83 research outputs found

    Biophysical Perspective: The Latest Twists in Chromatin Remodeling

    Get PDF
    International audienceIn its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin remodeling enzymes on nucleosomes with the aim to displace and remove them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process and, when the remodeling processes spreads along the fiber, also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the first is the intrinsic sequence preference of the histone octamer which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA, the second is the recognition or selection of nucleosomal substrates by remodeling complexes, and the final one the motor action on the nucleosome exerted by the chromatin remodeler. On each of these three levels recent work has been able to provide crucial insights which add new twists to this exciting and unfinished story, which we highlight in this perspective

    The Impact of Base Stacking on the Conformations and Electrostatics of Single-Stranded DNA

    Full text link
    Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems

    Analysing and quantitatively modelling nucleosome binding preferences

    Get PDF
    The main emphasis of my work as a PhD student was the analysis and prediction of nucleosome positioning, focusing on the role sequence features play. Part I gives a broad overview of nucleosomes, before defining important technical terms. It continues by describing and reviewing experiments that measure nucleosome positioning and bioinformatic methods that learn the sequence preferences of nucleosomes to predict their positioning. Part II describes a collaboration project with the Gaul-lab, where I analyzed MNase-Seq measurements of nucleosomes in Drosophila. The original intention was to investigate the extent to which experimental biases influence the measurements. We extended the analysis to categorize and explore fragile, average and resistant nucleosome populations. I focused on the relation between nucleosome fragility and the sequence landscape, especially at promoters and enhancers. Analyzing the partial unwrapping of nucleosomes genome-wide, I found that the G+C ratio is a determinant of asymmetric unwrapping. I excluded an analysis of histone modifications from this work, which was part of this collaboration, due to its low relevance to the rest of the presented work. Part III describes my main project of developing a probabilistic nucleosome-position prediction method. I developed a maximum likelihood approach to learn a biophysical model of nucleosome binding. By including the low positional resolution of MNase-Seq and the sequence bias of CC-Seq into the likelihood, I could separate them from the nucleosome binding preferences and learn highly correlated nucleosome binding energy models. My analysis shows that nucleosomes have a position-specific binding preference and might be uninfluenced by G+C content or even disfavor it – contrary to the Consensus in literature. Part IV describes further analysis I did during my time as a PhD student that are not part of any planned publications. The main topics are: ancillary elements of my main project, unsuccessful attempts to correct experimental biases, analysis of the quality of experimental measurements, and adapting my probabilistic nucleosome-position prediction method to work with occupancy measurements. Lastly, I give a general outlook that reflects on my results and discusses next steps, like ways to improve my method further. I excluded two collaboration projects I participated in from this thesis, because they are still ongoing: a systematic analysis of how the core promoter sequence influences gene expression in Drosophila and the development of an experiment to measure nucleosome occupancy more precisely

    The mechanical genome : inquiries into the mechanical function of genetic information

    Get PDF
    The four possible segments A, T, C and G that link together to form DNA molecules, and with their ordering encode genetic information, are not only different in name, but also in their physical and chemical properties. The result is that DNA molecules with different sequences have different physical behavior. For instance, one sequence may lead to a very flexible DNA molecule, another to a very stiff one. A DNA molecule with a given sequence may be straight, or intrinsically curved. This leads to an interplay between the information stored in a DNA molecule on one hand, and the physical properties of that molecule on the other. This is of great importance in our cells, where lengths of DNA far longer than the size of the cells that contain them need to be significantly folded up. The research presented in this thesis looks at how we can model this interplay, what its effects can be, and whether nature has made use of it to encode mechanical signals into real genomes.Theoretical Physic

    Practical Approaches to Biological Network Discovery

    Get PDF
    This dissertation addresses a current outstanding problem in the field of systems biology, which is to identify the structure of a transcriptional network from high-throughput experimental data. Understanding of the connectivity of a transcriptional network is an important piece of the puzzle, which relates the genotype of an organism to its phenotypes. An overwhelming number of computational approaches have been proposed to perform integrative analyses on large collections of high-throughput gene expression datasets to infer the structure of transcriptional networks. I put forth a methodology by which these tools can be evaluated and compared against one another to better understand their strengths and weaknesses. Next I undertake the task of utilizing high-throughput datasets to learn new and interesting network biology in the pathogenic fungus Cryptococcus neoformans. Finally I propose a novel computational method for mapping out transcriptional networks that unifies two orthogonal strategies for network inference. I apply this method to map out the transcriptional network of Saccharomyces cerevisiae and demonstrate how network inference results can complement chromatin immunoprecipitation: ChIP) experiments, which directly probe the binding events of transcriptional regulators. Collectively, my contributions improve both the accessibility and practicality of network inference methods

    Three-dimensional Folding of Eukaryotic Genomes

    Get PDF
    Chromatin packages eukaryotic genomes via a hierarchical series of folding steps, encrypting multiple layers of epigenetic information, which are capable of regulating nuclear transactions in response to complex signals in environment. Besides the 1-dimensinal chromatin landscape such as nucleosome positioning and histone modifications, little is known about the secondary chromatin structures and their functional consequences related to transcriptional regulation and DNA replication. The family of chromosomal conformation capture (3C) assays has revolutionized our understanding of large-scale chromosome folding with the ability to measure relative interaction probability between genomic loci in vivo. However, the suboptimal resolution of the typical 3C techniques leaves the levels of nucleosome interactions or 30 nm structures inaccessible, and also restricts their applicability to study gene level of chromatin folding in small genome organisms such as yeasts, worm, and plants. To uncover the “blind spot” of chromatin organization, I developed an innovative method called Micro-C and an improved protocol, Micro-C XL, which enable to map chromatin structures at all range of scale from single nucleosome to the entire genome. Several fine-scale aspects of chromatin folding in budding and fission yeasts have been identified by Micro-C, including histone tail-mediated tri-/tetra-nucleosome stackings, gene crumples/globules, and chromosomally-interacting domains (CIDs). CIDs are spatially demarcated by the boundaries, which are colocalized with the promoters of actively transcribed genes and histone marks for active transcription or turnover. The levels of chromatin compaction are regulated via transcription-dependent or transcription-independent manner – either the perturbations of transcription or the mutations of chromatin regulators strongly affect the global chromatin folding. Taken together, Micro-C further reveals chromatin folding behaviors below the sub-kilobase scale and opens an avenue to study chromatin organization in many biological systems

    Analysing and quantitatively modelling nucleosome binding preferences

    Get PDF
    The main emphasis of my work as a PhD student was the analysis and prediction of nucleosome positioning, focusing on the role sequence features play. Part I gives a broad overview of nucleosomes, before defining important technical terms. It continues by describing and reviewing experiments that measure nucleosome positioning and bioinformatic methods that learn the sequence preferences of nucleosomes to predict their positioning. Part II describes a collaboration project with the Gaul-lab, where I analyzed MNase-Seq measurements of nucleosomes in Drosophila. The original intention was to investigate the extent to which experimental biases influence the measurements. We extended the analysis to categorize and explore fragile, average and resistant nucleosome populations. I focused on the relation between nucleosome fragility and the sequence landscape, especially at promoters and enhancers. Analyzing the partial unwrapping of nucleosomes genome-wide, I found that the G+C ratio is a determinant of asymmetric unwrapping. I excluded an analysis of histone modifications from this work, which was part of this collaboration, due to its low relevance to the rest of the presented work. Part III describes my main project of developing a probabilistic nucleosome-position prediction method. I developed a maximum likelihood approach to learn a biophysical model of nucleosome binding. By including the low positional resolution of MNase-Seq and the sequence bias of CC-Seq into the likelihood, I could separate them from the nucleosome binding preferences and learn highly correlated nucleosome binding energy models. My analysis shows that nucleosomes have a position-specific binding preference and might be uninfluenced by G+C content or even disfavor it – contrary to the Consensus in literature. Part IV describes further analysis I did during my time as a PhD student that are not part of any planned publications. The main topics are: ancillary elements of my main project, unsuccessful attempts to correct experimental biases, analysis of the quality of experimental measurements, and adapting my probabilistic nucleosome-position prediction method to work with occupancy measurements. Lastly, I give a general outlook that reflects on my results and discusses next steps, like ways to improve my method further. I excluded two collaboration projects I participated in from this thesis, because they are still ongoing: a systematic analysis of how the core promoter sequence influences gene expression in Drosophila and the development of an experiment to measure nucleosome occupancy more precisely

    Epigenetic modelling: DNA methylation and working towards model parameterisation

    Get PDF
    The main focus of the research in this thesis is the investigation in DNA methylation mechanisms of epigenetics and the study of a specific database. As part of the latter work, the role of curation is described, and a new knowledge management system, PathEpigen1 , is reported that is currently being developed for colon cancer in the Sci-Sym centre. The database deals with genetic and epigenetic interactions and contains considerable data on molecular events such as genetic and epigenetic events. The data curation includes biomedical and biological information. An efficient method was devised to extract biological information from the literature to process, manage and upgrade data. We present a Deterministic Finite Automata (DFA) model for the DNA methylation mechanism controlled by DNA methyltransferase (DNMT) enzymes. This thesis provides a brief introduction to epigenetics, a survey of ongoing research on computational epigenetics and a description of the DNA methylation database. Furthermore, it also gives an overview of DNA methylation and its importance in cancer. The DFA models three states of methylation frequency (normal, de-novo and hypermethylated) in the cell. It has been executed on input of random strings of size 100. Out of the strings considered, we found that 26%, 37% and 37% correspond to normal, de-novo (cancer initiation) and hypermethylated (cancer) states, respectively
    corecore