3,216 research outputs found

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Recurrent kernel machines : computing with infinite echo state networks

    Get PDF
    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks

    NeuroBench:A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems

    Get PDF
    Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. Prior neuromorphic computing benchmark efforts have not seen widespread adoption due to a lack of inclusive, actionable, and iterative benchmark design and guidelines. To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems. NeuroBench is a collaboratively-designed effort from an open community of nearly 100 co-authors across over 50 institutions in industry and academia, aiming to provide a representative structure for standardizing the evaluation of neuromorphic approaches. The NeuroBench framework introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent (algorithm track) and hardware-dependent (system track) settings. In this article, we present initial performance baselines across various model architectures on the algorithm track and outline the system track benchmark tasks and guidelines. NeuroBench is intended to continually expand its benchmarks and features to foster and track the progress made by the research community

    Machine Learning with Chaotic Strange Attractors

    Full text link
    Machine learning studies need colossal power to process massive datasets and train neural networks to reach high accuracies, which have become gradually unsustainable. Limited by the von Neumann bottleneck, current computing architectures and methods fuel this high power consumption. Here, we present an analog computing method that harnesses chaotic nonlinear attractors to perform machine learning tasks with low power consumption. Inspired by neuromorphic computing, our model is a programmable, versatile, and generalized platform for machine learning tasks. Our mode provides exceptional performance in clustering by utilizing chaotic attractors' nonlinear mapping and sensitivity to initial conditions. When deployed as a simple analog device, it only requires milliwatt-scale power levels while being on par with current machine learning techniques. We demonstrate low errors and high accuracies with our model for regression and classification-based learning tasks.Comment: Manuscript is 13 pages, 4 figures. Supplementary Material is 6 pages, 3 figure

    Designing a NISQ reservoir with maximal memory capacity for volatility forecasting

    Full text link
    Forecasting the CBOE volatility index (VIX) is a highly non-linear and memory-intensive task. In this paper, we use quantum reservoir computing to forecast the VIX using S&P500 (SPX) time-series. Our reservoir is a hybrid quantum-classical system executed on IBM's 53-qubit Rochester chip. We encode the SPX values in the rotation angles and linearly combine the average spin of the six-qubit register to predict the value of VIX at the next time step. Our results demonstrate a potential application of noisy intermediate scale quantum (NISQ) devices to complex, real world applications

    Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

    Get PDF
    Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behaviour. Results show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of chaos. Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing hyper-parameters can be studied by considering the memory--nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behaviour in phase space characterised by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking

    Human activity recognition using multisensor data fusion based on Reservoir Computing

    Get PDF
    Activity recognition plays a key role in providing activity assistance and care for users in smart homes. In this work, we present an activity recognition system that classifies in the near real-time a set of common daily activities exploiting both the data sampled by sensors embedded in a smartphone carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. In order to achieve an effective and responsive classification, a decision tree based on multisensor data-stream is applied fusing data coming from embedded sensors on the smartphone and environmental sensors before processing the RSS stream. To this end, we model the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks (RNNs) implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing (RC) paradigm. We targeted the system for the EvAAL scenario, an international competition that aims at establishing benchmarks and evaluation metrics for comparing Ambient Assisted Living (AAL) solutions. In this paper, the performance of the proposed activity recognition system is assessed on a purposely collected real-world dataset, taking also into account a competitive neural network approach for performance comparison. Our results show that, with an appropriate configuration of the information fusion chain, the proposed system reaches a very good accuracy with a low deployment cost

    Multi-parallel-task Time-delay Reservoir Computing combining a Silicon Microring with WDM

    Full text link
    We numerically demonstrate a microring-based time-delay reservoir computing scheme that simultaneously solves three tasks involving time-series prediction, classification, and wireless channel equalization. Each task performed on a wavelength-multiplexed channel achieves state-of-the-art performance with optimized power and frequency detuning.Comment: 3 pages, 2 figures, Submitted to Optical Fiber Communication Conference (OFC) 202

    An experimental characterization of reservoir computing in ambient assisted living applications

    Get PDF
    In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks
    • …
    corecore