
A Branch-and-Benders-Cut Method for Nonlinear Power Design in

Green Wireless Local Area Networks

Bernard Gendron1

CIRRELT and DIRO, Université de Montréal, Montréal, Canada

Maria Grazia Scutellà

Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Rosario G. Garroppo

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy

Gianfranco Nencioni

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy

Luca Tavanti

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy

Abstract

We consider a problem arising in the design of green wireless local area networks. Decisions
on powering-on a set of access points (APs), via the assignment of one power level (PL) to
each opened AP, and decisions on the assignment of the user terminals (UTs) to the opened
APs, have to be taken simultaneously. The PL assigned to an AP affects, in a nonlinear way,
the capacity of the connections between the AP and the UTs that are assigned to it. The
objective is to minimize the overall power consumption of the APs, which has two compo-
nents: location/capacity dimensioning costs of the APs; assignment costs that depend on the
total demands assigned to the APs. We develop a branch-and-Benders-cut (BBC) method
where, in a non-standard fashion, the master problem includes the variables of the Benders
subproblem, but relaxes their integrality. The BBC method has been tested on a large set
of instances, and compared to a Benders decomposition algorithm on a subset of instances
without assignment costs, where the two approaches can be compared. The computational
results show the superiority of BBC in terms of solution quality, scalability and robustness.

Keywords: Integer programming, Benders decomposition, Branch-and-cut, Green wireless
local area network, Network design

Email addresses: Bernard.Gendron@cirrelt.ca (Bernard Gendron), scut@di.unipi.it (Maria
Grazia Scutellà), Rosario.Garroppo@iet.unipi.it (Rosario G. Garroppo), Gianfranco
Nencioni@iet.unipi.it (Gianfranco Nencioni), Luca Tavanti@iet.unipi.it (Luca Tavanti)

1Corresponding author

Preprint submitted to Elsevier March 6, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/54924405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

We address an optimization problem arising in the design of green (or energy-saving)

wireless local area networks (WLANs). We focus on the design of efficient reconfiguration

algorithms to reduce the power consumption of the WLAN infrastructure when the load

is scarce. Most of the currently deployed enterprise WLANs are continuously operated at

full power, i.e., all access points are always turned on with the transmission power set to

the maximum. This produces a considerable waste of energy, because the same power is

employed at the peak hours and during the off peak periods. We address this issue by

proposing an optimization model that is used to take two kinds of decisions: (i) associate

each user with one of the available access points and (ii) set the transmission power level of

each access point.

The area of wireless network design requires the development of optimization models

and methods (see [1] for an overview of the main challenges in this field). Recent contribu-

tions include the development of a nested Benders decomposition method [2] that combines

classical Benders decomposition [3] with combinatorial Benders decomposition [4]; and the

derivation of pure 0-1 programming formulations, tightened with strong valid inequalities [5]

(based on the Ph.D. Thesis of the first author [6]).

The problem we consider is defined on a bipartite network structure, with a set of access

points (APs) that must be assigned to user terminals (UTs) in order to satisfy the user

demands, without exceeding the capacity of the connections between the APs and the UTs.

Each UT must be assigned to exactly one powered-on AP. Several different power levels

(PLs) are available for powering on each AP. If an AP is powered-on, then exactly one PL

must be associated with it.

A key issue arises concerning the capacity of the connections between the APs and the

UTs: the specific PL assigned to a (powered-on) AP affects, in a nonlinear way, the capacity

of the connections between the AP and the UTs assigned to it. The only assumption is

that the transmission capacity between a UT and an AP is a nonnegative nondecreasing

function of the radiated power at the AP, which will be formally defined in Section 2. As a

result, the optimization model is an integer nonlinear program, a class of notoriously difficult

mathematical programs.

2



The objective is to minimize the overall power consumption of the APs, which has two

components. The first component includes the location and capacity dimensioning costs

of the APs, i.e., the costs associated with powering-on APs and assigning a PL to each of

them. The second component concerns the assignment costs between UTs and APs, which

are given by a linear dependency between the power consumed by the APs and the total

demands assigned to the APs. In an earlier contribution by the same authors [7], it was

assumed that the power consumed by an AP does not depend on the demands assigned to

that AP and, therefore, only the first component of the objective function was considered.

The presence of the second component, called UT assignment costs, yields a more realistic

problem formulation that also complicates the development of a solution method, as discussed

below.

We propose to address the intrinsic difficulties of the problem, i.e., nonlinear capacity

constraints and complex objective function, by developing an exact algorithm inspired by

Benders decomposition [3]. Since the Benders subproblem in our approach is a 0-1 pro-

gram and not a linear program (LP), we use canonical cuts [8], as in logic-based Benders

decomposition [9] and combinatorial Benders decomposition [4], instead of the classical LP

duality-based Benders cuts. The resulting Benders cuts are improved by simple arguments

(also used in [7]) based on the assumption that the transmission capacity functions are

nondecreasing.

In a non-standard fashion, our master problem includes the variables of the Benders

subproblem, but relaxes their integrality. This feature provides a simple, yet efficient, way to

consider the UT assignment costs in the master problem to ensure that effective lower bounds

are computed. Linear approximations of the nonlinear transmission capacity functions are

also included in the formulation of the master problem. As a result, the master problem is a

mixed-integer linear programming (MILP) relaxation, which we solve with a state-of-the-art

MILP software tool (a similar approach that solves a nonlinear integer program through the

addition of Benders cuts in a MILP relaxation can be found in [10]). Instead of solving one

MILP master problem at every iteration, we use a branch-and-Benders-cut (BBC) method,

also called Benders-based branch-and-cut method, where a single branch-and-cut (B&C) tree

is constructed and the Benders cuts are added during the exploration of the B&C tree.

3



In the constraint programming (CP) literature, this algorithmic scheme is known as

branch-and-check [11] and has been the object of empirical work comparing it to a more tra-

ditional iterative Benders decomposition approach [12]. In these CP references, the Benders

subproblem is solved with CP and the Benders cuts are based on the notion of inference dual,

introduced in logic-based Benders decomposition [9]. In the operations research (OR) liter-

ature, BBC has attracted the attention of many researchers recently, as it makes better use

of the reoptimization capabilities of the MILP solvers than the classical Benders decompo-

sition approach. This is discussed, for instance, in [13], which uses an interior-point method

to solve a Benders reformulation in a BBC framework, applying it to facility location and

network design problems. Other recent implementations of the BBC method include: [14],

which compares BBC to classical Benders decomposition for a multi-layer network design

problem, showing significant speedups on average; [15], which combines the generation of

outer approximation and Benders cuts in a BBC method for the single allocation hub loca-

tion problem under congestion; [16], where a BBC method is used to solve a hop-constrained

survivable network design problem; [17], which uses BBC algorithms for solving production

routing problems under demand uncertainty. In all these OR references, the Benders sub-

problem is an LP and the Benders cuts are based on LP duality, as in the approach originally

proposed by Benders [3]. As mentioned above, our Benders subproblem is a 0-1 program

and we make use instead of canonical cuts [8]. Canonical cuts in a wireless network design

problem (different from ours) have also been used in [2]. A major difference between existing

contributions and our paper is that our master problem includes the variables of the Benders

subproblem, but relaxes their integrality. In the above references, a traditional partitioning

of the variables into master problem variables and subproblem variables is used. Note that

this traditional partitioning has been questioned recently in the context of stochastic pro-

gramming [18], where a new approach called partial decomposition was proposed, in which

a subset of scenario subproblems are kept in the master problem.

This paper is a follow-up on an earlier contribution by the same authors [7] on the spe-

cial case without UT assignment costs, for which a Benders decomposition method has been

proposed. This method corresponds to a cutting-plane approach where feasibility cuts are

iteratively added to the master problem, thanks to the information provided when solving

4



the Benders subproblem. The latter is a feasibility problem, because of the absence of UT as-

signment costs. This is in contrast with the Benders subproblem defined in the present paper,

which is an optimization problem, given the inclusion of UT assignment costs. This is a ma-

jor difference, as the presence of such additional assignment costs prevents a straightforward

extension of the Benders decomposition approach used in [7], as we clarify in Section 3.5.

Another notable difference is that the master problem in [7] does not include the variables of

the Benders subproblem. The decomposition adopted in [7] thus follows a traditional vari-

able partitioning approach as in the original Benders method [3], where the variables of the

master problem and those of the subproblem do not overlap. In Section 4, we compare the

performance of the two methods on the special case without UT assignment costs addressed

in [7]. The computational results show the superiority of the proposed BBC approach in

terms of solution quality, scalability and robustness.

The paper is organized as follows. In Section 2, we describe the problem, which we denote

as GWLANP, and we present the integer nonlinear programming model we propose for the

GWLANP. The BBC method is described in Section 3. Computational results from exper-

iments on randomly generated realistic instances are reported in Section 4. The conclusion

summarizes our findings and identifies promising research directions.

2. Problem Description and Formulation

In order to state the GWLANP in a formal way, we need to characterize the energy

consumed by the powered-on APs and the capacity of the connections between the APs and

the UTs. First, let us denote by I, J and K the sets of UTs, APs and PLs, respectively.

Concerning the energy consumed by the powered-on APs, the power consumed by j ∈ J

is composed of a fixed component and of two variable components. The fixed component,

denoted p0, is bound to the mere fact that the device is powered-on, and therefore, it en-

compasses AC/DC conversion, basic circuitry powering, dispersion, etc. The first variable

power component associated with j ∈ J is given by its radiated power πj, which depends

on the PL assigned to j ∈ J . More precisely, if k ∈ K is assigned to j ∈ J , then we have

πj = pk, where pk denotes the power provided by k ∈ K. Regarding the second variable

power component, it linearly depends on the total demands assigned to j ∈ J , denoted Tj.

5



Therefore, the energy consumed by a powered-on AP j ∈ J is given by p0 +πj +µjTj, where

µj is a proportionality coefficient.

With regard to the capacity of the connections between the APs and the UTs, a key

issue is that the specific PL assigned to a powered-on AP affects, in a nonlinear way, the

capacity of the connections between the AP and the UTs assigned to it. In general, the

capacity function can be determined by means of two steps (as reported, for example, in

[19]). First, the received power is estimated starting from the transmitted power and the

path loss model, which takes into account the propagation properties of the considered

network scenario. Examples of path loss models can be found in [20]. Then, the capacity

can be extracted from the computed signal-to-noise ratio (SNR) and other parameters, such

as the specific modulation and coding schemes, as well as the medium access overhead.

Examples of curves reporting the relation between the capacity and the SNR can be found

in [21, 22]. In addition, an experimental study where the “capacity vs. transmitted power”

curves are estimated for different system configurations is presented in [23].

Here, the only assumption we make is that the transmission capacity between i ∈ I and

j ∈ J , denoted rij(πj), is a nonnegative nondecreasing function of the radiated power πj.

This assumption is widely supported by both theoretical and experimental studies, such as

the ones cited above. In practice, the transmission capacity function satisfies the following

conditions:

• There exists a threshold γij > 0 such that rij(πj) = 0 if πj ≤ γij and rij(πj) > 0

whenever πj > γij. Thus, j ∈ J can only be assigned to i ∈ I when its radiated power

πj remains above γij.

• rij(πj) ≤ rmax for any πj, where rmax is the maximum rate achievable by any physical

connection.

In all instances used in our computational experiments (see Section 4), we use the following

piecewise linear transmission capacity function:

rij(πj) =

{
0, if πj ≤ γij,
min{αijπj, rmax}, otherwise,

(1)

where αij denotes a transmission loss factor between j ∈ J and i ∈ I. It is important to

note, however, that our BBC method does not depend on this particular function and can

6



be generalized to any nonnegative nondecreasing transmission capacity function. The BBC

method only requires an upper linear approximation ruij(πj) to rij(πj). In the case of the

function used in our instances, we simply use ruij(πj) = αijπj.

In the GWLANP, the decisions to be taken are what APs to power-on, how to assign

a PL to each powered-on AP and how to assign exactly one powered-on AP to each UT.

Such decisions must be taken in such a way as to satisfy the demand wi for each i ∈ I, by

respecting the nonlinear transmission capacities between APs and UTs. As indicated above,

the objective is to minimize the overall power consumption of the powered-on APs. The

problem can be seen as a discrete location problem, where the capacity to assign to each

location (which is the power level in this context) also has to be decided. In other words,

the GWLANP is a particular case of a broader class of location-design problems, where both

location and capacity dimensioning decisions must be taken.

To model the GWLANP, we define the following sets of binary variables:

• xij = 1, if AP j ∈ J is assigned to UT i ∈ I; 0, otherwise; (UT assignment variables)

• yjk = 1, if PL k ∈ K is assigned to AP j ∈ J ; 0, otherwise. (PL assignment variables)

Given the definitions of these variables, we derive the following relationships for the

radiated power of j ∈ J and for the total demands assigned to j ∈ J , respectively: πj =∑
k∈K pkyjk and Tj =

∑
i∈I wixij. The model can then be written as follows:

z(GWLANP ) = min
∑
j∈J

{∑
k∈K

(p0 + pk)yjk +
∑
i∈I

µjwixij

}
(2)

∑
j∈J

xij = 1, i ∈ I, (3)

∑
k∈K

yjk ≤ 1, j ∈ J , (4)

xij ≤
∑
k∈K

yjk, i ∈ I, j ∈ J , (5)

∑
i∈I|rij(πj)>0

wixij
rij(πj)

≤ 1, j ∈ J , (6)

xij ∈ {0, 1}, i ∈ I, j ∈ J , (7)

yjk ∈ {0, 1}, j ∈ J , k ∈ K. (8)

7



The objective (2) is to minimize the total power consumption, which depends on the powering-

on decisions, on the power levels assigned to the powered-on APs, and on the total demands

assigned to the powered-on APs. Equations (3) are the single assignment constraints that

impose that exactly one AP must be assigned to each UT. Inequalities (4) impose that at

most one PL can be selected for each AP. Inequalities (5) ensure that an AP cannot be

assigned to any UT if the AP is powered-off. Inequalities (6) are the capacity constraints for

each AP. Relations (7) and (8) define the integrality of the variables. Note that, given that

at most one PL can be chosen for each AP, it is not necessary to associate further binary

variables with the APs in order to state the powering-on decisions, since such decisions are

captured by the terms
∑

k∈K yjk. This is why the fixed power cost p0 is part of the cost

associated with the yjk variables in the objective function.

Note that the problem considered in [7] can be seen as a special case of the GWLANP

where, for each j ∈ J , µj = µ ≥ 0, a proportionality coefficient that is constant over all

APs. In that case, the UT assignment costs can be removed from the objective function,

since ∑
j∈J

∑
i∈I

µwixij = µ
∑
i∈I

wi

(∑
j∈J

xij

)
= µ

∑
i∈I

wi,

i.e., the UT assignment costs are the same, irrespective of the solution. We call this special

case the GWLANP without UT assignment costs.

3. The Branch-and-Benders-Cut Method

In this section, we present the BBC method for solving the GWLANP. Sections 3.1 and

3.2 describe the master problem and the Benders subproblem, respectively. The different

types of Benders cuts added during the course of the algorithm are introduced in Section

3.3. Section 3.4 gives a formal statement of the BBC algorithm, as well as a proof of

convergence. Finally, Section 3.5 is dedicated to an extensive comparison between the BBC

method and the Benders decomposition algorithm proposed in [7] for the GWLANP without

UT assignment costs.

3.1. Master Problem

In order to solve the nonlinear model (2)-(8), we propose a BBC method. As in classical

Benders decomposition, the approach consists in solving a master problem, which is a re-

8



laxation of model (2)-(8), to which we gradually add Benders cuts. In a non-standard way,

our master problem involves both the PL assignment variables yjk and the UT assignment

variables xij. The master problem is denoted Mxy and is initially defined as:

z(Mxy) = min
∑
j∈J

{∑
k∈K

(p0 + pk)yjk +
∑
i∈I

µjwixij

}
(9)

subject to (3), (4), (5), (8), and ∑
i∈I|ruij(πj)>0

wixij
ruij(πj)

≤ 1, j ∈ J , (10)

xij ∈ [0, 1], i ∈ I, j ∈ J . (11)

Constraints (10) define a relaxation of the nonlinear capacity constraints (6) obtained by

replacing functions rij(πj) by upper linear approximations ruij(πj). With the transmission

capacity function given in equation (1) and its linear upper approximation ruij(πj) = αijπj,

constraints (10) would take the following form:∑
i∈I

wixij
αij

≤
∑
k∈K

pkyjk, j ∈ J .

Constraints (11) define the UT assignment variables as continuous between 0 and 1. To-

gether, these two sets of constraints, along with constraints (3), (4), (5), (8), define a MILP

relaxation of model (2)-(8). During the course of the BBC algorithm, Benders cuts are

gradually added to the master problem, as we see below.

3.2. Benders Subproblem

The master problem is solved by a B&C method implemented in a state-of-the-art MILP

solver (we use CPLEX, version 12.5.1). Each time an integer solution ȳ is obtained during

the exploration of the B&C tree, we solve the following Benders subproblem, denoted Sx(ȳ):

z(Sx(ȳ)) = min
∑
j∈J̄

{∑
k∈K

(p0 + pk)ȳjk +
∑
i∈I

µjwixij

}
(12)

xij ∈ {0, 1}, i ∈ I, j ∈ J̄ , (13)∑
j∈J̄ |r̄ij>0

xij = 1, i ∈ I, (14)

9



∑
i∈I|r̄ij>0

xijwi
r̄ij
≤ 1, j ∈ J̄ (15)

xij = 0, (i, j) ∈ I × J̄ | r̄ij = 0, (16)

where J̄ ⊆ J is the set of APs that are powered-on according to ȳ (i.e.,
∑

k∈K ȳjk = 1), while

r̄ij = rij(
∑

k∈K pkȳjk) is the capacity of the connection between i ∈ I and j ∈ J̄ induced by

the power level assignment given by ȳ. Note that the integrality of the xij variables is now

reimposed in the Benders subproblem and that the capacity constraints (15) are now linear.

Also observe that inequalities (15) have, in general, the structure of knapsack constraints,

which implies that Sx(ȳ) cannot be solved as an LP. In fact, this Benders subproblem has the

structure of a generalized assignment problem, which can be solved by specialized algorithms

(see, for instance, [24] and the references therein). In our implementation, we use the same

state-of-the-art MILP software tool as when solving the master problem. Since Sx(ȳ) is not

an LP, we cannot use LP duality-based Benders cuts, and we rely instead, as explained

below, on the canonical cuts for the unit hypercube, studied in [8], which are also used in

logic-based Benders decomposition [9] and combinatorial Benders decomposition [4].

3.3. Benders Cuts

If Sx(ȳ) is feasible, and x̄(ȳ) is the computed optimal solution, then a feasible solution

(x̄(ȳ), ȳ) to the original nonlinear formulation (2)-(8) has been determined. If the corre-

sponding objective function value z(Sx(ȳ)) is better than the value of the current best fea-

sible solution, denoted z∗u, then both z∗u and the best feasible solution are suitably updated.

Note that z∗u is not the B&C incumbent value managed by the MILP solver, since the latter

corresponds to a feasible solution to Mxy, which is a relaxation of model (2)-(8), to which

Benders cuts are added. In fact, to ensure the convergence of the BBC algorithm, it is

necessary, as we see below in Theorem 3, that the value z∗u is substituted to the incumbent

value that would normally be stored by the MILP software tool when solving Mxy by B&C.

Furthermore, instead of fathoming the B&C node corresponding to the integer solution

ȳ, the following canonical cut is added to Mxy:∑
j∈J

∑
k∈K|ȳjk=0

yjk +
∑
j∈J

∑
k∈K|ȳjk=1

(1− yjk) ≥ 1. (17)

10



The B&C algorithm is then resumed at that node, i.e., the model corresponding to that node

is now solved with the addition of cut (17), and the search in the B&C tree is continued.

The rationale behind cut (17) is that, since the best solution x̄(ȳ) for the given configuration

ȳ has been determined, we can cut all solutions of the form (x, ȳ). Note that cut (17) is

not valid for the original formulation, but since it removes only the feasible solutions of the

form (x, ȳ), for which we have already computed the best solution (x̄(ȳ), ȳ), then no optimal

solution can be missed. In fact, only the cut corresponding to an optimal solution of the

GWLANP is not valid, since the canonical cuts associated to non-optimal solutions of the

problem can be added without removing any optimal solution. Since the cut is not valid in

general, Mxy is no more a relaxation of the original model, but rather a relaxation of the

model representing the original set of feasible solutions with the exclusion of the solutions

of the form (x, ȳ). To the best of our knowledge, such a simple cut generation strategy has

never been used in a BBC or Benders decomposition approach. We further discuss this issue

in Section 3.5, where we compare our BBC algorithm to the Benders decomposition method

presented in [7] for the GWLANP without UT assignment costs.

When Sx(ȳ) is infeasible, we could generate cut (17), which is now obviously valid for

the original model, given that it removes only the solution ȳ, which cannot yield a feasible

solution. However, we can strengthen this cut by using simple arguments (introduced in [7])

based on the assumption that the transmission capacity functions rij(πj) are nondecreasing.

We first define the strengthened feasibility cut as follows:∑
j∈J

∑
k∈K|pk>π̄j

yjk ≥ 1, (18)

where π̄j =
∑

k∈K pkȳjk.

Lemma 1. If Sx(ȳ) is infeasible, then (18) is a valid inequality to (2)-(8).

Proof. An infeasible Sx(ȳ) implies that the PLs assigned to the powered-on APs, according

to ȳ, do not provide enough capacity to satisfy the demands of the UTs. Therefore, it is

necessary to increase at least one of the values r̄ij, i.e., we must raise the PL of at least

one AP (which follows from the fact that the transmission capacity functions rij(πj) are

nondecreasing functions of πj, j ∈ J ).

11



We can further strengthen the Benders cut in case Sx(ȳ) is infeasible by first solving an

auxiliary Benders subproblem Sx(ỹ), where ỹ is defined as follows:

ỹjk =

{
1, if k = kmax and

∑
l∈K ȳjl = 1,

0, otherwise,
(19)

where kmax is the index of the PL providing the maximum radiated power.

Indeed, if both Sx(ȳ) and Sx(ỹ) are infeasible, we define the maximally strengthened

feasibility cut as: ∑
j∈J |π̄j=0

∑
k∈K

yjk ≥ 1. (20)

Lemma 2. If Sx(ȳ) and Sx(ỹ) are infeasible, then (20) is a valid inequality to (2)-(8).

Proof. According to ỹ, the maximum possible radiated power is associated with the group

of APs that are powered-on in solution ȳ. An infeasible Sx(ỹ) thus implies that no feasible

solution exists that uses only such a subset of APs. Therefore, at least one AP that is

powered-off in ȳ (i.e., an AP j such that π̄j = 0) must be powered-on.

Note that cut (20) coincides with cut (18), if we consider ỹ in place of ȳ. It is, in general, a

stronger cut, since
∑

j∈J
∑

k∈K|pk>π̄j yjk =
∑

j∈J |π̄j=0

∑
k∈K yjk+

∑
j∈J |π̄j>0

∑
k∈K|pk>π̄j yjk ≥∑

j∈J |π̄j=0

∑
k∈K yjk ≥ 1.

Whether Sx(ȳ) is feasible or not, the B&C node corresponding to ȳ should not be fath-

omed, as its descendants or itself might contain another feasible solution to the GWLANP

with a better objective function value. That is why, in both cases, the cut is added and

the B&C algorithm is resumed at the current node. This point is made more precise in the

following section.

3.4. Convergence of the Algorithm

The BBC algorithm is summarized in Algorithm 1, where z∗u and z∗l denote, respectively,

the best known upper bound on z(GWLANP ), and the best known lower bound on z(Mxy).

The upper bound z∗u is updated by the BBC algorithm and provided as incumbent value

each time the B&C search is invoked. The lower bound z∗l is updated by the B&C search

and provided to the BBC algorithm to test the stopping criterion z∗u ≤ z∗l .

12



Algorithm 1 Algorithm BBC (Input: Mxy, Output: z∗u, (x̄(ȳ), ȳ))

1: z∗u =∞
2: Perform B&C for solving Mxy until an integer solution ȳ is found or the B&C search is

completed (Input: z∗u, incumbent value of B&C, Output: z∗l , lower bound computed by
B&C)

3: if B&C search is completed then
4: STOP
5: end if
6: Solve Sx(ȳ)
7: if Sx(ȳ) is feasible then
8: if z(Sx(ȳ)) < z∗u then
9: z∗u = z(Sx(ȳ)), and store the optimal solution (x̄(ȳ), ȳ) to Sx(ȳ)

10: end if
11: if z∗u ≤ z∗l then
12: STOP
13: end if
14: Add the canonical cut (17)
15: else
16: Solve Sx(ỹ)
17: if Sx(ỹ) is infeasible then
18: Add the maximally strengthened feasibility cut (20)
19: else
20: add the strengthened feasibility cut (18)
21: end if
22: end if
23: Go to line 2 (resuming B&C at the current node)

Theorem 3. The BBC algorithm identifies an optimal solution to model (2)-(8), if there is

one.

Proof. Assume that model (2)-(8) is feasible. Note that at least one feasible solution to

(2)-(8) is identified by the BBC algorithm. Indeed, the initial master problem Mxy is a

relaxation of model (2)-(8) and, consequently, its set of feasible solutions includes all feasible

solutions to (2)-(8). When the B&C algorithm for solving Mxy identifies an integer solution

ȳ, either a feasibility cut is added or a feasible solution to (2)-(8) is identified. This last

alternative will necessarily arise after adding a finite number of feasibility cuts, since model

(2)-(8) is feasible and the y solutions to Mxy coincide with the ones to (2)-(8).

Lemmas 1 and 2 show that the feasibility cuts (18) and (20) are valid for (2)-(8), and

therefore their addition to Mxy cannot eliminate any feasible solution to model (2)-(8). Con-

13



cerning the canonical cuts (17), observe that they are added to Mxy when the optimal feasible

solution (x̄(ȳ), ȳ) corresponding to ȳ has been determined. Since the objective function value

z(Sx(ȳ)) of (x̄(ȳ), ȳ) is used to improve the best known upper bound z∗u on z(GWLANP ),

no optimal solution to model (2)-(8) can be discarded by the addition of (17).

To conclude, observe that the number of feasible ȳ configurations is finite. Therefore,

after a finite number of cut additions, the BBC algorithm must end, due to either one of the

following reasons:

1) The B&C search in line 2 is completed. In this case, we have identified a feasible solution

to (2)-(8) of objective function value z∗u. Now, assume that this solution is not optimal.

This implies that there is an optimal solution to (2)-(8), say (x∗, y∗) of objective function

value z(x∗, y∗) < z∗u, for which the corresponding configuration y∗ has not been generated

when solving Mxy by B&C. This, in turn, implies that there exists some node p that has been

fathomed, but would have yielded configuration y∗ after a finite number of branchings. Node

p has been fathomed by the lower bound test, i.e., zl(p) ≥ z∗u, where zl(p) is the lower bound

associated with node p (recall that z∗u is the incumbent value used in B&C). Furthermore,

the fact that node p would have yielded configuration y∗ after a finite number of branchings

implies that z(x∗, y∗) ≥ zl(p), node p being a relaxation of subproblem Sx(y
∗) for which an

optimal solution is x∗. Collecting together these facts, we obtain: z∗u > z(x∗, y∗) ≥ zl(p) ≥ z∗u,

a contradiction. Hence, the best feasible solution identified at the end of the BBC algorithm is

necessarily optimal. Note that this part of the proof relies on the fact that z∗u is substituted

to the incumbent value that would normally be used when performing the B&C method

in line 2. Failure to perform this substitution would result into an algorithm that is not

necessarily exact.

2) The condition z∗u ≤ z∗l in line 11 is verified. This case implies that any feasible solution

(x, y) to the GWLANP that could still be generated by performing the B&C method for

solving Mxy has an objective function value z(x, y) ≥ z∗l ≥ z∗u, and therefore cannot improve

upon z∗u.

Hence, the BBC algorithm ends with an optimal solution to model (2)-(8).

14



3.5. Comparison with Benders Decomposition for a Special Case

In this section, we describe the Benders decomposition (BD) algorithm [7] developed for

the GWLANP without UT assignment costs. Our objective is to state the similarities and

the differences between this BD algorithm and the BBC method described above.

One of the main differences between the two methods lies in the way the two algorithms

perform B&C on the master problem: while the BBC method explores a single B&C tree,

adding the Benders cuts during the exploration of that tree, the BD approach performs

B&C at every iteration, adding the Benders cuts only after the B&C has completed its

exploration. Hence, the BD algorithm explores several B&C trees, with the master problem

being gradually augmented with Benders cuts.

Another main difference between the two approaches is the way they define master prob-

lems. In the BD algorithm, the master problem includes only the AP assignment variables

yjk. Since the UT assignment constraints (3) are then relaxed, the following valid inequalities

are introduced in the master problem:∑
j∈J

ruij(πj) ≥ wi, i ∈ I. (21)

The master problem in the BD method, denoted MBD
y , can therefore be formulated as

follows:

z(MBD
y ) = min

∑
j∈J

∑
k∈K

(p0 + pk)yjk (22)

subject to (4), (8), (21) and the Benders cuts added so far during the course of the algorithm.

In order to generate a good set of initial Benders cuts, the BD method first solves the

relaxation corresponding to Mxy, the BBC master problem, which is further strengthened

by imposing the integrality of the UT assignment variables xij. This type of initialization

strategy, involving the solution of a relaxation of the problem to generate a good set of initial

Benders cuts, is well-known in the Benders decomposition literature (see, for instance, [25]

for an early contribution on this topic). All subsequent iterations solve the classical Benders

master problem MBD
y .

At every iteration of the BD algorithm, the master problem is solved until an optimal

solution ȳ0 is obtained. All other integer solutions, say ȳ1, ȳ2, . . . , ȳn, found during the

15



exploration of the B&C tree, are also collected. For each solution ȳ = ȳq, q = 0, 1, . . . , n, the

Benders subproblem Sx(ȳ) is solved, as in the BBC algorithm. Note, however, that Sx(ȳ) is

no more an optimization problem, but is rather a feasibility problem, since there are no UT

assignment costs.

If Sx(ȳ) is infeasible, a Benders feasibility cut (18) or (20) is generated (the BD algorithm

also solves subproblem Sx(ỹ), with ỹ defined as in (19)). If Sx(ȳ) is feasible, and x̄(ȳ) is the

computed feasible solution, then a feasible solution (x̄(ȳ), ȳ) to the GWLANP is obtained.

If the corresponding objective function value z(Sx(ȳ)) is better than the value of the current

best feasible solution, denoted z∗u, then both z∗u and the best feasible solution are updated.

Whenever z∗u ≤ z∗l , where z∗l is the optimal value of the master problem, we can conclude

that an optimal solution to the GWLANP has been identified. This is the case when Sx(ȳ)

is feasible and ȳ = ȳ0, the optimal solution to the master problem: the optimality of ȳ for

the master problem and the feasibility of the Benders subproblem suffice to conclude to the

optimality of any feasible solution to Sx(ȳ), because of the absence of UT assignment costs.

Such a conclusion cannot be derived for the general case of the GWLANP with UT

assignment costs. This is why we rely on the addition of the canonical cuts (17) in the

BBC algorithm, which then take the place of the usual Benders optimality cuts, i.e., they

cut the solutions of the form (x, ȳ) when the Benders subproblem Sx(ȳ) is feasible. For the

GWLANP without UT assignment costs, these cuts are not needed. In fact, they are simply

replaced by updating the B&C incumbent value with z∗u. This, in effect, cuts all the feasible

solutions (x̄(ȳ), ȳ) such that z(Sx(ȳ)) ≥ z∗u.

It is worth noting that, at any iteration of the BD algorithm, the master problem always

defines a relaxation of the GWLANP. Hence, the stopping condition z∗u ≤ z∗l can equivalently

be replaced by z∗u = z∗l , since z∗l is then necessarily a lower bound on z(GWLANP ). In

contrast, the master problem in the BBC algorithm is also a relaxation, but not of the

GWLANP, rather of a restriction of the problem obtained by adding the canonical cuts

corresponding to the feasible Benders subproblems. Hence, for the BBC method, it might

happen that z∗u < z∗l at the conclusion of the algorithm.

To further highlight the similarities and the differences between the two algorithms, an

outline of the BD algorithm is provided in Algorithm 2.

16



Algorithm 2 Algorithm BD (Input: MBD
y , Output: z∗u, (x̄(ȳ), ȳ))

1: z∗u =∞
2: Perform B&C for solving MBD

y (or, initially, Mxy with the integrality imposed on the xij
variables) until an optimal solution ȳ0 of value z∗l is found (Input: z∗u, incumbent value
of B&C, Output: z∗l , lower bound computed by B&C)

3: Let ȳ1, ȳ2, . . . , ȳn be the other integer solutions obtained during B&C
4: for all ȳ = ȳq, q = 0, . . . , n do
5: Solve Sx(ȳ)
6: if Sx(ȳ) is feasible then
7: if z(Sx(ȳ)) < z∗u then
8: z∗u = z(Sx(ȳ)), and store the feasible solution (x̄(ȳ), ȳ) to Sx(ȳ)
9: end if

10: if z∗u ≤ z∗l then
11: STOP
12: end if
13: else
14: Solve Sx(ỹ)
15: if Sx(ỹ) is infeasible then
16: Add the maximally strengthened feasibility cut (20)
17: else
18: add the strengthened feasibility cut (18)
19: end if
20: end if
21: end for
22: Go to line 2 (restarting B&C from scratch)

4. Computational Results

Our computational experiments aim to assess the effectiveness and the efficiency of the

BBC method, and to stress its robustness and scalability issues. Note that the GWLANP has

never been addressed in the general form studied in this paper. Therefore, no comparison

with approaches from the literature can be performed. However, since the BD algorithm

proposed in [7] addresses the special case without UT assignment costs, we compare the two

approaches on instances of this type. The main objective of this computational comparison

is to assess the competitiveness of the BBC method, especially for large-scale instances. The

BBC and BD algorithms have been implemented in C++ using IBM ILOG CPLEX 12.6.1.

The experiments have been performed on a PC with 2 CPUs Intel Xeon E5-2609 v2 (quad

Core) @ 2.50 GHz (no hyperthreading), 128 GB RAM.

In Section 4.1, we describe the procedure used to generate a set of 340 realistic GWLANP

17



instances. Section 4.2 presents the measures used to assess the performance of the BBC algo-

rithm and to compare it with the BD method. Section 4.3 focuses mostly on a computational

comparison of the BBC and BD algorithms. We also briefly investigate the impact of UT

assignment costs and strenghtened cuts on the performance of the BBC algorithm.

4.1. Generation of Instances

To generate realistic GWLANP instances, we use related features extracted from real-

life measurement campaigns in corporate environments [26, 27]. We first specify the values

of |I|, |J | and |K|. Then, the positions of the APs and of the UTs in each instance are

randomly determined as follows. First, we divide the test field into a regular grid of |J |

squares. Then, the APs are placed one per square, with their coordinates chosen randomly

within the square. The set of UTs is also split into |J | subsets, and the elements of each

subset are randomly spread over each square. This strategy ensures enough uniformity in

the placement of the UTs and the APs, so as to mimic a corporate scenario and to avoid

heavily unbalanced instances.

Other relevant instance characteristics are the transmission loss factors αij, which have

been computed by using a simplified version of the COST-231 multi-wall path loss model for

indoor, non-LOS environments [20], and the maximum achievable rate rmax, set to 54Mbps

according to the 802.11g standard. In addition, the addressed traffic demands wi have an

average value of 300kbps, and they have been randomly generated within a variation of

±10%. To complete the parameter list, we set the sensitivity thresholds γij and the power

component figures p0 and pk according to [28]. Finally, the proportionality coefficients µj

are selected based on the indications in [29].

By setting µj = 0, j ∈ J , we have generated 340 instances that are used to compare the

two algorithms, BBC and BD. We divide these instances into three classes, according to the

number of APs, which helps us differentiate the behaviour of the algorithms, as explained

below. The classes of small and medium instances have 10 and 15 APs, respectively. Each

includes 6 sets of 20 instances each, for a total of 120 instances, obtained by combining

|I| = {100, 150, 200} with |K| = {3, 4}. The class of large instances is characterized by a

number of APs equal to 20, 30 or 50. For each such value of |J |, 3 sets of 10 instances each

(for a total of 90 instances) are obtained by combining |I| = {200, 300, 500} with |K| = 4.

18



4.2. Performance Measures

To assess the performance of the algorithms, we use the following measures:

• The CPU time, in seconds, denoted Time. Note that the algorithms are given a time

limit before they are stopped (3600s on small/medium instances and 7200s on large

instances). In addition to Time, we also report the time ratio of algorithm A defined

as

τA = Time(A)/min{Time(BBC), T ime(BD)},

where Time(A) is the CPU time taken by algorithm A, which can be either BBC or

BD.

• The final gap, in percentage, between the bounds, measured as

Gap = max{0, 100× (z∗u − z∗l )/z∗l }.

Note that, because it might happen that z∗u < z∗l at the end of the BBC algorithm,

it is necessary to modify the usual formula for computing the gap. Even if z∗l is

not necessarily a lower bound on z(GWLANP ), this modified gap measure is a fair

approximation of the distance between the current best known upper bound z∗u and

the optimal value z(GWLANP ). Note that z∗l is a lower bound on z(GWLANP ) for

the BD method. Hence, the reported gaps are exact and not approximations, as it is

the case for the BBC algorithm.

• To better compare the capacity of the algorithms to identify high-quality solutions

when they reach the time limit, we report the upper bound ratio of algorithm A defined

as

µA = z∗u(A)/min{z∗u(BD), z∗u(BBC)},

where z∗u(A) is the best upper bound on z(GWLANP ) found by algorithm A, either

BBC or BD.

• The total number of cuts (denoted Cuts), including strengthened and maximally streng-

thened feasibility cuts for both algorithms, as well as canonical cuts for the BBC

algorithm.

19



• The total number of nodes generated by the BBC algorithm, denoted Nodes. For the

BD algorithm, we could have reported the same measure, but we found the number of

iterations, Iter, to be a more useful measure of the computational effort.

These different performance measures are computed for each instance. Then, we chose

to summarize these detailed results in two ways. First, we compute the arithmetic average

of each performance measure (except the time ratio and the upper bound ratio) over each

set of instances, i.e., all the instances with the same size |J |, |I|, |K|. Using this simple

approach, we are able to compare the behaviour of the algorithms with respect to problem

size. In particular, we highlight the importance of the number of APs in explaining the

relative performance of the algorithms. To perform a more detailed comparative analysis on

each class of instances, small, medium and large, we use performance profiles with respect

to either the time ratio (on small and medium instances, where most instances are solved to

optimality) or the upper bound ratio (on large instances, where most instances cannot be

solved to optimality within the time limit), as suggested in [30]. The performance profile of

algorithm A with respect to metric τA(s) measured over each instance s in a set S is simply

the graph of the cumulative distribution function, defined as

FA(t) = |{s ∈ S | τA(s) ≤ t}|/|S|.

Such performance profiles provide useful information about the relative performance of

algorithms, often hidden when we look only at average results. For example, the performance

profiles of the algorithms with respect to the time ratio on a set of instances will tell us which

algorithm is more often the fastest (by looking at the largest value between FBBC(1) and

FBD(1)) or the proportion of the instances in the set for which algorithm BD is more than

two times slower than algorithm BBC (by computing 1− FBD(2)). As we want to focus on

the instances for which the performance of the two algorithms differ, we remove instances in

the set for which the measure gives the same value. This way, an algorithm that achieves a

value 1 on a particular ratio (time or upper bound) is the “winner” (in other words, there

is no tie). In particular, when the two algorithms reach the time limit on a given instance,

that instance is removed from the set of instances on which we compute the performance

profiles with respect to the time ratio, i.e., there is no “winner” in that case. However, if

20



only one of the two algorithms reaches the time limit, the other algorithm is the “winner”

and the instance is kept when computing the performance profiles. Note that the time ratio

of the “loser” for that instance underestimates the “true” time ratio that would have been

obtained if the “loser” was allowed to run long enough to stop with a proof of optimality.

4.3. Analysis of the Performance of the Algorithms

Table 1 summarizes the results of the experiments on the two algorithms, BBC and BD,

with time limits of 3600s and 7200s, respectively, for small/medium and large instances. We

recall that: small instances are characterized by |J | = 10 and thus represent the 6 sets of

instances in the upper part of the table; medium instances have 15 APs and correspond to

the 6 sets of instances in the middle part of the table; large instances, with more than 15

APs, are the 9 sets of instances shown in the lower part of the table. For the two algorithms,

Gap, Time and Cuts are shown, while the number of nodes and the number of iterations

are given, respectively, for BBC and BD. These performance measures are averaged over all

instances in a given set. In addition, the table also shows, in column Solved, a fraction where

the numerator is the number of instances solved to optimality within the time limit and the

denominator is the number of instances in the corresponding set (20 for each small/medium

set and 10 for each large set). Note that, for 15 of the 90 large instances, the BD algorithm

could not complete the first iteration (i.e., solving by B&B the first master problem) within

the limit of 7200s. Since no gaps are obtained for these instances, we removed them when

computing the average results for the BD algorithm. The denominator in column Solved

then shows how many instances in each set were used to compute the average performance

measures.

If we analyze first the performance of each algorithm independently, we observe that the

BBC algorithm solves to optimality most instances in the small and medium classes. Indeed,

only 10 of the 240 instances could not be solved within the time limit of 3600s. Moreover,

all instances with |I| = 100 and 150 are solved to optimality, while high-quality results

are obtained for instances with |I| = 200. This last observation is also true for the large

instances, where 5 instances out of 30 with |I| = 200 are solved to optimality, with average

gaps below 4%. The algorithm shows relatively good performance on large instances with

|I| = 300, with average gaps below 8%, but it is struggling on the largest instances with

21



BBC BD
|J |, |I|, |K| Gap Time Cuts Nodes Solved Gap Time Cuts Iter Solved

10, 100, 3 0 9 524 702 20/20 0 2 28 15 20/20
10, 100, 4 0 17 939 1299 20/20 0 4 47 23 20/20
10, 150, 3 0 49 1307 1793 20/20 0 18 117 70 20/20
10, 150, 4 0 158 4159 5611 20/20 0 117 441 246 20/20
10, 200, 3 0 706 4586 5971 20/20 0 190 798 381 20/20
10, 200, 4 0 631 6985 9556 20/20 0 530 1182 505 20/20

15, 100, 3 0 155 5289 7630 20/20 0 490 554 359 20/20
15, 100, 4 0 171 6147 9662 20/20 0.40 946 668 277 19/20
15, 150, 3 0 237 4293 6779 20/20 0 184 197 91 20/20
15, 150, 4 0 708 11343 17593 20/20 4.37 1627 857 313 11/20
15, 200, 3 1.49 1684 6704 10384 15/20 11.57 2531 1018 460 6/20
15, 200, 4 2.30 2029 10632 16618 15/20 20.71 2885 1212 444 4/20

20, 200, 4 1.00 5213 27466 46102 4/10 27.78 7200 1326 527 0/8*
20, 300, 4 5.37 7200 13467 23408 0/10 58.10 7200 1040 428 0/10
20, 500, 4 30.40 7200 1088 2454 0/10 157.54 7200 1180 419 0/7*
30, 200, 4 2.29 6594 37098 67120 1/10 42.19 7200 1337 372 0/8*
30, 300, 4 7.42 7200 15156 30780 0/10 81.17 7200 1195 309 0/10
30, 500, 4 16.94 7200 1318 3384 0/10 148.10 7200 867 209 0/8*
50, 200, 4 3.70 7200 24503 62913 0/10 74.62 7200 1567 337 0/9*
50, 300, 4 5.52 7200 9901 27949 0/10 98.59 7200 1317 260 0/7*
50, 500, 4 11.00 7200 2006 6080 0/10 145.38 7200 955 194 0/8*

Table 1: Average results of BBC and BD; 240 small/medium instances (max. 3600s) and 90 large instances
(max. 7200s); Gap (%); Time (s); number of cuts; number of nodes (BBC); number of iterations (BD);
solved/total number of instances
*Some instances removed: the first iteration could not be completed within 7200s

22



|I| = 500, with average gaps between 11% and 30%.

We also looked at the results obtained by solving the same 340 instances, but by keeping

the UT assignment costs. The results are similar, except that the average CPU times are

about twice larger for the instances with UT assignment costs. This is not surprising, given

that the Benders subproblems for these instances are optimization problems that are more

difficult to solve than the feasibility problems for the case without UT assignment costs.

Another issue we considered when evaluating the performance of the BBC algorithm is the

impact of strengthened and maximally strengthened cuts. Specifically, we disabled the option

of generating these cuts and examined the results obtained by comparing them with the BBC

method using these cuts. We show the results on the class of small instances, since it is the

one with the largest number of instances solved to optimality by the two approaches (117

out of 120). The performance profiles of BBC and BBC with no strengthened cuts (BBC-NS)

with respect to the time ratio are shown in Figure 1. We see that, with strengthened cuts,

only 36% of the instances are solved faster, but less than 2% of the instances are solved

two times slower, with a maximum time ratio around 4. Without strengthened cuts, 10%

of the instances are solved two times slower and the maximum time ratio exceeds 5 (in fact,

it is 27). By looking at the detailed results, we observe that BBC-NS is faster on “easy”

instances (solved within 60s), but in general slower, sometimes considerably so, for more

difficult instances. Note that 3 instances out of the 120 small instances could not be solved

to optimality by BBC-NS, with one of these instances having a time ratio of 16.

Turning to the performance of the BD algorithm, Table 1 shows that it solves to opti-

mality all small instances and a majority of the medium instances (80 out 120). However, on

medium instances, its performance deteriorates sharply as the size increases: only 10 of the

40 instances with |I| = 200 are solved to optimality, displaying average gaps above 10%. On

large instances, the situation gets worse. As mentioned above, 15 of the 90 large instances

could not go beyond the first iteration. None of the remaining 75 instances could be solved

to optimality, while the average gaps are always above 25% and could go higher than 150%.

We also note that, irrespective of the class of instances, the performance deteriorates signif-

icantly with an increase in the number of PL assignment variables (i.e., the yjk variables),

which can be seen, in particular, by examining the values of Time and Iter. Indeed, on

23



Figure 1: Small instances: performance profiles of BBC and BBC-NS w.r.t. time ratio in [1,5]

small instances with a fixed value of |I|, both the time and the number of iterations increase

when |K| increases from 3 to 4, but more importantly, the ratio Time/Iter also increases,

which indicates that the time per BD iteration (that depends mostly on the time to solve

the master problem by B&B) increases. The same observation applies to medium instances

with a fixed value of |I|, where the ratio Time/Iter increases with an increase of |K|. On

large instances with a fixed value of |I|, we make a similar observation: Time being constant,

we see a significant decrease in the number of iterations when |J | increases, showing again

that the time per BD iteration increases significantly with an increase in the number of PL

assignment variables.

When we compare the two algorithms, we first note that the BBC method is also sensitive

to an increase in the number of PL assignment variables, as can be observed from the increase

in the average number of generated nodes (column Nodes in Table 1) on small/medium

instances when |K| increases for fixed values of |I| and |J |. BBC is, however, much less

sensitive than BD, as can be easily observed by looking at the relative increase in Time when

|K| increases from 3 to 4 for fixed |I|, |J |: the increase is always sharper for BD (with the

24



Figure 2: Small instances: performance profiles of BBC and BD w.r.t. time ratio in [1,3]

exception of the instances with |I| = 200 and |J | = 15, which can discarded because very

few instances are solved to optimality by BD). We even observe a decrease with BBC in one

case: when |I| = 200 and |J | = 10, Time decreases from 706 to 631 with the increase of |K|.

The different ways in which the algorithms perform with an increase in the number of AP

assignment variables also explain the major differences observed when we look at the three

classes of instances. On small instances, the BD algorithm is significantly faster than the

BBC algorithm, as can be seen by the average values of Time in Table 1. This observation

is confirmed by the performance profiles of the two algorithms with respect to the time ratio

(Figure 2). This figure shows that 84% of the small instances are solved faster by BD and

that the BBC algorithm is more than 3 times slower than BD on about 50% of the small

instances. A plausible explanation for the relatively poor performance of the BBC algorithm

on small instances might be the large number of cuts it generates compared to the BD

method.

On medium instances, Table 1 shows a completely different situation: on 5 of the 6 sets

of instances, the average performance of BBC is better than that of BD and significantly so

25



on the 60 largest instances. Particularly on these instances, the BD algorithm spends a lot of

time solving hundreds of master problems, each of which become significantly heavier to solve

as the size increases, especially the number of PL assignment variables. The performance

profiles shown in Figure 3 seem to tell a different story: we see that 52% of the medium

instances are solved faster by BD and that the BBC algorithm is more than 10 times slower

than BD on about 50% of the medium instances. This apparent contradiction is easily

explained by two facts: first, a significant number of medium instances are solved very

quickly by the BD algorithm, while the BBC algorithm is typically more than 10 times

slower on these instances; second, the BD algorithm is stopped prematurely on a majority

of the largest instances and, as a result, its time ratio is significantly underestimated. These

two facts explain why the performance profiles make the BD algorithm “look so good” on

the medium instances. To show a different picture, we removed from the comparison the

instances solved in less than 10s (an arbitrary threshold) by BD. There are 45 such instances;

the time ratio of the BBC algorithm on these instances varies between 9 and 183. The

performance profiles on the remaining “difficult” instances are shown in Figure 4. We see

that 80% of these “difficult” medium instances are solved faster by the BBC algorithm and

that the BD algorithm is at least 10 times slower on 12% of these instances. Note that the

situation would have been worse for BD if the time limit was increased, since the computing

ratios for 40 instances are underestimated when the time limit is 3600s.

On large instances, Table 1 shows the superiority of the BBC algorithm as the size in-

creases. Overall, the BBC algorithm is able to construct master problems with significant

information, both by including the UT assignment variables and by generating a large num-

ber of Benders cuts. Figure 5 shows the performance profiles of the two algorithms with

respect to the upper bound ratio. We recall that the instances where the two algorithms

obtained the same upper bounds are removed from the comparison, leaving us with 42 in-

stances. The performance profiles show that the BBC algorithm found a better upper bound

for 81% of these instances and that the worst upper bound shows a ratio smaller than 1.08.

By comparison, the BD algorithm shows an upper bound ratio smaller than 1.08 for less

than 60% of these instances, while its worst upper bound ratio exceeds 1.3.

26



Figure 3: Medium instances: performance profiles of BBC and BD w.r.t. time ratio in [1,10]

Figure 4: “Difficult” medium instances: performance profiles of BBC and BD w.r.t. time ratio in [1,10]

27



Figure 5: Large instances: performance profiles of BBC and BD w.r.t. upper bound ratio in [1,1.3]

5. Conclusion

In this paper, we considered a location-design problem that arises from the development of

network reconfiguration algorithms for reducing the power consumption of wireless local area

networks (WLANs). The resulting optimization problem, called the green WLAN problem,

or GWLANP, was formally described and modelled. While the GWLANP was introduced

in [7], we studied a non-trivial extension of the problem where the power consumed by

each access point depends on the demands assigned to the access points. An exact solution

method, based on the branch-and-Benders-cut framework, was developed. The results on a

large set of realistic instances showed that the approach is effective and efficient, as it delivers

high-quality solutions in limited computational effort. Furthermore, when comparing its

performance on the special case solved by the algorithm proposed in [7], we showed that the

proposed algorithm is preferable in terms of solution quality, scalability and robustness.

This work opens up interesting research perspectives. In particular, it would be inter-

esting to generalize the proposed branch-and-Benders-cut approach to other optimization

problems. Several features of the algorithm seem to be generalizable, in particular, the in-

28



clusion of the Benders subproblem variables in the formulation of the master problem and

the addition of cuts that exclude feasible solutions, but that are not based on the objective

function value, as in classical Benders decomposition methods.

Acknowledgements

We thank three anonymous referees whose comments have helped us improve our paper.

The work of Bernard Gendron was funded by the Natural Sciences and Engineering Council

of Canada (NSERC) under grant 184122-2010. The work of Maria Grazia Scutellà was

funded by project PRIN 2012, “Mixed-Integer Nonlinear Optimization: Approaches and

Applications” (2012JXB3YF). The work of Rosario Garroppo, Gianfranco Nencioni and

Luca Tavanti was partially supported by the Italian Ministry of University and Research

under the “GreenNet (Greening the Networks)” FIRB project. This support is gratefully

acknowledged.

References

[1] J. Kennington, E. Olinick, D. Rajan, Wireless Network Design: Optimization Models

and Solution Procedures, Springer, Heidelberg, Germany, 2010.

[2] J. Naoum-Sawaya, S. Elhedhli, A nested Benders decomposition approach for telecom-

munication network planning, Naval Research Logistics 57 (6) (2010) 519–539.

[3] J. F. Benders, Partitioning procedures for solving mixed-variables programming prob-

lems, Numerische Mathematik 4 (1) (1962) 238–252.

[4] G. Codato, M. Fischetti, Combinatorial Benders’ cuts for mixed-integer linear program-

ming, Operations Research 54 (4) (2006) 756–766.

[5] F. D’Andreagiovanni, C. Mannino, A. Sassano, Gub covers and power-indexed formu-

lations for wireless network design, Management Science 59 (1) (2013) 142–156.

[6] F. D’Andreagiovanni, Pure 0-1 programming approaches to wireless network design,

4OR 10 (2) (2012) 211–212.

29



[7] B. Gendron, R. Garroppo, G. Nencioni, M. Scutellà, L. Tavanti, Benders decomposition

for a location-design problem in green wireless local area networks, Electronic Notes in

Discrete Mathematics 41 (2013) 367–374.

[8] E. Balas, R. Jeroslow, Canonical cuts on the unit hypercube, SIAM Journal of Applied

Mathematics 23 (1) (1972) 61–69.

[9] J. Hooker, G. Ottosson, Logic-based Benders decomposition, Mathematical Program-

ming 96 (1) (2003) 33–60.

[10] P. Y. Zhang, D. A. Romero, J. C. Beck, C. H. Amon, Solving wind farm layout op-

timization with mixed integer programming and constraint programming, in: Gomes,

C. and Sellmann, M. (Ed.), CPAIOR 2013-Lecture Notes on Computer Science 7874,

Springer, 2013, pp. 284–299.

[11] E. S. Thorsteinsson, Branch-and-check: A hybrid framework integrating mixed integer

programming and constraint logic programming, in: Walsh, T. (Ed.), CP 2001-Lecture

Notes on Computer Science 2239, Springer, 2001, pp. 16–30.

[12] J. C. Beck, Checking-up on branch-and-check, in: Cohen, D. (Ed.), CP 2010-Lecture

Notes on Computer Science 6308, Springer, 2010, pp. 84–98.

[13] J. Naoum-Sawaya, S. Elhedhli, An interior-point Benders based branch-and-cut algo-

rithm for mixed integer programs, Annals of Operations Research 210 (2013) 33–55.

[14] B. Fortz, M. Poss, An improved Benders decomposition applied to a multi-layer network

design problem, Operations Research Letters 37 (5) (2009) 359–364.

[15] R. de Camargo, G. de Miranda Jr., R. Ferreira, A hybrid outer-approximation/Benders

decomposition algorithm for the single allocation hub location problem under conges-

tion, Operations Research Letters 39 (5) (2011) 329–337.

[16] Q. Botton, B. Fortz, L. Gouveia, M. Poss, Benders decomposition for the hop-

constrained survivable network design problem, INFORMS Journal on Computing 25 (1)

(2013) 13–26.

30



[17] Y. Adulyasak, J.-F. Cordeau, R. Jans, Benders decomposition for production routing

under demand uncertainty, Tech. rep., G-2012-57, GERAD, Montreal, Canada (2013).

[18] T. G. Crainic, M. Hewitt, W. Rei, Partial decomposition strategies for two-stage stochas-

tic integer programs, Tech. rep., CIRRELT-2014-13, CIRRELT, Montreal, Canada

(2014).

[19] R. G. Garroppo, B. Gendron, G. Nencioni, L. Tavanti, Energy efficiency and traffic

offloading in wireless mesh networks with delay bounds, International Journal of

Communication Systems (2014) n/a–n/adoi:10.1002/dac.2902.

URL <http://dx.doi.org/10.1002/dac.2902>http://dx.doi.org/10.1002/dac.2902

[20] European Comission, COST 231 – Digital Mobile Radio Towards Future Generations

Systems, Final Report (1999).

[21] L. Li, Z. Fan, D. Kaleshi, Using multiple metrics for rate adaptation algorithms in ieee

802.11 wlans, in: IEEE Wireless Communications and Networking Conference, WCNC,

2012, pp. 2807–2812.

[22] G. Wang, S. Zhang, K. Wu, Q. Zhang, L. Ni, Tim: Fine-grained rate adaptation in

wlans, in: Proceedings - International Conference on Distributed Computing Systems,

2014, pp. 577–586.

[23] T. Huehn, C. Sengul, Practical power and rate control for wifi, in: 2012 21st Inter-

national Conference on Computer Communications and Networks, ICCCN 2012 - Pro-

ceedings, 2012, pp. 1–7.

[24] A. Pigatti, M. Poggi de Aragão, E. Uchoa, Stabilized branch-and-cut-and-price for the

generalized assignment problem, Electronic Notes in Discrete Mathematics 19 (2005)

389–395.

[25] D. McDaniel, M. Devine, A modified Benders partitioning algorithm for mixed integer

programming, Management Science 24 (3) (1977) 312–319.

31



[26] M. Balazinska, P. Castro, Characterizing mobility and network usage in a corporate

wireless local-area network, in: Proceedings of the 1st international conference on mobile

systems, applications and services (MobiSys), ACM Publisher, New York, USA, 2003,

pp. 303–316.

[27] A. Jardosh, K. Papagiannaki, E. Belding, K. Almeroth, G. Iannaccone, B. Vinnakota,

Green WLANs: on-demand WLAN infrastructures, Mobile Networks and Applications

14 (6) (2009) 798–814.

[28] Cisco, Aironet 3600 Series Access Point,

http://www.cisco.com/en/US/products/ps11983/index.html (September 2014).

URL http://www.cisco.com/en/US/products/ps11983/index.html

[29] A. Garcia-Saavedra, P. Serrano, A. Banchs, G. Bianchi, Energy consumption anatomy of

802.11 devices and its implication on modeling and design, in: Proceedings of the 8th in-

ternational conference on emerging networking experiments and technologies, CoNEXT

’12, ACM Publisher, New York, USA, 2012, pp. 169–180.

[30] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles,

Mathematical Programming A 91 (2) (2002) 201–213.

32




