5,057 research outputs found

    Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems

    Get PDF
    An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation

    Second order sliding mode observers for the ADDSAFE actuator benchmark problem

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Control Engineering Practice. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Control Engineering Practice Vol. 31 (2014), DOI: 10.1016/j.conengprac.2013.09.014This paper presents the evaluation process and results associated with two different fault detection and diagnosis (FDD) schemes applied to two different aircraft actuator fault benchmark problems. Although the schemes are different and bespoke for the problem being addressed, both are based on the concept of a second order sliding mode. Furthermore both designs are considered as ‘local’ in the sense that a localized actuator model is used together with local sensor measurements. The schemes do not involve the global aircraft equations of motion, and therefore have low order. The first FDD scheme is associated with the detection of oscillatory failure cases (OFC), while the second scheme is aimed at the detection of actuator jams/runaways. For the OFC benchmark problem, the idea is to estimate the OFC using a mathematical model of the actuator in which the rod speed is estimated using an adaptive second order exact differentiator. For the jam/runaway actuator benchmark problem, a more classical sliding mode observer based FDD scheme is considered in which the fault reconstruction is obtained from the equivalent output error injection signals associated with a second order sliding mode structure. The results presented in this paper summarize the design process from tuning, testing and finally industrial evaluation as part of the ADDSAFE project.EU (FP7-233815

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression

    On the synthesis of an integrated active LPV FTC scheme using sliding modes

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThis paper proposes an integrated fault tolerant control scheme for a class of systems, modelled in a linear parameter-varying (LPV) framework and subject to sensor faults. The gain in the LPV sliding mode observer (SMO) and the gain in the LPV static feedback controller are synthesized simultaneously to optimize the performance of the closed-loop system in an L2 sense. In the proposed scheme, the sensor faults are reconstructed by the SMO and these estimates are subsequently used to compensate the corrupted sensor measurements before they are used by the feedback controller. To address the synthesis problem, an iterative algorithm is proposed based on a diagonalization of the closed-loop Lyapunov matrix at each iteration. As a result the NP-hard, non-convex linear parameter-varying bilinear matrix inequality (LPV/BMI) associated with the Bounded Real Lemma formulation, is simplified into a tractable convex LPV/LMI problem. A benchmark scenario, involving the loss of the angle of attack sensor in a civil aircraft, is used as a case study to demonstrate the effectiveness of the scheme.European Commissio

    Fuzzy interpretation for temporal-difference learning in anomaly detection problems

    Get PDF
    Nowadays, information control systems based on databases develop dynamically worldwide. These systems are extensively implemented into dispatching control systems for railways, intrusion detection systems for computer security and other domains centered on big data analysis. Here, one of the main tasks is the detection and prediction of temporal anomalies, which could be a signal leading to significant (and often critical) actionable information. This paper proposes the new anomaly prevent detection technique, which allows for determining the predictive temporal structures. Presented approach is based on a hybridization of stochastic Markov reward model by using fuzzy production rules, which allow to correct Markov information based on expert knowledge about the process dynamics as well as Markov’s intuition about the probable anomaly occurring. The paper provides experiments showing the efficacy of detection and prediction. In addition, the analogy between new framework and temporal-difference learning for sequence anomaly detection is graphically illustrated.Web of Science64363262

    Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Get PDF
    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed

    The STRESS Method for Boundary-point Performance Analysis of End-to-end Multicast Timer-Suppression Mechanisms

    Full text link
    Evaluation of Internet protocols usually uses random scenarios or scenarios based on designers' intuition. Such approach may be useful for average-case analysis but does not cover boundary-point (worst or best-case) scenarios. To synthesize boundary-point scenarios a more systematic approach is needed.In this paper, we present a method for automatic synthesis of worst and best case scenarios for protocol boundary-point evaluation. Our method uses a fault-oriented test generation (FOTG) algorithm for searching the protocol and system state space to synthesize these scenarios. The algorithm is based on a global finite state machine (FSM) model. We extend the algorithm with timing semantics to handle end-to-end delays and address performance criteria. We introduce the notion of a virtual LAN to represent delays of the underlying multicast distribution tree. The algorithms used in our method utilize implicit backward search using branch and bound techniques and start from given target events. This aims to reduce the search complexity drastically. As a case study, we use our method to evaluate variants of the timer suppression mechanism, used in various multicast protocols, with respect to two performance criteria: overhead of response messages and response time. Simulation results for reliable multicast protocols show that our method provides a scalable way for synthesizing worst-case scenarios automatically. Results obtained using stress scenarios differ dramatically from those obtained through average-case analyses. We hope for our method to serve as a model for applying systematic scenario generation to other multicast protocols.Comment: 24 pages, 10 figures, IEEE/ACM Transactions on Networking (ToN) [To appear
    corecore