELISSA’s experiments, all word-based translation
methods are tried. Phrase-based translation methods are used when phrase-based selection
is used (i.e., the last three rows). The best system is in bold.

We experimented with different method combinations in the selection and translation

components in ELISSA. We use the term selection mode and translation mode to denote a

certain combination of methods in selection or translation, respectively. We only present
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the best selection mode variation experiments. Other selection modes were tried but they

proved to be consistently lower than the rest. The ‘F2F+L2L; S2S’ word-based transla-

tion mode (using morphosyntactic transfer of features and lemmas along with surface form

transfer) showed to be consistently better than other method combinations across all se-

lection modes. In this work we only use ‘F2F+L2L; S2S’ word-based translation mode.

Phrase-based translation mode is used when phrase-based selection mode is used.

To rank paraphrases in the generated MSA lattice, we combine two 5-gram untokenized

Arabic language models: one is trained on Arabic Gigaword data and the other is trained

the Arabic side of our SMT training data. The use of the latter LM gave frequent dialectal

phrases a higher chance to appear in ELISSA’s output; thus, making the output "more

dialectal" but adapting it to our SMT input. Experiments showed that using both LMs is

better than using each one alone.

4.8.3 Machine Translation Results

Results on the Development Set

Table 4.4 summarizes the experiments and results on the dev set. The rows of the table

are the different systems (baseline and ELISSA’s experiments). All differences in BLEU

scores from the baseline are statistically significant above the 95% level. Statistical signif-

icance is computed using paired bootstrap re-sampling (Koehn, 2004a). The name of the

system in ELISSA’s experiments denotes the combination of selection method. ELISSA’s

experiments are grouped into three groups: simple selection, frequency-based selection,

and phrase-based selection. Simple selection group consists of five systems: OOV, ADAM,

OOV U ADAM, DICT, and OOV U ADAM U DICT. The OOV selection mode identifies

the untokenized OOV words. In the ADAM selection mode, or the morphological selec-

tion mode, we use ADAM to identify dialectal words. Experiments showed that ADAM’s

DIAMSA mode (selecting words that have at least one dialectal analysis) is slightly better
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than ADAM’s DIAONLY mode (selecting words that have only dialectal analyses and no

MSA ones). The OOV U ADAM selection mode is the union of the OOVs and ADAM

selection modes. In DICT selection mode, we select dialectal words that exist in our DA-

MSA dictionaries. The OOV U ADAM U DICT selection mode is the union of the OOVs,

ADAM, and DICT selection modes. The results show that combining the output of OOV

selection method and ADAM selection method is the best. DICT selection method hurts the

performance of the system when used because dictionaries usually have frequent dialectal

words that the SMT system already knows how to handle.

In the frequency-based selection group, we exclude from word selection all words with

number of occurrences in the training data that is above a certain threshold. This threshold

was determined empirically to be 50. The string ‘- (Freq >= 50)’ means that all words with

frequencies of 50 or more should not be selected. The results show that excluding frequent

dialectal words improves the best simple selection system. It also shows that using DICT

selection improves the best system if frequent words are excluded.

In the last system group, phrase+word-based selection, phrase-based selection is used

to select phrases and add them on top of the best performers of the previous two groups.

Phrase-based translation is also added to word-based translation. Results show that select-

ing and translating phrases improve the three best performers of word-based selection. The

best performer, shown in the last raw, suggests using phrase-based selection and restricted

word-based selection. The restriction is to include OOV words and selected low frequency

words that have at least one dialectal analysis or appear in our dialectal dictionaries. Com-

paring the best performer to the OOV selection mode system shows that translating low

frequency in-vocabulary dialectal words and phrases to their MSA paraphrases can im-

prove the English translation.
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Results on the Blind Test Sets

We run the system settings that performed best on the dev set along with the OOV selection

mode system on the three blind test set. Results and their differences from the baseline are

reported in Table 4.5. We see that OOV selection mode system always improves over the

baseline for all test sets. Also, the best performer on the dev is the best performer for all

test sets. The improvements of the best performer over the OOV selection mode system

on all test sets confirm that translating low frequency in-vocabulary dialectal words and

phrases to their MSA paraphrases can improve the English translation. Its improvements

over the baseline for the three test sets are: 0.95% absolute BLEU (or 2.5% relative) for

the speech-test, 1.41% absolute BLEU (or 15.4% relative) for the web-lev-test, and 0.61%

absolute BLEU (or 3.2% relative) for the web-egy-test.

Test Set speech-test web-lev-test web-egy-test
BLEU Diff. BLEU Diff. BLEU Diff.

Baseline 38.18 0.00 9.13 0.00 18.98 0.00
Select: OOV 38.76 0.58 9.65 0.62 19.19 0.21
Select: Phrase; ((OOV U ADAM U DICT) 39.13 0.95 10.54 1.41 19.59 0.61

– (Freq >= 50))

Table 4.5: Results for the three blind test sets (table columns) in terms of BLEU. The ‘Diff.’
columns show result differences from the baselines. The rows of the table are the different
systems (baselines and ELISSA’s experiments). The best systems are in bold.

4.8.4 A Case Study

We next examine an example in some detail. Table 4.6 shows a dialectal sentence along

with its ELISSA’s translation, English references, the output of the baseline system and

the output of our best system. The example shows a dialectal word 	
©ÊJ. ÖÏ Aë hAlmblg ‘this-

amount/sum’, which is not translated by the baseline (although it appears in the train-

ing data, but quite infrequently such that all of its phrase table occurrences have re-

stricted contexts, making it effectively an OOV). The dialectal proclitic +ÈAë hAl+ ‘this-’
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comes sometimes in the dialectal construction: ‘hAl+NOUN DEM’ (as in this example:

@
	
Yë

	
©ÊJ. ÖÏ Aë hAlmblg h*A ‘this-amount/sum this’). ELISSA’s selection component captures

this multi-word expression and its translation component produces the following para-

phrases: 	
©ÊJ. ÖÏ @ @

	
Yë h*A Almblg ‘this amount/sum’ (h*A is used with masculine singular

nouns), 	
©ÊJ. ÖÏ @ è

	
Yë h*h Almblg ‘this amount/sum’ (h*h is used with feminine singular or

irrational plural nouns), and 	
©ÊJ. ÖÏ @ ZB



ñë h&lA’ Almblg ‘these amount/sum’ (h&lA’ is used

with rational plural nouns). ELISSA’s language modeling component picks the first MSA

paraphrase, which perfectly fits the context and satisfies the gender/number/rationality

agreement (note that the word Almblg is an irrational masculine singular noun). For more

on Arabic morpho-syntactic agreement patterns, see Alkuhlani and Habash (2011). Fi-

nally, the best system translation for the selected phrase is ‘this sum’. We can see how

both the accuracy and fluency of the sentence have improved.

DA sentence fmA mA AtSwr hAlmblg h*A yEny.
ELISSA’s output fmA mA AtSwr h*A Almblg yEny.
References I don’t think this amount is I mean.

So I do not I do not think this cost I mean.
So I do not imagine this sum I mean

Baseline So i don’t think hAlmblg this means.
Best system So i don’t think this sum i mean.

Table 4.6: An example of handling dialectal words/phrases using ELISSA and its effect on
the accuracy and fluency of the English translation. Words of interest are bolded.

4.9 Conclusion and Future Work

We presented ELISSA, a tool for DA-to-MSA machine translation. ELISSA employs a rule-

based MT approach that relies on morphological analysis, morphosyntactic transfer rules

and dictionaries in addition to language models to produce MSA translations of dialectal

sentences. A manual error analysis of translated selected words shows that our system
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produces correct MSA translations over 93% of the time. This high accuracy is due to our

careful selection of dialectal words and phrases to translate to MSA.

Using ELISSA to produce MSA versions of dialectal sentences as part of an MSA-

pivoting DA-to-English MT solution, improves BLEU scores on three blind test sets by:

0.95% absolute BLEU (or 2.5% relative) for a speech multi-dialect (Iraqi, Levantine, Gulf,

Egyptian) test set, 1.41% absolute BLEU (or 15.4% relative) for a web-crawled Levantine

test set, and 0.61% absolute BLEU (or 3.2% relative) for a web-crawled Egyptian test set.

This shows that the MSA-pivoting approach can provide a good solution when translating

dialects with no DA-English parallel data, and that rule based approaches like ELISSA and

ADAM can help when no preprocessing tools are available for those dialects.

In the future, we plan to extend ELISSA’s coverage of phenomena in the handled di-

alects and to new dialects. We also plan to automatically learn additional rules from

limited available DA-English data. Finally, we look forward to experimenting with

ELISSA as a preprocessing system for a variety of dialect NLP applications similar to

Chiang et al. (2006)’s work on dialect parsing, for example.
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Part II

Translating Dialects with Dialectal

Resources
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Chapter 5

Pivoting with Statistical and Hybrid

DA-to-MSA Machine Translation

5.1 Introduction

In Chapter 4, we presented an MSA-pivoting approach to DA-to-English MT where DA-

English parallel data is not available. We showed how ELISSA, a rule-based DA-to-MSA

MT system, can help an MSA-to-English SMT handle DA sentences by translating select

DA words and phrases into their MSA equivalents.

In this chapter, we explore dialects with some parallel data. We present different tech-

niques to utilize this DA-English corpus in order to answer the question of whether the

MSA-pivoting approach to DA-to-English MT is still relevant when a good amount of DA-

English parallel data is available. For that purpose, we leverage the use of a huge collection

of MSA-English data and Rule-Based ELISSA which we explored before. We also present

two new DA-to-MSA MT systems that can be built for dialects that have DA-English par-

allel corpus: Statistical ELISSA, a DA-to-MSA statistical MT system, and Hybrid ELISSA,

a combination of Rule-Based and Statistical ELISSA. We present new combinations of

MSA-pivoting systems and we evaluate the three DA-to-MSA MT systems based on the
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quality of the English translations of their corresponding pivoting system.

5.2 Dialectal Data and Preprocessing Tools

In the previous part, we used the MADA+TOKAN morphological analyzer and tokenizer

v3.1 (Roth et al., 2008) to segment the Arabic side of the training data according to the

Arabic Treebank (ATB) tokenization scheme (Maamouri et al., 2004; Sadat and Habash,

2006). In this part, we have a dialectal preprocessing tool, MADA-ARZ (Habash et al.,

2013), that performs normalizations and tokenization on Egyptian Arabic.

We use two parallel corpora. The first is a DA-English corpus of∼5M tokenized words

of Egyptian (∼3.5M) and Levantine (∼1.5M). This corpus is part of BOLT data. The ATB

tokenization is performed with MADA-ARZ for both Egyptian and Levantine. The second

is an MSA-English corpus of 57M tokenized words obtained from several LDC corpora (10

times the size of the DA-English data). This MSA-English corpus is a subset of the Arabic-

English corpus we used in Chapter 3 and 4 that excludes datasets that may have dialectal

data. Unlike the DA-English corpus, we ATB-tokenize the MSA side of this corpus with

MADA+TOKAN.

The Arabic text is also Alif/Ya normalized. The English data is tokenized using simple

punctuation-based rules.

5.3 Synthesizing Parallel Corpora

Statistical machine translation outperforms rule-based MT when trained on enough parallel

data. DA-MSA parallel text, however, is scarce and not enough to train an effective SMT

system. Therefore, we use the new DA-English parallel data to generate SMT parallel data

using two sentence-level pivoting approaches: 1) using an English-to-MSA SMT system to

translate the English side of the new data to MSA, and 2) using ELISSA to translate the DA
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side to MSA. Both approaches result in a three-way DA-MSA-English parallel corpora. In

the following subsections we discuss these two approaches. Diagram (a) in Figure 5.1 is

an illustration of these two techniques.

Synthesizing DA-MSA data using English-to-MSA SMT

In this approach we try to automatically create DA-MSA training data starting from the

existing DA-English parallel text (∼5M tokenized words on the DA side). We use an

English-to-MSA SMT system, trained on MSA-English parallel text (57M tokenized words

on the MSA side), to translate every sentence on the English side of the DA-English parallel

data to MSA. We call the resulted MSA data MSAt (‘t’ for translated) to distinguish it from

naturally occurring MSA. This results in DA-English-MSAt sentence-aligned parallel data.

Synthesizing MSA-English data using ELISSA

We run ELISSA on every sentence on the DA side of the DA-English parallel text to produce

MSAe (‘e’ for ELISSA). This results in DA-English-MSAe sentence-aligned parallel data.

5.4 The MSA-Pivoting Approach

We use a cascading approach for pivoting that consists of two systems. The frontend

system translates the dialectal input sentence to MSA. Our baseline frontend system passes

the input as is to the backend system. The backend system takes the MSA output and

translates it to English. We have three baseline system for our backend systems:

1. MSA → Eng. This system is trained on the MSA-English parallel corpus. This

system is the closest to the system we trained in the previous part.

2. DA→ Eng. This system is trained on the DA-English parallel corpus.
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Figure 5.1: Synthetic parallel data generation and Statistical ELISSA. The legend is shown
in a box above. Diagram (a) illusrates the translation process of the DA side of the parallel
data to MSAt using an English-to-MSA SMT system trained on the 57M MSA-English
parallel corpus, and the translation process of the English side of the DA-English parallel
data to MSAe using Rule-Based Elissa. Diagram (b) illustrates the creation of the two
SMT systems: Statistical ELISSA 1 and 2 using the generated MSAt data. Diagram (b)
also shows the way these two systems will be used for MSA-pivoting.
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Figure 5.2: The legend is shown in Figure 5.1. Diagram (c) presents a new MSA-pivoting
approach using Rule-Based ELISSA followed by an MSA-to-English SMT trained on gen-
erated MSAe data along with the MSA-English and DA-English. Diagram (d) shows Hy-
brid ELISSA, a combination of Rule-Based ELISSA and Statistical ELISSA.
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3. DA+MSA → Eng. This system is trained on the combination of the above two

corpora.

5.4.1 Improving MSA-Pivoting with Rule-Based ELISSA

Our pivoting approach in Chapter 4 used an MSA-to-English SMT system as a backend

system. The new DA-English data and the Egyptian preprocessing tool, MADA-ARZ,

available in this part, provide harder baselines to rule-based ELISSA to beat. Therefore,

we need to use the new available resources to ELISSA’s advantage.

Customizing the backend system for ELISSA’s output. We build a backend system

that is familiar with ELISSA’s output: We add the MSAe-English part to the DA-English

and MSA-English parallel data, as shown in Diagram c of Figure 5.2, and train an

MSAe+DA+MSA→ English SMT system on them. This pipeline is more robust than

the one discussed in Chapter 4 because it tolerates some of ELISSA’s errors since they will

be repeated in the training data of the backend system. In this new pivoting approach, we

use rule-based ELISSA as the frontend system and MSAe+DA +MSA→ English SMT as

the backend system.

Customizing ELISSA to the backend system’s training data. This means that

ELISSA’s out-of-vocabulary list, low frequency list, and one of the two language mod-

els are built using the Arabic side of the training data of the backend system. The second

language model is the default Arabic GigaWord LM packaged with ELISSA.

Since we are optimizing from the DA and MSA mix, we always tokenize ELISSA’s

output with MADA-ARZ.
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5.4.2 MSA-Pivoting with Statistical DA-to-MSA MT

We use the synthetic DA-MSAt parallel text to train two DA-MSA SMT systems (Statisti-

cal ELISSA) that will be used as the frontend system in the MSA-pivoting DA-English MT

system:

1. Statistical ELISSA 1: We train a DA→MSAt SMT on the DA-MSAt parallel data.

2. Statistical ELISSA 2: We add the 57M-word MSA of the MSA-English parallel text

to both sides of DA-MSAt and we train a DA+MSA→MSAt+MSA SMT system on

it. The motivation behind this approach is that the alignment algorithm is going to

assign a high probability for aligning an MSA word from the DA side to itself on the

MSA side and, therefore, it will have an easier job aligning the remaining DA words

to their MSA translations in a given sentence pair. Additionally, it allows this SMT

system to produce MSA words that would be OOVs otherwise.

On the other side of the pivoting pipeline, we add the synthetic MSAt-English parallel

data to our MSA-English parallel data and train an MSA+MSAt→English SMT system

that will be used as the backend system in the MSA-pivoting DA-English MT system. This

addition allows the backend system to be familiar with the output of Statistical ELISSA 1

and 2.

Diagram (b) of Figure 5.1 illustrates the creation of these three SMT systems.

5.4.3 MSA-Pivoting with Hybrid DA-to-MSA MT

Rule-based MT systems use linguistic knowledge to translate a source sentence, or phrase,

to a target sentence, or phrase. On the other hand, statistical MT systems use statistical

evidence to justify the translation. To put it in terms of precision and recall, we designed

our RBMT system to attempt at translating words and phrases only when it’s confident

enough about the change. This high precision approach results in linguistically motivated
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changes in a source sentence while keeping many other words and phrases as is, either

because the confidence is low, or because there are no rules that match. In contrast, SMT

systems attempt at translating every word and phrase and most of the time have something

to backoff to; hence, high recall.

To make the best of the two worlds, we combine RBMT and SMT systems in one

system: Hybrid ELISSA, which runs Rule-Based ELISSA on input sentences and passes

them to Statistical ELISSA (we choose the DA+MSA→MSA+MSAt SMT system since it

performs better).

5.5 Evaluation

In this section, we evaluate the performance of the three MSA-pivoting approaches against

our baselines.

5.5.1 Experimental Setup

MT tools and settings. We use the open-source Moses toolkit (Koehn et al., 2007) to

build four Arabic-English phrase-based statistical machine translation systems (SMT). Our

systems use a standard phrase-based architecture. The parallel corpora are word-aligned

using GIZA++ (Och and Ney, 2003a). The language model for our systems is trained

on English Gigaword (Graff and Cieri, 2003). We use SRILM Toolkit (Stolcke, 2002) to

build a 5-gram language model with modified Kneser-Ney smoothing. Feature weights are

tuned to maximize BLEU on tuning sets using Minimum Error Rate Training (Och, 2003).

Results are presented in terms of BLEU (Papineni et al., 2002). All evaluation results are

case insensitive.

Customization of rule-based ELISSA to backend systems. We experimented with cus-

tomizing rule-based (RB) ELISSA to the Arabic side of four backend systems and we ran
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experiments will all combinations. We excluded customization to the Arabic side of the

MSAe+DA+MSA→ English system because we do not want ELISSA to learn and repeat

its mistakes (since MSAe is RB ELISSA’s output). We found that the best performance is

achieved when RB ELISSA is customized to the MSA side for our MSA-based backend

systems (MSA→ English, and to the combination of DA and MSA sides (DA+MSA) for

the other three systems. Customizing RB ELISSA to DA only when translating with DA→

English and customizing to MSA+MSAt when translating with MSA+MSAt → English

gave lower results.

The tuning and test set. Since the only dialectal preprocessing tool available to us is

MADA-ARZ which covers Egyptian Arabic, in this chapter we evaluate only on Egyptian.

We use for our test set the Egyptian BOLT Dev V2 (EgyDevV2) which contains 1,553

sentences with two references.

We tune our MSA-based backend systems (MSA→ English and MSAt+MSA→ En-

glish) on an MSA test set, NIST MTEval MT08, which contains 1,356 sentences with

four references. We tune the other three backend systems on the Egyptian BOLT Dev V3

(EgyDevV3) which contains 1,547 sentences with two references.

To tune our SMT-based frontend systems, Statistical ELISSA 1 and 2, we synthesize a

tuning set in the same way we synthesized their training data. We translate the English side

of EgyDevV3 with the same English-to-MSA SMT system to produce its MSAt side, then

we tune both Statistical ELISSA versions on this DA-MSAt tuning set.

5.5.2 Experiments

Evaluation of the Importance of Dialectal Tokenization

In this subsection, we discuss the effect of having a DA tokenization tool when DA-English

is not available. We tokenize the test set EgyDevV2 with both MADA and MADA-ARZ and
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MSA→ Eng.
Tokenization Tool BLEU METEOR
MADA 9.14 17.33
MADA-ARZ 18.61 26.42

Table 5.1: Results comparing the performance of MADA-ARZ against MADA when used
to tokenize the Egyptian test set (EgyDevV2) before passing it to the MSA → English
system. This table shows the importance of dialectal tokenization when DA-English data
is not available.

MSA
→ Eng.

DA
→ Eng.

DA+MSA
→ Eng.

MSAt+MSA
→ Eng.

MSAe+DA+
MSA→ Eng.

BLE. MET. BLE. MET. BLE. MET. BLE. MET. BLE. MET.
No frontend 18.61 26.42 20.23 28.10 21.61 28.83 – – – –
Stat. ELISSA 1 7.84 19.75 8.59 19.92 9.37 20.25 7.86 20.23 – –
Stat. ELISSA 2 19.33 26.96 17.94 26.64 19.46 27.53 18.83 27.21 – –
RB ELISSA 19.36 26.98 20.27 28.09 21.66 28.87 19.62 26.95 22.17 29.18
Hybrid ELISSA 19.43 26.97 17.80 26.60 19.45 27.54 19.85 26.93 19.80 27.73

Table 5.2: Results of the pivoting approaches. Rows show frontend systems, columns show
backend systems, and cells show results in terms of BLEU (white columns, abbreviated as
BLE.) and METEOR (gray columns, abbreviated as MET.).

we translate the tokenized set with the MSA→ English system. Table 5.1 shows the re-

sults of the two tokenization approaches. We see that by just tokenizing a dialectal set with

a DA-specific tokenization tool we get an improvement of 9.47% BLEU and 9.09% ME-

TEOR absolute. This is due to MADA-ARZ dialectal normalization and tokenization which

reduces the number of out-of-vocabulary words. This shows the importance of dialectal to-

kenization and motivates the work we do in Part III where we scale to more dialects.

Results on the Test Set

Table 5.2 shows the results of our pivoting approaches. Rows show frontend systems,

columns show backend systems, and cells show results in terms of BLEU and METEOR.

The first section of the table shows a Direct Translation approach where no frontend

system is used for preprocessing. The results are our baselines on the first three systems.

It is important to note that the baselines are high because MADA-ARZ takes care of many
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dialectal pheonomena and tokenization solves a huge chunk of the problem since it dra-

matically reduces the vocabulary size and increase frequency.

The second section of the table presents the results of translating the English side to

MSAt. As expected, Statistical ELISSA 1 produces very low results and adding the MSA

data to Statistical ELISSA 2 training data has dramatically improved alignment; however,

results are still lower than the baselines. This is caused by the errors resulting from using

an English-to-MSA SMT system to translate the English side which then propagate to later

steps.

The third section of the table presents the results of running rule-based ELISSA on in-

put sentences and passing the output to backend systems. The best result comes from using

rule-based ELISSA with the compatible DA+MSA→MSA+MSAt SMT system. It out-

performs the best direct translation system by 0.56% BLEU and 0.35% METEOR. These

improvements are statistically significant above the 95% level. Statistical significance is

computed using paired bootstrap re-sampling (Koehn, 2004a).

The last section of the table shows the results for Hybrid ELISSA which suggest that

Statistical ELISSA is hurting rule-based ELISSA’s performance.

5.6 Conclusion and Future Work

In this chapter, we show that MSA-pivoting approaches to DA-to-English MT can still

help when the available parallel data for a dialect is relatively small compared to MSA.

The key for the improvements we presented is to exploit the small DA-English data to

create automatically generated parallel corpora on which SMT systems can be trained.

We translated the DA side of the DA-English parallel data to MSA using ELISSA, and

added that data to the (DA+MSA)-English training data on which an SMT system was

trained. That SMT system, when combined with ELISSA for preprocessing, outperforms

all other direct translation or pivoting approaches. The main reason for this improvement

93



is that the SMT system is now familiar with ELISSA’s output and can correct systematic

errors performed by ELISSA. This RB ELISSA-based MSA-pivoting system is used in the

Chapter 6 as the best MSA-pivoting system. We presented two new versions of ELISSA

that use the synthetic parallel data. However, both systems failed to improve the translation

quality.

In this work we used sentence-level pivoting techniques to synthesize parallel data. In

the future we plan to use different pivoting techniques such as phrase table pivoting to cre-

ate DA-MSA SMT systems. We also plan to automatically learn ELISSA’s morphological

transfer rules from the output of these pivoting techniques.
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Chapter 6

System Combination

6.1 Introduction

In the previous chapter we introduced different systems built using a relatively small

amount of Dialectal Arabic (DA) to English parallel corpus. The chapter evaluates two

direct translation approaches: a statistical machine translation (SMT) system trained on

the 5MW DA-English data and an SMT trained on the combination of this data with a

57MW MSA-English data. The previous chapter also uses the DA-English parallel data to

improve the MSA-pivoting approach and shows that it slightly outperforms the two direct

translation systems.

Arabic dialects co-exist with MSA in a diglossic relationship where DA and MSA oc-

cupy different roles, e.g., formal vs informal registers. Additionally, there are different de-

grees of dialect-switching that take place. This motivates the hypothesis that automatically

choosing one of these systems to translate a given sentence based on its dialectal nature

could outperform each system separately. Given that dialectal sets might include full MSA

sentences, we add the MSA-to-English SMT system to the three dialect translation systems

mentioned above resulting in four baseline MT systems.

In Section 6.3, we describe these four systems and present oracle system combination
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results to confirm the hypothesis. In Section 6.4, we present our approach which studies

the use of sentence-level dialect identification together with various linguistic features in

optimizing the selection of the four baseline systems on input sentences that includes a mix

of dialects.

6.2 Related Work

The most popular approach to MT system combination involves building confusion net-

works from the outputs of different MT systems and decoding them to generate new trans-

lations (Rosti et al., 2007; Karakos et al., 2008; He et al., 2008; Xu et al., 2011). Other

researchers explored the idea of re-ranking the n-best output of MT systems using differ-

ent types of syntactic models (Och et al., 2004; Hasan et al., 2006; Ma and McKeown,

2013). While most researchers use target language features in training their re-rankers,

others considered source language features (Ma and McKeown, 2013).

Most MT system combination work uses MT systems employing different techniques

to train on the same data. However, in the system combination work we present in this

thesis (Chapter 6), we use the same MT algorithms for training, tuning, and testing, but we

vary the training data, specifically in terms of the degree of source language dialectness.

Our approach runs a classifier trained only on source language features to decide which

system should translate each sentence in the test set, which means that each sentence goes

through one MT system only.

6.3 Baseline Experiments and Motivation

In this section, we present our MT experimental setup and the four baseline systems we

built, and we evaluate their performance and the potential of their combination. In the next

section we present and evaluate the system combination approach.
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6.3.1 Experimental Settings

MT Tools and Settings

We use the open-source Moses toolkit (Koehn et al., 2007) to build four Arabic-English

phrase-based statistical machine translation systems (SMT). Our systems use a standard

phrase-based architecture. The parallel corpora are word-aligned using GIZA++ (Och and

Ney, 2003a). The language model for our systems is trained on English Gigaword (Graff

and Cieri, 2003). We use SRILM Toolkit (Stolcke, 2002) to build a 5-gram language model

with modified Kneser-Ney smoothing. Feature weights are tuned to maximize BLEU on

tuning sets using Minimum Error Rate Training (Och, 2003). Results are presented in terms

of BLEU (Papineni et al., 2002). All evaluation results are case insensitive. The English

data is tokenized using simple punctuation-based rules. The MSA portion of the Arabic

side is segmented according to the Arabic Treebank (ATB) tokenization scheme (Maamouri

et al., 2004; Sadat and Habash, 2006) using the MADA+TOKAN morphological analyzer

and tokenizer v3.1 (Roth et al., 2008), while the DA portion is ATB-tokenized with MADA-

ARZ (Habash et al., 2013). The Arabic text is also Alif/Ya normalized. For more details

on processing Arabic, see (Habash, 2010).

MT Train/Tune/Test Data

We use two parallel corpora. The first is a DA-English corpus of ∼5M tokenized words of

Egyptian (∼3.5M) and Levantine (∼1.5M). This corpus is part of BOLT data. The second

is an MSA-English corpus of 57M tokenized words obtained from several LDC corpora

(10 times the size of the DA-English data).

We work with nine standard MT test sets: three MSA sets from NIST MTEval with

four references (MT06, MT08, and MT09), four Egyptian sets from LDC BOLT data with

two references (EgyDevV1, EgyDevV2, EgyDevV3, and EgyTestV2), and two Levantine
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sets from BBN (Zbib et al., 2012)1 with one reference.

Table 6.1 presents details about the sets we used. The fifth column of the table shows

the tasks in which these MT test sets are used: SMT systems tuning sets (SMT Tune),

system combination classifiers’ training data (SC Train), or the development and blind test

sets (Dev/Test). We used MT08 and EgyDevV3 to tune SMT systems while we divided

the remaining sets among classifier training data (5,562 sentences), dev (1,802 sentences)

and blind test (1,804 sentences) sets to ensure each of these new sets has a variety of

dialects and genres (weblog and newswire). Details on the classifier’s training data are in

Section 6.4. For MT Dev and Test Sets, we divide MT09 into two sets according to genre:

MT09nw consisting of 586 newswire sentences, and MT09wb consisting of 727 Web Blog

sentences. We use the first half of each of EgyTestV2, LevTest, MT09nw, and MT09wb

to form our dev set (1,802 sentences) and the second half to form our blind test set (1,804

sentences).

Set Name Dia. Sents Refs Used for
MTEval 2006 (MT06) MSA 1,664 4 SC Train
MTEval 2008 (MT08) MSA 1,356 4 SMT Tune
MTEval 2009 (MT09) MSA 1,313 4 Dev/Test

BOLT Dev V1 (EgyDevV1) Egy 845 2 SC Train
BOLT Dev V2 (EgyDevV2) Egy 1,553 2 SC Train
BOLT Dev V3 (EgyDevV3) Egy 1,547 2 SMT Tune
BOLT Test V2 (EgyTestV2) Egy 1,065 2 Dev/Test

Levantine Dev (LevDev) Lev 1,500 1 SC Train
Levantine Test (LevTest) Lev 1,228 1 Dev/Test

Table 6.1: MT test set details. The four columns correspond to set name with short name
in parentheses, dialect (Egy for Egyptian and Lev for Levantine), number of sentences,
number of references, and the task it was used in.

1 The Levantine sets are originated from one set presented in Zbib et al. (2012). Since this set is the only
Levantine set available to us we had to divide it into dev (the first 1,500 sentences) and test (the rest: 1,228
sentences)
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6.3.2 Baseline MT Systems

MT Systems

We use four MT systems (discussed in more details in Chapter 5):

1. DA-Only. This system is trained on the DA-English data and tuned on EgyDevV3.

2. MSA-Only. This system is trained on the MSA-English data and tuned on MT08.

3. DA+MSA. This system is trained on the combination of both corpora (resulting in

62M tokenized2 words on the Arabic side) and tuned on EgyDevV3.

4. MSA-Pivot. This is the best MSA-pivoting system presented in Chapter 5. It uses

ELISSA (Salloum and Habash, 2013) followed by an Arabic-English SMT system

which is trained on both corpora augmented with the DA-English where the DA side

is preprocessed with ELISSA then tokenized with MADA-ARZ. The result is 67M

tokenized words on the Arabic side. EgyDevV3 was similarly preprocessed with

ELISSA and MADA-ARZ and used for tuning the system parameters. Test sets are

similarly preprocessed before decoding with the SMT system.

Baseline MT System Results.

We report the results of our dev set on the four MT systems we built in Table 6.2. The

MSA-Pivot system produces the best singleton result among all systems. All differences

in BLEU scores between the four systems are statistically significant above the 95% level.

Statistical significance is computed using paired bootstrap re-sampling (Koehn, 2004a).

2Since the DA+MSA system is intended for DA data and DA morphology, as far as tokenization is
concerned, is more complex, we tokenized the training data with dialect awareness (DA with MADA-ARZ
and MSA with MADA) since MADA-ARZ does a lot better than MADA on DA (Habash et al., 2013). Tuning
and Test data, however, are tokenized by MADA-ARZ since we do not assume any knowledge of the dialect
of a test sentence.
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System Training Data (TD) BLEU
Name DA-En MSA-En MSAe-En TD Size

1. DA-Only 5M 5M 26.6
2. MSA-Only 57M 57M 32.7
3. DA+MSA 5M 57M 62M 33.6
4. MSA-Pivot 5M 57M 5M 67M 33.9
Oracle System Selection 39.3

Table 6.2: Results from the baseline MT systems and their oracle system combination.
The first part of the table shows MT results in terms of BLEU for our Dev set on our
four baseline systems (each system training data is provided in the second column for
convenience). MSAe (in the fourth column) is the DA part of the 5M word DA-English
parallel data processed with the ELISSA. The second part of the table shows the oracle
combination of the four baseline systems.

6.3.3 Oracle System Combination

We also report in Table 6.2 an oracle system combination where we pick, for each sentence,

the English translation that yields the best BLEU score. This oracle indicates that the upper

bound for improvement achievable from system combination is 5.4% BLEU. Excluding

different systems from the combination lowered the overall score between 0.9% and 1.8%,

suggesting the systems are indeed complementary.

6.4 Machine Translation System Combination

The approach we take in this work benefits from the techniques and conclusions of previous

chapters and related work in that we build different MT systems using those techniques but

instead of trying to find which one is the best on the whole set, we try to automatically

decide which one is the best for a given sentence. Our hypothesis is that these systems

complement each other in interesting ways where their combination could lead to better

overall performance stipulating that our approach could benefit from the strengths while

avoiding the weaknesses of each individual system.
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Figure 6.1: This diagram illustrates our two system combination approachs: (a) is our
dialect ID binary classification appraoch which uses AIDA; and (b) is our feature-based
four-class classification approach.
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6.4.1 Dialect ID Binary Classification

For baseline system combination, we use the classification decision of

Elfardy and Diab (2013)’s AIDA sentence-level dialect identification system to de-

cide on the target MT system. Since the decision is binary (DA or MSA) and we have four

MT systems, we considered all possible configurations and determined empirically that

the best configuration is to select MSA-Only for the MSA tag and MSA-Pivot for the DA

tag. We do not report other configuration results. Table 6.1, diagram (a), illustrates the use

of AIDA as the binary classifier in our binary system combination approach.

6.4.2 Feature-based Four-Class Classification

For our main approach, we train a four-class classifier to predict the target MT system to

select for each sentence using only source-language features. Table 6.1, diagram (b), shows

the setup for such system.

We experimented with different classifiers in the Weka Data Mining Tool (Hall et al.,

2009) for training and testing our system combination approach. The best performing

classifier was Naive Bayes3 (with Weka’s default settings).

Training Data Class Labels

We run the 5,562 sentences of the classification training data through our four MT systems

and produce sentence-level BLEU scores (with length penalty). We pick the name of the

MT system with the highest BLEU score as the class label for that sentence. When there is

a tie in BLEU scores, we pick the system label that yields better overall BLEU scores from

the systems tied.

3Typically, in small training data settings (5,562 examples), generative models (Naive Bayes) outperform
discriminative models (Ng and Jordan, 2002).
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Training Data Source-Language Features

We use two sources of features extracted from untokenized sentences to train our four-class

classifiers: basic and extended features.

A. Basic Features

These are the same set of features that were used by the dialect ID tool together with the

class label generated by this tool.

i. Token-Level Features. These features rely on language models, MSA and Egyptian

morphological analyzers and a Highly Dialectal Egyptian lexicon to decide whether each

word is MSA, Egyptian, Both, or Out of Vocabulary.

ii. Perplexity Features. These are two features that measure the perplexity of a sentence

against two language models: MSA and Egyptian.

iii. Meta Features. Features that do not directly relate to the dialectalness of words in

the given sentence but rather estimate how informal the sentence is and include: percentage

of tokens, punctuation, and Latin words, number of tokens, average word length, whether

the sentence has any words that have word-lengthening effects or not, whether the sentence

has any diacritized words or not, whether the sentence has emoticons or not, whether the

sentence has consecutive repeated punctuation or not, whether the sentence has a question

mark or not, and whether the sentence has an exclamation mark or not.

iv. The Dialect-Class Feature. We run the sentence through the Dialect ID binary

classifier and we use the predicted class label (DA or MSA) as a feature in our system.

Since the Dialect ID system was trained on a different data set, we think its decision may

provide additional information to our classifiers.

B. Extended Features

We add features extracted from two sources.

i. MSA-Pivoting Features. ELISSA produces intermediate files used for diagnosis or de-

bugging purposes. We exploit one file in which the system identifies (or, "selects") dialectal
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words and phrases that need to be translated to MSA. We extract confidence indicating fea-

tures. These features are: sentence length (in words), percentage of selected words and

phrases, number of selected words, number of selected phrases, number of words mor-

phologically selected as dialectal by a mainly Levantine morphological analyzer, number

of words selected as dialectal by the ELISSA’s DA-MSA lexicons, number of OOV words

against the MSA-Pivot system training data, number of words in the sentences that appeared

less than 5 times in the training data, number of words in the sentences that appeared be-

tween 5 and 10 times in the training data, number of words in the sentences that appeared

between 10 and 15 times in the training data, number of words that have spelling errors and

corrected by this tool (e.g., word-lengthening), number of punctuation marks, and number

of words that are written in Latin script.

ii. MT Training Data Source-Side LM Perplexity Features. The second set of features

uses perplexity against language models built from the source-side of the training data of

each of the four baseline systems. These four features may tell the classifier which system

is more suitable to translate a given sentence.

6.4.3 System Combination Evaluation

Finally, we present the results of our system combination approach on the Dev and Blind

Test sets.

Development Set

The first part of Table 6.3 repeats the best baseline system and the four-system oracle

combination from Table 6.2 for convenience. The third row shows the result of running

our system combination baseline that uses the Dialect ID binary decision on the Dev set

sentences to decide on the target MT system. It improves over the best single system

baseline (MSA-Pivot) by a statistically significant 0.5% BLEU. Crucially, we should note
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that this is a deterministic process.

System BLEU Diff.
Best Single MT System Baseline 33.9 0.0
Oracle 39.3 5.4
Dialect ID Binary Selection Baseline 34.4 0.5
Four-Class Classification
Basic Features 35.1 1.2
Extended Features 34.8 0.9
Basic + Extended Features 35.2 1.3

Table 6.3: Results of baselines and system selection systems on the Dev set in terms of
BLEU. The best single MT system baseline is MSA-Pivot. The first column shows the
system, the second shows BLEU, and the third shows the difference from the best baseline
system. The first part of the table shows the results of our best baseline MT systems and
the oracle combination repeated for convenience. It also shows the results of the Dialect ID
binary classification baseline. The second part shows the results of the four-class classifiers
we trained with the different feature vector sources.

The second part of Table 6.3 shows the results of our four-class Naive Bayes classi-

fiers trained on the classification training data we created. The first column shows the

source of sentence level features employed. As mentioned earlier, we use the Basic fea-

tures alone, the Extended features alone, and then their combination. The classifier that

uses both feature sources simultaneously as feature vectors is our best performer. It im-

proves over our best baseline single MT system by 1.3% BLEU and over the Dialect ID

Binary Classification system combination baseline by 0.8% BLEU. Improvements are sta-

tistically significant.

Blind Test Set

Table 6.4 shows the results on our Blind Test set. The first part of the table shows the results

of our four baseline MT systems. The systems have the same rank as on the Dev set and

MSA-Pivot is also the best performer. The differences in BLEU are statistically significant.

The second part shows the four-system oracle combination which shows a 5.5% BLEU

upper bound on improvements. The third part shows the results of the Dialect ID Binary

Classification which improves by 0.4% BLEU. The last row shows the four-class classifier
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System BLEU Diff.
DA-Only 26.6
MSA-Only 30.7
DA+MSA 32.4
MSA-Pivot 32.5
Four-System Oracle Combination 38.0 5.5

Best Dialect ID Binary Classifier 32.9 0.4
Best Classifier: Basic + Extended Features 33.5 1.0

Table 6.4: Results of baselines and system selection systems on the Blind test set in terms of
BLEU. Results in terms of BLEU on our Blind Test set. The first column shows the system,
the second shows BLEU, and the third shows the difference from the best baseline system.
The first part of the table shows the results of our baseline MT systems and the four-system
oracle combination. The second part shows the Dialect ID binary classification technique’s
best performer results, and the results of the best four-class classifier we trained.

results which improves by 1.0% BLEU over the best single MT system baseline and by

0.6% BLEU over the Dialect ID Binary Classification. Results on the Blind Test set are

consistent with the Dev set results.

System All Dialect MSA Egyptian Levantine MSA NW MSA WB
DA-Only 26.6 19.3 33.2 20.5 16.0 34.4 32.0
MSA-Only 32.7 14.7 50.0 16.9 8.8 56.2 44.0
DA+MSA 33.6 19.4 46.3 21.1 13.8 51.1 41.9
MSA-Pivot 33.9 19.6 46.4 21.5 13.9 51.3 41.8
Four-System Oracle Combination 39.3 24.4 52.1 26.5 19.7 58.6 47.8

Best Four-Class Classifier 35.2 19.8 50.0 21.7 15.6 56.2 43.9

Table 6.5: Dialect and genre breakdown of performance on the Dev set for our best per-
forming classifier against our four baselines and their oracle combination. Results are in
terms of BLEU. Brevity Penalty component of BLEU is applied on the set level instead
of the sentence level; therefore, the combination of results of two subsets of a set x may
not reflect the BLEU we get on x as a whole set. Our classifier does not know of these
subsets, it runs on the set as a whole; therefore, we repeat its results in the second column
for convenience.

6.5 Discussion of Dev Set Subsets

We next consider the performance on different subsets of the Dev set: DA vs MSA as well

as finer grained distinctions: Egyptian, Levantine, MSA for newswire (more formal) and
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Egy. Lev. MSA-NW MSA-WB
Sample Size / 75/614 75/532 50/293 50/363
Sub-Set Size (14%) (12%) (17%) (14%)
Classifier Selection Egy. Lev. MSA-NW MSA-WB
Best MT system 40% 56% 66% 38%
2nd-best MT system 23% 26% 18% 20%
3rd-best MT system 24% 13% 14% 28%
Worst MT system 13% 5% 2% 14%
Manual analysis of bad choices in Egy. and MSA-WB
Error Reason Egy. Error Reason MSA-WB
Unfair BLEU 40% Highly dialectal 5%
MSA w/ recent terms 19% Code switching 5%
Blog/Forum MSA 11% Blog punctuation 33%
Code switching 15% Blog style writing 47%
Classif. bad choice 15% Classif. bad choice 10%

Table 6.6: Error analysis of 250 sentence sample of the Dev set. The first part of the
table shows the dialect and genre breakdown of the sample. The second part shows the
percentages of each sub-sample being sent to the best MT system, the second best, the
third best, or the worst. When the classifier selects the third our the fourth best MT system
for a given sentence, we consider that a bad choice. We manually analyze the bad choices of
our classifier on the hardest two sub-samples (Egyptian and MSA Weblog) and we identify
the reasons behind these bad choices and report on them in the third part of the table.

MSA for weblogs (less formal). Table 6.5 summarizes the results in the Dev set (under

column All) and provides the results on the various subsets of the Dev set. We remind the

reader that our problem assumes that we do not know the dialect or genre of the sentences

and that breakdown provided here is only part of analyzing the results. Similarly, all the

oracle numbers provided (Row 6 in Table 6.5) are for reference only.

6.5.1 DA versus MSA Performance

The third and fourth columns in Table 6.5 show system performance on the DA and MSA

subsets of the Dev set, respectively. The best single baseline MT system for DA is MSA-

Pivot has a large room for improvement given the oracle upper bound (4.8% BLEU ab-

solute). However, our best system combination approach improves over MSA-Pivot by a

small margin of 0.2% BLEU absolute only, albeit a statistically significant improvement.
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The MSA column oracle shows a smaller improvement of 2.1% BLEU absolute over the

best single MSA-Only MT system. Furthermore, when translating MSA with our best sys-

tem combination performer we get the same results as the best baseline MT system for

MSA even though our system does not know the dialect of the sentences a priori.

If we consider the breakdown of the performance in our best overall (33.9% BLEU)

single baseline MT system (MSA-Pivot), we observe that the performance on MSA is about

3.6% absolute BLEU points below our best results; this suggests that most of the system

combination gain over the best single baseline is on MSA selection.

6.5.2 Analysis of Different Dialects

The last four columns of Table 6.5 show the detailed results on the different dialects and

MSA genres in our data.

Genre performance analysis

The MSA portions are consistently best translated by MSA-Only. The results suggest that

the weblog data is significantly harder to translate than the newswire (44% vs. 56.2%

BLEU). This may be attributed to the train-test domain-mismatch where the MSA MT

system MSA-Only training data is mostly newswire. The system combination yields the

same results as the baseline best system for the MSA data within genre.

DA specific performance analysis

DA-Only is the best system to translate Levantine sentences which is similar to the findings

by Zbib et al. (2012). However, this Levantine eval set is highly similar to the Levantine

portion of the DA training data (BBN/LDC/Sakhr Arabic-Dialect/English Parallel Corpus)

since both of them were collected from similar resources, filtered to be highly dialectal,

and translated using the same technique (Amazon MTurk) (Zbib et al., 2012). This can
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explain the large improvement in performance for the DA-Only system vis-a-vis all the

other systems including the best performer, the combination system. The best baseline

MT system to translate Egyptian is MSA-Pivot which gives a statistically significant 0.4%

BLEU improvement over the second best system. Our best performer improves over the

best single MT system by a statistically significant 0.2% BLEU. In general, we note that

the performance on Egyptian is higher than on Levantine due to the bigger proportions of

Egyptian training data compared to Levantine data for the single baseline MT systems and

due to the fact that Egyptian sets have two references while Levantine sets have only one.

We can conclude from the above that it is hard to pick one MT system to translate

Arabic sentences without knowing their dialect. However, if we know the dialect of an

Arabic text, an MSA-trained MT system is sufficient to translate MSA sentences given

the abundance of MSA parallel data. For dialectal sentences, it seems reasonable to build

multiple systems that leverage different data settings with various complementarities while

also leveraging explicit usage of automatic dialect identification system features to decide

among them.

Source mA Srly w}t $wf hAlmslsl
Reference i didn ’t have time to watch that series
MSA Trans lm ySr Aly wqt $wf h*A Almslsl
MT System Translation Bleu
MSA-Only what Srly w}t hAlmslsl look 2.4
DA-Only what happen to me when i see series 6.4
DA+MSA what happened to me when i see series 6.4
MSA-Pivot did not insist time to look at this series 10.6

Table 6.7: System combination example in which our predictive system selects the right
MT system. The first part shows a Levantine source sentence, its reference translation, and
its MSA translation using the DA-MSA MT system. The second part shows the translations
of our four MT systems and their sentence-level BLEU scores.
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6.6 Error Analysis

We present a detailed error analysis on the different dialects and genres and we discuss the

output of the different systems on an example sentence.

6.6.1 Manual Error Analysis

We performed manual error analysis on a Dev set sample of 250 sentences distributed

among the different dialects and genres. The first part of Table 6.6 provides sample size

and percentage to the sub-set size. The second part reports the percentage of our best

performing system combination predictive system sending sentences of these sub-samples

to the best, the second best, the third best, and the worst MT system. The percentages in

each column sum to 100% of the sample of that column’s dialect or genre. The Levantine

and MSA News Wire sentences were easy to classify while Egyptian and MSA Weblog

ones were harder. We did a detailed manual error analysis for the cases where the classifier

failed to predict the best MT system. The sources of errors we found cover 89% of the

cases. In 21% of the error cases, our classifier predicted a better translation than the one

considered gold by BLEU due to BLEU bias, e.g., severe sentence-level length penalty due

to an extra punctuation in a short sentence. Also, 3% of errors are due to bad references,

e.g., a dialectal sentence in an MSA set that the human translators did not understand.

A group of error sources resulted from MSA sentences classified correctly as MSA-

Only; however, one of the other three systems produced better translations for two reasons.

First, since the MSA training data is from an older time span than the DA data, 10% of

errors are due to MSA sentences that use recent terminology (e.g., Egyptian revolution

2011: places, politicians, etc.) that appear in the DA training data. Also, web writing

styles in MSA sentences such as blog style (e.g., rhetorical questions), blog punctuation

marks (e.g., "..", "???!!"), and formal MSA forum greetings resulted in 23%, 16%, and 6%

of the cases, respectively.
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Finally, in 10% of the cases our classifier is confused by a code-switched sentence, e.g.,

a dialectal proverb in an MSA sentence or a weak MSA literal translation of dialectal words

and phrases. Some of these cases may be solved by adding more features to our classifier,

e.g., blog style writing features, while others need a radical change to our technique such as

word and phrase level dialect identification for MT system combination of code-switched

sentences.

6.6.2 Example

Table 6.7 shows an interesting example in which our system combination classifier predicts

the right system (MSA-Pivot). In this highly-Levantine sentence, the MSA system, as

expected, produces three OOV words. The DA-Only and DA+MSA systems produce a

literal translation of the first two words, drops an OOV word, and partially translate the last

word. ELISSA confidently translates two words and a two-word phrase to MSA correctly.

This confidence is translated into features used by our classifier which helped it predict the

MSA-Pivot system.

6.7 Conclusion and Future Work

This chapter proves that the different MT approaches of MSA-pivoting and/or training data

combinations for DA-to-English MT complement each other in interesting ways and that

the combination of their selections could lead to better overall performance by benefit-

ing from the strengths while avoiding the weaknesses of each individual system. This is

possible due to the diglossic nature of the Arabic language.

We presented a sentence-level classification approach for MT system combination for

diglossic languages. Our approach uses features on the source language to determine the

best baseline MT system for translating a sentence. We get a 1.0% BLEU improvement

over the best baseline single MT system.
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In the future we plan to add more training data to see the effect on the accuracy of sys-

tem combination. We plan to give different weights to different training examples based on

the drop in BLEU score the example can cause if classified incorrectly. We also plan to ex-

plore confusion-network combination and re-ranking techniques based on target language

features.
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Part III

Scaling to More Dialects
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Chapter 7

Unsupervised Morphological

Segmentation for Machine Translation

7.1 Introduction

Resource-limited, morphologically-rich languages impose many challenges to Natural

Language Processing (NLP) tasks since the highly inflected surface forms of these lan-

guages inflate the vocabulary size and, thus, increase sparsity in an already scarce data sit-

uation. Therefore, NLP in general and Machine Translation (MT) in particular can greatly

benefit from unsupervised learning approaches to vocabulary reduction such as unsuper-

vised morphological segmentation.

Dialectal Arabic (DA), the unspoken varieties of Arabic, is a case study of such lan-

guages due to its limited parallel and task-specific labeled data, and the large vocabulary

caused by its rich inflectional morphology and unstandardized spontaneous orthography.

Furthermore, the scarcity of DA parallel and labeled text is more pronounced when con-

sidering the large number of dialects and sub-dialects, the varying levels of dialectness

and code switching, the diversity of domains and genres, and the timespan of the collected

text. Hence, the need for unsupervised learning solutions to vocabulary reduction that use a

115



more sustainable and continuously fresh source of training data arises. One such source is

the enormous amount of monolingual text available online that can be acquired on a daily

basis across different dialects and in many genres and orthographic choices. Addition-

ally, building or extending supervised NLP systems on the different dimensions mentioned

above requires approaches to automatically creating labeled data for such tasks.

In this work we utilize huge collections of monolingual Arabic text along with limited

DA-English parallel data to improve the quality of DA-to-English machine translation.

We propose an unsupervised learning approach to morphological segmentation consisting

of three successive systems. The first system uses word embeddings learned from huge

amounts of monolingual Arabic text to extract and extend a list of possible segmentation

rules for each vocabulary word and scores these rules with an Expectation Maximization

(EM) algorithm. The second system uses the learned segmentation rules in another EM

algorithm to label select DA words in DA-English parallel text with the best segmentation

choice based on the English alignments of the word segments. Finally, the third system

implements a supervised segmenter by training an Averaged Structured Perceptron (ASP)

on the automatically labeled text. The three systems can be used independently for other

purposes. We evaluate the performance of our segmenter intrinsically on a portion of the

labeled text, and extrinsically on MT quality.

7.2 Related Work

In this section we review the literature on supervised and unsupervised learning approaches

to morphological segmentation.
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7.2.1 Supervised Learning Approaches to Morphological

Segmentation

Supervised learning techniques, like MADA, MADA-ARZ and AMIRA (Habash and Ram-

bow, 2005; Habash et al., 2013; Diab et al., 2007; Pasha et al., 2014), have performed well

on the task of morphological tokenization for Arabic machine translation. They require

hand-crafted morphological analyzers, such as SAMA (Graff et al., 2009), or at least an-

notated data to train such analyzers, such as CALIMA (Habash et al., 2012c), in addition

to treebanks to train tokenizers. This is expensive and time consuming; thus, hard to scale

to different dialects.

7.2.2 Unsupervised Learning Approaches to Morphological

Segmentation

Given the wealth of unlabeled monolingual text freely available on the Internet, many un-

supervised learning algorithms (Creutz and Lagus, 2002; Stallard et al., 2012; Narasimhan

et al., 2015) took advantage of it and achieved outstanding results, although not to a degree

where they outperform supervised methods, at least on DA to the best of our knowledge.

Traditional approaches to unsupervised morphological segmentation, such as MORFESSOR

(Creutz and Lagus, 2002; Creutz and Lagus, 2007), use orthographic features of word seg-

ments (prefix, stem, and suffix). However, many researchers worked on integrating seman-

tics in the learning of morphology (Schone and Jurafsky, 2000; Narasimhan et al., 2015)

especially with the advances in neural network based distributional semantics (Narasimhan

et al., 2015).

In this work, we leverage the use of both approaches. We implement an unsupervised

learning approach to automatically create training data which we use to train supervised

algorithms for morphological segmentation. Our approach incorporates semantic informa-
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tion from two sources, Arabic (through monolingual data) and English (through parallel

data), along with linguistic features of the source word and its target segments to learn a

morphological segmenter.

7.3 Approach

A typical supervised context-sensitive tokenization approach (Figure 7.1) depends on the

existence of a morphological analyzer to provide a list of out-of-context analyses for each

word in a sentence (Graff et al., 2009; Habash et al., 2012a). Using this analyzer, the

system can turn an input sentence into a sausage lattice of analyses that can be decoded

using a context-sensitive model trained on a manually annotated treebank (Habash and

Rambow, 2005; Habash et al., 2013; Pasha et al., 2014). For machine translation pur-

poses, the best ranking path in the lattice can then be tokenized into surface form tokens

according to a tokenization scheme that was chosen to maximize alignment to the foreign

language. Many researchers have explored ways to come up with a good tokenization

scheme for Arabic when translating to English (Maamouri et al., 2004; Sadat and Habash,

2006). While SMT systems typically use one tokenization scheme for the whole Ara-

bic text, Zalmout and Habash (2017) experimented with different tokenization schemes for

different words in the same Arabic text. Their work showed that different target languages

require different source language tokenization schemes. It also showed that combining

different tokenization options while training the SMT system improves the overall per-

formance, and considering all tokenization options while decoding further enhances the

performance.

Inspired by the typical supervised tokenization approach discussed above, our approach

to unsupervised morphological segmentation consists of two stages: first, we automatically

create labeled data, and second, we train a supervised segmenter on it:
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1. Unsupervised labeling of segmentation examples. To automatically label words

with their desired segmentations we use both monolingual and parallel text. This

stage involves two systems:

a) A system that learns Arabic segmentation rules from monolingual text using

distributional semantics (Section 7.4). This system is analogous to a morpho-

logical analyzer in that it produces out-of-context segmentation options.

b) A system that labels Arabic words in the parallel text with their best segmen-

tation rules using the English words to which the Arabic word is aligned (Sec-

tion 7.5). This system is effectively incorporating English semantics in choos-

ing the best in-context segmentation of an Arabic word in a sentence.

2. Supervised segmentation. Starting from the automatically labeled data created by

the previous stage, we train a tagger that learns to score all possible segmentations

for a given word in a sentence (Section 7.6).

One challenge to this approach is that the automatic labeling of words will introduce

errors that will affect the quality of the supervised segmenter. To reduce the number of

errors in the automatically labeled data we only label words when the system has a high

confidence in its decision. This will result in many unlabeled words in a given sentence

that raises another challenge to the supervised segmenter which we solve by modifying the

training algorithm. The underlying assumption of this approach is that if the unsupervised

labeling process does not cover all words in the vocabulary, the supervised segmenter will

learn to generalized to the missed words and OOVs.

We evaluate this approach on two Arabic dialects: Egyptian and Levantine (the collec-

tion of Syrian, Lebanese, Jordanian, and Palestinian dialects). The following three sections

discuss the three systems used in this approach and present the experimental setup, exam-

ples and discussion. The last of the three sections, Segmentation (Section 7.6), also present
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the evaluation of the segmenter’s accuracy on the automatically labeled data produced by

the first stage.
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7.4 Monolingual Identification of Segmentation Rules

In this section we discuss the approach we use to learn segmentation rules from monolin-

gual data. The approach consists of three steps: word clustering, rule learning, and rule

scoring.

7.4.1 Clustering based on Word Embeddings

We learn word vector representations (word embeddings) from huge amounts of monolin-

gual Arabic untokenized text using Word2Vec (Mikolov et al., 2013). For every Arabic

word x, we then compute the closest N words using cosine distance (with cosine distance

above threshold Da). We consider these N words to be x’s semantic cluster. Every cluster

has a source word. It is important to mention that a word x might appear in y’s cluster but

not vice versa.

After a manual error analysis of the data, we picked a high cosine distance threshold

Da = 0.35 since we need only words that we have high confidence in their belonging to a

cluster in order to produce high quality segmenation rules. This high threshold results in

many words having small or even empty clusters:

1. The small cluster problem means that the cluster’s main word will not have enough

segmentation rules which means it might not have the final stem we hope to segment

to (e.g., the word �
H 	Pñm.

�
�
'AÓ mAtjwzt ‘I-did-not-marry’ might have 	Pñm.

�
�
'AÓ mAtjwz ‘did-

not-marry’ but not 	Pñm.
�
�
' @ Atjwz ‘married’, which is the desired stem). We attempt to

solve this problem with a rule expansion algorithm discussed in the Section 7.4.2.

2. The empty cluster problem happens when the closest word to the cluster’s main

word is beyond the distance threshold. This means that we will not have any labeled

example for this word; hence, it will be an OOV word for supervised segmenter. We

design the segmenter so that it generalizes to unseen words.
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Even with this high threshold, many words end up with very large clusters due to

Word2Vec putting thousands of certain types of words very close in the vector space (e.g.,

proper names, words that appeared only few times in the training data). This adds noise

to the rule scoring training data discussed later;. We solve this problem by deciding on a

maximum cluster size N = 200.

7.4.2 Rule Extraction and Expansion

Rule Extraction

We extract segmentation rules from the clusters learned previously. For every word x, for

every word y in x’s cluster where y is a substring of x we generate a segmentation rule

x→ p+ y -q where y is the stem, p+ is the prefix (the substring of x before y starts), and -q

is the suffix (the substring of x after y ends). A rule might have an empty prefix or suffix

denoted as P+ and -Q, respectively. If y happens to appear at different indices inside x, we

generate multiple rules (e.g., x is ‘hzhzt’ and y is ‘hz’ we produce ‘hzhzt → P+ hz -hzt’

and ‘hzhzt→ hz+ hz -t’).

We define a function dist(x→ y) as the cosine distance between words x and y if there

is a rule from x to y, equal to 1 if x = y, and 0 otherwise.

dist(x→ y) =



cosineDistance(x, y), if ∃ x→ p+ y -q

1, if x = y

0, otherwise

(7.1)

Rule Expansion

Given the high cluster admission threshold, we consider expanding the rule set by adding

further segmentations. We build an acyclic directed graph from all the extracted rules

where words are nodes and rules are edges. Since a rule is always directed from a longer
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Figure 7.2: Example of a segmentation graph that leads to the word Atjwz ‘I marry / he
married’. The frequencies of the words are enclosed in paranthesis inside the nodes. The
cosine distance and split affixes are on the arcs.

word to a shorter one, the graph will not have cycles and will not have very long paths.

Figure 7.2 shows a partial segmentation graph built from some rules that lead to the word

	Pñm.
�
�
' @ Atjwz ’I marry / he married’.

We then expand the rules by generating a rule x→ y for every node x that has a path to

node y in the graph. To do so we recursively scan the graph starting from leaves (words that

cannot be segmented) all the way back to the beginning of the graph, and add a rule x→ y

to the graph if there are two rules x→ w and w → y where w is a word. The recursive scan

insures that we fully expand w and add its outgoing edges to the graph before we expand

x. It also allows us to compute a confidence score conf(x→ y) that starts with the cosine

distance between x and y and will increase the more paths we find between them:
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conf(x→ y) = dist(x→ y)

+
∑
w

conf(x→ w)× conf(w → y)
(7.2)

Projected Frequency

The main reason for segmentation is to reduce the vocabulary size and thus increase word

frequencies which improves the quality of any subsequent statistical system. However,

chopping affixes off a word (as opposed to clitics) may affect the integrity of the word;

for example it may slightly change the meaning of the word or may cause it to align to

more general words (e.g., segmenting ‘parking’ to ‘park -ing’ in English may negatively

affect alignment depending on the foreign language). Additionally, every time we make a

segmentation decision we may introduce errors. Therefore, it is important to know at what

point we do not need to segment a word anymore. To do so we consider word frequencies

as part of scoring the rules because frequent words are likely to be aligned and translated

correctly to their inflected English translations without the need for segmentations. For

example, in Figure 7.2 we might not want to segment "Atjwz" to "tjwz" considering its

high frequency and the number and frequencies of words that lead to it. We define a

projected frequency score of a word as:

pf(y) =
∑
x∈V

conf(x→ y)× log(freq(x)) (7.3)

where x is any word in the vocabulary V and log(freq(x)) is the logarithm of x’s fre-

quency. We use logarithms to smooth the effect of frequent words on the final score to

better represent y as a hub for many words. Note that conf(y → y) = 1 and thus we

include log(freq(y)) in the score.
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Word-to-Stem Score

Given the projected frequency scores, we compute the ratio pf(y)/pf(x) that represents

the gain we get from segmenting x to y. For example, if x is frequent and has many words

that lead to it, and y gets most of its projected frequency from x, then the ratio will be

small. But if x is infrequent or not a hub and y has a high pf score through other sources,

then the ratio will be high. Now, we can compute the final word-to-stem score, which we

will be using next, as follows:

a2s(a→ s) = conf(a→ s)× pf(s)/pf(a) (7.4)

Fully Reduced Words

All the rules extracted so far will segment a word to a shorter word with at least one affix.

The automatic annotations need to have some examples where words do not get segmented

in order for the segmenter to learn such cases. Therefore, we need to identify a list of

words that cannot be segmented and thus produce rules that transform a word to itself with

no affixes. Such rules will be of the form x → P+ x -Q. The list does not have to be

complete; it just needs to be of high confidence. To generate the list, we consider words

that appear on the target side of rules but never on the source side. We then reduce the

list to only frequent stems (with over 3000 occurrences) that have at least 3 words that can

be segmented to them, which gives us enough confidence as we have seen them in various

contexts and they have appeared in at least 3 clusters but yet do not have any substrings in

their own clusters. These thresholds are determined empirically.

We compute the word-to-stem score for these fully reduced rules using this equation:

a2s(a→ a) =
∑
x

conf(x→ a) (7.5)
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Algorithm 1 Affix-stem joint probability esitmation.
1: // Initialization:

2: v(p, s)←
∑

a→psq a2s(a→ s)∑
a→p′s′q a2s(a→ s′)

for all p, s

3: u(q, s)←
∑

a→psq a2s(a→ s)∑
a→ps′q′ a2s(a→ s′)

for all q, s

4: // Estimation:
5: for round := 1→MAX do
6: // Collect counts:
7: for each rule a→ psq do
8: cv(p, s) =

∑
p′
∑

s′ v(p, s
′)× v(p′, s′)

9: cu(q, s) =
∑

q′
∑

s′ u(q, s
′)× u(q′, s′)

10: δ ← a2s(a→ s)× cv(p, s)× cu(q, s)
11: countv(p, s) += δ
12: countu(q, s) += δ
13: total += δ
14: // Estimate joint probabilities:
15: v(p, s)← countv(p, s)/total for all p, s
16: u(q, s)← countu(q, s)/total for all q, s
17: // Calculate rule scores:
18: score(a→ psq) = a2s(a→ s)× v(p, s)× u(q, s) for all rules a→ psq

7.4.3 Learning Rule Scores

Since a rule a → psq produces three segments: a stem s, a prefix p, and a suffix q, we

define its score as the product of the word-to-stem score a2s(a → s), the joint probability

of the prefix and the stem v(p, s), and the joint probability of the suffix and the stem u(q, s).

score(a→ psq) = a2s(a→ s)× v(p, s)× u(q, s) (7.6)

Affix Correlation

To estimate the correlation between a prefix p and a prefix p′, we iterate over all stems s′

and compute:

corrpref (p
′, p) =

∑
s′

v(p, s′)× v(p′, s′) (7.7)
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This score indicates the similarity in morpho-syntactic behavior of these two prefixes.

For example, the Egyptian prefix + è h+ ‘will’ and the MSA prefix +�ð ws+ ‘and will’

attach to present tense verbs; therefore, we would expect them to share many of the stems

in the rules they appear in, which leads to a high correlation score.1

We similarly define suffix correlation as:

corrsuff (q
′, q) =

∑
s′

u(q, s′)× u(q′, s′) (7.8)

Affix-Stem Correlation

Using these affix correlation scores, we can estimate the correlation between a prefix p and

a stem s by iterating over all prefixes p′ that we have seen with s in a rule and summing

their correlation scores with p.

cv(p, s) =
∑
p′

corrpref (p
′, p)

=
∑
p′

∑
s′

v(p, s′)× v(p′, s′)
(7.9)

We similarly define suffix-stem correlation as:

cu(q, s) =
∑
q′

corrsuff (q
′, q)

=
∑
q′

∑
s′

u(q, s′)× u(q′, s′)
(7.10)

1In practice, we iterate over the N stems with the highest v(p, s′) values for a prefix because some
prefixes, like +ð w+ ‘and’, attach to tens of thousands of stems and that unnecessarily slows the algorithm.
We found N = 500 to be fast and provide good results.
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Affix-Stem Joint Probabilities

Given affix-stem correlation scores, we can define the prefix-stem joint probability, v(p, s),

and the suffix-stem joint probability, u(q, s), as follows:

v(p, s) =
cv(p, s)∑

p′,s′ cv(p
′, s′)

u(q, s) =
cu(q, s)∑

q′,s′ cu(q
′, s′)

(7.11)

To estimate the parameters in these recursive equations we implement the expectation max-

imization (EM) algorithm shown in Algorithm 1. The initialization step uses only word-

to-stem scores computed earlier; i.e., it is equivalent to the first round in the following EM

loop with the exception that δ ← a2s(a → s). We found that running the EM algorithm

for fifty rounds provides good results.

7.4.4 Experiments

Experimental Setup.

We use two sets of monolingual Arabic: about 2 billion tokens from Arabic GigaWord

Forth Edition which is mainly MSA, and about 400 million tokens of Egyptian text, result-

ing in about 2.4B tokens of monolingual Arabic text used to train Word2Vec (Mikolov et

al., 2013) to build word vectors.

In this work, we did not have access to a sizable amount of Levantine text to add

to the monolingual data. Access to Levantine text would help this task learn Levantine

segmentation rules and thus hopefully improve the final system. We did not want to use

the Levantine side of the parallel data to keep this system separate from the second system

to avoid any resulting biases.
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7.5 Alignment Guided Segmentation Choice

In the previous section we learned and scored segmentation rules for words out of context.

In this section we use these rules and their scores to learn in-context segmentations of words

guided by their English alignments. The premise of this approach is that if we find enough

Arabic words where we are confident in their segmentation choices in-context given the

English translation, then we can use those segmentation choices as labeled data to train a

supervised segmenter.

7.5.1 Approach

Unsupervised learning of word alignments from a parallel corpus is pretty much estab-

lished. A tool like Giza++ (Och and Ney, 2003b) can be run on the Arabic-English parallel

data to obtain many-to-many word alignments. That means, each Arabic word aligns to

multiple English words, and each English word aligns to multiple Arabic words. However,

these algorithms look at the surface form without considering morphological inflections.

Our alignment algorithm concerns with aligning the internal structure of Arabic words

(the rule segments) to their English translations. We start by running Giza++ on our Arabic-

English parallel corpora to obtain initial, surface form alignments. Then, we consider

one-to-many aligned pairs 〈ai, Eai〉, where ai is an Arabic word at position i and Eai =

(e1, e2, ..., e|Eai |) is the sequence of English words aligned to ai ordered by their position

in the English sentence. Since the Arabic side of the parallel data is unsegmented, the

plethora of inflected words will dramatically extend the vocabulary size and the Zipfian tail

of infrequent words, which will negatively affect parameter estimation in Giza++ resulting

in many inaccurate alignments. To reduce the effect of this problem on our algorithm, we

expand the definition of Eai to also include surrounding words of the words aligned to ai

by Giza++. The order of the English words is preserved. We model dropping words from

Eai in our alignment model.
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Given an aligned pair 〈ai, Eai〉 where ai has a set of segmentation rules R = {r : r =

ai → g1g2g3}, we estimate an alignment probability for every rule r based on aligning

its segments to words in Eai . We, then, pick the rule with the highest probability, r∗, as

the segmentation choice for ai in that context. It is important to note that the context here

is determined by the English translation instead of the surrounding Arabic words. Note

that the rule itself has a score derived from the Arabic context of the word through word

embedding. Therefore, if we incorporate the rule score in the alignment probability model,

we can combine Arabic semantics and English semantics in determining the segmentation

choice in context.

7.5.2 The Alignment Model

In order to compute an alignment probability for every pair (r, Eai), we need to estimate

how r’s segments translate to Eai’s tokens. To translate a source text sequence to a se-

quence in a target language, two main questions must be asked:

1. What target words/phrases should we produce?

2. Where should we place them?

Motivation: IBM Models

This subsection provides a quick introduction to IBM Models to give a general motivation

to our proposed alignment model. Details that do not relate to our model are not discussed.

For detailed discussion of IBM Models, refer to (Brown et al., 1993).

IBM Model 1 answers only the first question by introducing a lexical translation

model, t(ei|fj), that estimates how well a source token ei translates to a target token fj .

IBM Model 1 does not model word alignments explicitly which means once the target

words are generated, they can be put in any order in the target sentence. To answer the
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second question, IBM Model 2 adds an absolute alignment model, a(i|j,m, n), that mea-

sures the probability of a target token at position j in a target sentence of length m to be

aligned to a source word at position i in a source sentence of length n. This independent

modeling of translation and alignment makes the problem easier to solve.

IBM Model 3 takes the first question a step further by modeling fertility which allows

source words to produce multiple target words or even get dropped from translation, and

allows target words to be inserted without a source word generating them. Fertility gets

handled by two separate models:

1. The fertility model, y(nslots|f), handles source word fertility by estimating the prob-

ability of a source word f to produce zero or more slots to be filled with target words.

If nslots = 0, source word f will be dropped from translation. If nslots > 0, one or

more target words will be generated.

2. NULL insertion models the introduction of new target words without a source trans-

lation.

While IBM Model 3 keeps the regular lexical translation model as is: t(ei|fj), it reverses

the direction of Model 2’s absolute alignment model to become d(j|i,m, n), which they

call an absolute distortion model.

IBM Model 4 further improves Model 3 by introducing a relative distortion model

which allows target words to move around based on surrounding words instead of the

length of source and target sentences. Finally, IBM Model 5 fixes the deficiency in Model

3 and 4 that allows multiple target words to be placed in the same position.

Our Alignment Probability Model

IBM Models were originally proposed as machine translation systems, but now they are

widely used as part of word alignments as more advanced machine translation approaches

were introduced. While our alignment model is inspired by IBM Models, we have no
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intention to use it as an MT system; therefore, we are not bound to design an alignment

model that generates fluent translations. In other words, the placement of English words

in their exact positions (the second question) is not essential. Our model should measure

how well a certain segmentation of an Arabic word ai, produced by rule r = ai → g1g2g3,

aligns to English words in the target sequence Eai .

The English sequence could contain words that do not align to any segment of the

source Arabic word. This is a result of erroneous alignments by Giza++ or due to our

inclusion of surrounding words. To handle this, we model dropping words from Eai by

introducing a NULL token on the Arabic side (with index 4) that misaligned English words

can align to. This makes the Arabic sequence of length 4, indexed: 1 for prefix, 2 for stem,

3 for suffix, and 4 for the NULL token. We use the variable j to refer to this index. The

English sequence can be of any length, denoted as m. As mentioned above, the original

order of English words is preserved in the sequence Eai , but re-indexed from 1 to m. We

use the variable k to refer to this index.

Definition: Alignment Vector. An alignment vector is a vector of m elements denoted

as L = (l1, l2, ..., lm), where lk is position in the Arabic segment that ek aligns to. This

allows multiple English words can align to the same token in the Arabic sequence; e.g.,

‘and’ and ‘will’ can align to +kð wH+ ‘and will’. However, an English word cannot align

to multiple Arabic tokens, which forces the English word to pick its best aligned Arabic

token. We define L(r,Eai )
as the set of all possible alignment vectors that align Eai’s words

to r’s segments and the NULL token.

Definitions: Center and Direction. We define the center of the English sequence as the

English word that best aligns to the Arabic stem. We denote its index as kstem. Given kstem,

we define a direction vector D = {dk : dk = sgn(k− kstem)}2, where every English word

2sgn is the sign function.
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ek has a direction dk relative to the center ekstem . This means that the center ekstem has a

direction of 0, words that appear before the center have a direction of –1, and words that

appear after center have a direction of +1,

It is intuitive to assume that the direction of an English word relative to the center could

have an impact on the decision of whether to align it to a prefix, a stem, a suffix, or even

NULL to drop it from alignment as it might align to a previous or subsequent word in

the Arabic sentence. To motivate this intuition let us observe closed-class and open-class

English words and their relations to the types of Arabic segments based on their directions

from the center.

In our approach to segmentation, an Arabic affix is split from the stem as one unit with-

out further splitting its internal components which could contain pronouns, prepositions, or

particles such as conjunction, negation, and future particles. These affixes tend to align to

closed-class English words. For example, the Arabic definite article, +Ë @ Al+ ‘the’, appears

only in prefixes (e.g., in +Ë @ð wAl+ ‘and the’); similarly, the English word ‘the’ appears

only before the center when it aligns to a prefix. If ‘the’ appears after the center, it proba-

bly should be aligned to a subsequent Arabic word in the source sentence. Moreover, the

Arabic conjunction particle, +ð w+ ‘and’, appears in prefixes (e.g., in +kð wH+ ‘and will’)

or as a separate word ð w; therefore, when ‘and’ appears before or at the center it tends to

align to a prefix or a stem, respectively. If ‘and’ appears after the center, it probably should

be dropped. Furthermore, the English word ‘to’ could align to any token of the source

sequence at any position in the target sequence; however, its direction relative to the center

correlates with the position of the Arabic token it aligns to. Here are the four cases:

1. ‘to’ could align to a prefix containing the preposition3 +Ë l+ ‘to’ (as in this example

attaching to a verb and a noun: “ é
�
®J


	
Q̄Ë

�
IªJ. J
Ë” lybEt lrfyqh ‘to send to his friend’).

In such cases, the English word ‘to’ has a direction of –1.

3In Arabic linguistics, when l+ attaches to a verb, it’s called a justification particle, not a preposition.
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2. ‘to’ could align to a stem such as úÍ@


<lY ‘to’, a separate preposition in Arabic. In

these cases, ‘to’ has a direction of 0.

3. ‘to’ could align to a suffix containing the indirect object preposition Ë- -l ‘to’ (as in

the suffix ½Ëð- -wlk ‘they, to you’ in “½Ëñ
�
JªJ. K
” ybEtwlk ‘they send to you’). In such

cases, ‘to’ has a direction of +1.

4. ‘to’ could align to NULL if misaligned which could occur at any value for dk.

Similar to closed-class words, open-class words tend to either align to the stem or to

NULL. For example, there is no prefix or suffix that aligns to the word ‘send’; therefore,

if it appears on either side of the center, it probably belongs to a surrounding word of

the current Arabic word ai. This motivates the design of a probability distribution that

capitalize on this correlation.

Our model answers the two questions introduced earlier with two separate probability

distributions:

1. Lexical Translation Model: t(ek|glk). This model is identical to IBM Model 1. It

estimates the probability of translating an Arabic segment to an English word. For

example, t(‘and’|‘wH+’) represents the probability of producing the word ‘and’ from

the prefix +kð wH+ ‘and will’.

2. Lexical Direction Model: z(lk|ek, dk). This model estimates the probability of

aligning an English word ek with direction dk to position lk in the Arabic sequence.

For example, z(1|‘and’,−1) is the probability of the word ‘and’ aligning to a prefix

knowing that it appeared before the center.

In this model, the exact position of the generated English word is not important; instead,

the direction relative to center is what matters.
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Figure 7.3: Example of sentence alignment that shows how we extract the English sequence
Eai that aligns to a source word ai. The figure is organized as rows indexed from 1 to 5 as
shown on the left margin. Row 1 and 3 show the source Arabic sentence and its English
translation. Row 2 shows the perfect word-level alignment between the two sentences.
Row 4 shows the automatic process of extracting Eai by first adding words aligned by
Giza++ (in red rectangles), and then adding surrounding words (identified by the green
arrows). Row 5 shows the resulting Eai .

To compute kstem we find the English word with the highest t × z score as in the

equation below.

kstem = argmax
k
t(ek|g2)× z(2|ek, 0)

This might seem like a circular dependency: z depends on dk which is computed from

kstem that depends on z. In other words, using the direction from the center while trying

to find the center. In fact we do not need the direction from the center to compute kstem.

Instead, we set dk = 0 in z(2|ek, 0), which, when multiplied with t(ek|g2), basically asks

the question: if word ek were to be selected as the center, how well will it align to position

2 (the stem) in the source sequence? This breaks the circular dependency.

Example

Consider the Arabic sentence �
�AêÊëAj.

�
J
�
JÓð ú




	
GA

�
K ½ËAêËñ

�
®ëð whqwlhAlk tAny wmttjAhlhA$

translated to English as ‘And I will say it again to you and do not ignore it’. Figure 7.3
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presents the two sentences in rows 1 and 3 (index is in the left margin), as well as their per-

fect word-level alignment (Row 2). For our example, we consider the first word, whqwl-

hAlk, as ai and we construct Eai in Row 4 by first including words aligned by Giza++

(in red rectangles), and then adding surrounding words (identified by the green arrows).

Row 5 shows the resulting Eai . Due to the infrequency of such highly-inflected words,

Giza++ tends to make errors aligning them. In this case it erroneously aligns ‘again’ to ai

and misses ‘will’ and ‘to’ which should have been aligned. Our inclusion of surrounding

words results in adding the missed words, but also includes the trailing ‘and’ erroneously.

This approach increases recall while compromising precision since it depends on the prob-

abilistic model to maximize English alignment to ai’s internal structure while dropping the

misaligned English words.

Figure 7.4 shows the alignment of the Arabic word ½ËAêËñ
�
®ëð whqwlhAlk from Fig-

ure 7.3 with its aligned English sequence Eai = (and, I, will, say, it, again, to, you,

and). This example shows how our model would score an alignment vector L =

(1, 2, 1, 2, 3, 4, 3, 3, 4) linking Eai tokens one-to-many to the four Arabic tokens. L, shown

in Part (b) of the Figure (index is in the left margin), is actually the gold alignment vector.

Part (a) shows the lexical translation model, t(ek|glk), generating English words from

Arabic tokens under alignment vector L. The English word ‘say’ is picked as the center

over ‘I’ because t(say|qwl) > t(I|qwl). Part (b) shows how the lexical direction model,

z(lk|ek, dk), predicts the position an English word ek with direction dk aligns to.

Decoding with the Model: Finding the Best Segmentation Choice

The probability of an alignment vector L that aligns the words of an English sequence,

Eai , to the four Arabic tokens produced by a rule r and the NULL token is denoted as

palign(Eai , L|r) and is given by this equation:

palign(Eai , L|r) =
m∏
k=1

t(ek|glk)× z(lk|ek, dk) (7.12)
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Figure 7.4: Example of alignment model parameters t and z for an Arabic word aligned to
an English phrase.
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To find the best segmentation choice for an Arabic word ai with a set of rules Rai , we

pick the rule, r∗, that has the highest score when aligned to the English sequence Eai . To

evaluate how well a rule r aligns to Eai , we scan all possible alignment vectors generated

from r and Eai to find the one with the highest probability palign(Eai , L|r). Therefore, the

best segmentation choice for ai is generated by the rule r∗ that has the best alignment to

Eai’s words among all other rules in Rai , as shown in the following equation.

r∗ = arg max
r∈Rai

max
L∈L(r,Eai )

palign(Eai , L|r) (7.13)

It is important to note that the rule score computed in Section 7.4, score(r), is not used

directly in these equations; however, it is used in estimating the model’s parameters t and

z.

7.5.3 Parameter Estimation with Expectation Maximization

In this subsection we present our expectation maximization algorithm to estimate our

model’s parameters. First we start with initializing our parameters and then we explain

the EM algorithm used for parameter estimation.

Initialization

Our initialization step starts by running Giza++ (Och and Ney, 2003b) on the untokenized

Arabic-English parallel data to produce many-to-many word-level alignments. Using these

alignments we estimate two word translation probability distributions for each Arabic word

a and English word e:

1. The word translation probability: p1(e|a) = countaligned(a, e)/count(a).

2. The reverse word translation probability: p2(a|e) = countaligned(a, e)/count(e).

Where countaligned(a, e) is the number of times we saw Arabic word a aligned to English

word e in Giza++ output, while count(x) is the frequency of word x in the parallel corpora.
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Algorithm 2 Affix-stem joint probability esitmation.
1: // Parameter initialization:

t(ek|gh) = c(ek, gh)/
∑
e′

c(e′, gh) (7.14)

where c(ek, gh) = p1(ek|gh) +
∑
〈ai,ek〉

∑
ai→G
gh in G

p1(ek|ai)× score(ai → G))

z(lk|ek, dk) = 1/4 // uniform (7.15)

2: // Parameter estimation:
3: for round := 1→MAX do
4: for each aligned pair 〈ai, Eai〉 do
5: conf ←

∑
k p1(ek|ai)× p2(ai|ek) // Alignment Confidence:

6: // Collect counts:
7: for each rule r = a→ g1g2g3 do
8: kstem ← argmaxk t(ek|g2)× z(2|ek, 0)
9: if t(ekstem |g2)× z(2|ekstem , 0) > threshold then

10: // Get direction vector:
11: D ← {dk = sgn(k − kstem)}
12: // For each English word:
13: for k := 0→ m do
14: // For each alignment position:
15: for j := 0→ 3 do
16: δtz ← t(ek|gj)z(j|ek, dk)/

∑
h t(ek|gh)z(h|ek, dk)

17: δ ← conf × score(r)× δtz
18: countt(ek, gj) += δ
19: totalt(gj) += δ
20: countz(j, ek, dk) += δ
21: totalz(ek, dk) += δ
22: // Estimate probabilities:
23: t(ek|gh)← countt(ek, gj)/totalt(gj)
24: z(j|ek, dk)← countz(j, ek, dk)/totalz(ek, dk)
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The word translation probability distribution is used to initialize the t(ek|gh) parameter

of our model as shown in Algorithm 2, Equation 7.14. Since the stems are actual Arabic

words in our definition, we will have p1(ek|g2) probabilities for stems; however, this is

not possible for affixes. Therefore, we compute the count c(ek, gh) by summing over all

〈ai, ek〉 pairs where p1(ek|ai) > 0 and ai has one or more rules, r = ai → G, that generate

the segment gh, and computing the score p1(ek|ai) × score(ai → G) that is then added to

p1(ek|gh) if non-zero.

The z(lk|ek, dk) parameters are uniformly distributed as shown in Algorithm 2, Equa-

tion 7.15.

Parameter Estimation

Algorithm 2 presents an expectation maximization algorithm where every epoch iterates

over every aligned Arabic-English pair 〈ai, Eai〉 in the parallel text and computes counts

from every possible segmentation of ai that aligns to Eai’s tokens. In Line 5, we compute

the confidence in this aligned pair, conf , that will be used in computing δ.

In Line 8, we compute kstem which gives us the English token, ekstem , with the highest

alignment to the stem in the current segmentation of ai. If the alignment score of this

word, t(ekstem |g2) × z(2|ekstem is lower than a threshold, we ignore the rule that produced

this segmentation. The threshold can be manipulated to trade-off quality and number of

labeled segmentation choices.

Once kstem is found, the direction vector, D, can be computed (Line 11). Then, every

possible combination of Eai tokens and ai segments are considered to compute δtz, using

the last iteration t and z parameters (Line 16), which is combined with the rule score and

the aligned pair confidence score to compute δ. δ is then used to compute the counts.

Finally, the model’s probabilities are calculated (Lines 23-24) to be used in the next

epoch.
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7.5.4 Experiments

We use three parallel corpora obtained from several LDC corpora including GALE and

BOLT data and preprocessed by separating punctuation marks and Alif/Yah normalization.

The corpora are: Egyptian-English (Egy-En) corpus of ∼2.4M tokens, Levantine-English

(Lev-En) corpus of ∼1.5M tokens, and MSA-English (MSA-En) Corpus of ∼49.5M to-

kens. The combined corpus, which amounts to ∼53.5M tokens, is word-aligned using

GIZA++ (Och and Ney, 2003a) and used as training data to this step.

We trained the EM algorithm for 50 rounds on this data and we labeled 11.9 million

words with acceptable confidence.

7.6 Segmentation

We train a supervised segmenter to learn how to chop off Arabic words in a given sen-

tence. For every word in the sentence, the segmenter considers a list of rules to transform

that word and scores them using the Averaged Structured Perceptron. The transformation

rules are segmentation rules that produce a stem and affixes. This setup allows for more

advanced transformation rules where the stem is not a partial string of the source word.

Examples are spelling variation normalization, templatic morphology segmentation, and

even infrequent-to-frequent word translation; although, new features should be introduced

to capture those advanced transformations. The empty affixes "P+" and "-Q" are not gen-

erated in the segmented output. We train and evaluate our segmenter on train/test split sets

of our automatically labeled data.

7.6.1 Challenges of Automatically Labeled Data

Two challenges for training and decoding arise from the nature of our automatically labeled

data: frequent OOVs and unlabeled words in a training sentence.
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Frequent words as OOVs

The general case in manually annotated training data for NLP tasks is that the data is

selected randomly from the text expected to be handled by the NLP tool (sometimes with

a bias towards more frequent cases in the target area such as domain, dialect, and genre).

The frequent words in the vocabulary, as a result, will generally be labeled in the training

data. This means that OOVs in a given test set are usually infrequent words and, thus, rare

in those sets.

In our setup, we label words with their segmentation choice only when we have high

confidence in our decision. This leaves our partially labeled training data with many unla-

beled frequent words. These words are naturally frequent in a given test set, which means

they will be OOVs for a system trained on our partially labeled training data.

This problem requires us, as we design the segmenter, to give special attention to its

ability of learning how to generalize to unseen words, since those unseen words are now a

frequent phenomena. To do so, we use the following strategy:

1. We introduce features that deliberately try not to memorize specific segmentations in

order to allow them to generalize to OOVs.

2. We drop all segmentation rules learned in Section 7.4 since they do not extend to

a large portion of the vocabulary. To generate a list of rules for a given word in a

sentence, the decoder, now, considers all possible segmentations of that word that

produce stems that have been seen in the parallel data. This will introduce new,

unseen affixes, which is intended to generalize to unseen dialectal morphology.

3. Some of our best features use distance scores from the Arabic and English clusters

of the word being processed (discussed later). Since these clusters were used in

creating our labeled data, all labeled words have both clusters. This results in a

generalizability issue as many other words may have one or no clusters. To solve
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this issue, we deliberately drop either or both clusters for some labeled words in a

random manner in order to allow other general features to be trained for such cases.

4. To evaluate our segmenter’s ability to generalize to OOVs, we randomly drop some

test set words from the training data to generate OOVs that we can evaluate on. This

allows us to pick a system with high generalizability.

Unlabeled words in a training sentence

Unlike manually labeled data where all words in a training sentence are labeled, our data

may have many unlabeled words in a given training sentence. This means that features of

a rule cannot depend on the segmentation decision made for the previous word since we

cannot guarantee knowing that decision during training. Therefore, the decoder cannot use

the Viterbi algorithm; instead, it picks the segmentation rule with the highest score for every

word independently. We do, however, use features that look at the possible segmentation

rules of surrounding words which are inspired by the gender/number agreement of Arabic.

7.6.2 Features

Global Linear Models (GLMs) allow us to use million of features to score the different

rules of a given word in context. A feature is 1 if a certain condition is satisfied by the rule

and 0 otherwise. For example, the feature below fires up when a rule is trying to segment

the prefix ëð+ wh+ ’and will’ from a stem with 4 letters (which could be a present verb in

Arabic).

φ1000(a→ psq) =



1, if length of stem s = 4

and prefix p = "wh+"

0, otherwise
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The perceptron learns the weights of those features which are added to the score of any

rule that satisfy the feature’s condition. As expected, the perceptron learns an above zero

weight for the example feature above.

Feature Types

A feature type is a general definition of a group of features that have the same condition

structure but differ in the assigned values. For example, The feature presented above be-

longs to a feature type that looks at the prefix and the length of the stem produced by a

given rule. We will use the term "conditioned on" to represent the feature type’s condition

that must be satisfied by the rule for the feature weight to be added to its score. For exam-

ple, the feature type of the example above will be described as "conditioned on the prefix

and the length of the stem", which means that this feature type will produce a feature for

every prefix and every stem length.

Below we list the different categories of feature types we experimented with although

most of them did not make it to the final system.

Word and Segments Features

The features under this category look at the source word and the output segments to learn

to memorize combinations. We define types conditioned on: (a) the rule’s stem, (b) the

prefix, (c) the suffix, (d) the source word and the stem, (e) the source word and the prefix,

(f) the source word and the suffix, (g) the stem and the prefix, (h) the stem and the suffix,

and (i) the prefix and the suffix. Only three types are used in the best system: (a), (g), and

(h).

Surrounding Words Features

These context-aware features look at the segments (stem, prefix, and suffix) and the sur-

rounding words. We experimented with feature types conditioned on each segment and
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each of the adjacent words (resulting in 6 feature types). We also experimented with feature

types conditioned on each segment of the rule and affixes of the adjacent words (separate

or combined) which is inspired by gender/number agreements and repeated definite article

and conjunction particle. None of the types above helped improve the best system.

Length Features

These features look at a segment or its length and the length of the stem or the source word.

The helpful feature types are conditioned on the prefix and the length of the stem, the suffix

and the length of the stem, the length of the word and the length of the stem, the length of

the word and the length of the prefix, the length of the word and the length of the suffix.

All other combinations were not helpful.

Frequency Features

These features use frequencies and counts as a measure of confidence in the rule’s seg-

ments. Since using frequencies will cause sparse features, we put frequencies in bins by

taking the integer part of the logarithm of the frequency (we call it int-log).

For word and stem frequencies, we found that base 100 for the logarithm worked best

and put these frequencies in four bins: 0 for frequencies bellow 100, 1 for 100 to 10,000,

2 for 10,000 to 1 million, and 3 for above a million. Two feature types use stem and

word frequencies: one is conditioned on the int-log100 of the stem frequency in the parallel

data (to promote rules that produce frequent stems), and the other is conditioned on the

int-log100 of the difference between the stem frequency and the source word frequency (to

restrict the segmentation of very frequent words);

We define two more feature types that look at the number of unique stems that have

been seen with the prefix or suffix generated by the rule: The first type is the prefix-stem-

count, which is conditioned on the int-log3 of that number for prefixes. The second type,

suffix-stem-count, is similar but for suffixes. The intuition is that affixes seen with a variety
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of stems in our rules are more trustworthy than affixes seen with few stems. For example, a

prefix like +Ë @ð wAl+ ‘and the’ attaches to 3,196 unique stems and, thus, a rule that produces

it is promoted by this prefix-stem-count feature which is conditioned on int-log3(3196) =

7. Base 3 showed to be the best performer for these features.

All of these four feature types were helpful and used in the best system.

Affixes’ Features

There are two groups of these features: one that looks at affixes of the current rule, and one

that looks at affixes of all rules of the current word. In the first group we have a feature

type conditioned on the prefix and another conditioned on the suffix of the current rule.

Both types did not help. After manually analyzing the errors we found that while frequent

affixes like +ð w+ "and" should be tokenized, this decision cannot be made independently

of the other rules as an alternative rule might produce +È@ð wAl+ "and the" which probably

should be selected over w+.

This conclusion motivated the second group which includes: 1) a feature type condi-

tioned on the prefix of the current rule and the competing prefixes of the other rules; and

2) a similar feature type but conditioned on suffixes instead. An example feature of the

first type is conditioned on the current rule’s prefix being wAl+ and the alternative rules’

prefixes being wA+, w+, and the empty string (P+). The perceptron learned a high weight

for this feature and a negative weight for the feature with the same alternative prefixes

but the current prefix being w+. The two feature types of the second group improved the

performance of the best system.

Clusters’ Features

In Section 7.4.1 we built word clusters from word vectors learned from monolingual data.

We call these clusters Arabic clusters since they are motivated by Arabic semantics. Addi-

tionally, we build word clusters by pivoting on English words in the alignment data. We call
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these clusters English clusters since they are semantically motivated by English. In Sec-

tion 7.5.3 we described how we estimate word translation probabilities p1(e|a) and reverse

word translation probabilities p2(a|e) for each Arabic word a and English word e from the

word alignments produced by running GIZA++ on the parallel text. The English pivoting

algorithm uses those probability distributions to compute the distance between any two

Arabic words x and y by pivoting on every English word as described by this equation4:

diste(x→ y) =
∑
e

p1(e|x)λ1 × p2(x|e)λ2 × p1(e|y)λ3 × p2(y|e)λ4 (7.16)

For every Arabic word x we build a word cluster that contains the closest 2000 Arabic

words, y, where diste(x→ y) > De , the threshold for English clusters.

Using the two distance measures of the two types of clusters, we use a feature type

conditioned on these conditions:

1. The type of the cluster: Arabic or English.

2. The int-log value of the cluster’s distance between the source word and the stem. As

discussed earlier, the int-log function is used to smooth the range of distance values

into a small number of bins.

3. The order of that distance among the distance values of all other stems generated by

the alternative rules of the source word. To do so, we order all the stems generated

by the rules of the source word in terms of their distance to the source word, and we

condition on that order.

4. A flag that tells us whether we have a cluster for the source word or not. This flag

allows us to distinguish between between two cases: 1) the source word has a cluster

but the stem generated by the current rule does not belong to that cluster; in such

4 For simplicity we set λ1 = λ2 = λ3 = λ4 = 1, although these weights can be tuned; e.g., by evaluating
against the resulting clusters from clusters learned from monolingual data.
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case the distance will be infinity but this flag will be 0; and 2) the source word does

not have a cluster, which means the distance is also infinity but this flag is 1. This

flag allows us not to penalize a stem for having an infinity distance when the source

word does not have a cluster.

This feature type generates 104 features that help improve the performance of the sys-

tem. We experimented with different combinations of features that look at the stem distance

to surrounding words and to potential stems of surrounding words (generated by the rules)

with a window of up to 5-words on each side, but none proved to be helpful. Although

these contextual features are attempting to produce context-dependent segmentation based

on different senses of the source words identified by the context around it, we found that

the benefits of such segmentations are alleviated by the damage of the segmentation incon-

sistency they cause for the same word.

Pattern Features

Since Arabic morphology is templatic, we use features that look at the pattern of the stem

along with the affixes produced by a rule. Since certain patterns can help indicate verbs or

nouns we hypothesize that certain affixes will have high correlation with them; therefore,

the features conditioned on them should have high weights. To keep our model generaliz-

able to all Arabic dialects, we extract simple patterns from the stem by masking all letters

except long vowels ( @ A, ð w, and ø



y5) and Ta Marbuta ( �
è p) which appears only as the last

letter of nouns or adjectives but not verbs.

We use two pattern feature types: one conditioned on the prefix and the stem pattern,

and one conditioned on the suffix and the stem pattern. Both feature types improve the

performance of the best system.

5 Since the text is Alif/Yah normalized, it does not contain the other forms of Alif or Alif Maqsura (ø Y)
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Examples of the first feature type are features that are conditioned on a prefix and the

pattern _ @_�K
 y_A_ (where ‘_’ represents a masked letter), which matches some "hollow"

verbs in present tense; e.g., ÐA
	
JK
 ynAm ‘he sleeps’. Among those features are features

conditioned on verb prefixes (e.g., +�K. ð wb+ "and he", +�k H+ "will", +��ð ws+ "and will",

+ AÓ mA+ "not", and the empty prefix P+) which obtained positive weights as expected.

An example of the second feature type is the feature conditioned on the pattern y_A_

and the suffix @ñº�- -kwA ‘your(PLURAL)’ (as in @ñºK
@P rAykwA ‘your opinion’). This feature

obtained a negative weight. A manual error analysis showed that, in many cases, the ‘k’

of ‘-kwA’ is part of the word. For example, consider the word @ñ»PA
�

��
 y$ArkwA ‘they

participate’, where y$Ark ‘participate’ is a verb and ‘-wA’ ‘they’ is a suffix. Since y$Ar

is a valid word in Arabic meaning ‘pointed to’, a rule that produces y$Ar -kwA will be

considered by the segmenter. The feature above will vote such a rule down. Another rule

that produces y$Ark -wA will be voted up by another feature of the same feature type. That

feature is conditioned on the pattern y_A__ and the suffix -wA. And so this feature type

can help the segmenter in finding a better segmentation.

Feature types conditioned on the pattern alone or the pattern with both affixes did not

help improve the performance.

Affix and Adjacent Letter Features

We use two feature types: one that is conditioned on the prefix and the first letter of the

stem, and one conditioned on the suffix and the last letter of the stem. Both features proved

to be helpful and are included in the best system.

An example of the first type is a feature conditioned on the prefix + @ð wA+ ‘and I’ and

the first letter of the stem being È l. This feature has a negative weight as expected, which

promotes alternative rules that produce the prefixes +�Ë @ð wAl+ ‘and the’ and +ð w+ ‘and’.
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Affix Correlation Features

These features are based on the affix correlation corrpref (p
′, p) and corrsuff (q

′, q) dis-

cussed in Section 7.4. Unlike before, we make use of the English clusters in addition to

the Arabic clusters to learn affix correlations. The non-zero affix correlations are stored for

all affix pairs in a lookup table to be used during decoding. During feature extraction for

a rule a → psq, we look at all prefixes p′ that have been seen with stem s and compute

cv(p, s) =
∑

p′ corrpref (p
′, p). We similarly compute cu(q, s) =

∑
q′ corrsuff (q

′, q). We

define two feature types: one conditioned on int-log of cv(p, s) and one conditioned on

int-log of cu(q, s). Both types help improve performance.

7.6.3 Experiments and Evaluation

Experimental Setup

We implement our own averaged structured perceptron trainer and decoder, discussed in

Section 7.6. We split the automatically labeled examples from the previous step into train

(∼9.9M labeled tokens) and dev and test sets (1M labeled tokens each).

Evaluation

We ran hundreds of experiments in a linguistically-motivated greedy approach to engineer

good feature types for our segmenter. The systems learned from top performing feature

type combinations were then evaluated by the machine translation experiments to pick the

best segmenter.

We empirically determined the number of epochs to be 14. In development and test

we automatically generate OOVs by randomly omitting Arabic and English clusters as

discussed earlier. This makes the non-cluster features fully responsible for segmenting

those words without the reliance on cluster features, which allows the segmenter to tune

their weights and thus generalize to actual MT sets’ OOVs.
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dev test
# correct / # tokens accuracy # correct / # tokens accuracy

All Tokens 710,527 / 721,771 98.44% 684,123 / 693,994 98.58%
Breakdown by INVs and OOVs:
INVs 575,529 / 575,531 ∼100.00% 556,767 / 556,767 100.00%
OOVs 134,998 / 146,240 92.31% 127,356 / 137,227 92.81%
OOV Categories:
No Arabic Cluster 18,111 / 19,247 94.10% 14,304 / 16,441 87.00%
No English Cluster 66,756 / 72,694 91.83% 16,435 / 17,947 91.58%
Neither Cluster 7,423 / 8,283 89.61% 1,650 / 1,959 84.23%
Both Clusters 58,690 / 62,582 93.78% 98,689 / 104,798 94.17%
No-Segmentation 5,641 / 7,284 77.44% 7,379 / 9,441 78.16%

Table 7.1: The segmentation decoder results in terms of accuracy (number of correct sege-
mentations / total number of tokens) on both the dev and blind test sets. The first section
shows the results on all tokens, while the following sections break the tokens down into
categories.

Table 7.1 presents the performance of the best segmenter system in terms of accuracy

on both dev and test sets (the last two columns across all sections). The sections of the

table represent the breakdown of tokens into categories for in depth evaluation. The accu-

racy scores for each of these categories were used to engineer our feature types to ensure

that they generalize to frequent OOVs belonging to those categories. We also make sure,

while automatically generating OOVs in dev/test sets, that we have enough tokens in each

category to guarantee a representative evaluation.

Since the segmenter’s job is to pick a segmentation rule out of a generated list of rules,

we evaluate only on words with more than one rule (multi-choice) which constitute 721,771

tokens of the 1M-token dev set and 693,994 tokens of the 1M-token blind test set. The

rest of the tokens have only one segmentation rule: no segmentation. The first section

of Table 7.1 shows the accuracy of the segmenter on multi-choice tokens. In the second

section, we break down the evaluation to INVs (in-vocabulary words) and OOVs.

Since we might not have Arabic or English clusters for many words in test sets, we

define four categories representing the absence of either cluster, both, or neither. These

categories are mutually exclusive. We also evaluate on OOVs that should not be segmented,
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yet have multiple rules, to reduce our decoder’s over-segmentation. The third section of

Table 7.1 presents evaluation on multi-choice OOV categories. The results on the dev set

carries on to the blind test set.

7.7 Evaluation on Machine Translation

7.7.1 MT Experimental Setup

MT Train/Tune/Test Data

We combine the training, dev, and test sets we used to train and evaluate our segmenter

into one parallel corpus and we use it to train our MT systems. The MT tune, dev, and

test sets, however, are selected from several standard MT test sets. We use three Egyptian

sets from LDC BOLT data with two references (EgyDevV2, EgyDevV3, and EgyTestV2),

and one Levantine set from BBN (Zbib et al., 2012) with one reference which we split into

LevDev and LevTest. We use EgyDevV3 to tune our SMT systems. We use the remaining

sets for development and test on both Egyptian and Levantine. For dev we use EgyDevV2

and LevDev and for test we use EgyTestV2 and LevTest. It is important to note that the

segmenter has never seen these tune/dev/test sets. The segmenter was only trained on the

MT training data.

MT Tools and Settings

We use the open-source Moses toolkit (Koehn et al., 2007) to build our Arabic-English

phrase-based statistical machine translation systems (SMT). Our systems use a standard

phrase-based architecture. The language model for our systems is trained on English Gi-

gaword (Graff and Cieri, 2003). We use SRILM Toolkit (Stolcke, 2002) to build a 5-gram

language model with modified Kneser-Ney smoothing. Feature weights are tuned to max-

imize BLEU on the tuning set using Minimum Error Rate Training (Och, 2003). Results
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dev test
Egy Lev Egy Lev

BLEU MET. BLEU MET. BLEU MET. BLEU MET.
MTUNSEGMENTED 19.2 27.0 13.5 21.3 21.8 28.1 13.3 21.7
MTMORFESSOR 20.8 28.4 13.7 21.6 21.7 29.2 13.6 22.4
MTMADAMIRA-EGY 21.5 29.0 15.2 22.4 23.0 30.0 15.2 23.1
Our Systems:
MTCONTEXT-SENSITIVE 21.0 28.3 15.6 22.9 22.4 29.3 15.6 23.6
MTCONTEXT-INSENSITIVE 21.4 29.2 16.2 23.5 23.0 29.9 16.3 24.0
Our Best System’s Inprovements:
Over MTUNSEGMENTED +2.2 +2.2 +2.7 +2.2 +1.2 +1.8 +3.0 +2.3
Over MTMORFESSOR +0.6 +0.8 +2.5 +1.9 +1.3 +0.7 +2.7 +1.6
Over MTMADAMIRA-EGY -0.1 +0.2 +1.0 +1.1 0.0 -0.1 +1.1 +0.9

Table 7.2: Evaluation in terms of BLEU and METEOR (abbreviated as MET.) of our
two MT systems: S1 and S2 on a dev (first set of columns) and a blind test sets (sec-
ond set of colunms). In the first section we present three baselines: MTUNSEGMENTED,
MTMORFESSOR and MTMADAMIRA-EGY. In the second section we present our two MT systems:
MTCONTEXT-SENSITIVE trained on text segmented by a segmentation system that uses context-
sensitive features, and MTCONTEXT-INSENSITIVE trained on text segmented by a segmentation
system that uses only context-insensitive features. The third section shows the differences
between our best system results and those of the three baselines.

are presented in terms of BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie,

2005). All evaluation results are case insensitive. The English data is tokenized using sim-

ple punctuation-based rules. The Arabic text is also Alif/Ya normalized. For more details

on processing Arabic, see (Habash, 2010).

7.7.2 MT Experiments

We use the same parallel data to train all of our MT systems and the same dev and test sets

to evaluate. The only difference is the preprocessing of the Arabic side of training, dev,

and test data. Table 7.2 shows MT experiment results in terms of BLEU and METEOR on

dev (first set of columns) and blind test (second set of columns).

Baseline Systems

We build three baseline MT systems to compare our systems against. In the first base-

line system we Alif/Yah normalize the Arabic side but we leave it unsegmented. We call
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this baseline MTUNSEGMENTED. The other two baseline systems are based on two previous

research efforts representing two approaches to morphological segmentation. The first

is a tool for language-independent, unsupervised learning of morphology: MORFESSOR

(Creutz and Lagus, 2002) to segment the Arabic side, and the second is a dialect-specific

tool that requires handcrafted resources and is trained on hand-labeled data: MADAMIRA-

EGY, the version of MADAMIRA (Pasha et al., 2014) that handles Egyptian as well as MSA.

To the best of our knowledge, MADAMIRA-EGY is the best system for morphological seg-

mentation of dialectal Arabic. We use these two tools to preprocess Arabic and we name

the resulting two MT systems after them: MTMORFESSOR and MTMADAMIRA-EGY, respectively.

All Arabic textual data (parallel and monolingual) were used to train MORFESSOR.

The first section of Table 7.2 presents results on these baselines. On the dev set,

MTMORFESSOR performs significantly better than MTUNSEGMENTED on Egyptian (1.6% BLEU,

1.4% METEOR) and slightly better on Levantine (0.2% BLEU, 0.3% METEOR). This

could be due to the limited Levantine text in MORFESSOR’s segmentation training data

compared to Egyptian and MSA. MTMADAMIRA-EGY outperforms the other baselines on both

dialects on both metrics. An interesting case is MTMADAMIRA-EGY results on Levantine dev;

it improves over MTUNSEGMENTED by 2.3% BLEU, 2.0% METEOR, and over MTMORFESSOR

by 1.5% BLEU, 0.8% METEOR. MTMADAMIRA-EGY’s good performance on Levantine can

be explained by the fact that these two dialects share many of their dialectal affixes and

clitics (e.g., +�k H+ ‘will’, +�K. b+ ‘simple present’, ½Ê�- -lk "to you") as well as lemmas.

Moreover, most of the phonological differences between Levantine and Egyptian do not

show up in the orthographic form since Arabic writers tend to drop short vowels and nor-

malize some letters such as the three-dotted Jeem h� to single-dotted Jeem h. .This leads

to many Levantine words looking identical to their Egyptian equivalents although they are

pronounced differently.
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Our MT Systems

We present two MT systems to evaluate two of our segmentation models. The first model is

trained using the best performing combination of context sensitive and insensitive features

while the second model uses the best performing combination of context insensitive fea-

tures only (presented in Table 7.1). We call the resulting MT systems: MTCONTEXT-SENSITIVE

and MTCONTEXT-INSENSITIVE, respectively. We present MT results on our systems in the second

section of Table 7.2. MTCONTEXT-INSENSITIVE outperforms MTCONTEXT-SENSITIVE across dialects

and metrics. Investigating the output of both systems shows that the inconsistencies gen-

erated by context-based segmentation outweighs the benefits of disambiguation, especially

that phrase-based statistical machine translation is robust toward infrequent systematic seg-

mentation errors across training, tuning, and test sets.

The third section of Table 7.2 reports the differences between our best system’s results

and those of the three baselines. MTCONTEXT-INSENSITIVE improves over both resource-free

baselines (MTUNSEGMENTED and MTMORFESSOR) across dev sets and metrics ranging from 2.2%

BLEU on Egyptian and 2.7% BLEU on Levantine over MTUNSEGMENTED to 0.6% BLEU on

Egyptian and 2.5% BLEU on Levantine over MTMORFESSOR. These results demonstrate the

usefulness of such approach where resources are unavailable.

When compared to MTMADAMIRA-EGY, however, performance on Egyptian differs from

Levantine. The results on Egyptian are inconclusive: in terms of BLEU, MTMADAMIRA-EGY

leads by 0.1%; while in terms of METEOR, MTCONTEXT-INSENSITIVE leads by 0.2%. These re-

sults mean that our best MT system is on par with MTMADAMIRA-EGY on Egyptian; which we

consider a good result since MADAMIRA-EGY has been optimized for years with a wealth

of dialect and task specific resources. On Levantine, however, our system outperforms

MTMADAMIRA-EGY by 1.0% BLEU, 1.1% METEOR. The results on blind test sets, presented

in the second set of columns of Table 7.2 labeled "test", agree with the results on the dev

sets and confirm their conclusions.
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Reference we see them a lot in the hamra and salehieh markets

System Processed Arabic English Translation
MTUNSEGMENTED bn$wfhn ktyr bswq AlHmrA wAlSAlHyp wAlSAlHyp red market ; we see them influenced a lot
MTMORFESSOR b+ n$wfhn ktyr b+ swq AlHmrA w+ Al+ SAlHyp to see them a lot in the market the red salihiyah ,
MTMADAMIRA-EGY bn$wfhn ktyr b+ swq AlHmrA wAlSAlHyp we see a lot of hamra wAlSAlHyp market
MTCONTEXT-INSENSITIVE bn+ $wf -hn ktyr b+ swq Al+ HmrA w+ AlSAlHyp we see them a lot in souk al hamra and al-saleheyya

Table 7.3: An example Arabic sentence translated by the three baselines and our best sys-
tem.

7.7.3 Example and Discussion

Table 7.3 presents an example Levantine sentence translated by the three baselines and our

best system. While each baseline has its own errors, our system produces a perfect trans-

lation although the reference does not match it word to word due to the several acceptable

transliterations6 of the mentioned proper names found in our MT training data. This re-

sults in penalties by BLEU and, in this example, METEOR; nevertheless, the translation is

sound.

The example contains words with different characteristics that are handled differently

and sometimes similarly by the four systems:

1. The word 	áê
	
¯ñ

�
�

	
�K. bn$wfhn ‘we see them’ has rich Levantine morphology. Unlike

MTMORFESSOR and MTMADAMIRA-EGY our system segments this word to three tokens that

map directly to the three English words of the correct translation.

2. The word �
�ñ��. bswq ‘in market’ has MSA morphology and is segmented cor-

rectly by all systems (except MTUNSEGMENTED) which results in correct translations

(MTCONTEXT-INSENSITIVE translates swq to "Souk", a correct transliteration found in our

MT training data since it is frequently part of a proper noun).

3. The word @QÒmÌ'@ AlHmrA ‘Al Hamra’ (‘Al’ is the definite article in Arabic) is a

6 None of the systems discussed in this work has a transliteration component. All transliterations pro-
duced by these systems (e.g., the three different transliterations of AlSAlHyp) are found in our MT training
data.
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proper noun although the word literally means “red” which led to the mistakes by

MTUNSEGMENTED and MTMORFESSOR. Both MTCONTEXT-INSENSITIVE and MTMADAMIRA-EGY

produce an acceptable transliteration.

4. The word �
éJ
m

Ì'A�Ë@ð wAlSAlHyp ‘and Al Salehieh‘ is the name of the second market

with the conjunction particle ð w ‘and’ attached to it. Both MTCONTEXT-INSENSITIVE and

MTMORFESSOR succeed in segmenting this word to produce an acceptable translation

and transliteration, although MTMORFESSOR fails to produce ‘and’. This word show an

advantage that our segmenter and MORFESSOR has over MADAMIRA-EGY. Since

they learn their morphemes and stems from data, they can better handle morpholog-

ically inflected proper nouns and dialectal/infrequent lemmas that do not appear in

MADAMIRA-EGY’s internal morphological analyzer database.

7.8 Conclusion and Future Directions

In this chapter, we presented an approach to cheaply scale to many dialects without the

need for DA preprocessing tools. This approach attempts at learning an underlying Arabic

preprocessing models for all Arabic varieties including MSA. The approach expects a small

amount of DA-English parallel data along with a sizable amount of MSA-English data.

Our approach learns out-of-context preprocessing rules for dialectal Arabic from unla-

beled monolingual data. We use an unsupervised approach on large quantities of unlabeled

Arabic text to extract a list of out-of-context preprocessing rules with weights estimated

with expectation maximization. We use these rules in another unsupervised learning ap-

proach to automatically label words in the dialectal side of a DA-English parallel corpus.

In a given DA sentence, a word is labeled in-context with its best preprocessing rule which

generates tokens that maximize alignment and translation to English words in the English

translation of the corresponding sentence. This synthetic labeled corpus is used to train
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a supervised segmenter with features designed to capture general orthographic, morpho-

logical, and morphosyntactic behavior in Arabic words in order to generalize to unseen

words.

We evaluated our approach on morphological segmentation and showed significant im-

provements on Egyptian and Levantine compared to other unsupervised segmentation sys-

tems. We also showed that our system is on par with the state-of-the-art morphological

tokenizer for Egyptian Arabic built with supervised learning approaches that require man-

ually labeled data, a large budget, and years to build. This shows that our approach can

cheaply and quickly scale to more dialects while still performing on par with the best su-

pervised learning algorithm. Furthermore, our evaluation on Levantine Arabic showed an

improvement of 3% over an unsegmented baseline, 2.7% over the unsupervised segmenta-

tion system, and 1.1% over the supervised tokenization system, in terms of BLEU. This is

especially important given that our system was not trained on monolingual Levantine text,

which means that Levantine preprocessing rules were not leaned; yet, our segmenter was

able to generalize to Levantine.

In the future, we plan to evaluate our work on more dialects and subdialects where DA-

English are not available. This is analogous to the ADAM tokenization approach, where

in-vocabulary stems are given a chance to be translated by separating unseen dialectal

affixes from them.

We also plan to apply our approach to tasks other than morphological segmentation.

In this work we extracted rules from Arabic clusters where a stem is a substring from the

source word. While this helped split affixes from stems, it did not attempt at modifying

the stem or the affixes. The Arabic cluster for a given word contains words that are not

substrings, yet they are very close to the source word. Here are two examples:

1. Some words are a spelling variation of the source word. We can use Levenstein

distance to identify these words (with a threshold cost) and add stem-to-stem rules.
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When these rules are combined with other rules in the segmentation graph, the rule

expansion step will produce rules that perform orthographic normalization side by

side with morphological segmentation. While Levenstein distance can be used to

penalize the a2s score, we might need to add a character mutation probability to the

model to be estimated with EM. This probability can later be used as a feature in the

segmenter to allow unseen to be normalized.

2. Some words are a translation/synonym of the source word. This could be a syn-

onym in the same dialect or a translation to another dialect (including MSA). This

motivates a replacement for the rule-based ELISSA approach where infrequent words

are translated to frequent words as opposed to MSA equivalents. Like the previous

item, stem-to-stem rules can be added and extended in the rule expansion step.
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Chapter 8

Conclusion and Future Directions

In the research presented in this thesis, we worked on improving the quality of Dialectal

Arabic to English machine translation. We categorize our dialect translation approaches

into three categories based on the availability of resources (parallel data and preprocessing

tools) for these dialects. The three categories are: dialects that have virtually no resources,

dialects that have some DA-English data and preprocessing tools, and dialects with DA-

English data and no preprocessing tools. We build tools and resources that use and extend

the currently available resources to quickly and cheaply scale to more dialects and sub-

dialects. Following is a summary of contributions followed by a discussion of future work

directions.

8.1 Summary of Contributions and Conclusions

The first challenge we targeted in this thesis is translating dialects that have virtually no

resources. We proposed an MSA-pivoting pipeline that uses a morphological analyzer and

an DA-to-MSA MT system built with rule-based approaches.

• ADAM and morphological tokenization. The biggest challenge for translating

these dialects with an MSA-to-English SMT system is the large number of out-of-
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vocabulary (OOV) words. This is largely caused by dialectal morphemes attaching

to words many of which come from MSA. A quick and cheap approach to handle

OOVs of these dialects is to build a morphological segmentation or tokenization tool

to break morphologically-complex words into simpler, more frequent, tokens. For

this purpose, we presented ADAM, an analyzer of dialectal Arabic morphology, that

can be quickly and cheaply created by extending existing morphological analyzers

for MSA or other Arabic varieties. The simplicity of ADAM rules makes it easy to

use crowdsourcing to scale ADAM to cover dialects and sub-dialects. We presented

our approach to extending MSA clitics and affixes with dialectal ones although the

ADAM technique can be used to extend stems as well. We showed how using ADAM

to tokenize dialectal OOV words can improve the translation quality of an MSA-to-

English SMT system by 0.35% BLEU.

• ELISSA and MSA-pivoting. Translating dialectal words and phrases to their MSA

equivalents, instead of just tokenizing them, gives the MSA-to-English SMT system

a better chance to translate them correctly. There is virtually no DA-MSA parallel

data to train an SMT system. Therefore, we presented ELISSA, a tool for DA-to-

MSA machine translation. ELISSA identifies dialectal word and phrases that need

to be translated to MSA, and employs a rule-based MT approach that relies on mor-

phological analysis, morphosyntactic transfer rules and dictionaries, in addition to

language models to produce MSA translations of dialectal sentences. Using ELISSA

to produce MSA versions of dialectal sentences as part of an MSA-pivoting DA-

to-English MT solution, improves BLEU scores on three blind test sets by: 0.95%

absolute BLEU (or 2.5% relative) for a speech multi-dialect (Iraqi, Levantine, Gulf,

Egyptian) test set, 1.41% absolute BLEU (or 15.4% relative) for a web-crawled Lev-

antine test set, and 0.61% absolute BLEU (or 3.2% relative) for a web-crawled Egyp-

tian test set.
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The second challenge we were concerned with is translating dialects that have parallel

data as well as preprocessing tools which allows for the creation of a direct-translation

DA-to-English SMT system. The questions are whether the MSA-pivoting approach is

still relevant and whether using the MSA-English data can help.

• Improving MSA-pivoting with DA-English data. Using the DA-English data, we

built three direct translation SMT systems: one trained on DA-English corpus only,

one trained on MSA-English corpus only, and one trained on the two corpora com-

bined. We showed that MSA-pivoting approaches to DA-to-English MT can still

help when the available parallel data for a dialect is relatively small compared to

MSA. The key for the improvements we presented is to exploit the small DA-English

data to create automatically generated parallel corpora on which SMT systems can

be trained. We translated the DA side of the DA-English parallel data to MSA us-

ing ELISSA, and added that data to the (DA+MSA)-English training data on which

an SMT system was trained. That SMT system, when combined with ELISSA for

preprocessing, outperforms the best direct translation approach by 0.56% BLEU.

The main reason for this improvement is that the SMT system is now familiar with

ELISSA’s output and can correct systematic errors performed by ELISSA. We pre-

sented two new versions of ELISSA that use the synthetic parallel data: Statistical

ELISSA and Hybrid ELISSA. However, both systems failed to improve the transla-

tion quality.

• System combination. Although our MSA-pivoting approach outperforms the three

direct translation systems discussed above, we showed that combining these four

systems can further improve the translation quality. We presented a sentence-level

classification approach for machine translation system combination for diglossic lan-

guages. Our approach uses features on the source language to determine the best

baseline MT system for translating a sentence. We get a 1.0% BLEU improvement
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over the best baseline single MT system. This proves that these different DA-to-

English MT approaches complement each other in interesting ways and that their

combination could lead to better overall performance by benefiting from the strengths

while avoiding the weaknesses of each individual system. This is possible due to the

diglossic nature of the Arabic language.

Finally, we proposed an unsupervised approach to model dialects from scratch and

build preprocessing tools from small amounts of parallel data to cheaply and quickly scale

to many dialects and sub-dialects. While this approach can be used to translate dialects

with DA-English data but no preprocessing tools, we deliberately ignore DA preprocess-

ing tools, if they exists, to build a unified preprocessing model for dialects. To do so,

our approach relies heavily on an abundant resource: monolingual text, in addition to any

available DA-English corpora. We presented a morphological segmentation system as an

example of our approach. A system like this provides a huge boost to MT since it dramati-

cally reduces the size of the vocabulary.

• Learning morphological segmentation options from monolingual data. A mor-

phological segmentation system needs a tool that provides a list of segmentation

options for an input word. We presented an unsupervised learning approach to build

such a tool from word embeddings learned from monolingual data. This tool pro-

vides morphological segmentation options weighted, out-of-context, using expecta-

tion maximization.

• Morphological segmentation for MT purposes. We use the tool above in another

unsupervised learning approach to automatically label words in the dialectal side of

a DA-English parallel corpus. In a given DA sentence, a word is labeled in-context

with its best preprocessing rule which generates tokens that maximize alignment and

translation to English words in the English translation of the corresponding sentence.
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This synthetic labeled corpus is used to train a supervised segmenter with features

designed to capture general orthographic, morphological, and morphosyntactic be-

havior in Arabic words in order to generalize to unseen words. We evaluated our

approach on morphological segmentation and showed significant improvements over

another unsupervised segmentation system ranging from 1.3% BLEU (on Egyptian)

to 2.7% (on Levantine). We also showed that our system is on par with the state-of-

the-art morphological tokenizer for Egyptian Arabic, MADAMIRA-EGY, built with

supervised learning approaches that require manually labeled data, a large budget,

and years to build. This shows that our approach can cheaply and quickly scale to

more dialects while still performing on par with the best supervised learning algo-

rithm. Our evaluation on Levantine Arabic against MADAMIRA-EGY showed an

improvement of 1.1% BLEU. This is especially important given that our system was

not trained on monolingual Levantine text, which means that Levantine preprocess-

ing rules were not leaned; yet, our segmenter was able to generalize to Levantine.

8.2 Future Directions

In this section, we discuss the different research directions that we may explore in the future

for each of the major contributions we discussed throughout this thesis.

8.2.1 Extending Existing Preprocessing Models

This direction builds on the currently available linguistic modeling of Arabic and its dialect

to build lemma:feature-based morphological analyzers and morpho-syntactic translation

systems.

ADAM and morphological tokenization for MT. Regarding rule-based morphological

segmentation for dialects with no resources, we plan to extend ADAM coverage of current
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dialects and new dialects by adding dialectal stems in two ways:

1. Copying and modifying MSA stems with SADA-like rules. The mutations of

many dialectal stems from MSA stems follow certain patterns than can be captured

with SADA-like rules. For example, for a verb that belongs to a three-letter root with

duplicate last letter (e.g., Hbb ‘to love’ and rdd ‘to reply’), the stem that forms the

verb with first person subject (e.g., in MSA, >aHobabotu ‘I love’ and radadotu ‘I

reply’) is relaxed with a ‘y’ in Egyptian and Levantine (e.g, Hab∼ayt and rad∼ayt).

2. Importing DA-MSA Lexicons. DA-MSA dictionaries and lexicons, whether on the

surface form level or the lemma level, can be selectively imported to ADAM database.

ELISSA and the pivoting approach. In addition to extending ELISSA’s coverage in the

handled dialects and to new dialects with handcrafted rules, we plan to automatically learn

rules from limited available DA-English data. In Chapter 5 we used sentence-level pivoting

techniques to synthesize parallel data. We plan to use other pivoting techniques such as

phrase table pivoting to create DA-to-MSA SMT systems. We can use these DA-MSA

phrase tables to automatically learn ELISSA’s morpho-syntactic transfer rules, as well as

creating better Hybrid ELISSA models.

8.2.2 Modeling Dialect Preprocessing From Scratch

We plan to evaluate the work we discussed in Chapter 7 on more dialects and subdialects

where DA-English are not available. This is analogous to the ADAM tokenization approach,

where in-vocabulary stems are given a chance to be translated by separating unseen dialec-

tal affixes from them.

We also plan to apply our approach to tasks other than morphological segmentation.

While the rules we extracted from Arabic clusters where a stem is a substring from the

source word helped split affixes from stems, it did not attempt at modifying the stem or the
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affixes. The Arabic cluster for a given word contains words that are not substrings, yet they

are very close to the source word. Here are two examples:

1. Some words are a spelling variation of the source word. We can use Levenstein

distance to identify these words (with a threshold cost) and add stem-to-stem rules.

When these rules are combined with other rules in the segmentation graph, the rule

expansion step will produce rules that perform orthographic normalization side by

side with morphological segmentation. While Levenstein distance can be used to

penalize the a2s score, we might need to add a character mutation probability to the

model to be estimated with EM. This probability can later be used as a feature in the

segmenter to allow unseen to be normalized.

2. Some words are a translation/synonym of the source word. The five levels of sen-

tence dialectness discussed in Chapter 1 pose great challenges to machine translation.

Although our system combination work alleviated this problem, the biggest error we

found in our manual error analysis was code switching within the same sentence.

Since word embedding builds the word’s vector representation while predicting its

context, the varying code switching across all five levels, when all monolingual data

are combined, provides a great help for our embedding-based monolingual cluster-

ing. This is because the majority of code switching happens between the speaker’s

dialect and MSA, and as a result, the same MSA context surrounding words of dif-

ferent dialects brings these words’ vectors together in the same vector space. This

results in Arabic clusters with synonyms in the same dialect and translations across

dialects (including MSA). This motivates a replacement for the rule-based ELISSA

approach where infrequent words are translated to frequent words as opposed to

MSA equivalents. Like the previous item, stem-to-stem rules can be added and ex-

tended in the rule expansion step.
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8.2.3 System Combination of All Approaches

We plan on experimenting with different system combination architectures that combine all

approaches discussed above and direct translation models. To better handle code switching

within the same sentences, we plan to explore confusion-network combination and re-

ranking techniques based on target language features along side source language features

extracted from code switching points in the DA sentence.
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