312 research outputs found

    A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks

    Get PDF
    We consider a problem arising in the design of green wireless local area networks. Decisions on powering-on a set of access points (APs), via the assignment of one power level (PL) to each opened AP, and decisions on the assignment of the user terminals (UTs) to the opened APs, have to be taken simultaneously. The PL assigned to an AP affects, in a nonlinear way, the capacity of the connections between the AP and the UTs that are assigned to it. The objective is to minimize the overall power consumption of the APs, which has two components: location/capacity dimensioning costs of the APs; assignment costs that depend on the total demands assigned to the APs. We develop a branch-and-Benders-cut (BBC) method where, in a non-standard fashion, the master problem includes the variables of the Benders subproblem, but relaxes their integrality. The BBC method has been tested on a large set of instances, and compared to a Benders decomposition algorithm on a subset of instances without assignment costs, where the two approaches can be compared. The computational results show the superiority of BBC in terms of solution quality, scalability and robustness

    Bender's Decomposition for Optimization Design Problems in Communication Networks

    Get PDF
    Various types of communication networks are constantly emerging to improve connectivity services and facilitate the interconnection of various types of devices. This involves the development of several technologies, such as device-to-device communications, wireless sensor networks and vehicular communications. The various services provided have heterogeneous requirements on the quality metrics such as throughput, end-to-end latency and jitter. Furthermore, different network technologies have inherently heterogeneous restrictions on resources, for example, power, interference management requirements, computational capabilities, and so on. As a result, different network operations such as spectrum management, routing, power control and offloading need to be performed differently. Mathematical optimization techniques have always been at the heart of such design problems to formulate and propose computationally efficient solution algorithms. One of the existing powerful techniques of mathematical optimization is Benders Decomposition (BD), which is the focus of this article. Here, we briefly review different BD variants that have been applied in various existing network types and different design problems. These main variants are the classical, the combinatorial, the multi-stage, and the generalized BD. We discuss compelling BD applications for various network types including heterogeneous cellular networks, infrastructure wired wide area networks, smart grids, wireless sensor networks, and wireless local area networks. Mainly, our goal is to assist the readers in refining the motivation, problem formulation, and methodology of this powerful optimization technique in the context of future networks. We also discuss the BD challenges and the prospective ways these can be addressed when applied to communication networks' design problems

    Optimal Access Point Power Management for Green IEEE 802.11 Networks

    Get PDF
    In this paper, we present an approach and an algorithm aimed at minimising the energy consumption of enterprise Wireless Local Area Networks (WLANs) during periods of low user activity. We act on two network management aspects: powering off some Access Points (APs), and choosing the level of transmission power of each AP. An efficient technique to allocate the user terminals to the various APs is the key to achieving this goal. The approach has been formulated as an integer programming problem with nonlinear constraints, which comes from a general but accurate characterisation of the WLAN. This general problem formulation has two implications: the formulation is widely applicable, but the nonlinearity makes it NP-hard. To solve this problem to optimality, we devised an exact algorithm based on a customised version of Benders’ decomposition method. The computational results proved the ability to obtain remarkable power savings. In addition, the good performance of our algorithm in terms of solving times paves the way for its future deployment in real WLANs.publishedVersio

    Distributed Power Generation Scheduling, Modelling and Expansion Planning

    Get PDF
    Distributed generation is becoming more important in electrical power systems due to the decentralization of energy production. Within this new paradigm, new approaches for the operation and planning of distributed power generation are yet to be explored. This book deals with distributed energy resources, such as renewable-based distributed generators and energy storage units, among others, considering their operation, scheduling, and planning. Moreover, other interesting aspects such as demand response, electric vehicles, aggregators, and microgrid are also analyzed. All these aspects constitute a new paradigm that is explored in this Special Issue

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Robust optimisation of green wireless LANs under rate uncertainty and user mobility

    Get PDF
    We present a robust optimisation approach to energy savings in wireless local area networks, that incorporates both link capacity fluctuations and user mobility under Bertsimas and Sim's robust optimization paradigm. Preliminary computational results are discussed

    Optimizing performance and energy efficiency of group communication and internet of things in cognitive radio networks

    Get PDF
    Data traffic in the wireless networks has grown at an unprecedented rate. While traditional wireless networks follow fixed spectrum assignment, spectrum scarcity problem becomes a major challenge in the next generations of wireless networks. Cognitive radio is a promising candidate technology that can mitigate this critical challenge by allowing dynamic spectrum access and increasing the spectrum utilization. As users and data traffic demands increases, more efficient communication methods to support communication in general, and group communication in particular, are needed. On the other hand, limited battery for the wireless network device in general makes it a bottleneck for enhancing the performance of wireless networks. In this thesis, the problem of optimizing the performance of group communication in CRNs is studied. Moreover, energy efficient and wireless-powered group communication in CRNs are considered. Additionally, a cognitive mobile base station and a cognitive UAV are proposed for the purpose of optimizing energy transfer and data dissemination, respectively. First, a multi-objective optimization for many-to-many communication in CRNs is considered. Given a many-to-many communication request, the goal is to support message routing from each user in the many-to-many group to each other. The objectives are minimizing the delay and the number of used links and maximizing data rate. The network is modeled using a multi-layer hyper graph, and the secondary users\u27 transmission is scheduled after establishing the conflict graph. Due to the difficulty of solving the problem optimally, a modified version of an Ant Colony meta-heuristic algorithm is employed to solve the problem. Additionally, energy efficient multicast communication in CRNs is introduced while considering directional and omnidirectional antennas. The multicast service is supported such that the total energy consumption of data transmission and channel switching is minimized. The optimization problem is formulated as a Mixed Integer Linear Program (MILP), and a heuristic algorithm is proposed to solve the problem in polynomial time. Second, wireless-powered machine-to-machine multicast communication in cellular networks is studied. To incentivize Internet of Things (IoT) devices to participate in forwarding the multicast messages, each IoT device participates in messages forwarding receives Radio Frequency (RF) energy form Energy Transmitters (ET) not less than the amount of energy used for messages forwarding. The objective is to minimize total transferred energy by the ETs. The problem is formulated mathematically as a Mixed Integer Nonlinear Program (MINLP), and a Generalized Bender Decomposition with Successive Convex Programming (GBD-SCP) algorithm is introduced to get an approximate solution since there is no efficient way in general to solve the problem optimally. Moreover, another algorithm, Constraints Decomposition with SCP and Binary Variable Relaxation (CDR), is proposed to get an approximate solution in a more efficient way. On the other hand, a cognitive mobile station base is proposed to transfer data and energy to a group of IoT devices underlying a primary network. Total energy consumed by the cognitive base station in its mobility, data transmission and energy transfer is minimized. Moreover, the cognitive base station adjusts its location and transmission power and transmission schedule such that data and energy demands are supported within a certain tolerable time and the primary users are protected from harmful interference. Finally, we consider a cognitive Unmanned Aerial Vehicle (UAV) to disseminate data to IoT devices. The UAV senses the spectrum and finds an idle channel, then it predicts when the corresponding primary user of the selected channel becomes active based on the elapsed time of the off period. Accordingly, it starts its transmission at the beginning of the next frame right after finding the channel is idle. Moreover, it decides the number of the consecutive transmission slots that it will use such that the number of interfering slots to the corresponding primary user does not exceed a certain threshold. A mathematical problem is formulated to maximize the minimum number of bits received by the IoT devices. A successive convex programming-based algorithm is used to get a solution for the problem in an efficiency way. It is shown that the used algorithm converges to a Kuhn Tucker point
    corecore