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ABSTRACT 

 

Chromatin packages eukaryotic genomes via a hierarchical series of folding 

steps, encrypting multiple layers of epigenetic information, which are capable of 

regulating nuclear transactions in response to complex signals in environment. 

Besides the 1-dimensinal chromatin landscape such as nucleosome positioning 

and histone modifications, little is known about the secondary chromatin 

structures and their functional consequences related to transcriptional regulation 

and DNA replication. The family of chromosomal conformation capture (3C) 

assays has revolutionized our understanding of large-scale chromosome folding 

with the ability to measure relative interaction probability between genomic loci in 

vivo. However, the suboptimal resolution of the typical 3C techniques leaves the 

levels of nucleosome interactions or 30 nm structures inaccessible, and also 

restricts their applicability to study gene level of chromatin folding in small 

genome organisms such as yeasts, worm, and plants. To uncover the “blind 

spot” of chromatin organization, I developed an innovative method called Micro-C 

and an improved protocol, Micro-C XL, which enable to map chromatin structures 

at all range of scale from single nucleosome to the entire genome. Several fine-

scale aspects of chromatin folding in budding and fission yeasts have been 

identified by Micro-C, including histone tail-mediated tri-/tetra-nucleosome 

stackings, gene crumples/globules, and chromosomally-interacting domains 
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(CIDs). CIDs are spatially demarcated by the boundaries, which are colocalized 

with the promoters of actively transcribed genes and histone marks for active 

transcription or turnover. The levels of chromatin compaction are regulated via 

transcription-dependent or transcription-independent manner – either the 

perturbations of transcription or the mutations of chromatin regulators strongly 

affect the global chromatin folding. Taken together, Micro-C further reveals 

chromatin folding behaviors below the sub-kilobase scale and opens an avenue 

to study chromatin organization in many biological systems. 
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CHAPTER I 

Hierarchical Architecture of the Eukaryotic Genome:  

From Textbook to Modern Era 

 

Overview 

Chromatin packages eukaryotic genomes via a hierarchical series of folding 

steps (Figure 1.1), encrypting multiple layers of genetic and epigenetic 

information such as histone modifications and chromatin organization, etc., which 

are capable of regulating nuclear transactions in response to complex signals in 

environment. In eukaryotes, 147 base-pairs of DNA are first wrapped around 

histones (H3/H4 and H2A/H2B dimers) into nucleosomes. The first level of 

genome compaction is organization into the characteristic “beads on a string” 

structure, with nucleosomes separated by relatively accessible linker DNA. Our 

understanding of this primary structure of chromatin is well-developed, with 

multiple crystal structures solved for the nucleosome, and a plethora of genome-

wide studies that identify the positions and the covalent modifications of 

individual nucleosomes across the genome in various organisms, in some cases 

at single nucleotide-resolution. The next step in chromosome folding remains 

relatively poorly-characterized – for example, the long-held belief that chromatin 

fibers form a helical secondary structure termed the 30 nm fiber was readily 

observed under in vitro conditions, but its existence in vivo was the subject of 

intense debate. At the higher-order scale, the genome is further organized as 
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multiple-megabase of euchromatin and heterochromatin, which is then further 

condensed as mitotic chromosomes during the cell cycle. Although traditional 

biochemical and microscopic studies of the past have developed our 

fundamental knowledge of chromosome organization, a few key features of 

chromatin are still missing. How does chromatin dynamically respond to drastic 

change in environment? More specifically, how do histone modifications react to 

a massive transcriptional reprogramming? How are nucleosomal arrays folded in 

vivo? What kind of genomic information do these multiple levels of chromatin 

structures encode? This dissertation will discuss what we have learned about 

chromatin structures from the classic aspect to the modern view, and what the 

problems are unsolved (Chapter I, Introduction), and how a newly developed 

technique fills in the gaps of knowledge in chromatin (Chapter II, III, IV, 

Results).  
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Figure 1.1. Packages of DNA.  
(Left panel) Hierarchical organization of eukaryotic chromatin. DNA is wrapped around a 

histone octamer to form nucleosomes. Nucleosome array spaced by linker DNA can be 

folded into a fiber-like structure of ~30 nm in diameter. Chromatin is then compacted into 

high-order structures such as euchromatin and heterochromatin in interphase or mitotic 

chromosome during mitosis. (Right panel) Crystal structure of the nucleosome core 

particle. About 147 bp of DNA wrap around a histone octamer shown as two copies of 

H2A (yellow), H2B (red), H3 (blue), and H4 (green). The H3/H4 dimers are joined to form 

a tetramer and mark the center of the nucleosome or dyad of the nucleosome. The 

H2A/H2B dimers attach via interaction between H2A and H4 to form the octamer. 
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Left panel: Adapted from (FELSENFELD AND GROUDINE 2003) & (JANSEN AND VERSTREPEN 

2011). Cartoon shows the histone variants H2A.Z and H3.3, histone H1 bound to linker 

DNA, and covalent modifications on histone tails. 

• Left panel: Reprinted and adapted with permission from American Society for Microbiology: 

(JANSEN AND VERSTREPEN 2011). 

• Right panel: Reprinted and adapted with permission from Nature Publishing Group: (LUGER 

et al. 1997) for the crystal structure of nucleosome & (JIANG AND PUGH 2009) for the cartoon 

of nucleosome. 

 

Primary chromatin structures at a glance 

Nucleosomes: position, position, position 

The nucleosome is the basic, repeating unit which forms chromatin in eukaryotic 

cells. It consists of ~147 bp of DNA wrapped around histone octamers built from 

pairs of histones H2A, H2B, H3, and H4 (KORNBERG 1974; LUGER et al. 1997; 

KORNBERG AND LORCH 1999). A series of nucleosomes packaging a long stretch 

of genomic DNA was readily observed as beads-on-a-string structure by EM 

studies (OLINS AND OLINS 1974). At this scale, a great deal of interest surrounds 

the biological meaning of nucleosome occupancy along the genome. Where are 

nucleosomes well-positioned or depleted? Which nucleosomal regions are fragile 

or highly dynamic? What is the functional consequence of nucleosome 

occupancy with a certain pattern? The principle methodology used to approach 

these questions is based on the differential susceptibility of DNA to various 

fractionation processes, with nucleosomal DNA being protected from enzymatic 

digestion or chemical attack, and linker DNA being relatively accessible (Figure 

1.2) (ZENTNER AND HENIKOFF 2014). Many genome-wide assays have been 
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developed for mapping different features of primary chromatin structure. For 

example, nucleosome depletion regions (NDRs) (typically found near regulatory 

regions such as promoters and enhancers) can be profiled by a category of 

enzyme-based methods such as DNase-seq (DNase I) (KEENE et al. 1981; 

MCGHEE et al. 1981; CRAWFORD et al. 2006a; CRAWFORD et al. 2006b; BOYLE et 

al. 2008), ATAC-seq (Tn5 transposase) (BUENROSTRO et al. 2013), or NOMe-seq 

(GpC DNA methylase) (KELLY et al. 2012), which preferentially target areas with 

high accessibility. Additionally, given the different levels of nucleosome and 

protein occupancy on the genome, methods such as FAIRE-seq (Formaldehyde-

Assisted Isolation of Regulatory Elements) are capable of physically separating 

NDRs from bulk chromatin, as non-crosslinked DNA largely is fractionated into 

the aqueous phase, while protein-crosslinked fragments are retained in the 

organic phase (NAGY et al. 2003). 
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Figure 1.2. Methods for chromatin footprinting.  
(a) For enzymatic cleavage methods, nuclei are isolated and treated with the enzyme of 

interest to fragment chromatin, and DNA is purified for sequencing. (b) For chemical 

cleavage method, isolated nuclei harboring a single copy of H4S47C mutation are 

labeled with (N-(1,10-phenanthroline-5-yl)iodoacetamide) (OP) and treated with Cu2+ 

ions and hydrogen peroxide (H2O2) to cleave DNA. DNA is then isolated for 

sequencing. (c) For DNA methylation footprinting, isolated nuclei are treated with 

M.CviPI to methylate cytosine in the GC dinucleotide context. DNA is fragmented, 

purified, and subjected to bisulphite conversion. Resulting DNA is then sequenced. 

• Reprinted and adapted with permission from Nature Publishing Group: (ZENTNER AND 

HENIKOFF 2014). 

 

Our current concept of nucleosome occupancy and positioning are 

illustrated mainly via the wide-ranging application of micrococcal nuclease 

(MNase) digestion on chromatin, which has higher preference for DNA linkers 

than nucleosomal DNA (NOLL AND KORNBERG 1977). A desired level of chromatin 

fragmentation can be tightly controlled by a series of MNase titrations, usually 

resulting in a regular pattern of DNA ladder with repeating nucleosomal sizes 

(e.g., mononucleosomes, dinucleosomes, and so on). Sequencing DNA at 

mononucleosome size reveals genomic positions of three types of nucleosome: 

1) well-positioned nucleosomes; 2) fuzzy nucleosomes; and 3) fragile 

nucleosomes (Figure 1.3) (HUGHES AND RANDO 2014). The well-positioned 

nucleosomes that reside in the same location in most of cell populations are 

highly enriched at the borders of regulatory elements. Nucleosome positioning 

becomes fuzzier moving away from well-positioned nucleosomes (> 1500 bp), 

reflecting varying locations between cells. A low-level of MNase digestion further 
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reveals a subset of fragile or high turnover nucleosomes located in regulatory 

regions (WEINER et al. 2010; XI et al. 2011), which is consistent with recent result 

of chemical cleavage studies (BROGAARD et al. 2012; VOONG et al. 2016). In 

addition, the locations of DNA binding proteins such as transcription factors can 

be mapped by collecting small sized DNA fragments (typically 35 – 100 bp) after 

‘light’ MNase digestion (HENIKOFF et al. 2011; KENT et al. 2011). 

Genetic and biochemical studies provide insights into the forces driving 

the organization of nucleosome positions (Figure 1.3) (KORBER AND HORZ 2004; 

SEKINGER et al. 2005; KAPLAN et al. 2009; ZHANG et al. 2011; VAN BAKEL et al. 

2013). First, the flexibility of the DNA that wraps histones is determined by its 

base composition. Highly stiff poly(dA/dT) tracts are disfavored for nucleosome 

incorporation and thus are enriched in nucleosome depletion regions. Second, 

steric inhibition with adjacent nucleosomes or DNA binding proteins also 

influence nucleosome positions, as predicted by a statistical positioning model 

(KORNBERG AND STRYER 1988). Third, the ATP-dependent chromatin regulators 

such as RSC, INO80, and ISWs can remodel the primary chromatin landscape 

by assembling, evicting, and moving nucleosomes (CLAPIER AND CAIRNS 2009). 

Thorough dissection of these mechanics was done in a recent study using a 

biochemical in vitro system (KRIETENSTEIN et al. 2016). Fourth, Pol2 readthrough 

can destabilize nucleosome positioning, as evidenced by highly transcribed 

genes having lower and fuzzier nucleosome occupancy (TSANKOV et al. 2010). 

Finally, structural proteins, such as Heterochromatin Protein 1 (HP1) and histone 
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H1, can overcome steric hindrance and assemble more constrained structures. 

In sum, the combination of these forces delineates the locations of NDRs and 

boundaries, and guides wrapping of the remaining region, which leads to the first 

dimensional repeating structure. 

 

Figure 1.3. Chromatin landscape.  
Nucleosome depletion regions (NDRs) are mainly defined by stiff poly(A/T) tracts, in 

which the incorporation of nucleosome is extremely unstable. These regions are usually 

found near regulatory elements (promoters and enhancers) and bound by transcription 

factors or fragile nucleosomes. NDRs are typically surrounded by well-positioned 

nucleosomes, which are localized at -1 and +1 positions of genes and enriched with 

H2A.Z variant. The formation of nucleosomes is further enhanced by DNA sequences 

containing regularly spaced A/T dinucleotides (approximately one dinucleotide every 10 

bp) and G/C dinucleotides (in between the A/T dinucleotides). Nucleosome are also 

positioned by the steric hindrance of neighboring nucleosomes. This imperfect 

positioning signal results in the precision of nucleosome positioning being gradually 

decayed, and nucleosome positioning becomes fuzzier around 1.5kb downstream of the 

+1 nucleosomes. Other factors like ATP-dependent chromatin remodelers can evict, 

slide, or assemble nucleosomes, adding another layer of regulation of chromatin 

landscape. 

• Reprinted and adapted with permission from American Society for Microbiology: (JANSEN 

AND VERSTREPEN 2011). 

 

Histone variants and modifications 
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The repeating nucleosomal structure is not composed of uniform ‘beads.’ 

Individual nucleosomes can be decorated with various covalent modifications 

and subunits, and the chemical properties of ‘beads’ are differed greatly from 

each other. For example, histone variants (e.g., H2A.X and H2A.Z isoforms of 

H2A and H3.1 and H3.3 isoforms of H3) can undergo dynamic exchange with 

canonical histones on the repeating nucleosome template (Figure 1.1). The tails 

and core domain of histones can be chemically modified with a great variety of 

modifications such as acetylation, methylation, phosphorylation, ubiquitylation, 

sumoylation, and more at multiple residues (Figure 1.4) (TAN et al. 2011). These 

modifications and variants alter the physical and chemical properties of 

nucleosomes and their microenvironment, resulting in the modulation of enzyme 

binding affinity, and thus intimately affecting the consequences of genomic 

transactions (TURNER 1993; JENUWEIN AND ALLIS 2001; RANDO 2012). 

 

Figure 1.4. Overview of histone modifications.  
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Schematic shown the common chemical modifications on histone tails and cores, 

including acetylation, methylation, phosphorylation, ubiquitination, sumoylation, etc.  

• Reprinted and adapted with permission from InTech:  (XU et al. 2013). 

 

Genome-wide mapping of histone modifications largely relies on the 

methods of chromatin immunoprecipitation (ChIP-seq or ChIP-Chip) following 

chromatin fragmentation by MNase digestion or mechanical sonication. Over a 

decade of efforts revealed the key aspects of histone modifications conserved 

across species (Figure 1.5) (LIU et al. 2005; SINHA et al. 2006; FILION et al. 2010; 

ERNST et al. 2011). First, the process of transcription including Pol2 initiation and 

elongation leaves a massive footprint on chromatin. This results in the deposition 

of di/trimethylation on H3K4 (H3K4me2/3), multiple acetyl groups on histone tails 

(H3K4/9/14/18/27ac and H4K5/8/12ac), and H3.3 and H2A.Z isoforms at the 5’-

ends of genes, while histone tails at the 5’-end of poised genes are marked with 

relatively lower levels of acetylation. Additionally, nucleosomes across the gene 

body are broadly marked with H3K36me3 and H3K79me3, in company with 

decreasing levels of acetylation (RANDO AND WINSTON 2012). Second, distal 

regulatory elements such as enhancers are marked with H3K4me1/2, along with 

modifications at H3K27 (acetylation or methylation) which can be used to further 

distinguish repressed, poised, or active enhancers (HEINTZMAN et al. 2007). 

Third, constitutive heterochromatin (e.g., telomeric and repetitive regions) are 

enriched with H3K9me3. In contrast, facultative heterochromatin in which the 

genes are repressed by polycomb complexes are marked with H3K27me3. A 



12 
 

subset of areas commonly found at developmental loci such as Hox clusters in 

embryonic stem cells are simultaneously marked as the bivalent state, with the 

active mark H3K4me1 and the repressive mark H3K27me3, to allow for a quick 

response to developmental signals (BERNSTEIN et al. 2006). Finally, the 

centromeric regions are usually enriched with the H3-like CENP-A protein and 

broadly marked with H3S10ph during mitosis. Overall, the states of nucleosomes 

strikingly mirror genomic functions, which has been broadly used as the standard 

reference to predict and model chromatin states. 

 

Figure 1.5. Genome-wide distribution pattern of histone modifications from 
a transcription perspective.  
Schematic shown the genome-wide average of histone modifications across an arbitrary 

area containing 5’- and 3’-ends of nucleosome free regions (NFRs), transcription start 
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site (TSS), and gene body. The curves are showing the genome-wide average patterns 

of histone modifications from yeast, except for H3K9me3 and H3K27me3. 

• Reprinted and adapted with permission from Elsevier: (LI et al. 2007). 

 

Although histone modifications have been investigated intensively in the 

past, the kinetics of their modifications, the cause-or-consequence relationships 

of many genomic functions, and even the plausibility of a meaningful ‘histone 

code’ remain under debate. A recent modified version of ChIP (called co-ChIP) 

which includes serial pulldowns of target modifications seems promising in an 

effort to directly dissect the co-existence of chemical modifications on individual 

nucleosomes in more detail (SADEH et al. 2016; WEINER et al. 2016). Another 

innovative approach called chromatin endogenous cleavage (ChEC-seq) 

appears to be able to efficiently reduce background noise compared to traditional 

ChIP, and whose further application in the mapping of histone modifications will 

provide a complementary view of chromatin states (ZENTNER et al. 2015). 

 

Controversial 30 nm chromatin structures 

In 1976, Aaron Klug and colleagues folded purified nucleosomal arrays in vitro 

into regular 30 nm chromatin fibers (FINCH AND KLUG 1976), pioneering the entire 

era of 30 nm chromatin hunting. Despite over 40 years of research, how 

nucleosomes interact with each other and whether these interactions configure 

any periodic chromatin structure remains elusive (TREMETHICK 2007; MAESHIMA et 

al. 2010a; FUSSNER et al. 2011; LUGER et al. 2012). Decades of biochemical 
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studies combined with electron microscopy and other biophysical methods (e.g., 

X-ray diffraction, optical/magnetic tweezer, mesoscopic modeling, etc.) have 

proposed two competing models for 30 nm chromatin folding (Figure 1.6A-B): 1) 

the one-start helix or solenoid path of folding, and 2) the two-start helix or zigzag 

path of folding (ROBINSON AND RHODES 2006; LI AND REINBERG 2011; GRIGORYEV 

AND WOODCOCK 2012; LUGER et al. 2012). The ‘one-start’ solenoid is arranged by 

consecutive nucleosomes with approximately six nucleosomes per turn, in which 

nucleosomes interact with each other and follow a helical trajectory with bending 

of linker DNA (FINCH AND KLUG 1976). In the ‘two-start’ zigzag model, two ribbons 

of nucleosomes form a two-start helix linked by relatively straight linker DNA so 

that alternate nucleosomes become adjacent partners with roughly three 

nucleosomes per turn (WORCEL et al. 1981; WOODCOCK et al. 1984).  

 

30 nm chromatin in vitro 

The main impediment to solving the 30 nm chromatin structure is the high-degree 

of complexity in native chromatin, which contains variable lengths of linker DNA, 

intricate combinations of histone modifications and variants, chromatin 

remodelers, and transcription factors, all of which greatly complicate downstream 

analysis and interpretation. The extremely compact nature of the structure in 

nucleus further prevents the regular path of chromatin from being visualized by 

any given method. To simplify experimental variables, the majority of studies 

used an artificial chromatin template, typically 12 identical repeats of ‘Widom-
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601’ nucleosome positioning sequence that can be assembled into nucleosome 

arrays with highly uniform recombinant histones (LOWARY AND WIDOM 1998). For 

example, Richmond and colleagues designed two prominent studies, one which 

crosslinked nucleosome interactions via modified histone H4 and H2A (DORIGO et 

al. 2004), and the other crystallized the tetranucleosome array (Figure 1.6C) 

(SCHALCH et al. 2005). Both strongly suggested the zigzag path of chromatin 

folding. In contrast, later cryo-EM studies on long nucleosomal arrays with 

various lengths of nucleosomal repeats and in the presence of histone H1, 

preferred the multi-start interdigitated solenoid model, as the high nucleosome 

packing ratio was not compatible with any two-start zigzag or one-start solenoid 

model (ROBINSON et al. 2006; WONG et al. 2007; ROUTH et al. 2008). Single-

molecule force spectroscopy (SMSF) also can be used to model the internal 

structure of 30 nm chromatin fiber by applying a pulling force on bead-conjugated 

chromatin fibers via optical/magnetic tweezers. The resulting kinetics on fiber 

extension can be further interrelated to different chromatin structures – two 

independent studies argued for chromatin folding consistent with the zigzag 

model at physiological concentration of monovalent cations (CUI AND BUSTAMANTE 

2000) but with the solenoid model in the presence of divalent cations (KRUITHOF 

et al. 2009), rather than the multi-start interdigitated structure observed by cryo-

EM. 
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More recently, Schlick and colleagues used electron microscopy-assisted 

nucleosome capture (EMANIC) combined with mesoscopic modeling, which 

provided an alternative perspective for the 30 nm chromatin structures, at least 

for in vitro-assembled fibers (GRIGORYEV et al. 2009). In the method, condensed 

chromatin was first crosslinked by formaldehyde, decondensed in low salt 

conditions, and then subjected to transmission EM imaging to define the patterns 

of inter-nucleosome interactions. Surprisingly, instead of a uniform structure, the 

observation of heterogeneous types of nucleosome interactions strongly 

suggested heteromorphic folding for 30 nm chromatin, with a predominant two-

start zigzag path interspersed with one-start solenoid structure with partially bent 

linker DNA (Figure 1.6D) (GRIGORYEV et al. 2009). In silico simulation such as 

mesoscopic modeling also supports a heteromorphic conformation, as it is 

energetically more favorable than the uniform structures under high levels of 

compaction (ARYA AND SCHLICK 2006; PERISIC et al. 2010; COLLEPARDO-GUEVARA 

AND SCHLICK 2012). Longer nucleosome repeat lengths (> 200 bp) often require 

linker histone H1 to prevent DNA bending, thus disfavoring the formation of a 

solenoid helix. The features of a heteromorphic model fully agree with the nature 

of chromatin fibers observed by EM, as well with the length in diameter and 

mass-per-unit of chromatin isolated from nuclei. 
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Figure 1.6. Models for chromatin secondary structures.  
(A) The solenoid model is characterized by a consecutive nucleosome helix in which a 

nucleosome in the fiber tends to repeatedly interact with its fifth and sixth neighbor 

nucleosomes (N+4 and N+5). Solenoid fibers consist of longer NRL ~197bp, with 5 – 6 

nucleosomes per helical turn and ~30 nm of diameter.  (B) In the zigzag structure, a 

nucleosome prefers to interact with its second neighbor nucleosome (N+2), thus forming 
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the zigzag path of chromatin with roughly 3 nucleosomes per turn. The NRL and the 

diameter of zigzag structure are shorter than the solenoid structure, with ~167bp per 

repeating unit and ~25nm of diameter. (C) The tetranucleosome stacking model from 

cryo-EM data. The top panel shown the segmented density map for the tetranucleosome 

unit. The structure is highly similar to the crystal structure of tetranucleosome motif with 

167bp of NRL in the absence of histone H1. The results indicated that the presence of 

histone H1 and variable lengths of NRL do not alter interactions within tetranucleosome, 

but affects the separation and rotation between two stacks. Axes are highlighted by 

green and red lines. The middle panel shown the stacking of three tetranucleosome 

units forming the two-start 30 nm chromatin fiber. The bottom panel shown the 

schematic of the middle panel. (D) The heteromorphic chromatin model. (Left panel) The 

results of EMANIC data and mesoscopic modeling proposed the heteromorphic model 

for chromatin secondary folding, with a predominate zigzag path interspersed with 

solenoid path. (Right panel) A detailed view of heteromorphic model shown in the left 

panel. The histone core particles are rendered with gray color, and the tails are colored 

yellow for H2A, red for H2B, blue for H3, and green for H4. The first five nucleosomes 

are indicated. 

• Panel A-B: Reprinted and adapted with permission from Nature Publishing Group: (LUGER et 

al. 2012). 

• Panel C: Reprinted and adapted with permission from AAAS: (SONG et al. 2014). 

• Panel D: Reprinted and adapted with permission from ASBMB: (SCHLICK et al. 2012). 

 

In addition to the in vitro synthesis system, chromatin isolated from nuclei 

and followed by nuclease fragmentation (usually in the range of one to several 

hundred nucleosomes) has been used to study 30 nm chromatin structures as 

well (THOMA et al. 1979). Isolated fibers partially retain the complex nature of 

native chromatin that mimics various nucleosome repeat lengths and histone 

compositions/modifications in vivo. These ‘in vivo-like’ fibers have been most 

effective in controlling salt-dependent chromatin folding, as mentioned in the first 
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30 nm chromatin model (FINCH AND KLUG 1976). Nevertheless, the high 

complexity of in vivo-like chromatin fibers often obscured downstream 

interpretation of results from EM or atomic force microscopy (WOODCOCK et al. 

1993; LEUBA et al. 1994; BEDNAR et al. 1998), which suggests an intrinsic 

heterogeneity of nucleosome packing within 30 nm chromatin fibers resulting 

from the variability in nucleosome orientation. Interestingly, a recent EMANIC 

study on isolated interphase chromatin using HeLa cells and chicken 

erythrocytes supported the heteromorphic chromatin structure with a 

predominant zigzag path (GRIGORYEV et al. 2016). 

In brief, a multitude of key factors have been reported to influence folding 

of the linear ‘beads-on-a-string’ polymer into compact secondary structures, 

including: 1) the concentration of salt (NaCl), divalent ions (Mg2+, Ca2+), and 

polyamines (spermidine, spermine); 2) the N-terminal histone tails and their 

chemical modifications (H4 tail and acidic patches); 3) nucleosome repeat length 

(NRL); 4) the level of histone H1 binding on chromatin; 5) chromatin regulators 

(e.g. Polycomb or Sir complex); and 6) molecular crowding effects (dextran, 

PEG).  

 

30 nm chromatin in vivo 

Observation of chromatin structure in situ has been an immensely challenging 

task due to the high-degree of compaction in the nucleus. Only when nuclei were 

mildly decondensed or spread on a water surface can EM imaging distinguish 
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chromatin structures from background signals of dense mass (GALL 1963; GALL 

1966). In situ 30 nm chromatin was found exclusively in some ‘special’ types of 

nuclei, such as nucleated erythrocytes in chicken or necturus (WILLIAMS et al. 

1986; SCHEFFER et al. 2011; GRIGORYEV et al. 2016), sperm in Echinoderm 

(starfish), Thyone briareus (sea cucumber), and Patiria miniata (bat star) 

(WILLIAMS et al. 1986; HOROWITZ et al. 1994; SCHEFFER et al. 2012), and Xenopus 

laevis eggs (GALL 1963; GALL 1966), whose structure mirrored the zigzag 

conformation identified by in vitro methods. Another special case in mouse retinal 

rod photoreceptors revealed 30 nm chromatin fibers at the outer layer of centric 

heterochromatin, where chromatin is less compact (KIZILYAPRAK et al. 2010). It is 

worth noting that the shared features in these types of nuclei may explain the 

discovery of 30 nm chromatin, including 1) the absence of active transcription, 2) 

a specialized type of histone H1, 3) very long nucleosome repeat lengths, and 4) 

a low proportion of non-histone chromatin proteins.  

Besides microscopic approaches, a theoretical method of modeling 30 nm 

chromatin structures was pioneered by Chatterjee and colleagues, who induced 

spatially correlated DNA breaks by passing gamma rays through aqueous 

samples (RYDBERG et al. 1998). The pattern of averaged fragment length 

distribution (FLD) resulting from the periodic folding of DNA strongly argued that 

the predominant two-start zigzag path of chromatin folding are widespread 

structures in mammalian cells. This experimental concept recently was combined 

with high-throughput sequencing, which further highlighted that zigzag folding 
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was enriched in H3K9me3 regions, while H3K27me3 and open chromatin 

contained a mixture of solenoid and linear conformations (RISCA et al. 2017).  

However, a growing number of research provides evidence that chromatin 

consists of irregular 10 nm fibers in vivo, rather than a periodic 30 nm structure 

(TREMETHICK 2007; MAESHIMA et al. 2010a; MAESHIMA et al. 2010b; FUSSNER et al. 

2011; JOTI et al. 2012; LUGER et al. 2012; MAESHIMA et al. 2016). Cryo-EM and 

electron spectroscopic imaging (ESI) studies in mammalian interphase or 

metaphase nuclei suggested bulk chromatin is folded into disordered 10 nm 

fibers and non-uniform sizes of nucleosomal clutch but not in any type of periodic 

structure (ELTSOV et al. 2008; AHMED et al. 2010; FUSSNER et al. 2012; CHEN et 

al. 2016). Regular chromatin structures only appeared under conditions where 

nuclei were artificially pre-decondensed in low salt solutions or crosslinked by 

aldehyde reagents (ELTSOV et al. 2008). Moreover, small-angle X-ray scattering 

(SAXS) analysis only detected peaks at ~6 nm (face-to-face stacking) and ~ 11 

nm (edge-to-edge stacking) showing predominance of 10 nm chromatin fibers in 

mammals, while the ~30 nm peak readily disappeared as ribosomes were 

washed away (NISHINO et al. 2012). These results again strongly argued against 

the existence of 30 nm chromatin in vivo. Recent super-resolution imaging 

(STORM) revealed heterogeneous groups of nucleosomal clutches ubiquitously 

exhibited in nuclei, and whose sizes strongly correlated to stem cell states and 

local transcriptional activity (RICCI et al. 2015). Interestingly, although no periodic 

chromatin folding was clearly identified, the structure of nucleosome clutches 
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appears to mirror the tri- or tetra- nucleosome motif observed by X-ray 

crystallization or cryo-EM (SCHALCH et al. 2005; SONG et al. 2014), and likely act 

as the building block of chromatin. In sum, the current model suggests liquid-like 

behavior of chromatin folding (Figure 1.7) (LUGER et al. 2012; MAESHIMA et al. 

2016). The 30 nm fiber may only occur in vitro due to the high dilution of 

chromatin fibers used in such studies, in which a given nucleosome will only 

have access to other nucleosomes on the same DNA fragment (intra-fiber 

interactions > inter-fiber interactions). While in the nuclear “sea of nucleosomes” 

many additional nucleosomes are available in trans for internucleosomal 

interactions fragment (inter-fiber interactions > intra-fiber interactions), the 

irregular globule structure ultimately predominates periodic chromatin folding. 
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Figure 1.7. The liquid-like chromatin model.   
(A) In the dilution condition, the predominant intra-fiber force may facilitate the fiber 

folding into the 30 nm chromatin structures. However, the irregular chromatin fibers 

readily become the dominant structures with increasing strength of inter-fiber 

interactions being the major force. The chromatin structures are sensitive to the change 

of the concentration of cation, histone H1, and molecular crowding, as well as the state 

of nucleosome modifications. (B) Schematic shown repressed chromatins are organized 

as viscous liquid-like drops, which formation is mediated by the inter-nucleosome 

interactions and macromolecular crowding effects. These viscous drops are linked (or 

delimited) by flexible chromatin fibers. Highly-transcribed regions are looped out from the 

edge of repressed regions, in which transcription factors and Pol2 are accessible to the 

chromatin context. The concept of the liquid-like chromatin model fully agrees with many 

features of the current chromatin conformation model proposed via Hi-C (see next 

section). 

• Reprinted and adapted with permission from Springer: (MAESHIMA et al. 2014). 

 

Beyond the 30 nm chromatin fiber 

Chromosome Conformation Capture 

Structural analysis of chromosome folding beyond the nucleosome fiber has 

been revolutionized by the Chromosome Conformation Capture (3C) family of 

techniques, which measure relative contact frequency between pairs of genomic 

loci in vivo (DEKKER et al. 2002; GIBCUS AND DEKKER 2013; BONEV AND CAVALLI 

2016; SCHMITT et al. 2016). In 3C-based protocols, chromatin is first crosslinked 

in vivo using formaldehyde to capture physical interactions between distal 

regions of the genome. Chromatin subsequently is fragmented by restriction 

enzymes, and ligation of chromatin fragments is used to generate chimeric DNA 

molecules (DEKKER et al. 2002). Detecting these molecular libraries provides a 
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readout of genomic loci that were crosslinked to one another via protein-protein 

interactions (Figure 1.8A). An increasing number of 3C variants have been 

developed based on needs of widespread experimental designs, with scales of 

data throughput that include methods for detecting single-to-single (3C) (DEKKER 

et al. 2002), single-to-all (4C) (SIMONIS et al. 2006; ZHAO et al. 2006), multiple-to-

multiple (5C) (DOSTIE et al. 2006), and all-to-all (Hi-C) (LIEBERMAN-AIDEN et al. 

2009; DUAN et al. 2010; KALHOR et al. 2011), in some cases can be applied for 

single-cell study (NAGANO et al. 2013; RAMANI et al. 2017). In addition, methods 

that specifically enrich interactions by targeting proteins of interest (ChIA-PET) or 

genomic loci of interest (Capture-C) can be used broadly for studying protein-

mediated chromatin structures or promoter-promoter/promoter-enhancer 

interactions (Figure 1.8B) (FULLWOOD et al. 2009; HUGHES et al. 2014). Genome-

wide variants of 3C, such as Hi-C, have revealed a number of organizational 

features of the eukaryotic genome at increasingly finer resolutions (Figure 1.8C), 

from the scale of full chromosomal territories, to multi-megabase active and 

inactive compartments (LIEBERMAN-AIDEN et al. 2009), to hundred-kilobase 

topologically-associating domains (TADs) (DIXON et al. 2012; NORA et al. 2012), 

and to long-range chromatin loops (PHILLIPS-CREMINS et al. 2013; SOFUEVA et al. 

2013; RAO et al. 2014), whose regulatory mechanisms and biological 

consequences have been subjected to intensely investigate in the recent years.  
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Figure 1.8. Overview of 3C-based methods.  
(A) Schematic of a simplified procedure for 3C-based methods. The key steps include 

crosslinking chromatin, genome fragmentation, proximity ligation, and detection of the 

ligated products. (B) Table of the current 3C-family techniques. Many 3C-based 

methods have been developed based on the different detection methods, ranging from 

the scale of a single locus to genome-wide. (C) An example of Hi-C data. The contact 

matrices and cartoons show the identified chromosome structures such as whole 

genome territories, chromosome compartments, TADs, and chromatin loops with 

increasing resolution of view. 

• Panel A-B: Reprinted and adapted with permission from Nature Publishing Group: (KRIJGER 

AND DE LAAT 2016). 

• Panel C: Reprinted and adapted with permission from Geoffrey Fudenberg, (2017): 03-23-

17_les_houches_forWeb_gfudenberg.pdf. figshare. 

https://doi.org/10.6084/m9.figshare.4871948.v1. 

 

Chromosome compartments 

Eukaryotic cells non-randomly compartmentalize the genome into euchromatin 

and heterochromatin, which has been extensively observed by using microscopic 

approaches such as DNA fluorescence in situ hybridization (FISH) that 

cytologically display the co-distribution of regions with similar genomic features 

(SCHERMELLEH et al. 2001; ALBIEZ et al. 2006; SHOPLAND et al. 2006; HU et al. 

2009; ROUQUETTE et al. 2009; CREMER AND CREMER 2010; HUBNER et al. 2015). In 

other words, gene dense regions are preferentially co-localized in area with 

active transcription and, in general, gene deserts are contained within compact 

chromatin or at the nuclear periphery. Differential enrichments of gene density 

between euchromatin and heterochromatin broadly has been observed not only 

https://doi.org/10.6084/m9.figshare.4871948.v1
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by microscopy, but also in many biochemical studies. For example, distinct 

mapping of open and compact chromatin fibers to the G-band and C-band of 

chromosome was assayed by using hybridization to mitotic chromosomes and 

microarrays (GILBERT et al. 2004). In addition, reporter integration assays that 

randomly insert synthetic cassettes into the genome and monitor genomic 

integrations either by GFP output or high-throughput sequencing further 

confirmed the findings of compartment-wide regulation of gene expression 

(GIERMAN et al. 2007; AKHTAR et al. 2013). 

Chromosome compartments can be qualitatively and quantitatively 

measured using Hi-C. Two types of structures called compartment A/B 

(representing active/inactive domains, respectively) were identified from Hi-C 

data by principle component analysis (PCA) (Figure 1.8C), where compartment 

A correlates with active epigenomic marks such as DNase I accessible regions, 

while compartment B relates to dense chromatin (LIEBERMAN-AIDEN et al. 2009). 

In addition to the discrete chromatin organization observed by electron 

microscopy (EM) imaging in different cell types, Hi-C mapping across a course of 

mammalian developmental and lineage specifications indicated that nearly 40% 

of compartment A/B switches throughout the genome (DIXON et al. 2015). These 

switches cooccur with transcriptional reprogramming during development, 

suggesting that chromosome compartments associate with gene 

activation/repression in distinct cell lineages. Whereas transcription activation is 

capable of inducing gene repositioning toward the nuclear interior as well as 
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compartment swapping, gene relocation can be also triggered by recruitment of 

an acidic peptide that decompacts chromatin without affecting transcription, 

indicating that both transcription and chromatin remodeling contribute to 

chromatin reorganization (THERIZOLS et al. 2014). However, a recent study 

indicated that although targeted genomic loci can be repositioned by recruitment 

of factors such as NANOG, SUV39H1, or EZH2, compartment switching was 

largely uncoupled from transcriptional changes, and histone modifications per se 

are not sufficient for repositioning (WIJCHERS et al. 2016). Taken together, the 

effects of cis- and trans- factors on chromatin compartments and transcription 

remains to be further clarified.  

Interestingly, in addition to the transcription-related functions of large-scale 

chromosome compartments, comparing the nuclear architecture of rod 

photoreceptor cells between nocturnal and diurnal mammals found the inverted 

pattern, where heterochromatin localizes in the center of nucleus and acts as a 

collecting lens to channel light more efficiently. By contrast, the conventional 

architecture prevailing in most eukaryotic cells confers more flexible chromosome 

arrangements (SOLOVEI et al. 2009). These findings suggest that chromatin 

organization may provide an extra layer of function linking to many more 

biological systems. 

Genome-wide chromosome conformation mapping and physical 

simulation suggest a fractal globule structure that enables the highest level of 

compaction while preserving the capacity to fold and unfold any genomic locus 
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(LIEBERMAN-AIDEN et al. 2009). While a few pioneer studies strategically removed 

key architectural proteins such as Cohesin and CTCF in vivo, their effects on the 

scales of chromatin structures differed from each other (also discussed in the 

next section) (SEITAN et al. 2013; NORA et al. 2016; SCHWARZER et al. 2016). The 

controversial findings strongly presume that, besides the trans factors mentioned, 

histone modifications, nucleosome positioning, and primary DNA sequences may 

intrinsically drive the formation of chromosomes.  

 

Chromatin domains, boundaries, and loops 

The compaction and organization of the genome into a physical genome have 

wide-ranging consequences for genomic function. Mounting evidence provided 

by single-locus studies at the globin and Hox clusters imply that chromatin could 

be organized as regulatory units in response to transcriptional regulation during 

development (DOSTIE et al. 2006; SIMONIS et al. 2006; BAU et al. 2011; 

NOORDERMEER et al. 2011; WILLIAMSON et al. 2014). Recent 3C-based techniques 

(e.g., 5C and Hi-C) with higher sequencing depth have discovered widespread 

chromatin domains (Figure 1.8C) (DIXON et al. 2012; NORA et al. 2012), which 

were further verified by super-resolution imaging combined with multiplexed error 

robust fluorescence in situ hybridization (MERFISH) (WANG et al. 2016). These 

techniques pioneered the discovery that chromosomes are partitioned into self-

interacting domains, often called topologically associating domains (TADs) or 

chromosomally interacting domains (CIDs). TADs and CIDs typically manifest as 
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contiguous squares along the diagonal of contact matrices in 5C or Hi-C data, 

where regions within the same domain preferentially interact with each other over 

with regions located in adjacent domains (Figure 1.9). 

 

Figure 1.9. TADs, boundaries, and loops.  
Chromosomes are subdivided into consecutive TADs, which limit the interactions 

crossing the boundaries from one TAD to another. Boundaries are enriched with active 

genes and chromatin marks, tRNA loci, and retrotransposons, as well as the 

architectural proteins like CTCF, Cohesin, or Mediator. Boundaries bound by CTCF and 



32 
 

Cohesin are responsible for the constitute TADs, while Mediator and Cohesin facilitate 

the formation of sub-TADs corresponding to the regulatory interactions (e.g., enhancer-

promoter) during differentiation. Recent studies additionally identified domains/loops 

mediated by Polycomb complex, linking promoter areas of silenced genes. The 

formation of TADs/loops can be partially explained by the loop extrusion model – 

Cohesin complex forms progressive large loop/domain (blue or yellow domains/loops), 

while the looping process is stalled at the convergent CTCF-binding sequences (green 

arrows) bound by CTCF. Note that not all the TADs/loops can be simply explained by 

the loop extrusion model. 

• Reprinted and adapted with permission from Nature Publishing Group: (KRIJGER AND DE 

LAAT 2016). 

 

TADs have been identified in many cell types and seemed to be evolutionary 

conserved across species, including human (Homo sapiens), dog (Canis 

familiaris), mouse (Mus musculus), and macaque (Macaca mulatta) (DIXON et al. 

2012; NORA et al. 2012; VIETRI RUDAN et al. 2015) as well in the model organisms 

fly (Drosophila melanogaster) and bacteria (Caulobacter crescentus)(HOU et al. 

2012; SEXTON et al. 2012; LE et al. 2013; LE AND LAUB 2016). However, these 

domains are absent in organisms with small genomes, such as yeasts and plant 

(Arabidopsis thaliana)(DUAN et al. 2010; FENG et al. 2014; GROB et al. 2014; 

WANG et al. 2015), as well as the autosomes in worm (Caenorhabditis 

elegans)(CRANE et al. 2015). As a result, domains contain a hierarchical 

organization which can be subdivided into smaller domains. How these domains 

are identified and classified heavily depends on the genome size of the 

organism, the resolution of the experimental output, and the analysis 

approaches; that is, smaller genome organisms (such as yeast) may need 
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extremely high resolution data to visualize its chromatin domains. It is worth 

noting that the initial study of domains reported the median size of mammalian 

TADs to be ~880 kb, but subsequent Hi-C data with higher resolution reported a 

smaller size of ~200 kb, suggesting a great deal of uncertainty in defining self-

interacting domains (DIXON et al. 2012; RAO et al. 2014). It also suggests that 

TADs previously identified in fly (~100 kb), the X chromosome of worm (~ 1 Mb), 

and even in bacteria (~ 50 kb) should be revisited with improved sequencing 

depth or resolution. 

It has been suggested that the properties of chromatin domains closely 

associate with their primary chromatin features (such as histone modifications 

and nucleosome occupancy), which generally reflects transcriptional activity or 

replication timing. For example, a subset of chromatin domains called the lamina 

associating domains (LADs) is classified by discrete regions with low gene-

expression and high repressive histone marks (H3K27me3 and H3K9me3) 

(GUELEN et al. 2008; REDDY et al. 2008; KIND et al. 2013; KIND et al. 2015). 

Cytologically, these regions represent as heterochromatic domains surrounding 

the nuclear periphery. Artificial tethering genomic loci to LADs or integrating 

synthetic sequencing within LADs leads to transcriptional inactivation (REDDY et 

al. 2008). Additionally, mammalian genomes are segmented into replication 

domains (RDs) based on replication timing, which are highly correlated with the 

properties of chromosome compartments (TAKEBAYASHI et al. 2012; POPE et al. 

2014). Although the cell-type specific RDs occur at the TAD level, early RDs 
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usually co-localize with active/open compartments and the late RDs reside in 

inactive/compact compartments. Despite these strong correlations, the cause or 

consequence relationship between chromatin and nuclear transactions still 

remains elusive. For example, TADs can function as regulatory units in response 

to hormone-induced transcriptional reprogramming (LE DILY et al. 2014), as well 

as associate with many transcription-related developmental diseases (e.g. sex 

reversal, cook syndrome, and cancer-related) (CHANDRA et al. 2015; LUPIANEZ et 

al. 2015; FRANKE et al. 2016). In addition, transcriptional activity seems to be co-

regulated within an individual TAD, as seen by enhancer-insertion assays in 

mouse embryos (SYMMONS et al. 2014). However, at least in X chromosome, 

G9a-/- (H3K9 methyltransferase) or Eed-/- (H3K27 methyltransferase) that 

disrupt the depositions of heterochromatic marks does not lead to any significant 

change in TAD organization (NORA et al. 2012), which suggests a more complex 

regulatory network between chromatin structures and transcription or TAD 

formation being upstream of histone modifications and transcriptional regulations.  

Chromatin domains are spatially demarcated by domain boundaries, which 

are defined by calling the lowest local cross-interactions in a given size scanning 

window (DIXON et al. 2012). The boundaries are enriched for architectural factors 

such as CTCF, Cohesin, topoisomerases, active genes (nascent transcripts) and 

histone marks (H3K4me3, H3K36me3), tDNA loci, and short interspersed 

element (SINE) retrotransposons (Figure 1.9) (DIXON et al. 2012; PHILLIPS-

CREMINS et al. 2013; UUSKULA-REIMAND et al. 2016). Genome-editing the CTCF 



35 
 

binding site by either inversion or deletion severely disrupts its insulation activity 

(GUO et al. 2015), resulting in the spreading of active domains to repressive 

domains on Hox loci (NARENDRA et al. 2015), or ectopic expression of pathogenic 

genes on limb malformations (LUPIANEZ et al. 2015). These results strongly 

suggest a functional importance to boundaries in insulating chromatin for proper 

gene regulations. In addition to insulation activity, nearly 40% of mammalian TAD 

borders can form chromatin loops or loop domains (HANDOKO et al. 2011; 

PHILLIPS-CREMINS et al. 2013; RAO et al. 2014; DE WIT et al. 2015), which is 

further supported by the loop extrusion model where boundary-limited looping in 

a dynamic fashion is sufficient to predict TAD formation (Figure 1.9) (SANBORN et 

al. 2015; FUDENBERG et al. 2016). 

Various combinations of architectural elements on the boundary determine 

the properties of boundaries, loops, and domains, whose mechanisms have been 

extensively investigated during the processes of differentiation and 

reprogramming (Figure 1.9) (KAGEY et al. 2010; PHILLIPS-CREMINS et al. 2013; 

BEAGAN et al. 2016; KRIJGER et al. 2016). In brief, CTCF/Cohesin anchors the 

long-range interactions (> 1 – 2 Mb) that form the constitutive boundary-boundary 

interactions/domains in both pluripotent and differentiated cells. In contrast, 

Mediator/Cohesin bridge interactions in the shorter-range (100 kb – 500 kb), 

reflecting cell-type specific enhancer-promoter or promoter-promoter interactions 

(also called sub-TADs), which has been broadly mapped via ChIA-PET (on Pol2, 

CTCF, or Cohesin) and Capture Hi-C in many cell types (HANDOKO et al. 2011; LI 
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et al. 2012; SANDHU et al. 2012; DEMARE et al. 2013; ZHANG et al. 2013; MIFSUD 

et al. 2015; SCHOENFELDER et al. 2015). These results indicated that transcription 

clusters (often called transcription hubs) are non-randomly organized in the 

nucleus, and usually co-regulated by a group of key elements. In addition, 

CTCF/Cohesin is capable of looping out ‘super-enhancer domains’ (enriched for 

Pol2, Mediator, and H3K27Ac) and ‘polycomb domains’ (enriched for 

H3K27me3) to physically constrain their activity from neighboring chromatin 

(DOWEN et al. 2014). However, the molecular basis of boundary activity has not 

yet been resolved, as the results of depleting CTCF or Cohesin contradict one 

another. For example, depletion of Cohesin (Rad21) only caused marginal 

changes in TADs and loops (SEITAN et al. 2013; SOFUEVA et al. 2013; ZUIN et al. 

2014); on the contrary, deletion of Cohesin-loading complex (NipbI) led to 

dramatic chromatin reorganization, in which TADs and loops were diminished 

globally but compartments were preserved and even reinforced (SCHWARZER et 

al. 2016). Similarly, one study indicated a drastic loss of chromatin structures 

upon removal of CTCF (NORA et al. 2016), while another one suggested CTCF-

independent maintenance of chromatin folding (KUBO et al. 2017). These 

contrary results could result from differential levels of depletion of the target 

protein, or differences in experimental protocols or analysis approaches, and 

thus need future studies. 

 

Chromatin organization in Drosophila 



37 
 

Chromatin domains in flies resemble the properties and functions in mammals, 

which can be classified by the “five-color” chromatin types including active 

chromatin, Polycomb-mediated domains, HP1-mediated domains, and lamina-

associating domains (FILION et al. 2010). Inactive domains are more compacted 

and confined within their chromosomal territories, while active domains are 

flexible and more likely to form long-range interactions with other active regions 

(HOU et al. 2012; SEXTON et al. 2012; EAGEN et al. 2015; ULIANOV et al. 2016). 

This agrees with consistent results from super-resolution imaging showing that 

polycomb chromatin has more compacted folding and less interdomain 

overlapping than active domains (BOETTIGER et al. 2016). Boundaries in flies also 

are comparable to those in mammals, with enrichment of active transcription and 

insulators like BEAF, CTCF, CP190, and Su(Hw) at inter-TAD regions, even 

though transcription plays a more dominant role in the boundary activity in flies 

(HOU et al. 2012; SEXTON et al. 2012; LIANG et al. 2014; VOGELMANN et al. 2014; 

ULIANOV et al. 2016). Interestingly, transcriptional repression upon heat-shock 

stress results in the dramatic rearrangement of the chromatin organization in flies 

(LI et al. 2015). These reorganizations are controlled by the redistribution of 

architectural proteins from the borders of TADs to inner regions, in which the 

polycomb complex facilitates enhancer-promoter interactions between silenced 

genes. In general, chromatin looping is not a widespread feature in flies. Recent 

Hi-C experiments with deeper sequencing depth identified ~120 chromatin loops 

whose formation are mediated by PRC1/H3K27me3 (Figure 1.9) (EAGEN et al. 
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2017). Interestingly, TADs identified in diploid cells were found corresponding to 

the banding pattern in polytene chromosomes (shown in prior microscopic 

studies), while polytene puffs co-localize to promoters and regulatory regions, 

where the chromatin fibers are fully extended as a ‘beads-on-a-string’ structure in 

inter-TAD regions (EAGEN et al. 2015). These findings suggest that chromatin 

domains, boundaries, and loops are highly conserved in drosophila, and tightly 

associate with many regulatory events. 

 

Chromatin organization in Arabidopsis 

In plants such as Arabidopsis thaliana, the existence of TADs or TAD-like 

domains still remains obscure, in part owing to insufficient resolution of current 

techniques (FENG et al. 2014; GROB et al. 2014; WANG et al. 2015; LIU et al. 

2016). Besides heterochromatic islands such as TEL-TEL and CEN-CEN 

clusters and KNOTs (the cluster of transposable elements), two independent 

studies were only able to find a subset of relatively small interacting regions 

scattered around the genome, in which specifically enriched for H3K27me3 and 

H3K9me2 (FENG et al. 2014; WANG et al. 2015). Nevertheless, a recent finding 

analyzed Hi-C data at sub-kilobase segmentation and argued for the existence of 

H3K27me3-associated chromatin loops and active/inactive gene looping 

structures in Arabidopsis chromatin (LIU et al. 2016). Therefore, whether self-

associating domains or loops exist in plants and what functions they being 

responsible for need to be further characterized in future. 
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Chromatin organization in yeasts and gene loops 

Rather than having chromosome territories or compartments, yeast organizes 

chromosomes in a ‘Rabl-like’ conformation including three conspicuous features 

(Figure 1.10): 1) the centromeres are anchored at one end of nuclear periphery 

together with the spindle pole body (CEN-CEN cluster); 2) the chromosome arms 

are expelled away from centromeric regions (CEN-Arm avoidance); and 3) the 

telomeres on the equivalent length of chromosome arms form the scattered 

clusters on another end of the peripheric region (TEL-TEL clusters) (DUAN et al. 

2010; ZIMMER AND FABRE 2011; TADDEI AND GASSER 2012). The ‘Rabl-like’ 

structure on Chromosome III also explains how yeast structurally regulates the 

switching of its mating-type loci (MIELE et al. 2009; BELTON et al. 2015). 

Interestingly, yeast cells can be triggered to enter into quiescence stage (G0) 

upon suffering starvation, which leads to global chromosomal compaction 

accompanied with loss of centromere interactions and an increase of telomere 

clustering (GUIDI et al. 2015; RUTLEDGE et al. 2015). Beside this large-scale 

organization, recent high-resolution Hi-C work revealed ‘Cohesin-delimited 

globules’ in the fission yeast Schizosaccharomyces pombe, although no similar 

level or type of chromatin domain has been identified yet in budding yeast (DUAN 

et al. 2010; MIZUGUCHI et al. 2014). 
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Figure 1.10. Yeast chromosome organization.  
(Left panel) 3D modeling of chromosome architecture by using yeast Hi-C. The center of 

nucleus is showing the centromere cluster and the telomeres are scattered at the 

nuclear periphery. The outside globule represents the rDNA loci at ChrXII. (Right panel) 

Schematic of classic ‘Rabl-like’ chromosome architecture in yeast, showing the focal 

centromere cluster, the scattered telomere clusters, and chromosome arms expelled 

from the centromeric region. 

• Left panel: Reprinted and adapted with permission from Nature Publishing Group: (DUAN et 

al. 2010)  

• Right panel: Reprinted and adapted with permission from GSA: (TADDEI AND GASSER 2012). 

 

Gene looping structures, primarily identified in yeast, have been proposed to 

facilitate overall Pol2 transcription including initiation, termination, and 

reassembling of transcription machinery. Many factors such as general 

transcription factors (TFIIB and TFIIH), activators, Mediators, cleavage factors, 

and poly-A and intron sequences all have been reported to be involved in the 

formation of gene loops (O'SULLIVAN et al. 2004; ANSARI AND HAMPSEY 2005; 

SINGH AND HAMPSEY 2007; TAN-WONG et al. 2009; MUKUNDAN AND ANSARI 2011; 

AL HUSINI et al. 2013; MUKUNDAN AND ANSARI 2013). Recent study reported that 

gene looping structures can enforce transcriptional directionality, which minimize 
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cryptic transcription occurred at promoter regions (TAN-WONG et al. 2012). Either 

mutation of ‘looping factor’ SSU72 or disruption of gene loops by removal of poly-

A site increases a wide-ranging synthesis of promoter-associated divergent 

ncRNAs. In contrast to promoting transcriptional activity, one study suggested 

that ISW2/UME6-mediated gene loops associate with transcriptional repression 

(YADON et al. 2013). However, all these gene looping evidence are from single-

locus studies by low-resolution 3C. Further investigation with genome-wide or 

high-resolution approaches is needed to determine whether the structure exists 

universally. 

 

Unsolved problems 

As mentioned above, understanding higher-order chromatin structure has been 

greatly facilitated by the 3C family of techniques, which discern contact frequency 

between genomic loci based on isolation of DNA fragments that crosslink to one 

another in vivo. While many factors impact the effective resolution of a 3C/Hi-C 

dataset, including sequencing depth and library complexity, a fundamental limit to 

genomic resolution is the size of the fragments generated before physical 

interactions are captured via ligation. Since the majority of 3C-based experiments 

rely on restriction enzymes for fragmentation of the genome – resulting in 

genomic fragments that are both long relative to the nucleosome, and 

heterogeneously spaced along the genome – current Hi-C datasets are limited to 

~1 kb resolution at best. Thus, our present understanding of chromatin structure 
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has a blind spot, with ChIP-Seq, MNase-Seq, and ChIP-exo methodologies 

providing information over a ~1-150 bp length scale, and Hi-C typically providing 

information on the >1-4 kB length scale. These techniques thus leave the scale 

relevant to secondary structures such as the 30 nm fiber or yeast gene loops (on 

the order of ~2-10 nucleosomes) inaccessible to current methods for analyzing 

chromosome structure. 
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CHAPTER II 

Mapping Nucleosome Resolution Chromosome Folding  

in Yeast by Micro-C 

 

Abstract 

We describe a Hi-C based method, Micro-C, in which micrococcal nuclease is 

used instead of restriction enzymes to fragment chromatin, enabling nucleosome 

resolution chromosome folding maps. Analysis of Micro-C maps for budding 

yeast reveals abundant self-associating domains similar to those reported in 

other species, but not previously observed in yeast. These structures, far shorter 

than topologically-associating domains in mammals, typically encompass one to 

five genes in yeast. Strong boundaries between self-associating domains occur 

at promoters of highly transcribed genes and regions of rapid histone turnover 

that are typically bound by the RSC chromatin-remodeling complex. Investigation 

of chromosome folding in mutants confirms roles for RSC, “gene looping” factor 

Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 

in folding of the yeast genome. This approach provides detailed structural maps 

of a eukaryotic genome, and our findings provide insights into the machinery 

underlying chromosome compaction. 

 

Introduction 
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Eukaryotic genomes are packaged into chromatin via a hierarchical series of 

folding steps. A great deal is known about the first level of chromatin compaction, 

as several crystal structures exist of the repeating subunit – the nucleosome – 

and genome-wide mapping studies have illuminated nucleosome positions and 

histone modifications across the genome for an ever-increasing number of 

organisms (RANDO 2007; ZHANG AND PUGH 2011; HUGHES AND RANDO 2014). In 

contrast to the “primary structure” of chromatin, less is known about higher-order 

chromatin architecture. The next level of compaction is commonly thought to be 

the 30 nm fiber, which is readily observed by electron microscopy in vitro, but 

whose existence in vivo remains controversial (TREMETHICK 2007; FUSSNER et al. 

2011; MAESHIMA et al. 2014). The structure of a 30 nm fiber is hotly debated, with 

major models being solenoid and zigzag paths of the beads-on-a-string (DORIGO 

et al. 2004; TREMETHICK 2007; GHIRLANDO AND FELSENFELD 2008; ROUTH et al. 

2008; SONG et al. 2014), as well as more recent polymorphic fiber models that 

incorporate variability in nucleosome repeat length (COLLEPARDO-GUEVARA AND 

SCHLICK 2014). Moreover, mounting evidence suggests that 30 nm fiber may only 

occur in vitro due to the high dilution of chromatin fibers used in such studies – in 

dilute solution in vitro a given nucleosome will only have access to other 

nucleosomes on the same DNA fragment, while in the “sea of nucleosomes” in 

the nucleus many additional nucleosomes are available in trans for 

internucleosomal interactions (MCDOWALL et al. 1986; NISHINO et al. 2012). 

Beyond the 30 nm fiber, multiple additional levels of organization have been 
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described, with prominent examples including gene loops (O'SULLIVAN et al. 

2004; ANSARI AND HAMPSEY 2005), enhancer-promoter loops (SANYAL et al. 2012), 

“topologically-associating domains”/”chromosomally-interacting domains” 

(TADs/CIDs) (DIXON et al. 2012; NORA et al. 2012; SEXTON et al. 2012; LE et al. 

2013), lamina-associated domains (LADs) (PICKERSGILL et al. 2006), and 

megabase-scale active and repressed chromatin compartments (LIEBERMAN-

AIDEN et al. 2009; GROB et al. 2014). The 3-dimensional path of chromatin has 

been implicated in a large number of biological processes, as for example gene 

loops are proposed to enforce promoter directionality in yeast (TAN-WONG et al. 

2012), TADs correspond to regulatory domains in mammals (SYMMONS et al. 

2014), and LADs are correlated with gene silencing during development 

(PICKERSGILL et al. 2006). 

Understanding higher-order chromatin structure has been greatly 

facilitated by the 3C family of techniques (such as Hi-C), which assay contact 

frequency between genomic loci based on isolation of DNA fragments that 

crosslink to one another in vivo (DEKKER et al. 2002). However, these techniques 

currently suffer from suboptimal resolution, as they rely on restriction digestion of 

the genome, typically yielding ~4 kb average fragment size. Even with 4-cutter 

restriction enzymes, the heterogeneous distribution of restriction enzyme target 

sequences across the genome makes the resolution somewhat variable between 

individual loci of interest, and partial digestion still limits resolution to around 1 kb 

at best. Thus, our present understanding of chromatin structure has a “blind 
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spot”, with ChIP-Seq, MNase-Seq, and ChIP-exo methodologies providing 

information over the ~1-150 bp length scale, and Hi-C typically providing 

information on the >1-4 kB length scale. This leaves the length scale relevant to 

secondary structures such as 30 nm fiber or yeast gene loops – on the order of 

~2-10 nucleosomes – inaccessible to current methods for analyzing chromosome 

structure. 

Here, we describe a Hi-C-based method – “Micro-C” – in which chromatin 

is fragmented into mononucleosomes using micrococcal nuclease, thus enabling 

nucleosome-resolution maps of chromosome folding. We generated high-

coverage Micro-C maps for the budding yeast S. cerevisiae, finding abundant 

self-associating domains typically spanning 1-5 genes. Strong boundaries 

between self-associating domains occur at promoters of highly-transcribed genes 

and regions of rapid histone turnover, and are typically bound by the RSC ATP-

dependent chromatin remodeling complex and by the cohesin loading complex. 

Finally, we investigate chromosome folding in detail in 14 mutants, confirming 

roles for RSC and Ssu72 in chromosome folding, and furthermore finding key 

roles for Mediator, the histone H4 N-terminal tail, and the H3K56 

acetyltransferase Rtt109 in folding of the yeast genome. This approach thus 

enables analysis of chromosome folding at the resolution of chromatin’s 

repeating subunit – the nucleosome – and will enable future investigations into 

chromosome folding to leverage the powerful genetic tools available in the yeast 

model system. 
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Result 

A nucleosome resolution chromosome folding assay 

The resolution gap between 1D chromosome mapping assays (~1-200 bp 

resolution) and 3D chromosome folding assays (>1 kb resolution) lead us to 

develop a Hi-C protocol – termed “Micro-C” for MICROcoccal nuclease 

chromosome Conformation assay – in which chromatin fragmentation is 

achieved by MNase digestion, yielding mononucleosomes. This protocol is based 

on the Hi-C protocol (LIEBERMAN-AIDEN et al. 2009), with key alterations being the 

MNase digestion step, subsequent mononucleosomal end repair, and a modified 

two-step method for specifically purifying ligation products (Figure 2.1A, 

Methods). After purification of ligation products between mononucleosomes, 

paired-end deep sequencing is used to characterize the ligation products. For 

some analyses, each pair mate is assigned to one of the 66,360 nucleosomes in 

budding yeast (WEINER et al. 2010) to yield a 66,360 X 66,360 nucleosome-

nucleosome interaction matrix (Figure 2.1B). Key technical controls include 1) 

sequencing of unligated samples, 2) ligation of MNase digestion reactions of 

uncrosslinked yeast, and 3) mixing of crosslinked chromatin from two yeast 

species (S. cerevisiae and K. lactis) prior to ligation to determine the rate of 

ligation between uncrosslinked molecules (Figure 2.1C-D). The post-crosslinking 

interspecies mixing experiment reveals that < 5% of all interactions are spurious 

ligations at the dilution used. 
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Our technique provides an overlapping but nonidentical view of 

chromosome folding to restriction enzyme-based methods. Visual inspection of a 

prior low-resolution chromosome folding map for budding yeast (DUAN et al. 

2010) confirms the substantially higher resolution of our assay (Figure 2.1B-D). 

However, Micro-C poorly captures known long-distance interactions in yeast: 

while we do recover preferential interactions between short chromosomes and a 

modest signal for telomere-telomere interactions, these interactions are relatively 

weak, and centromere-centromere interactions are not observed (Figure 2.1E-

F). Micro-C thus serves as a complementary method to traditional 3C and Hi-C 

methods, being particularly well suited to short-range analysis of nucleosome 

fiber folding, which is invisible to restriction enzyme-based 3C/Hi-C assays. 
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Figure 2.1. Nucleosome-resolution chromosome folding maps.  
(A) Overview of the Micro-C method. Bottom right panel shows Micro-C data for yeast 

chromosome IX. (B) Zoom-in on a 20 kb X 20 kb submatrix from chromosome 9 
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(360,000-380,000), with Micro-C interactions represented in white-yellow-red-black 

heatmap showing the interaction intensity for a given pair of loci. (C) Decay of 

internucleosomal interactions with distance. Distances along the x axis are provided in 

units of nucleosomes – first data point represents ligation between adjacent (N/N+1) 

nucleosomes, with data out to ~N/N+60 (100 kb) products shown. Y axis shows square 

root of the number of ligation products, normalized to parts per million (for interactions 

out to 100 kb) for each dataset. Both axes are shown in log10 scale. The plot only 

includes the “UNI” interactions for eliminating the bias introduced by undigested di-

nucloesomal DNA (Figure 2.1G). Data for the average of 17 wild-type replicates, and for 

no crosslinking and no ligation control datasets, are indicated. Schematics illustrate 

nucleosomes contributing to N/N+1, N/N+2, and N/N+3 ligation products, using a 

tetranucleosome cartoon for illustration. (D) Micro-C signal is dependent on crosslinking 

and ligation steps. Micro-C data are shown for merged wild-type BY4741 replicates (first 

panel), and for control Micro-C reactions carried out without formaldehyde crosslinking of 

yeast (third panel), or with a mock ligation step (fourth panel). Data are binned by 1 kb in 

this view, and are shown for a 1 – 250 kb region zoom-in for chromosome 6. 

Comparison at a finer resolution with 1kb binning shows the sparseness of restriction-

based assay (second panel) compared to Micro-C. (E) Comparison of Micro-C with 

restriction-based mapping (DUAN et al. 2010). Both raw datasets were processed using 

our pipeline (to avoid processing bias) and interaction counts for 10 kb bins are shown. 

At this scale, the main differences between the two maps are centromere-centromere 

and telomere-telomere interactions that are pronounced in the restriction-based assay 

result and not easily apparent in Micro-C. (F) (Left panel) Correlation matrix for Micro-C 

data. For each 20 kb bin along the genome, the correlation to all other bins is shown in a 

heatmap (yellow = positive, blue = negative). Focusing on interactions between 

chromosomes, the shorter chromosomes in yeast (chromosomes 1, 3, 6, 9) tend to 

exhibit better correlations with one another than with the longer chromosomes. (Right 

panel) Recovery of telomere-telomere interactions in Micro-C data. Distributions show 

the fraction of all interactions observed for long range interactions among random 

genomic loci, or among telomere-proximal loci (<20 kb from a chromosome end). 

Subtelomeres interact with distal subtelomeric regions more often than do random pairs 

of distant genomic loci. In addition, chromosome-specific patterns of telomere-telomere 
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interactions were similar for Micro-C and for (DUAN et al. 2010) (not shown). (G) Decay 

of product abundance with distance is shown separately for Micro-C products (merged 

wild-type dataset) with read pairs facing towards one another in the yeast genome (IN-

IN), and for the IN-OUT and OUT-OUT read orientations (UNI) – IN-OUT and OUT-IN 

curves are of course nearly identical. Each dataset is normalized to parts per million 

relative to all interactions out to 100 kb, and both axes are shown in log10 scale. Readily 

apparent here is a strong bias among IN-IN reads for undigested mononucleosomes and 

for N/N+1 products originating from undigested dinucleosomal DNA that is not eliminated 

by the biotin selection step (most likely due to incomplete exonuclease digestion after 

ligation – Figure 2.1A). Arrows show the location of N/N+2 ligation products for each 

curve. Importantly, for IN-OUT and OUT-OUT products, N/N+2 products are nearly as 

abundant as N/N+1 ligation products. (H) Schematic showing read pairs for N/N+2 

ligation products in various read orientations, providing intuition for the read pair 

distances indicated with arrows in (G). (I) N/N+2 and N/N+3 IN-IN products generally do 

not result from intact tri- or tetra-nucleosomes being sequenced in Micro-C. Inward-

facing PCR primers were designed for highly abundant Micro-C N/N+2 and N/N+3 

ligation products. For each primer pair PCR was carried out on genomic DNA (C) or a 

BY4741 Micro-C library (BY). With two exceptions for N/N+2 (A2 and A3, both of which 

came from “fuzzy” regions of delocalized nucleosomes) the genomic product was ~150 

or ~300 bp longer than the Micro-C library product, demonstrating that the Micro-C 

product resulted from ligation of digested mononucleosomes, and could not result from 

intact tri or tetranucleosomes. Nonetheless, because of the significant overabundance of 

IN-IN reads at short distances we exclude IN-IN ligation products for all downstream 

analyses.  

 

Promoter nucleosomes form boundaries between self-associating domains 

As is typical of all chromatin interaction maps, the vast majority of Micro-C 

interactions occur close to the diagonal – nucleosomes tethered near one 

another in one dimension tend to contact each other in 3D space (Figures 2.1B-

C). Nonetheless, there is significant variation in the density of interactions along 
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the diagonal (Figure 2.1B), with abundant ~4-50 nucleosome “boxes” of 

internucleosome interactions that have a clear relationship to gene structure. 

These boxes of internucleosomal interactions are similar to the “topologically-

associated domains” (TADs) described in mammals (DIXON et al. 2012; NORA et 

al. 2012) and the chromosomal interaction domains (CIDs) described in the 

bacterium C. crescentus (LE AND LAUB 2016), which have also been observed in 

flies (SEXTON et al. 2012) but appear to be absent in A. thaliana (FENG et al. 

2014) and were not previously observed in S. cerevisiae (DUAN et al. 2010). Here 

we will adopt the more general “CID” nomenclature. As observed in multiple 

organisms, these interaction domains exhibit a nested architecture, with two 

strong short range domains often merging into a larger domain via somewhat 

weaker interactions. We consistently observe CIDs across 21 biological replicate 

samples (Figure 2.2I) for S. cerevisiae including three separate “wild type” strain 

backgrounds (S288C, W303, and a S288C strain with the histone H3/H4-

encoding genes relocated to a plasmid (DAI et al. 2008)), as well as in a 

somewhat distantly-related (last common ancestor ~150 mY) hemiascomycete 

yeast, K. lactis. 

We systematically identified boundaries between CIDs by searching for 

locations that are strongly depleted of crossing interactions relative to the density 

of such interactions in the region (Figures 2.2A-D). Boundary calls were 

consistent between replicates of wild-type yeast (Figure 2.2I), and were not an 

artifact of MNase digestion level (Figures 2.2J-L). Globally, boundaries 
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separating compacted local domains from one another were strongly enriched for 

the nucleosome depleted regions (NDRs) that are a widespread feature (HUGHES 

AND RANDO 2014) of yeast promoters (Figures 2.2B and E). That said, it is clear 

that not all promoters or NDRs form boundaries – CIDs ranged from 0 to 8 genes 

in length, with 45% of CIDs encompassing two or more genes (Figure 2.2F). 

Interestingly, as CIDs in budding yeast typically encompass one to five genes, at 

~2-10 kb they are 1-2 orders of magnitude shorter than mammalian TADs (~100 

kb - 1 Mb) – the length of self-associating domains thus appears to be conserved 

when scaled by gene number, as opposed to sequence distance. 
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Figure 2.2. Properties of folding boundaries.  
(A-D) Example of boundary identification. Data for a 15 kb locus, with arcs showing 

interactions between nucleosomes, colored as in Figure 2.1B. Interactions observed 

only once in the entire dataset have been removed for clarity. Gene annotations for this 

locus, and boundary calls shown in black arrows, are shown below panel (A). Emphasis 
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on RPS26A shows both the overall lack of local Micro-C interactions, as well as the 

unusually strong boundary activity associated with this highly-transcribed gene. 

Nucleosome positioning data (B), RNA-Seq data (C), and Sth1 ChIP-Seq enrichment 

(LOPEZ-SERRA et al. 2014) (D) are also shown for this locus to emphasize the correlation 

between RSC-enriched promoters and boundary activity.  (E) Boundaries between CIDs 

occur at promoters. For each nucleosome position relative to a gene, the fraction of 

boundary nucleosomes, or of all nucleosomes genome-wide, is shown on the y axis. As 

boundaries as defined here fall between adjacent nucleosomes, we show data here for 

the downstream boundary nucleosome, relative to underlying gene orientation – 

upstream nucleosomes are correspondingly enriched for -1 nucleosomes (and +N 

nucleosomes). (F) Length distribution of CIDs. Distribution of distances between 

boundary nucleosomes is plotted in blue using base pairs for the x axis, and in the inset 

using gene count as the scale. (G) A typical interaction matrix for a 20 kb X 20 kb 

genomic region, as in Figure 2.1B. (H) Within the matrix shown in (A), number of 

interactions crossing a specific position (y axis) are shown for varying interaction 

distances (x axis) in a blue-to-red log2-scaled heatmap. (I) All reads for domain sizes 

from 500 – 10,000 bp crossing a given position are summed, and the local minimum of 

this vector is identified. (J) Data, shown as in (H), for three independent wild-type 

replicate datasets. (K) Consistent boundary calls between BY4741 replicate datasets. 

For four individual replicates with >30 million reads, Micro-C boundaries were called for 

each individual dataset. Plots show the fraction of boundaries called in one replicate that 

were within a given distance (x axis) of a boundary called in the other replicate. For each 

pairwise comparison, ~85-90% of all boundary calls were located within 1 kb of one 

another. Moreover, inspection of those boundary calls that disagreed revealed that most 

were found to occur at relatively long boundaries such as RPS26A in Figures 2.2A-D, 

and discrepancy in boundary calls resulted from the precise location of the boundary 

being called at one end or the other of the long boundary region. (L-M) Effects of MNase 

digestion level on Micro-C data. Micro-C was carried out at standard MNase levels (1X), 

and using 2-fold or 4-fold lower levels of MNase, as indicated. Nucleosome laddering for 

these digestion levels is shown in (L), with substantial di-, tri-, and tetra-nucleosomal 

DNA being observed in underdigested samples using 0.25X levels of MNase. Marker 

lanes are 100 bp ladders. Note that the two experiments with 0.5X MNase differ in the 
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extent of digestion, with replicate 1 exhibiting detectable trinucleosomal DNA. In (M), 

three plots show Micro-C interaction density vs. distance (each axis in log10 scale) for IN-

IN, OUT-OUT, and UNI read orientations, as indicated. Interaction density vs. distance 

were indistinguishable for all four MNase digestion levels for IN-IN, OUT-OUT, and UNI 

read pair, while underdigestion resulted in modest changes in abundance of undigested 

mono and dinucleosomes as seen in the IN-IN plot. Note that the plots of OUT-OUT and 

UNI are normalized to the reads out to 10 kb as shown in x-axis, while the IN-IN plot is 

normalized to the reads at the range from 200 bp – 10 kb for eliminating 

overrepresentation of undigested read pairs. (N) Scatterplots showing the number of 

Micro-C reads crossing an NDR, for 6500 NDRs, for a typical Micro-C dataset (x axis) 

compared to underdigested Micro-C datasets (y axis). NDR-crossing reads were 

restricted to read pairs in the IN-OUT or OUT-OUT orientation, with reads being at least 

500 bp apart. NDR boundary strength was highly correlated across different digestion 

levels. These data strongly argue that Micro-C boundaries are not artifacts of 

overdigested chromatin, although in principle it remains possible that even in the 0.25X 

dataset digestion of exceptionally “fragile” nucleosomes alters measurable interactions 

across promoters. (O) Single-locus validation of boundaries. For each of the three loci, 

we designed primers in all four orientations (IN-IN/IN-OUT/OUT-IN/OUT-OUT) for the 

indicated nucleosomes – +1/-1 and +2/-2 nucleosome pairs flanked NDRs, while the 

corresponding +1/+3 and +2/+7 pairs were located within the same gene and did not 

cross a boundary. Note for each case that far more Micro-C product was generated 

using CID-internal primer pairs than for NDR-crossing primer pairs, and that this was 

unaffected by MNase digestion level (0.25X vs. 1X MNase levels). 

 

Biochemical features of Micro-C boundaries 

What biochemical aspects of a given nucleosome might play a role in boundary 

activity? Overall, boundary nucleosomes were enriched for the pairs of 

nucleosomes flanking nucleosome-depleted regions (NDRs) in yeast, and 

exhibited significant enrichment of a variety of histone marks found at the 5’ ends 
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of genes (WEINER et al. 2015), including high levels of transcription-related marks 

such as H3K4me3 and H3K18ac (Figure 2.3A), and elevated rates of replication-

independent H3 replacement (DION et al. 2007). Not only were these enrichments 

significant relative to all nucleosomes in the genome, but for most histone 

modifications the enrichments observed were also highly significant when 

comparing boundary +1 nucleosomes only to other +1 nucleosomes (Figure 

2.3B). Consistent with this, strong boundaries were generally found upstream of 

more highly-transcribed genes than nonboundary promoters (Figure 2.3C). 

Other features of strong boundaries included high levels of the RSC ATP-

dependent chromatin remodeling complex, and high levels of the cohesin loading 

factor Scc2 (LOPEZ-SERRA et al. 2014) (Figures 2.2A-D), and these factors were 

enriched at boundary NDRs relative to all other NDRs (Figures 2.3D-E). 

These findings are consistent with previous reports (GHELDOF et al. 2006; 

DIXON et al. 2012; NORA et al. 2012; LE et al. 2013) that highly active genes can 

act as boundaries between self-associating domains. Importantly, the increased 

resolution afforded by Micro-C localizes such boundaries specifically to active 

promoters in yeast, thus implicating a number of promoter-specific factors in 

chromosome folding. 
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Figure 2.3. Histone modifications and chromatin regulators associated with 
boundaries.   
(A) Average histone modification levels are shown for all boundary nucleosomes (using 

both nucleosomes flanking a boundary). Histone modification data are from (WEINER et 

al. 2015), normalized to nucleosome occupancy, and expressed as log2 enrichment 

relative to all nucleosomes genome-wide. (B) Boundary +1 nucleosomes are enriched 

for histone modifications relative to other +1 nucleosomes. Comparison of +1 

nucleosomes associated with Micro-C boundaries, vs. all remaining +1 nucleosomes, 

showing the cumulative distribution for enrichment levels of the indicated histone 

modifications. In all cases the enrichments are highly (p < 10-10) significant by KS test. 

(C) Boundary activity at promoters is associated with elevated transcription rates. For 

each promoter, the transcription rate is defined as the Pol2 level (KIM et al. 2010) of the 

more highly-transcribed of the two adjacent genes, and cumulative plots show Pol2 

enrichment values for nonboundary promoters, for all boundary promoters, and for the 

strongest half of boundary promoters. (D) Heatmaps of chromatin features at 

boundaries. Each panel shows ChIP-Seq data (or MNase-seq data) for 5 kb surrounding 
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a Micro-C boundary, with boundaries sorted from strong (top) to weak (bottom). (E) 

Boundary nucleosome-depleted regions (NDRs) are associated with high levels of 

H3K18ac, RSC, and cohesin relative to all NDRs genome-wide. In each panel, all NDRs 

in the yeast genome were identified, and Micro-C interactions that cross the NDR were 

calculated. NDRs were sorted according to quintiles based on the abundance of NDR-

spanning Micro-C reads – the first quintile encompasses the 1300 NDRs with the fewest 

NDR-spanning Micro-C ligation products, etc. – and ChIP-Seq data for the indicated 

factors was averaged for each quintile.  

 

Properties of gene level of chromatin folding 

Gene looping structure has been proposed to facilitate transcriptional regulations, 

e.g. recycle of Pol2 machinery and transcriptional termination, which is mediated 

by transcription factors, Pol2 CTD phosphatase SSU72, and Mediator complex 

(Figure 2.4A). However, for the vast majority of genes and the genome-wide 

pile-up analysis we do not observe preferential interaction between a gene’s +1 

nucleosome and its 3’ end nucleosome in Micro-C data, instead finding 

interactions throughout a gene body (Figures 2.1B and 2.4B), suggesting a 

“gene crumple” or globule rather than a “gene loop” structure (Figure 2.4A). 

While domains of high local interactions are strongly correlated with gene 

structure, it is also apparent that genes vary significantly in the extent of such 

self-association. To identify regulatory and other correlates with gene 

compaction, we identified genes with significantly high or low levels of self-

association (corrected for nucleosome occupancy and gene length – Figure 

2.4C-D). Overall, gene compaction was anticorrelated (r = -0.56) with 

transcription rate, even when correcting for nucleosome occupancy (Figure 
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2.4E). The highly-transcribed ribosomal protein genes were associated with 

particularly open chromatin, not only exhibiting low levels of gene compaction but 

also commonly forming strong boundaries between CIDs (Figure 2.2A-D). 

Consistent with the anticorrelation between gene compaction and transcription 

rate, we found that gene compaction was positively correlated with the level of 

H2AS129ph – a mark of gene repression (SZILARD et al. 2010) – associated with 

the gene, and was anticorrelated with active marks such as H3K4me3, H3K18ac, 

and others (LIU et al. 2005; WEINER et al. 2015) (Figure 2.4I). 

To test the hypothesis that active transcription results in unfolding of 

genes, we carried out Micro-C in yeast responding to diamide stress, a stimulus 

which leads to transcriptional changes at ~20% of all yeast genes (GASCH et al. 

2000). Consistent with the anticorrelation between transcription rate and gene 

compaction at steady-state, we observed unfolding of genes that were strongly 

upregulated by diamide stress, and the converse behavior at diamide-repressed 

genes (Figures 2.4G-H). The anticorrelation between transcription rate and 

chromosome compaction is therefore dynamic, and does not simply reflect 

disparate regulatory strategies used for transcription of TFIID-dominated “growth” 

genes and SAGA-dominated “stress” genes during active growth. To further test 

the hypothesis that transcription leads to unfolding of the chromatin associated 

with genes, we treated yeast with the RNA polymerase inhibitor thiolutin, finding 

that highly-transcribed genes in untreated cells – primarily ribosomal protein 
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genes – became significantly (p < 6.4 X 10-55, t-test) more compact upon 

inhibition of RNA polymerase (Figure 2.4F). 
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Figure 2.4. Gene-specific compaction is anticorrelated with transcription.  
(A) Schematic models of gene looping and gene globule/crumple. (Left panel) Gene 

looping structure is proposed mediated by transcription machinery including Pol2, 
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general transcription factors (GTFs), Mediator, and SSU72. (Right panel and B) The 

Micro-C data suggests gene globule/crumple as a common structure in budding yeast. 

(B) Pile-up maps was binned to 200 bp resolution, spanned from 2 kb upstream to 5 kb 

downstream, and normalized only for sequencing depth. All genes of length 1 – 1.1kb 

(Top-Right panel), 2 – 2.1 kb (Bottom-Right panel), and 3 – 3.1kb (Left panel), as 

indicated, were identified and aligned by their 5’ ends. The narrow range of gene lengths 

was chosen to assist in visualization of a discrete 3’ gene end in these plots. Gene 

crumple structure is evident in these plots as a region of increased contacts bounded at 

both the 5’ end and the 3’ ends of genes. Note that interactions within each box decay 

smoothly with increasing distance from the diagonal, indicating that interactions between 

gene ends are at most a minority subpopulation of gene folding conformations. (C) (Left 

panel) Raw compaction counts per gene (number of interactions within the gene) shown 

as a function of nucleosome occupancy (x-axis) and gene length (y-axis). Each gene is a 

point colored according to the raw compaction score. Here, nucleosome occupancy is 

calculated as Micro-C reads of <300 bp, to internally control Micro-C datasets for both 

MNase digestion and mutant effects on nucleosome occupancy. (Right panel) Same plot 

as (Left panel), with compaction score smoothed by neighboring points. This provides 

the expected compactness for a gene given its length and nucleosome occupancy. (D) 

The normalized compaction score is calculated by taking the ratio of raw score (C, Left 

panel) to the expected (C, Right panel) for each gene, and is uncorrelated with (D, Left 

panel) gene length and (D, Right panel) nucleosome occupancy. (E) Scatterplot 

comparison of gene compaction with transcription rate. X axis shows Pol2 ChIP data 

from (KIM et al. 2010), y axis shows gene compaction from this dataset based 

specifically on interactions beyond N/N+3, normalized for nucleosome occupancy and 

gene length. (F) Global inhibition of transcription leads to increased compaction over 

normally highly-transcribed genes. Here, Pol2 abundance at t=0 is plotted (x axis) 

against the change in gene compaction in response to 45 minutes of treatment with the 

RNA polymerase inhibitor thiolutin. Red points show RPGs. (G) Changes in transcription 

affect gene compaction. Micro-C was carried out for yeast subject to 30 minutes of 1.5 

mM diamide, a sulfhydryl-reducing agent that alters transcription of ~20% of the yeast 

genome (GASCH et al. 2000). Here, Micro-C contact matrices for unstressed and 

diamide-stressed yeast show regions surrounding three ribosomal protein-encoding 
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genes (RPGs), which are strongly repressed in response to diamide stress and which 

exhibit a dramatic increase in local compaction. (H) Systematic analysis of diamide-

induced changes in chromosome folding. Here, gene compaction is scatterplotted for 

unstressed and diamide-stressed yeast, with points color-coded according to the 

corresponding mRNA abundance changes in diamide (smoothed by 20 nearest 

neighbors). (I) Histone modifications that correlate with gene compaction. Correlation 

coefficient between normalized gene compaction and the indicated histone modifications 

(WEINER et al. 2015) is plotted on the y axis, with modifications sorted according to their 

correlation with gene compaction. 

 

Comparison of chromosome folding in various genetic backgrounds 

Although transcription can clearly influence gene compaction, transcription rate 

only explains 31% of the variance in the Micro-C compaction signal, implying that 

the major influence over gene compaction is related to regulatory strategies or is 

gene-specific (Figure 2.5A). We therefore asked whether compact genes shared 

any common biology. Comparison of gene compaction with data from 700 yeast 

deletion mutants (KEMMEREN et al. 2014) revealed that unusually compact genes 

were derepressed in mutants lacking various histone deacetylases (including 

Cyc8/Tup1 and Sum1/Hst1), histone turnover machinery (such as Rtt109 and 

Asf1), or Mediator activity (Figures 2.5B-C). Based on these results, we carried 

out Micro-C analysis of several mutants predicted to have strong effects on gene 

compaction, as well as mutants with plausible roles for gene compaction in the 

literature but which were not identified based on our analysis of wild-type gene 

compaction. We screened 24 mutants (including several histone mutants – see 

below) by Micro-C at relatively low sequencing depth, and chose 14 mutants to 
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sequence deeper based either on widespread effects on chromosome 

compaction or on prior findings in the literature. 

To visualize mutant effects on gene compaction on a gene-by-gene basis, 

for each gene we calculated the difference in normalized compaction score 

between a given mutant and the relevant wild-type. Clustering of this matrix 

(Figure 2.5D, top) revealed that a dominant signal in the first cluster (red) reflects 

increased compaction of normally highly-transcribed genes such as the 

ribosomal protein genes (RPGs) upon their repression due to Pol2 inhibition 

(thiolutin), oxidative stress (diamide), or conditional inactivation of the essential 

RSC-SCC chromatin remodeler (sth1-2, rsc8-21, scc2-4). In contrast to the 

effects of transcriptional repression resulting in increased RPG compaction, 

mutations in another two clusters (blue and green) resulted in mis-compaction of 

a variety of genes (Figure 2.5D, bottom). Importantly, although compaction of 

RPGs was observed in multiple conditions where these genes are repressed, 

most mutant effects on gene compaction could not be explained by 

transcriptional effects of the mutation, as for example the correlations between 

rtt109∆, med1∆, and rpd3∆ effects on gene compaction and mRNA abundance 

(KEMMEREN et al. 2014) were 0.17, 0.03, and -0.006, respectively.  

The genome-wide histogram analysis shows that several mutants exhibite 

widespread changes in gene compaction throughout the genome (Figure 2.5E-

F). Most notably, we find that genes become less compact, on average, in 

mutants affecting the Middle/Scaffold modules of Mediator complex, as well as in 
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mutants lacking the H3K56 acetyltransferase Rtt109 (Figures 2.5D-F and 2.5G). 

In contrast, chromatin was globally more compact in temperature-sensitive 

mutants affecting the RSC complex and the cohesin loading factor Scc2 

(Figures 2.5D-F and 2.5H). In addition to these major regulators in chromosome 

folding, loss of many other chromatin regulators, such as the primary RNase H in 

yeast (Rnh201), lead to more subtle gene-specific defects in gene compaction 

(Figures 2.5D-F and 2.5I). We next extended our analysis and investigated how 

these complexes regulate the chromatin folding at single gene level.  
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Figure 2.5. Mutant effects on gene compaction.  
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(A) Schematics of transcription-dependent and -independent gene compaction. (Left 

panel) As shown in Figures 2.4E-I, highly-transcribed genes lose gene compaction; in 

contrast, chromatin gains more compact upon transcriptional down-regulation. (Right 

panel) In addition to transcriptional regulation, we hypothesized that gene compaction 

can be regulated by chromatin regulators in a transcription-independent manner. We 

included chromatin remodelers, histone modifiers, etc. as potential targets for further 

investigation (see below). (B) Heatmap of mutant effects on expression of compact 

genes. Rows show all 385 highly compact genes, columns show all 700 deletion 

mutants analyzed. (C) Mutants that affect compact genes. For the 385 most compact 

genes as assayed by Micro-C, the average gene expression change was calculated 

from data for 700 yeast deletion mutants (KEMMEREN et al. 2014). Here, x axis shows the 

average change in expression for compact genes, with histogram showing the number of 

mutants (y axis) with the indicated average gene expression change. Right skew of the 

distribution indicates that more mutants derepress compact genes than induce these 

genes, due to the fact that highly compact genes tend to be poorly transcribed in wild 

type yeast (Figure 2.4E). Locations of several mutants of interest are indicated along the 

histogram. (D) Global and gene-specific effects of chromatin mutants on gene 

compaction. For all mutants analyzed by Micro-C, gene compaction scores were 

calculated, and for all genes with at least a 2-fold change in compaction in one mutant, 

the difference between all mutants and the relevant wild-type is shown in a clustered 

heatmap. Note that three major clusters appear in the heatmap as indicated in different 

colors. The red cluster is dominated by the signal of transcription regulation, while gene 

compaction in the blue and green clusters are regulated in other strategies. (E) 

Histograms showing the distribution of changes in gene compaction for the indicated 

mutants or conditions. In each case, nucleosome occupancy-corrected gene compaction 

was calculated for every gene in the genome, and the difference between BY4741 and 

the indicated mutants is plotted on the x axis – negative values indicate decreased gene 

compaction in the mutant, positive values indicate increased gene compaction. (F) 

Mutant effects on compaction. Here, normalized compaction scores were calculated for 

all genes, and compaction score for each mutant was subtracted from its compaction 

score in wild type. The number of mutants that “open up” in a given mutant (e.g. with a 

change in compaction below zero) is shown in a bar graph, with mutants ordered 
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according to this value. (G-I) Scatterplots of occupancy-corrected gene compaction 

scores for wild type (x axis), and the various indicated mutants. Notable here are a more 

variable signal with a modest global loss of compaction for rtt109∆ (G), a modest global 

gain of compaction for scc2-4 (H), and relatively tight scatterplot for rnh201∆ (I). 

 

The regulatory mechanisms of chromatin folding 

We first investigated the role of the “gene looping” factor Ssu72 (also Pol2 CTD 

phosphatase) on gene compaction, as the occurrence of domains of strongly 

self-associating nucleosomes over gene bodies is reminiscent of the gene loops 

in yeast reported by several groups (O'SULLIVAN et al. 2004; ANSARI AND HAMPSEY 

2005; TAN-WONG et al. 2012). Moreover, gene compaction as measured by 

Micro-C is anti-correlated with transcription rate (Figure 2.4E), in contrast to 

reported gene loops. Nonetheless, to test the hypothesis that the CID structures 

observed using Micro-C might be somehow related to gene loops (with technical 

differences in the protocols revealing different views of the same structure), we 

performed Micro-C analysis of the ssu72-2 mutant that lacks detectable gene 

looping (ANSARI AND HAMPSEY 2005; TAN-WONG et al. 2012). We find a moderate 

but significant decrease in global chromosome compaction, with a corresponding 

decrease in individual gene compaction, in the ssu72-2 mutant (Figures 2.6A-B). 

Chromosome folding effects resulting from inactivation of the cohesin-

loader Scc2 were correlated with those resulting from RSC inactivation, 

consistent with the strong correlations recently reported between the synergetic 

effects of these mutations on transcription activation and on nucleosome 
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positioning (LOPEZ-SERRA et al. 2014). The RSC and SCC complexes are 

reported traveling with Pol2 transcription machinery and facilitate elongation as 

well. Thus the effects could mainly associate with defects of Pol2 transcription 

(SPAIN et al. 2014) (Figures 2.6C-D).  

Mediator complex encompasses over 25 subunits in budding yeast (TSAI 

et al. 2014; PLASCHKA et al. 2015). The uncoupled gene expression profile of the 

mutants lacking Mediator (VAN DE PEPPEL et al. 2005; KEMMEREN et al. 2014) and 

the distinct chromatin binding signatures of each Mediator subunits (FAN et al. 

2006; GRUNBERG et al. 2016; JERONIMO et al. 2016; PETRENKO et al. 2016) 

strongly suggest a multitalented role of Mediator in transcription and chromatin 

remodeling (KAGEY et al. 2010; ZHU et al. 2011; LIU AND MYERS 2012; NOCK et al. 

2012; MUKUNDAN AND ANSARI 2013; PHILLIPS-CREMINS et al. 2013). Interestingly, 

we noted that the gene compaction changes in the Mediator mutants deviate 

from each other – chromatin tends to condense in the Tail mutation (med15∆), 

while gene crumple is globally disrupted in the Middle mutation (med1∆), and the 

effects of the Scaffold are in between (Figures 2.6E-F). The chromatin 

compaction of highly- and poorly-expressing genes are more responsive to the 

transcription changes upon med15∆ (Figure 2.6G). The positive correlation of 

gene compaction change between med15∆ and Pol2 inhibition (Figure 2.6H) 

further supports the findings that the recruitment of Tail subunit of Mediator to 

upstream activated regions (UAS) is required for transcription activation. In 

contrast, the Middle and Scaffold subunits may contribute to general structural 
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role in chromatin folding at a gene level, but no significant effect on global 

internucleosome interaction (Figure 2.6I).  More details will be subjected to 

future study. 
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Figure 2.6. The cases of gene looping factor – SSU72, chromatin 
remodeler/insulator – RSC-SCC2 complex, Mediator complex, and 30 nm 
chromatin structure.  
(A-B) Modest effects of ssu72-2 on global gene compaction. In (A), Micro-C was carried 

out for three replicate cultures of ssu72-2. Compaction scores for all genes are 

scatterplotted for wild-type and ssu72-2 mutants, as indicated. Gene compaction scores 

for wild-type and ssu72-2 mutants shows a subtle but significant (p < 1.2e-8, KS test) 

general loss of gene compaction in the mutant. In (B), two rotated matrixes surrounding 

ChrIX: 260 kb – 280 kb showing wild type and ssu72-2 Micro-C data, as indicated. The 

maps were normalized in the same way as Figure 2.1B. (C-D) The effects of RSC-

SCC2 mutants on gene compaction are transcription dependent. In (C), compaction 

scores for all genes are scatterplotted for wild-type and sth1-2 mutants, as indicated. 

The sth1-2 mutant globally gains more compaction, particularly in normally highly-

transcribed genes. In (D), histograms of mutant effects on gene compaction, as in 
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Figure 2.5E, showing that all three mutants lacking the activity of RSC-SCC2 complex 

increase gene compaction, consistent to their synergetic effects on transcription. (E-I) 
Distinct effects of the Mediator subunits on chromatin folding. In (E), histograms of 

mutant effects on gene compaction, as in Figure 2.5E. Mutants in the middle, tail, and 

scaffold subunits of Mediator complex, as indicated. Notable here are a global gain of 

compaction for the tail mutant (med15∆), a drastic loss of compaction for the middle 

mutant (med1∆), and a modest change for the scaffold mutant (med14-ts). In (F), pile-up 

matrixes were drawn as in Figure 2.4B but in blue-to-red color scheme for clear visual 

comparison, indicating higher level of gene compaction in med15∆ than in med1∆ and 

med14-ts. In (G), Pol2 abundance (x axis) is plotted against the change in gene 

compaction in med15∆ (y axis) and overlaid an additional green-to-red heatmap shown 

as the change in log2 gene expression in med15∆.  Here shown the gene compaction 

change in the tail mutant is highly associated with the transcriptional regulations. In (H), 

Change in compaction score for all genes are scatterplotted for the treatment of 

polymerases inhibitor Thiolutin (x axis) and med15∆ (y axis). A positive correlation 

(spearman rho = 0.66) in the gene compaction change argues that the tail subunit of 

Mediator regulates chromatin folding in a transcription-dependent manner. In (I), 

Interaction density vs. distance decay curve was calculated as in Figure 2.1C, shown no 

significant change in internucleosomal interactions in med15∆ and med14-ts∆, but a 

moderately decrease in med1∆.  (J-K) Micro-C data support the model of tetra-

nucleosome stacking, instead of periodic 30 nm chromatin structure. In (J), (Left panel) 

schematic of two hypothesized paths of 30 nm chromatin structure. The one-start 

(solenoid) helix is formed by average six nucleosomes per helical turn, while the two-

start (zig-zag) helix turns periodically in every three nucleosomes. (Right panel) Instead 

of periodic 30 nm chromatin fiber, one model proposed tri- or tetra-nucleosomal stacking 

mediated by histone H4 tail and H4R23 methylation. In (K), interaction density vs. 

distance for yeast strains carrying either a single copy of H3/H4 (DAI et al. 2008), or 

carrying the indicated histone mutants, shown as in Figure 2.1C. Shown here are “UNI” 

read pairs only, with data normalized to all reads in distance up to 20 kb. H4K16Q, 

H4R23A, and H4∆4-14 have all been implicated in chromosome folding in vitro, while 

H4Q93E was included as an unrelated control. 
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Systematic analysis of short-range nucleosomal interactions 

Finally, we turn to short range aspects of chromosome folding. The dominant 

models for the 30 nm fiber are the “zig-zag” (DORIGO et al. 2004; SONG et al. 

2014) and solenoid models (GHIRLANDO AND FELSENFELD 2008), which differ in 

their periodicity – zig-zag models predict that nucleosomes N and N+2 (N+4, 

N+6, etc.) should be in spatial proximity, while interdigitated solenoid models 

typically have a periodicity of ~5-6 nucleosomes. We do find some support for the 

possibility that a common motif of individual tri- or tetra-nucleosomal zig-zags 

(SCHALCH et al. 2005; SONG et al. 2014) may exist in vivo, as N/N+2 nucleosome 

pairs are nearly as abundant as N/N+1 nucleosome pairs genome-wide, 

particularly when excluding ligation products with “in-in” read pairs (Figure 2.1C 

and 2.1G). However, plotting the decay of nucleosome-nucleosome interactions 

as a function of distance in our Micro-C dataset reveals no evidence for long-

range periodicity in internucleosomal interactions (Figure 2.1C and 2.1G). Our 

data therefore do not support a periodic repeating fiber, but are consistent with 

the idea of a tri or tetranucleosomal motif in chromatin fiber folding – in this 

model, the absence of high levels of N/N+4 and N/N+6 in Figure 2.1C could 

reflect either lack of extended zig zag stretches in vivo (eg a given stretch of 12 

nucleosomes might only carry a single folded tetranucleosome in a given cell), 

or, more likely, a technical inability to connect nucleosomes at longer distances 

due to the use of the short-distance crosslinker formaldehyde (GRIGORYEV et al. 

2009) (Discussion).  
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To further explore short-range structure in chromosome folding, we 

assayed chromatin folding in several histone mutants that alter internucleosomal 

interactions in vitro, as well as in unrelated histone mutants as controls. Most 

notably, as both H4K16 acetylation and histone N-terminal tails have been 

implicated in 30 nm fiber formation (SHOGREN-KNAAK et al. 2006; HIZUME et al. 

2009), we carried out Micro-C in relevant mutants to dissect their roles in 

chromosome folding. As expected, we find that partial deletion of the H4 N-

terminal tail leads to a strong loss of chromosome folding signal (Figures 2.6J), 

consistent with a key role for histone tails in chromosome compaction. In 

contrast, we find no global effects of the H4K16Q mutation on overall 

chromosome folding, although this is perhaps not surprising given that the 

majority of the budding yeast genome is euchromatic and is packaged into 

H4K16-acetylated histones. Finally, we also examined chromosome folding in 

H4R23A mutants, which do not influence tetranucleosome folding in vitro but 

alter stacking of adjacent tetranucleosomes (SONG et al. 2014). Intriguingly, these 

mutants exhibited normal interactions up to the tetranucleosome scale but lost 

interactions beyond this scale (Figures 2.6J-K), the length scale at which 

tetranucleosome packing effects would manifest themselves. 

 

DISCUSSION 

We describe here a method for nucleosome-resolution chromosome folding 

studies, providing genome-wide access to the length scale between 100 bp and 
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~10kb. We do not find evidence for a repeating 30 nm fiber structure in vivo, 

although the pattern of short-range interactions we observe is consistent with a 

tri- or tetranucleosome folding motif in eukaryotic chromatin. Instead, the primary 

level of organization in the yeast genome observed here is associated with gene 

structure, with domains of 1-5 genes forming compact gene crumples, or 

globules, rather than loops (Figure 2.7). 

 

Figure 2.7. Nucleosome-resolution view of chromosome folding.  
Cartoon in the upper panel showing global yeast chromosomes are organized as Rabl-

like structure - which centromeres are clustered together as a focal point at nuclear 

periphery and telomeres are spread as multiple loci surrounding nuclear periphery.  In 

this study, the fine-resolution of Micro-C afforded to identify CIDs/TADs in yeast, which 

generally encompasses 2 – 10 kb of DNA, 1 – 5 genes. The bottom panel illustrating a 



81 
 

model how chromatin organized at the single-nucleosome level. Active transcription 

including Pol2 machinery, RSC-SCC2 complex, and active histone marks create a 

phase facilitating boundary forming. Gene level of folding is mainly dominated by 

transcription activity as highly-transcribed gene with loose compaction and poorly-

transcribed genes with dense compaction. “Crumple factor” may contribute to additional 

layers to regulate gene folding in a transcription-independent strategy. More important, 

nucleosomes tend to form H4 tail-mediated tri- or tetra-nucleosomal stacking, instead of 

periodic 30 nm chromatin fibers. 

 

Chromosomal interaction domains in yeast 

Our data demonstrates that the self-associating domains observed in many other 

species are also present in budding yeast, and that this hierarchical folding holds 

even at the previously unobservable ~2-10 nucleosome scale. The relatively 

short length of yeast genes presumably explains the prior inability to observe 

CIDs in this organism (DUAN et al. 2010), and suggests that Micro-C might reveal 

CID structures in organisms such as Arabidopsis where they have not been 

previously observed (FENG et al. 2014). Perhaps the most surprising aspect of 

our study is the finding that the typical length of CIDs tends to be conserved 

between species when scaled by gene number, rather than linear distance – 

yeast CIDs typically cover ~1-5 genes, or ~5 kb, while mammalian TADs also 

cover roughly the same number of genes, thus encompassing ~0.5 Mb. This 

disparity in length scale suggests that the primary determinant of chromosome 

folding may be the boundaries that separate compacted domains, rather than the 

internal structure of the domains themselves, as the detailed folding of the 

“beads on a string” within a given domain likely varies quite a bit between 
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different organisms. In other words, we speculate that establishment of 

boundaries that separate chromosomal domains is the driver of chromosome 

folding behavior, with folding of the chromosome within each boundary-delimited 

domain not necessarily conforming to any regular secondary structure. 

Prior Hi-C studies have localized boundaries between folding domains to 

several features of the underlying sequence, including binding sites for the 

insulator CTCF (DIXON et al. 2012; PHILLIPS-CREMINS et al. 2013), highly 

transcribed coding regions (DIXON et al. 2012; NORA et al. 2012; SEXTON et al. 

2012; LE et al. 2013), binding sites for cohesin (PHILLIPS-CREMINS et al. 2013; 

MIZUGUCHI et al. 2014), and sites of Mediator localization (PHILLIPS-CREMINS et al. 

2013). In addition, insulator function in flies has been linked to regions of 

dynamic chromatin (NEGRE et al. 2010). Although S. cerevisiae does not appear 

to encode a CTCF-like regulator, other features of boundaries between 

compacted domains appear to be conserved, as boundaries in our dataset are 

enriched for active promoters and for regions associated with the RSC and 

cohesin loading complexes (Figures 2.2-2.3). Moreover, the increased resolution 

afforded by Micro-C allows us to localize the boundary activity of highly-

transcribed genes specifically to their promoters. 

 

Mutant effects on chromosome compaction 

To uncover functional roles for chromatin regulators in establishing chromatin 

domains in yeast, we analyzed a number of deletion and temperature-sensitive 
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genes using Micro-C. In general, we noted that many of the features enriched at 

CID boundaries play functional roles in gene compaction, as we observe a 

general loosening of chromosome structure in med1∆ and rtt109∆ mutants. 

Conversely, sth1ts and scc2ts mutants shifted to the restrictive temperature 

exhibited increased gene compaction, presumably due to the similar effects of 

these mutants on global transcription (LOPEZ-SERRA et al. 2014). The key role for 

Mediator in gene compaction in yeast described here is of great interest, as 

Mediator recruitment of cohesin has previously been shown to play a role in 

chromosome folding in murine ES cells (KAGEY et al. 2010; PHILLIPS-CREMINS et 

al. 2013), suggesting that chromosome domain compaction may be a conserved 

consequence of Mediator action. More novel is the finding that Rtt109, a H3K56 

acetyltransferase which enhances replication-independent histone turnover 

(RUFIANGE et al. 2007; KAPLAN et al. 2008), has global (albeit more subtle) effects 

on chromosome compaction. 

Taken together, our mutant analyses identify a number of factors that help 

compact genes in budding yeast, and emphasize the key role that promoters play 

in establishing the folding of the chromosome. 

 

Insights into secondary structure in vivo 

A key goal in development of Micro-C was to shed light on chromatin fiber 

folding, as the dominant models for regular 30 nm fiber structure – zig-zag and 

solenoid – make distinct predictions for periodicity in internucleosomal contacts. 
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Here, we find no evidence for periodicity in short-range internucleosome 

interactions, consistent with the hypothesis that a regular 30 nm fiber may be 

uncommon in vivo (DEKKER 2008). However, despite the lack of periodicity in our 

dataset, we do find that N/N+1 and N/N+2 ligation products are present at similar 

abundance in vivo (Figure 2.1G), broadly supporting two-start models for 

chromatin secondary structure. Indeed, EM studies of folded 12 nucleosome 

templates subject to limited formaldehyde crosslinking reported similar 

abundance of N+1 and N+2 crosslinking products, with relatively few interactions 

at N+4 or greater distances (GRIGORYEV et al. 2009). Thus, the absence of the 

excess of N+4 and N+6 products expected from a regular zig-zag fiber could 

potentially result from individual tri- or tetra-nucleosome folding motifs (SONG et 

al. 2014) occurring sparsely, and could also result from a technical limitation in 

Micro-C – formaldehyde is a short distance crosslinker, and chromatin in 30 nm 

fiber might not present primary amine groups in close enough proximity to be 

ligated to one another. Suggesting the latter hypothesis, we find that the H4R23A 

mutant previously shown to affect tetranucleosome stacking, but not the 

tetranucleosome structure itself (SONG et al. 2014), causes a subtle relaxation of 

chromatin by Micro-C (Figures 2.6J-K). 

Thus, whether the lack of periodicity in Micro-C data results from a 

technical inability to capture N/N+4 or N/N+6 interactions from a fully-folded fiber, 

or whether it reflects the sparse existence of tetranucleosomes in vivo which 

seldom stack with one another, remains to be tested (potentially via use of 
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alternative crosslinkers, or examination of higher order multi-nucleosome ligation 

products). Technical benchmarking of Micro-C using defined 30 nm templates in 

vitro would be valuable (GRIGORYEV et al. 2009), although as the majority of such 

templates at present use repeats of the Widom601 sequence to ensure uniform 

nucleosome occupancy, sequencing-based assays cannot distinguish between 

nucleosome positions along such templates.  

With such technical caveats noted, we do note that the lack of periodic 

Micro-C signal is consistent with the fact that regular 30 nm signatures are 

seldom observed in EM studies of intact or sectioned nuclei (MCDOWALL et al. 

1986; NISHINO et al. 2012). Moreover, the massive differences in the length 

scales of CIDs between yeast and mammals are difficult to reconcile with a 

requirement for a regular form of secondary structure in chromosome folding. 

 

Perspective 

Taken together our data support the idea that eukaryotic chromosomes are thus 

subject to hierarchical “beads of a string” architecture, with the 10 nm 

nucleosome-linker-nucleosome fiber being the first level of beads on a string, and 

gene crumples separated by regions of high histone turnover being the next level 

of organization (Figure 2.7). These studies provide a high resolution view of the 

eukaryotic genome, and, given the powerful tools available in budding yeast, 

should provide fertile ground for future genetic interrogation of chromosome 

folding in vivo. 
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Materials and Methods 

Chromatin digestion and end repair. Yeast were grown to midlog phase in 

YPD media at 30 C, fixed with 3% formaldehyde for 15 min, and quenched with 

125 mM glycine for 5 min. Cells were pelleted, spheroplasted with Zymolyase, 

and MNase-treated to yield >95% mononucleosomes (LIU et al. 2005). After 

stopping MNase, chromatin supernatant was concentrated in an Amicon 10K 

spin column and dephosphorylated using Antarctic phosphatase. Crosslinked 

chromatin was subject to T4 DNA polymerase with ATP to leave 5’ single-

stranded termini, then biotinylated dsDNA was generated by supplementing with 

biotin-dCTP, biotin-dATP, dTTP and dGTP. 

 

Proximity ligation. 0.5 - 1 µg of crosslinked chromatin was diluted to 10 mL 

(0.05 – 0.1 µg/mL final) and treated with T4 DNA ligase. After heat inactivation, 

chromatin was concentrated to 250 µL in an Amicon 30k spin column, and 

treated with 100U exonuclease III for 5 min to eliminate biotinylated ends of 

unligated DNA. Proteinase K was then added and incubated for 65 C overnight. 

DNA was purified by PCI extraction and ethanol precipitation, treated with RNase 

A, and ~250-350 bp DNA was gel-purified. 

 

Library preparation and sequencing. Purified DNA was treated with End-it, 

subject to A-tailing with Exo- Klenow, and ligated to Illumina adaptors. Adaptor-
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ligated DNA was purified with streptavidin beads to isolate ligated Micro-C 

products away from undigested dinucleosomal DNA. Streptavidin beads were 

then subject to ~12-15 cycles of PCR using Illumina paired-end primers. 

Amplified library was purified and subject to Illumina HiSeq paired end 

sequencing. 

 

Sequence analysis and mapping. Paired 50 bp reads were extracted and 

mapped individually to the S. cerevisiae genome (sacCer3 genome build) with 

the bowtie2 tool using the following command line: 

bowtie2 -x S288C_reference_sequence_20110203 -U <input 

fastq> -S output.sam -p 16 -a -–mm –-reorder 

For a pair of reads mapping to more than one possible location, we selected the 

shortest interaction. We discarded repeat occurrences of the same fragment pair 

to avoid PCR artifacts, resulting in unique mappable fragments as the raw 

interaction data. For some visualizations, fragments pairs were associated with 

one of the 66,360 nucleosomes in budding yeast, while raw fragment pairs were 

used for analyses such as bp-resolution interaction vs. distance plots (Figure 

2.1C) and boundary calls (Figures 2.2-2.3). In some analyses as indicated, 

ligation products with IN-IN reads (< 300 bp) were discarded for clear 

visualizations, as these include an excess of undigested dinucleosomes (Figure 

2.1G). 
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Normalization and genome wide interaction analysis. To deal with outliers 

due to repetitive sequences, we counted the number of interactions in the 

merged WT samples (using tiled 100bp regions). Regions with more than 10X 

interactions than the window average were excluded for further analyses. In total 

1.3% of the genome was excluded, mostly within Chromosome 12 in the rDNA 

region, and in Ty elements. Interaction count matrices were normalized to the 

total number of unique mapped fragments. Correction for nucleosome 

occupancy, either by iterative row normalization or by normalizing to measured 

nucleosome occupancy, had minimal effects on Micro-C contact maps (not 

shown). 

 

Detecting domain boundaries. To detect domain boundaries, we first define a 

local boundary score for genome position 𝑖𝑖 as the number of interactions of 

distance 500-10,000 base-pairs that pass above position i (i.e. interaction 

between position i-d1 and i+d2, where 500<d1+d2<10,000) We then find local 

minima in this vector of counts as boundaries. The strength of the boundary is 

inversely proportional to the number of interactions crossing it (Figures 2.2G-J). 

 NDR-centric analysis was carried out for all NDRs in yeast, with the 

number of NDR-crossing reads (excluding IN-IN reads and read pairs <500 bp 

apart). For analyses in Figure 2.2N and Figure 2.3, the 219 NDRs with the most 

NDR-crossing reads were excluded, as they were primarily associated with rDNA 

repeats, subtelomeres, and Ty elements. 
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Compactness score. The raw compaction score, defined as the number of 

interaction fragments (>300bp) within a gene, is highly correlated with gene size 

and average nucleosome occupancy (Figures 2.4C-D). As a proxy for 

nucleosome occupancy we use the number of interaction (<300bp) over the 

gene, as these are mostly due to non-ligated mononucleosome fragments. This 

score internally normalizes for mutant and MNase digestion effects on 

nucleosome occupancy. To normalize for these two related measures (gene 

length and nucleosome occupancy) we used a k-nearest-neighbors smoothing 

with a Gaussian kernel to obtain the expected compactness score for each size 

and occupancy bin (Figure 2.4C). We defined the compactness score of a gene 

as the log of the ratio between the actual value and the smoothed value. The 

resulting score is independent of both gene length and occupancy (Figure 2.4D). 
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CHAPTER III 

Micro-C XL: Assaying Chromosome Conformation at Length 

Scales from The Nucleosome to The Entire Genome 

 

Abstract 

Structural analysis of chromosome folding in vivo has been revolutionized by 

Chromosome Conformation Capture (3C) and related methods, which use 

proximity ligation to identify chromosomal loci in physical contact. We recently 

described a variant 3C technique, Micro-C, in which chromatin is fragmented to 

mononucleosomes using micrococcal nuclease, enabling nucleosome-resolution 

folding maps of the genome. Here, we describe an improved Micro-C protocol 

using long crosslinkers, termed Micro-C XL, which exhibits greatly increased 

signal to noise, and provides further insight into the folding of the yeast genome. 

We also find that signal to noise is much improved in Micro-C XL libraries 

generated from relatively insoluble chromatin as opposed to soluble material, 

providing a simple method to physically enrich for bona-fide long-range 

interactions. Micro-C XL maps of the budding and fission yeast genomes reveal 

both short-range chromosome fiber features such as chromosomally-interacting 

domains (CIDs), as well as higher-order features such as clustering of 

centromeres and telomeres, thereby addressing the primary discrepancy 

between prior Micro-C data and reported 3C and Hi-C analyses. Interestingly, 

comparison of chromosome folding maps of S. cerevisiae and S. pombe 
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revealed widespread qualitative similarities, yet quantitative differences, between 

these distantly-related species. Micro-C XL thus provides a single assay suitable 

for interrogation of chromosome folding at length scales from the nucleosome to 

the full genome. 

 

Introduction 

The compaction and organization of the physical genome has wide-ranging 

consequences for genomic function (HORN AND PETERSON 2002; DEKKER et al. 

2013; DEKKER AND MISTELI 2015; FRIEDMAN AND RANDO 2015). In eukaryotes, the 

first level of genome compaction is organization into the characteristic “beads on 

a string” structure, with nucleosomes separated by relatively accessible linker 

DNA. Our understanding of this primary structure of chromatin is well-developed, 

with multiple crystal structures solved for the nucleosome (LUGER et al. 1997; 

KORNBERG AND LORCH 1999), and a plethora of genome-wide studies that identify 

the positions of individual nucleosomes across the genome in various organisms, 

in some cases at single nucleotide-resolution (HUGHES AND RANDO 2014). The 

next step in chromosome folding remains relatively poorly-characterized; for 

example, the long-held belief that chromatin fibers form a helical secondary 

structure termed the 30 nm fiber is increasingly subject to debate (DORIGO et al. 

2004; TREMETHICK 2007; GHIRLANDO AND FELSENFELD 2008; ROUTH et al. 2008; 

GRIGORYEV et al. 2009; COLLEPARDO-GUEVARA AND SCHLICK 2014; SONG et al. 

2014; CHENG et al. 2015). 
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 Structural analysis of chromosome folding beyond the nucleosome fiber 

has been revolutionized by the Chromosome Conformation Capture (3C) family 

of techniques (DEKKER et al. 2002; DEKKER et al. 2013). In 3C-based protocols, 

chromatin is first crosslinked in vivo using formaldehyde to capture physical 

interactions between distal regions of the genome. Chromatin is subsequently 

fragmented, and ligation of chromatin fragments is used to generate chimeric 

DNA molecules. Sequencing these molecular libraries provides a readout of 

genomic loci that were crosslinked to one another via protein-protein interactions. 

Genome-wide variants of 3C, such as Hi-C, have revealed a number of 

organizational features of eukaryotic genomes at increasingly fine resolutions, 

from the scale of full chromosomal territories, to multi-Mb active and inactive 

compartments, to hundred-kb contact domains (TADs), to enhancer-promoter 

loops (LIEBERMAN-AIDEN et al. 2009; DIXON et al. 2012; LI et al. 2012; NORA et al. 

2012; SEXTON et al. 2012; LE et al. 2013; MARBOUTY et al. 2014; MIZUGUCHI et al. 

2014; RAO et al. 2014; EAGEN et al. 2015; HSIEH et al. 2015; WANG et al. 2015). 

While many factors impact the effective resolution of a 3C/Hi-C dataset, including 

sequencing depth and library complexity (LAJOIE et al. 2015), a fundamental limit 

to genomic resolution is the size of the fragments generated before physical 

interactions are captured via ligation. Since the majority of 3C-based experiments 

rely on restriction enzymes for fragmentation of the genome – resulting in 

genomic fragments that are both long relative to the nucleosome, and 
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inhomogeneously spaced along the genome – current Hi-C datasets are limited 

to ~1 kb resolution. 

 To improve the resolution of 3C-based techniques, we recently developed 

a high resolution 3C-based technique, dubbed “Micro-C”, in which fragmentation 

of the genome is accomplished using micrococcal nuclease (MNase) to enable 

mononucleosome-resolution analysis of chromosome folding (HSIEH et al. 2015). 

While the improved resolution afforded by Micro-C enabled the identification of 

features such as chromosomally-interacting domains – “CIDs” – in budding yeast 

that had not previously been discernible using a restriction enzyme-based 3C 

technique (DUAN et al. 2010), known higher-order interactions such as 

centromere clustering were poorly recovered using our technique. In addition, 

although several studies have reported “gene loops” in budding yeast using 3C 

methods (O'SULLIVAN et al. 2004; ANSARI AND HAMPSEY 2005), we found no 

evidence for gene loops using Micro-C. 

These discrepancies with the literature motivated a deeper exploration of 

the effects of specific protocol steps on the results of Micro-C analysis of 

chromosome folding. Most notably, we sought to determine whether the reliance 

on formaldehyde, a “zero length” crosslinker, to crosslink genomic loci to one 

another might limit the ability of 3C-related methods to fully interrogate 

chromosome structure. To investigate whether longer crosslinkers might reveal 

additional features of local chromatin structure, we characterized the effects of 

two long protein-protein crosslinkers on Micro-C maps of the budding yeast 
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genome. A revised Micro-C protocol incorporating long crosslinkers, which we 

named “Micro-C XL”, not only recapitulated the local chromatin structures 

previously revealed by Micro-C, but also robustly recovered higher-order features 

such as centromere-centromere interactions. Micro-C XL thus overcomes the key 

technical limitation of the original Micro-C protocol, providing a single protocol for 

analysis of chromosomal folding from the scale of nucleosomes to the full 

genome. We also characterized Micro-C XL profiles in pellet and supernatant 

fractions of crosslinked chromatin, finding that chromatin contacts are enriched in 

relatively insoluble chromatin, thereby providing a simple technical approach to 

improve signal-to-noise in Micro-C maps. Finally, we compared Micro-C XL maps 

from S. cerevisiae and S. pombe, finding a general conservation of gene-scale 

folding behavior in these distantly-related species. Taken together, our results 

provide an updated Micro-C protocol for characterization of chromosome folding 

at all length scales, and provide additional high resolution insights into 

chromosome structure in two key model organisms. 

 

Result 

Optimization of crosslinking conditions for Micro-C 

We recently detailed a modified Hi-C protocol (LIEBERMAN-AIDEN et al. 2009) 

termed Micro-C, in which micrococcal nuclease (MNase) digestion of crosslinked 

chromatin enables the analysis of chromosome folding at mononucleosomal 

resolution (HSIEH et al. 2015). Our reported Micro-C maps robustly captured 
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short-range interactions such as chromosomally-interacting domains (CIDs) in 

budding yeast, but exhibited poor recovery of higher-order features such as the 

centromere-centromere (CEN-CEN) and telomere-telomere (TEL-TEL) 

interactions that are well-known features of yeast genome organization (Figure 

3.1A).  

These discrepancies with the literature motivated a deeper exploration of 

the effects of specific protocol steps on the results of Micro-C analysis of 

chromosome folding. Most notably, we hypothesized that reliance on 

formaldehyde, a “zero length” crosslinker, to crosslink genomic loci to one 

another might limit the ability of 3C-related methods to fully interrogate 

chromosome structure. Using q-PCR primers designed to assay interactions 

either within the contact domain associated with MDJ1 or between pairs of 

centromeres (Figure 3.1B-D), we tested a variety of different protein-protein 

crosslinkers and crosslinking conditions to identify conditions that best enabled 

recovery of longer-range (greater than ~1 kb) interactions. These analyses 

identified two protein-protein crosslinkers that appeared to more efficiently 

crosslink distant nucleosomes within the MDJ1 CID and to more efficiently 

capture CEN-CEN interactions – disuccinimidyl glutarate (DSG, a 7.7Å 

crosslinker), and ethylene glycol bis(succinimidyl succinate) (EGS, a 16.1Å 

crosslinker) (Figure 3.1E). The improvements in signal-to-noise afforded by DSG 

and EGS were not observed when DSG or EGS were added prior to cell 

permabilization (not shown), consistent with our expectation that these molecules 
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are too large to cross the yeast cell wall (SCHERRER et al. 1974). Interestingly, 

improved signal-to-noise was not observed following crosslinking with higher 

concentrations of formaldehyde, longer incubation times, or when a second 

round of formaldehyde crosslinking was carried out after cell wall digestion 

(Figure 3.1B-D), demonstrating that the improvements in the Micro-C protocol 

required some specific aspect of the DSG and EGS crosslinkers, rather than, 

say, an increase in the sheer density of crosslinks introduced into chromatin. 

We incorporated each of these longer crosslinkers into an altered Micro-C 

protocol, which we dubbed Micro-C XL (MICROcoccal nuclease-based analysis 

of Chromosome folding using long X-Linkers), and then sought to identify those 

features of yeast chromosome folding uniquely revealed using these crosslinkers 

(Figure 3.1F). Briefly, actively growing budding yeast cultures are crosslinked 

with formaldehyde alone, formaldehyde + DSG, formaldehyde + EGS, or all three 

crosslinkers, and resulting chromatin is fragmented to mononucleosomes using 

MNase digestion. Crosslinked chromatin is then treated with T4 DNA polymerase 

in the absence of dNTPs to promote exonuclease activity. This leaves single 

stranded DNA ends, which are then repaired and biotinylated upon the addition 

of dNTPs, including biotin-dATP and biotin-dCTP, to the T4 polymerase reaction. 

Following DNA ligation, ligation products are purified away from unligated 

mononucleosomal DNA based 1) on ligation-dependent protection of biotinylated 

DNA from exonuclease attack, and 2) on size selection specifically of 

dinucleosome-sized ligation products. In practice, nucleosomal ligation products 
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are first treated with exonuclease III to remove biotinylated nucleotides from free 

DNA ends, leaving biotinylated nucleotides specifically in nucleosomal ends that 

had been ligated to one another and thereby protected from exonuclease attack. 

DNA is then purified from deproteinated chromatin, and dinucleosome-sized 

ligation products are gel-purified away from unligated mononucleosomal DNA. 

Recovered DNA is then further purified on streptavidin beads to isolate only DNA 

carrying biotinylated nucleotides at ligation junctions that had been protected 

from exonuclease digestion. Purified ligation products are then used to generate 

deep sequencing libraries, and subject to Illumina paired-end sequencing using 

standard methods. 
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Figure 3.1. Overview of Micro-C XL.  
(A) Schematic of global chromosomal organization in S. cerevisiae, highlighting the 

CEN-CEN cluster and the TEL-TEL clusters. (B-D) Q-PCR analysis of effects of long 

crosslinkers on Micro-C protocol. Budding yeast were crosslinked with formaldehyde, 

permeabilized, and then treated with one of several alternative crosslinkers. 

Mononucleosomal DNA was then processed using the Micro-C protocol, and ligated 

DNA was subject to q-PCR using primer pairs designed against a variety of 

nucleosomes surrounding the MDJ1 contact domain or spanning specific centromere 

pairs. In (B), schematic of primer locations for q-PCR analyses of the ~6 kb region 

surrounding MDJ1. Forward primers located at nucleosomes 1, 3, and 7 are indicated in 

blue, while locations of reverse primers are shown in orange. In (C), q-PCR data for the 

indicated forward and reverse primer pairs, normalized to the q-PCR signal obtained for 

the abundance of ligation products between the upstream nucleosome in question and 

its immediate downstream neighbor (e.g., for the left panel, data are normalized to the 
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pairwise interaction between MDJ1 nucleosomes number 3 and 4). Data are shown for 

1% FA, 3% FA, 3% FA + DSG, and 3%FA + EGS, as indicated. Here (and throughout 

this study, with the exception of Figure 3.1D), FA crosslinking was carried out prior to 

cell permeabilization, and DSG or EGS crosslinking was introduced following cell 

permeabilization. In (D), (Left panel)  As in (C), but showing data for additional 

crosslinking conditions including higher FA concentrations, longer FA crosslinking, and a 

two-step FA crosslinking protocol in which a second FA incubation is carried out after 

spheroplasting. This last protocol mimics the use of DSG or EGS after spheroplasting in 

the Micro-C XL protocol. (Right panel) q-PCR data for interactions between CEN3 and 

the indicated centromeres, showing data for the same protocols detailed in the left panel. 

(E) Structures of the two protein-protein crosslinkers used in Micro-C XL. (F) Outline of 

changes to the Micro-C protocol. After budding yeast are fixed with formaldehyde, cells 

are permeabilized, then treated with one of several additional protein-protein 

crosslinkers. Crosslinked chromatin is then digested to mononucleosomes using 

micrococcal nuclease. End digestion and repair is used to introduce biotinylated 

nucleotides into mononucleosomal ends, and nucleosomes crosslinked to one another 

are ligated together at high dilution or “in pellet”. Ligation products are then purified via 

streptavidin capture and size selection of dinucleosome-sized DNA, and paired-end 

deep sequencing is used to characterize internucleosomal interactions genome-wide. 

 

Genome-wide analysis of chromosome folding by Micro-C XL 

To investigate whether adding DSG or EGS to the Micro-C protocol provided 

additional insights into chromosome folding, we generated genome-wide Micro-C 

maps for budding yeast subject to a variety of crosslinking conditions. These 

conditions include 1% or 3% formaldehyde (FA) alone, or FA (1% or 3%) plus 

DSG, EGS, or both crosslinkers. Also, as described above, we generated similar 

datasets in which DSG or EGS were added prior to cell wall digestion as a 

negative control, as these molecules are not expected to cross the cell wall in 
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budding yeast. Below, we primarily focus on the results using 3% FA with or 

without DSG and EGS, but results of other crosslinking conditions are noted 

when relevant. 

In general, all four conditions (FA, FA/DSG, FS/EGS, and FA/DSG/EGS) 

yielded qualitatively similar results at the scale of individual genes, with 

chromosomal interaction domains of varying strength covering ~1-5 genes 

(Figure 3.2A). Although CIDs were clearly observed in all four conditions, the 

addition of longer crosslinkers to the Micro-C protocol resulted in improved ability 

to visualize these structures (Figure 3.2B and see below). Importantly, as 

previously observed with Micro-C, we again found no evidence for a regular 

organization of the chromatin fiber above the nucleosomal scale, which would 

have manifested as a peak in interaction density at a genomic distance 

corresponding to the fiber size (Figure 3.2C). Moreover, compared to standard 

Micro-C we found that Micro-C XL exhibited substantially higher signal-to-noise 

(Figure 3.2D), consistent with the q-PCR results in Figure 3.1B-D. 

Beyond recapitulating the key aspects of chromosome folding previously 

revealed by Micro-C, Micro-C XL resolved additional details that were not 

apparent in prior Micro-C maps. Most interestingly, in contrast to standard Micro-

C crosslinking conditions, all three long crosslinking conditions captured very 

robust CEN-CEN and TEL-TEL interactions characteristic of the Rabl 

configuration for interphase chromosomes (DUAN et al. 2010; MARBOUTY et al. 

2014; MIZUGUCHI et al. 2014) (Figures 3.2E-F). This finding thus resolves the 
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primary qualitative discrepancy between prior Micro-C data and known features 

of genomic folding in yeast, while preserving the ability of Micro-C to interrogate 

chromatin interactions at the 2-10 nucleosome scale.  

 We conclude that both DSG and EGS dramatically extend the length scale 

at which chromosome folding can be assayed by Micro-C, enabling analysis at 

scales from the local chromatin fiber to the full genome. Interestingly, this 

improvement can largely be ascribed to a decrease in the background levels of 

ligation between distant genomic regions (Figure 3.2D, left panel) – the decrease 

in this “noise floor” seen using the Micro-C XL protocol is likely to account for the 

improved ability to measure relatively low-abundance signals such as CEN-CEN 

interactions. 
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Figure 3.2. Micro-C XL robustly captures known interchromosomal 
interactions while retaining single-nucleosome resolution.  
(A) Example of Micro-C XL contact map for a 20 kb genomic stretch at single-

nucleosome resolution. The map is shown for ChrIX: 360,000-380,000 for crosslinking 

condition in 3% formaldehyde + DSG and ligation in pellet. The raw matrix was only 

normalized to sequencing depth as described in (HSIEH et al. 2015), and interactions 

were counted in single bp resolution without binning. The Micro-C XL protocol effectively 

recovers the chromosomally-interacting domains previously observed in Micro-C data. 

(B) Comparison of crosslinking protocols for a typical 20 kb region. Micro-C data are 

shown for ChrIX: 360,000-380,000 for eight different crosslinking conditions, as 

indicated. The raw matrix was only normalized to sequencing depth as described in (A) 

and (HSIEH et al. 2015). Improved capture of contact domains associated with individual 

genes is readily apparent here for protocols incorporating DSG or EGS. (C) Plot of 

interaction density for all unidirectional (“IN-OUT”) read pairs, expressed as a fraction of 

potential pairwise interactions (per bp2) (y axis, log10), vs. genomic distance (x axis, 

log10) for various Micro-C protocols scaled to 109 interactions. (D) Addition of long 

crosslinkers reduces the “noise floor” relative to FA-only Micro-C maps. Intra-arm 

contact probability, P(s), as a function of genomic distance, s, was calculated from 1 kb 

corrected contact maps as in (IMAKAEV et al. 2015), using 50 logarithmically spaced bins 

from 1kb to 1Mb. Horizontal line marks average trans (between-chromosome) contact 

frequency. Markers respectively indicate average trans, trans Cen-vs-Cen and trans 

Cen-vs-Arm contact frequencies, defining each centromere with a +/-20kb genomic 

window, and are placed at the genomic distance with an equivalent intra-arm contact 

probability for ease of comparison. Note that P(s) flattens out at the average trans 

contact frequency in the FA3-only dataset, as would be result from an adding a constant 

frequency of interaction between any two loci. Additionally, while trans-cen-arm and 

trans-average are similarly strong in the FA3-only and FA3-DSG datasets, the avoidance 

of the centromere from arm regions is clearly seen in the DSG-pellet dataset. This 

decrease in the background levels of ligation between distant genomic regions – the 

“noise floor” – seen using the Micro-C XL protocol is likely to account for the improved 

ability to measure relatively low-abundance signals such as CEN-CEN interactions. (E) 

Interaction maps for Micro-C data generated using 3% formaldehyde, 3% formaldehyde 
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+ DSG, or 3% formaldehyde + EGS are shown as indicated for budding yeast 

chromosomes VII through X. Here, data on the top panel are normalized by read depth 

only and displayed as log10 (counts per million) and data on the bottom panel are further 

corrected by matrix balance. Note that since genomes were fragmented more 

homogeneously (mononucleosome) in Micro-C protocol than in Hi-C, matrix correction is 

not always necessary for data visualization in a large size binning (> 1kb), as shown in 

here. For 3% FA + DSG and 3% FA + EGS, CEN-CEN interactions are shown with blue 

arrows. As previously observed, telomere-telomere interactions are only observed 

between a subset of chromosome arms (which do not include interactions between 

chromosomes VII to X) in budding yeast. (F) Centromere clustering revealed by 

alternative crosslinkers. Average interaction map for all possible pairs of CEN-CEN 

interactions for the indicated Micro-C protocols. Top eight panels show variants of the 

standard Micro-C protocol performed using the indicated crosslinking conditions, while 

bottom six panels show data for Micro-C performed following separation of relatively 

soluble and insoluble MNase-digested chromatin by centrifugation prior to ligation. 1 kb 

binned contact maps were corrected for genomic coverage and normalized such that the 

total coverage of each 1 kb region summed to 1. 

 

Bona-fide Micro-C contacts are primarily found in relatively insoluble 

chromatin 

We next sought to uncover whether Micro-C data are affected by fractionation of 

crosslinked chromatin prior to proximity ligation. This was motivated by the 

absence of “gene loops” (O'SULLIVAN et al. 2004; ANSARI AND HAMPSEY 2005) in 

our previous Micro-C analysis – the 3C method used in several studies of gene 

loops includes a step in which insoluble chromatin is pelleted and isolated prior to 

ligation, and it is known that different chromatin structures are likely to be present 

in soluble vs. insoluble crosslinked chromatin (HENIKOFF et al. 2009). We 
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therefore carried out Micro-C XL in which fragmented chromatin was centrifuged 

after the completion of MNase digestion to separate soluble from insoluble 

chromatin (Figure 3.1F and Methods), and proximity ligation was carried out 

separately on pellet and supernatant material (Figure 3.3). 

Micro-C XL maps from supernatant material were extremely noisy at 

longer distances, and did not identify known aspects of higher-order organization. 

In contrast, contact maps generated from relatively insoluble chromatin had 

excellent signal to noise, and robustly captured CEN-CEN interactions. We 

conclude that this reflects either preferential precipitation of crosslinked 

fragments, higher ligation efficiency in the pellet, or higher specificity of ligation in 

the pellet; i.e. noise in the supernatant dataset is elevated due to ligations in 

solution between freely-moving, likely uncrosslinked, nucleosomes causing 

artefactual contacts in trans. These related hypotheses are of course not 

mutually exclusive, and may all contribute to the improved signal to noise seen in 

Micro-C XL maps from pellet material (Figure 3.2D, right panel). 

We next searched for evidence of gene loops (O'SULLIVAN et al. 2004; 

ANSARI AND HAMPSEY 2005) in the dataset generated from relatively insoluble 

chromatin. Here, we consider a gene “loop” to be characterized by an increased 

contact frequency between the gene start and stop relative to other locus pairs in 

their vicinity (similar to previous definitions of peaks in Hi-C contact maps (RAO et 

al. 2014)), rather than a gene-wide increase in relative contact frequency. In 

general, it is clear that, for any given nucleosome, raw interaction counts (either 
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normalized only for library depth, or normalized additionally for nucleosome 

occupancy) decay steadily with increasing distance and do not exhibit an uptick 

at gene ends, which is the signature of a looping interaction (BENEDETTI et al. 

2014; DOYLE et al. 2014) – see example in Figure 3.2A, or averaged 

“metagenes” in Figures 3.3D-F. Nevertheless, with our population-average 

contact maps we cannot rule out a scenario where populations of various length 

gene loops are formed dynamically over gene bodies (as proposed for enhancer-

promoter interactions (LEE et al. 2015)). 

Although our data thus do not support the concept of widespread end-to-

end gene loops at transcribed genes, visual inspection of Micro-C XL data did 

reveal a small number of possible looping interactions at multi-gene scale that 

were apparent even in interaction counts not normalized for distance (not 

shown). Validation and functional analysis of these apparent loops will be the 

subject of future studies. 
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Figure 3.3. Micro-C XL interactions are enriched in insoluble chromatin.  
(A) Micro-C interaction maps for chromosomes VII to X are shown as in Figure 3.2, for 

pellet (top panels) and supernatant (bottom panels) libraries as indicated. Note that the 

strong enrichment of CEN-CEN interactions in the pellet fraction requires long-distance 

crosslinkers, as it is not clearly observed for 3% FA chromatin pellets (also see Figure 
3.2F, bottom panels). (B) Here are shown the same data as in (A, top panels) for further 

correction by matrix balancing. (C) Plot of interaction density (y axis, log10) vs. genomic 
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distance (x axis, log10) for four Micro-C XL libraries, normalized as in Figure 3.2C. One 

pair of libraries were crosslinked with 3% FA + DSG, then MNase-digested chromatin 

was separated into soluble and insoluble fractions by centrifugation; the same procedure 

was also repeated for yeast crosslinked with 3% FA + EGS. In both cases, the relatively 

soluble Micro-C library exhibited far lower signal to noise, with relatively rapid decay of 

interactions with increasing distance, compared to libraries constructed from pellet 

material (also see Figure 3.2D, right panel). (D-F) Micro-C XL pellet metagenes display 

no evidence for widespread gene loops.  As prior reports of gene loops in budding yeast 

were based on 3C data generated from insoluble chromatin, we sought evidence of such 

loops in the Micro-C XL dataset generated from relatively insoluble chromatin. Similar to 

previous definitions of a loop, we consider a “gene loop” to be characterized by an 

increased contact frequency between the gene start and stop relative to other locus 

pairs in their vicinity, rather than a gene-wide increase in relative contact frequency. In 

general, raw interaction counts for any given nucleosome (either normalized only for 

library depth, or normalized additionally for nucleosome occupancy) decay steadily with 

increasing distance and do not exhibit an uptick at gene ends, which is the signature of a 

looping interaction. Similarly, visual inspection of Micro-C XL maps does not reveal any 

evident peaks of contact probability between the 5’ and 3’ ends of genes (e.g., see 

Figures 3.2A-B). In (D, left panels), metagene maps for S. cerevisiae DSG pellet 

dataset, binned to 200 bp resolution and normalized only for sequencing depth. All 

genes of length 1-1.2 kb, 2-2.2 kb, and 3-3.2 kb, as indicated, were identified and 

aligned by their 5’ ends. The narrow range of gene lengths was chosen to assist in 

visualization of a discrete 3’ gene end in these plots. Top panels show log10 averaged 

interaction counts, normalized only for library read depth. CID structure is evident in 

these panels as a region of increased contacts bounded at both the 5’ and the 3’ ends of 

genes. Note that interactions within each box decay smoothly with increasing distance 

from the diagonal, indicating that interactions between gene ends are at most a minority 

subpopulation of gene folding conformations. Bottom panels show the same data, after 

additionally controlling for the global decay in interaction frequency with increasing 

genomic distance. Data are shown as log2 of the observed interactions divided by the 

interaction count expected based on genomic distance. This correction reveals a far 

clearer view of CID structure, with clear blue boundaries delimiting the red contact 
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domain associated with the gene. In (D, right panels), as in left panels, but data are 

additionally normalized by matrix balancing, which corrects for possible experimental 

biases as well as nucleosome occupancy (observed as variation in the total coverage 

per bin in Micro-C maps). Visually this removes the faint “stripes” in the raw data (top 

panels) associated with nucleosome-depleted promoter regions, but reveals red stripes 

of excess observed/expected interactions (bottom panels) for +1 and +N nucleosomes. 

Following this normalization a subtle enrichment of interactions can be observed for the 

+1/+N nucleosome interaction in the observed/expected visualization (bottom row).  

Regardless of row normalization scheme, we do not observe the signature of a gene 

loop, an uptick in contact probability between the +1/+N nucleosomes, in observed maps 

for any of the assayed gene lengths. With regards to observed/expected normalization, 

we note that even uniform squares on an observed map can have apparent corner 

peaks after dividing by an expected map where contact frequency decreases with 

genomic distance. For these reasons, Micro-C data argues for the prevalence of gene- 

and multi-gene-wide crumpling, rather than specific +1/+N gene loops. Although our data 

thus do not support the concept of widespread end-to-end gene loops at transcribed 

genes, visual inspection of Micro-C XL data did reveal a small number of possible 

looping interactions at multi-gene scale that were apparent even in interaction counts not 

normalized for distance (now shown). Validation and functional analysis of these 

apparent loops will be the subject of future studies. Metagene visualization as in (D) for 

(E) 3% FA + DSG without spin down, and (F) 3% FA, Micro-C libraries. 

 

Comparison of chromosome folding in S. cerevisiae and S. pombe 

Although many aspects of chromosome folding are conserved between S. 

cerevisiae and other eukaryotes, S. cerevisiae lacks several evolutionarily 

widespread chromatin regulatory systems, such as the H3K9me3/HP1 and 

H3K27me3/Polycomb systems for gene repression found in many eukaryotes. 

We therefore carried out Micro-C XL in the fission yeast S. pombe to ascertain 

the similarities and differences in chromosome folding between these distantly-
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related microbes, and to demonstrate the broad applicability of our methods. Key 

aspects of the Micro-C XL protocol proved equally important in fission yeast, as 

for example maps generated from relatively insoluble chromatin exhibited far less 

noise compared to maps based on soluble chromatin (Figure 3.4A). Overall, our 

data were well-correlated (Spearman’s r = 0.77 using 10 kb bins) with a prior Hi-

C analysis of S. pombe chromatin by (MIZUGUCHI et al. 2014) (Figure 3.4B). As 

in budding yeast, Micro-C XL maps in S. pombe revealed frequent interactions 

along the diagonal, robust CEN-CEN and TEL-TEL interactions, and a depletion 

of interactions between centromeres and chromosome arms (Figures 3.4A-B). 

We did find quantitative differences in such large-scale aspects of chromosome 

folding, as S. pombe chromosomes exhibited slightly stronger centromere 

clustering, and substantially stronger telomere clustering (Figure 3.4C). These 

differences do not appear to be a consequence of the profound cell cycle 

differences between budding and fission yeast (Figure 3.4C), but could 

potentially be explained by any number of other features ranging from the smaller 

number of longer chromosomes in S. pombe, to the molecular details of 

interactions between pairs of H3K9-methylated nucleosomes present in this 

species but not in S. cerevisiae. 

As prior studies of chromosome folding in S. pombe were performed with 

~10 kb kb resolution, we next turned to those aspects of chromatin structure 

uniquely interrogated using the enhanced resolution of Micro-C. Visual inspection 

of chromosome folding revealed abundant contact domains associated with ~1-5 
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genes and separated by promoter regions (Figure 3.4D), analogous to the CID 

structures in budding yeast. As in budding yeast, promoters in fission yeast acted 

as efficient boundaries between CIDs, and metagene analysis revealed 

remarkably similar behavior in both yeast species at the length scale of individual 

genes or promoters (Figures 3.4E-H). In addition, plots of interaction frequency 

vs. distance, and distributions of contact domain length, were qualitatively similar, 

yet quantitatively different, in these two species; in particular, differences at short 

distances in the positions of interaction maxima correspond to known differences 

in nucleosome repeat length in these two species (Figure 3.4I). 

We conclude that broadly similar principles underlie chromosome folding 

behavior in these distantly-related fungi, with modest quantitative differences in 

chromosome structure that could potentially result from the interspecies 

differences in aspects of genomic structure including chromosome length, gene 

length, intron abundance, location of rDNA clusters, and nucleosome repeat 

length. 
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Figure 3.4. Comparative analysis of chromosome folding in S. cerevisiae 
and S. pombe.  
(A) Whole genome Micro-C XL interaction map for S. pombe. Here, data are shown for 

yeast crosslinked with 3% FA + DSG (left panels) and 3% FA + EGS (right panels), and 

pelleted prior to ligation (insoluble and soluble materials shown as indicated). Raw 

matrixes were normalized to sequencing depth only and scaled to 109 reads, and 

interactions were counted with 5 kb binning. Key features of this map include robust 

clustering of centromeres and telomeres (with the exception of the rDNA-carrying 

chromosome III telomeres, which were excluded from analysis based on their repetitive 

nature), and strong depletion of interactions between centromeres and chromosome 

arms. Those features are not observed in the supernatant data. (B) Comparison of 

Micro-C and published Hi-C maps for S. pombe at 10 kb resolution. In each row, left 

panels show data this study, while right panels are from (MIZUGUCHI et al. 2014), binned 

at 10 kb resolution in log10 count. Top two rows show data for the entire genome, while 

bottom row shows a 1 MB zoom-in. Overall Micro-C maps are highly-correlated with 
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published results for this species (Spearman’s r = 0.77 for corrected 10 kb resolution 

maps, comparable with the r = 0.77 correlation between DSG and EGS pellet maps for 

S. cerevisiae), with both maps showing ~100 kb chromatin contact domains previously 

referred to as cohesin-mediated “globules”. (C) Comparison of global folding behavior 

between two yeast species. Boxplots showing fraction of contacts (normalized as parts 

per million read pairs) for interactions between centromeres (cen-cen), between 

telomeres (tel-tel), between centromeres and chromosome arms (cen-arm), and 

between distal chromosome arms (arm-arm), calculated from coverage-corrected 10 kb 

binned contact maps. Chromosome arms here are defined as sequences more than 20 

kb away from either a centromere or telomere. Boxplots here show the median (red line), 

the first and third quartiles (box), and 1.5* the inner quartile range (whiskers). Red points 

overlay values for bin-pairs for (cen-cen) and (tel-tel) regions. As in (MIZUGUCHI et al. 

2014), the 10 most telomere-proximal bin-pairs for non-filtered regions of the heatmap 

are chosen, or 40 most centromere-proximal bin pairs (as there are 4 arm pairs at each 

centromere). Data for upper panels are taken from this study, while lower panels show 

data from (MIZUGUCHI et al. 2014) for unsynchronized or G1-arrested S. pombe (lower 

left and right, respectively). Note that the enhanced telomere clustering seen in S. 

pombe relative to S. cerevisiae is observed both using Micro-C (upper right panel) and 

Hi-C (lower left panel) in unsychronized S. pombe, and in G1-arrested (lower right panel) 

S. pombe, indicating that this difference between budding and fission yeast does not 

result from the profound cell cycle differences between budding and fission yeast. 

Instead, these quantitative differences in chromosome packing might potentially be 

explained by any number of other features ranging from the smaller number of longer 

chromosomes in S. pombe, to the molecular details of interactions between pairs of 

H3K9-methylated nucleosomes that are present in this species but not in S. cerevisiae. 

(D) Zoom-in on S. pombe Chr I: 553,200-609,400, showing widespread contact domains 

typically associated with individual genes, but occasionally associated with blocks of ~2-

5 genes. Matrix was counted by pairs per million in single bp-resolution and normalized 

to sequencing depth only. (E) Comparison of chromosome folding in S. cerevisiae and 

S. pombe. For each species, intergenic regions were separated into those falling 

between pairs of genes oriented divergently, in tandem, or convergently, as indicated, 

and were aligned according to the midpoint of the nearest respective intergenic region. 
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Data from DSG pellet libraries from S. cerevisiae (upper panels) or S. pombe (lower 

panels) are averaged for all genes in each category. For both species, two rows of 

panels are shown as in Figures 3.3D-F, with interaction counts in top panels and 

distance-corrected interaction levels in bottom panels. Interaction counts were 

normalized to library read depth for coverage-corrected 200 bp-binned maps for the 

three classes of intergenic region. Distance-corrected maps are the same data, 

additionally corrected for the decay in interaction frequency with increasing distance, and 

expressed as the log2 ratio of observed interactions divided by expected interactions for 

a given genomic distance. (F) Comparison of boundary activity of promoters in budding 

and fission yeast. For both species, two rows of panels are shown as in (E), with 

interaction counts in top panels and distance-corrected interaction levels in bottom 

panels. In both cases data are from DSG pellet maps. Data here are shown for 

divergently-oriented genes, separated into groups based on the intergenic distance. In 

both species, divergent promoters act as boundaries, with longer intergenic regions 

more effectively separating chromatin domains from one another. Budding and fission 

yeast also exhibit similar behavior at intergenic regions separating tandemly-oriented 

genes, and separating convergently-transcribed genes (not shown). (G) tRNA metagene 

analysis. Data for S. cerevisiae and S. pombe DSG pellets are shown here aligned for all 

tRNA genes in the respective yeast genome. For both species, data shown here were 

normalized with matrix balancing. In each case, top panel shows interaction counts, 

while bottom panel shows observed/expected relative to interaction distance. (H) 

Metagene analysis of S. pombe genes. As in Figures 3.3D-F, for S. pombe DSG pellet 

data. As observed for S. cerevisiae, gene loops are not observed in coverage-corrected 

interaction data, but distance-corrected interactions reveal compacted domains at the 

gene level. (I) Distribution of contact domain lengths. Boundaries between contact 

domains were called as described in (HSIEH et al. 2015) for S. cerevisiae and S. pombe 

Micro-C XL datasets. Plots show the distribution of lengths for boundary-delimited 

contact domains, which are extremely similar for these two species. (J) Decay of Micro-

C XL interactions with increasing genomic distance. Interactions vs. distance are shown 

for the indicated read pair orientations for the two species. Subtle differences at short 

distances are primarily attributable to different nucleosome repeat lengths in these 

species, while at longer distances we find S. pombe interactions decay slightly more 
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slowly with increasing distance. Interestingly, we also note an inflection point at ~80 kb 

at which interactions in S. pombe decay more rapidly – this may reflect the more robust 

organization of the fission yeast genome into cohesin-delimited “globules” (also see 

Figure 3.4B and below). (K) Cohesin insulates chromatin domains from one another. 

(Left panel) Correlation between cohesin localization and local chromatin insulation (y 

axis), at varying offsets (x axis). Here, insulation was calculated as using sliding 

diamond window, as in Sofueva et al. Insulation profiles were calculated from 1 kb 

binned and corrected DSG pellet contact maps, using a 10 kb sliding window at each 

indicated offset. Note that cohesin localization is correlated with the local insulation 

score in both budding and fission yeast, but that cohesin-associated insulation in fission 

yeast is far stronger (deeper peak), and extends over greater genomic distances (peak 

width). Cohesin localization for S. cerevisiae was obtained from GEO GSE42655 (Scc1) 

(ENERVALD et al. 2013), divided by input, log2-transformed, and binned to the same 1 kb 

resolution as contact maps. Cohesin for S. pombe was obtained from GEO GSE56848 

(Psc3 WT) (MIZUGUCHI et al. 2014), log2-normalized by input, and binned to 1 kb. (Right 

panels) Average insulation profiles for Micro-C contacts surrounding cohesin binding 

sites in the indicated species. Cohesin peaks were called as local maxima on the binned 

1 kb log2 profile, and were additionally required to have a minimum spacing of 10 kb and 

be in the top 75th percentile overall. Although both species exhibit local insulation, seen 

here as a blue depletion of contacts centered on cohesin binding sites, the inhibition of 

crossing interactions occurs at far greater distances (up to ~75 kb) in S. pombe than in 

S. cerevisiae (~25 kb). While displaying qualitative similarities, the quantitative 

differences captured here – insulation by cohesin-associated loci is stronger and persists 

over greater genomic distances in S. pombe relative to S. cerevisiae – may point to 

important differences in the underlying biology of cohesin in these two highly diverged 

yeast species. In particular, cohesin has been reported not to display peaks along the 

chromosomal arms in S. cerevisiae G1 (HU et al. 2015), whereas peaks of cohesin 

binding in S. pombe G1 have been reported to coincide with regions of local insulation in 

S. pombe G1 Hi-C maps (MIZUGUCHI et al. 2014). Together, these observations point 

towards a more important role for cohesin in organizing the arms of S. pombe 

chromosomes in interphase, relative to S. cerevisiae. (L) Cartoon models of budding and 

fission yeast chromosome folding. Fission yeast exhibit a subtle enhancement in 
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centromere clustering, as well as much more substantially-enhanced telomere 

clustering, but at the level of individual genes fission yeast chromosomes exhibit similar 

folding properties to budding yeast chromosomes. 

 

DISCUSSION 

Here, we present an improved protocol for nucleosome-resolution mapping of 

chromosome folding, termed Micro-C XL. The primary technical improvements 

detailed here are 1) the use of additional “long-range” crosslinkers to supplement 

formaldehyde crosslinking, and 2) fractionation of relatively insoluble chromatin 

prior to nucleosome ligation and subsequent library construction. Contrary to our 

initial expectations, the dramatic improvement seen in apparent capture of long-

range interactions using these protocols likely results not from the ability of long-

range crosslinkers to bridge interacting genomic loci associated with proteins that 

are more than 3 Å away from one another, but rather from a decrease in the 

noise caused by soluble nucleosomes encountering one another in solution 

during the ligation reaction and causing artefactual “interactions” between 

unlinked nucleosomes (Figure 3.2D). This hypothesis is based on the fact that 

DSG- and EGS-based Micro-C maps are extremely similar despite their 

substantial difference in crosslinking distance, as well as the finding that isolation 

of soluble chromatin results in greatly increased noise in Micro-C maps (Figure 

3.3). In addition, we note that chromatin fragments generated by restriction 

enzymes in typical Hi-C protocols are significantly larger than mononucleosomes, 

increasing the number of crosslinking opportunities per fragment and thus 
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presumably restricting their diffusion and resultant ability to generate artefactual 

ligation products. We propose that this difference in fragment size/mobility 

accounts for the increased noise seen previously in Micro-C relative to standard 

Hi-C protocols. Further supporting this idea, we find that the improved protocol 

strongly reduces the incidence of artefactual ligation products between the 

nuclear genome and the mitochondrial genome, relative to the standard Micro-C 

protocol (Figure 3.5A). We note this is in general agreement with prior 

comparisons of in-solution versus both pellet and “in situ” Hi-C protocols 

(GAVRILOV et al. 2013; RAO et al. 2014; NAGANO et al. 2015a). Together, these 

considerations support the idea that the use of long crosslinkers and isolation of 

insoluble chromatin may be important to prevent mononucleosomes from freely 

diffusing prior to ligation and introducing noise into Micro-C measurements. Still, 

this does not rule out the additional possibility that in some cases our long 

crosslinkers capture nearby genomic loci for which the closest crosslinkable 

proteins are not in immediate physical proximity, and indeed both of these 

features may contribute to the improvement in data quality seen in Micro-C XL. 
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Figure 3.5. Considerations of sequencing depth for mammalian cells and 
subsampling Micro-C XL data.  
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(A) Effects of Micro-C protocols on artefactual interactions. For each Micro-C dataset 

generated for S. cerevisiae in this study, we calculated 1) the fraction of sequencing 

reads mapping to the mitochondrial genome, and 2) the ratio between those reads 

reporting on an interaction between two loci on the same chromosome (in cis, >1 kb), 

and reads reporting on an interaction between chromosomes (in trans). We restrict cis 

reads to those >1kb to avoid any influence of molecular byproducs on the cis/total ratio. 

Here, these two values are scatterplotted against one another for all Micro-C datasets. 

Note that supernatant libraries exhibit a greater frequency of mitochondrial reads relative 

to other Micro-C libraries, and that pellet libraries exhibit a strong depletion of trans 

interactions. (B) Plots of interaction vs. distance are extremely robust to downsampling 

of sequencing data. Left plots show normalized density of interactions per squared base 

pair (y axis, normalized to total number of reads) vs. distance (x axis) for data 

downsampled to 10,000, 100,000, or 1,000,000 reads, or for the entire dataset. Right 

panels show the four curves separately, without normalization to sequence depth. In all 

cases, Micro-C XL reads (DSG pellet) were downsampled (after removing PCR 

duplicates) to the indicated number of reads. (C) (Top panel) Micro-C XL reads (S. 

cerevisiae, DSG pellet) were downsampled as indicated (x axis), and boundaries 

between CIDs were called as previously described (HSIEH et al. 2015). Y axis shows 

distance between the boundary location called in the downsampled dataset and the 

nearest boundary called from the full dataset. Curves show average over ten 

subsampling analyses, and squares at each value of reads indicate the small standard 

deviation of these replicas. Note that even with only 100,000 sequencing reads, 

chromatin boundaries are identified to within 1 kb. The red circle represents the full 

dataset, where the average distance is zero. (Bottom panel) Downsampling results in 

monotonic loss of boundary information. Here, y axis shows the average Jacard index of 

CID boundaries called from the full dataset versus the downsampled dataset with the 

number of reads indicated on the x axis.  Curves again show the average of ten 

subsampling analyses, and the red circle represents the full dataset, where the Jaccard 

index is one. We note that the performance of this particular boundary-calling method 

does not represent a fundamental limit on the recovery of domain boundaries from 

sparse datasets, which represents a possible topic for future computational methods. 
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Chromosome structure 

Validated via comparisons to prior data, our method provides insight into yeast 

genome folding at all length scales of interest. At larger scales, the Rabl 

configuration of chromosomes is seen as clustering of centromeres, and 

interactions between the telomeres of chromosome arms of similar length. 

Centromeric chromatin also shows a characteristic “X” shape resulting from the 

two arms of the chromosome both statistically leading away from the centromere 

together for some ~20 kb, with centromeres otherwise being relatively isolated 

from chromosome arms. At higher resolution, genes in both budding and fission 

yeast are organized into chromosomally-interacting domains (CIDs), typically 

spanning 1-5 genes, that are in some ways similar to the “topologically-

associating domains” described in a multitude of other model organisms. 

Boundaries between CIDs occur at active promoters, highly-expressed genes, 

and tRNA genes (Figure 3.4G). In both budding and fission yeast, genomic 

regions surrounding cohesin-associated loci are relatively insulated from 

physically interacting with one another (Figure 3.4K). However, this insulation is 

stronger and persists over greater genomic distances in S. pombe relative to S. 

cerevisiae, pointing towards important differences in the role of cohesin, 

potentially in a cell-cycle dependent fashion, between the species. Taken 

together, these analyses highlight the ability of Micro-C XL to assay chromosome 

folding across all scales, as well as its broad applicability and future utility in 

comparative genomics. 
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Applications to other biological systems 

We finally turn to considerations of the sequencing depth required for 

applications of Micro-C XL in organisms with larger genomes. As reviewed in 

(LAJOIE et al. 2015) the fundamental genomic resolution of a chromosome 

capture dataset is set by the frequency at which the genome is fragmented prior 

to capture of physical interactions by ligation; beyond this lower bound to 

resolution, the effective genomic resolution is further influenced by sequencing 

depth and library complexity. The proportion of molecular byproducts in a library 

additionally influences the amount of sequencing required to achieve a given 

coverage per fragment. Given that Micro-C XL does not display a preponderance 

of molecular byproducts (Figure 3.5A), the sequencing depth required to achieve 

a given genomic resolution should be similar to a Hi-C protocol. Nevertheless, 

Micro-C XL has the capacity to analyze chromatin interactions at genomic 

distances smaller than currently available Hi-C protocols. Indeed, the highest-

resolution studies performed to date in mammals (RAO et al. 2014) utilize 

restriction enzymes with 4 bp target sequences to yield average fragment lengths 

of ~256 bp, although due to the heterogeneous distribution of restriction sites 

across the genome lower-resolution (~1 or 5 kb) binning approaches must be 

used in analysis of such datasets. In comparison to any individual 4-cutter, 

MNase digestion of chromatin to mononucleosomes results in at most ~75% 

more genomic fragments (depending on the nucleosome repeat length in the 
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tissue of interest), which in turn increases the fundamental genomic resolution of 

Micro-C by substantially more than ~1.75-fold, thanks to the more even spacing 

of the resulting fragments. 

In addition, beyond binning Micro-C data to mimic lower-resolution Hi-C, it 

is important to note that a wide variety of biological questions can be addressed 

– at high resolution – by Micro-C at much lower sequencing depth. First of all, the 

strength of the Micro-C protocol is its ability to interrogate chromatin fiber 

structure at ~150-1000 bp resolution – there is little reason to carry out Micro-C 

to investigate >1 MB chromatin domains (LIEBERMAN-AIDEN et al. 2009). A key 

measure in this regard (IMAKAEV et al. 2015) is the decay of interaction frequency 

with increasing distances (see, e.g., Figure 3.2C or Figure 3.3C), which is an 

averaged measure across the entire genome and is thus extremely robust to 

undersequencing (Figures 3.5B-C). We anticipate that very low coverage (below 

1-2 million reads) Micro-C XL maps in mammals will thus allow robust 

comparison of average chromatin fiber folding for, say, Polycomb-repressed 

genes, or for exons vs. introns, etc.  

In addition to using such computational averaging methods to make use of 

multiple instances of any given annotation, the molecular complexity of the 

sequencing library can also be experimentally reduced. This is commonly done in 

sequence-capture RNA-Seq protocols in cancer exome studies, and more 

recently such methods have been applied to 3C methods based either on protein 

capture (eg, Pol2 IP) or on capture of specific “bait” sequences (DENKER AND DE 
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LAAT 2016). The reduction in read depth required for such methods naturally 

depends on the distribution and abundance of the feature to be captured, but 

many proteins of interest – CTCF, cohesin, TFIIB, and others – are sparsely 

distributed enough to enable >100-fold reductions in the sequencing depth 

required for high-resolution Hi-C studies. These and other considerations (LAJOIE 

et al. 2015; DENKER AND DE LAAT 2016) must be a part of any experimental design 

for a 3C-based study.  

 

Conclusion 

Here, we describe a modified protocol for genome-wide analysis of 3D chromatin 

structure that captures aspects of chromosome folding at all scales from 

mononucleosome resolution up to interactions between different chromosomes. 

This protocol, Micro-C XL, should find broad utility in a multitude of biological 

systems. 

 

Materials and Methods 

Yeast strains and culture conditions 

All experiments reported here were carried out with either S. cerevisiae strain 

BY4741 or S. pombe strain 972 h-. BY4741 cultures were grown in YPD media at 

30°C, while S. pombe cells were grown at 30°C in “Compromise Media” 

(TSANKOV et al. 2010), consisting of Yeast extract (1.5%), Peptone (1%), 
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Dextrose (2%), SC Amino Acid mix (Sunrise Science) 2 g/L, Adenine 100 mg/L, 

Tryptophan 100 mg/L, and Uracil 100 mg/L. 

 

Fixation conditions 

Midlog yeast cultures were crosslinked with either 1% or 3% final concentration 

of formaldehyde (Sigma) for 15 minutes at 30°C, then quenched with 125 mM 

glycine for 5 min at room temperature. Yeast were then spheroplasted as 

previously described (YUAN et al. 2005; TSANKOV et al. 2010). For DSG and EGS 

(Thermo Fisher Scientific) crosslinking studies, spheroplasts were resuspended 

in a 3 mM final concentration of the crosslinker of interest in PBS, and 

crosslinked for 40 min at 30°C, then quenched with 125 mM glycine for 5 min at 

room temperature. Note that we use the protocol “Micro-C XL” for DSG and 

EGS-based protocols interchangeably, as the data from these protocols are 

nearly indistinguishable. 

 

Separation of soluble and insoluble chromatin 

Crosslinked chromatin was digested with micrococcal nuclease (MNase, 

Worthington) to yield > 95% mononucleosomes.  After inhibition of MNase with 2 

mM EGTA at 65°C, fragmented lysate was in some cases used directly for the 

standard Micro-C protocol, or in some experiments was separated into 

supernatant and pellet portions. Here, MNase-digested lysate was spun at 
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16,000 g for 5 minutes, and Micro-C library construction was separately 

performed on supernatant or on the pellet fraction. 

 

Micro-C protocol 

Briefly, the termini of nucleosomal DNA were dephosphorylated by Shrimp 

Alkaline Phosphatase and then subjected to T4 DNA polymerase for end 

repairing and biotin labeling by supplementing with biotin-dCTP, biotin-dATP, 

dTTP, and dGTP. Crosslinked chromatin was diluted to 10 ml and treated with T4 

DNA ligase. After heat inactivation, chromatin was concentrated to 250 μl in an 

Amicon 30k spin column and treated with 100 U exonuclease III for 5 min to 

eliminate biotinylated ends of unligated DNA. Proteinase K was then added and 

incubated for 65°C overnight. DNA was purified by PCI extraction and ethanol 

precipitation, treated with RNase A, and ∼250–350 bp DNA was gel-purified. 

Purified DNA was treated with End-it, subject to A-tailing with Exo-Klenow, and 

ligated to Illumina adapters. Adapter-ligated DNA was purified with streptavidin 

beads to isolate ligated Micro-C products away from undigested dinucleosomal 

DNA. Streptavidin beads were then subject to ∼10–12 cycles of PCR using 

Illumina paired-end primers. Amplified library was purified and subject to Illumina 

NextSeq paired end sequencing. 

 

Computational analysis of Micro-C interactions 
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Micro-C data was mapped to the sacCer3 genome using Bowtie 2.1.0 as 

described in (IMAKAEV et al. 2012) using the hiclib library for python, publicly 

available at https://bitbucket.org/mirnylab/hiclib, with virtual 100bp fragments. 

Raw interaction maps were plotted as described previously (HSIEH et al. 2015). 

To obtain corrected contact maps, genomic coverage was calculated by 

summing the total number of interactions per bin. Low coverage bins were then 

excluded from further analysis using a MAD-max (maximum allowed median 

absolute deviation) filter on genomic coverage, set to 9 median absolute 

deviations. Following this filtering, stand-alone bins were removed (ie. regions 

where both neighboring bins did not pass filters), and the resulting maps were 

then iteratively corrected to equalize genomic coverage  (IMAKAEV et al. 2012). 

Observed/expected contact maps were obtained by additionally dividing out the 

dependence on genomic distance, calculated empirically as the mean number of 

contacts at each genomic separation, using a sliding window with linearly 

increasing size, as previously described (NAUMOVA et al. 2013). Log-log plots of 

contact probability P(s) (also termed interaction frequency) versus distance were 

calculated using log-spaced bins with a constant step size. For average plots 

around genomic features, gene positions and orientations, centromere positions, 

and tRNA positions were obtained from the SGD (http://www.yeastgenome.org/). 

 

 

 

https://bitbucket.org/mirnylab/hiclib
http://www.yeastgenome.org/
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CHAPTER IV 

High-Resolution Chromatin Dynamics  

during a Yeast Stress Response 

 

Abstract 

Covalent histone modifications are highly conserved and play multiple roles in 

eukaryotic transcription regulation. Here, we mapped 26 histone modifications 

genome-wide in exponentially growing yeast and during a dramatic 

transcriptional reprogramming – the response to diamide stress. We extend prior 

studies showing that steady-state histone modification patterns reflect genomic 

processes, especially transcription, and display limited combinatorial complexity. 

Interestingly, during the stress response we document a modest increase in the 

combinatorial complexity of histone modification space, resulting from roughly 

3% of all nucleosomes transiently populating rare histone modification states. 

Most of these rare histone states result from differences in the kinetics of histone 

modification that transiently uncouple highly correlated marks, with slow histone 

methylation changes often lagging the more rapid acetylation changes. Explicit 

analysis of modification dynamics uncovers ordered sequences of events in gene 

activation and repression. Together, our results provide a comprehensive view of 

chromatin dynamics during a massive transcriptional upheaval. 

 

Introduction 
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All genomic transactions in eukaryotes take place in the context of a chromatin 

template (KORNBERG AND LORCH 1999). Chromatin plays key regulatory roles in 

control of transcription and other processes, and a great deal of highly-conserved 

cellular machinery is devoted to manipulation of nucleosome positioning (JIANG 

AND PUGH 2009; HUGHES AND RANDO 2014), histone subunit composition 

(HENIKOFF AND AHMAD 2005), and covalent modification states (SUGANUMA AND 

WORKMAN 2008). Histone modifications play key roles in transcriptional control, 

cell state inheritance, and many other processes. Genome-wide maps of histone 

modifications exist for a variety of organisms, and have been used for identifying 

regulatory and functional elements of the genome (GUTTMAN et al. 2009; HON et 

al. 2009; ERNST et al. 2011).  

Two outstanding questions in histone modification biology are raised by 

such genome-wide maps. First, histone modifications often occur at thousands of 

genomic locations (e.g., at every active transcription start site), yet typically have 

functional importance for transcription at a small subset of marked genes under 

standard growth conditions (LENSTRA et al. 2011; WEINER et al. 2012). This raises 

the question of how a gene’s context – local sequence context and/or other 

histone modifications – impacts the functional readout of a given histone 

modification. The second question is why such a plethora of histone 

modifications are used by the cell – over 100 histone modifications have been 

identified, yet histone modifications co-occur in large, tightly correlated groups, 

and exhibit little combinatorial complexity (RANDO 2012). 
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Both of these observations – that histone modifications often occur at 

genes where they serve no apparent function, and that histone modifications co-

occur – are at least partially the consequence of biological feedback. In other 

words, because transcript levels are buffered by feedback mechanisms, many of 

them are restored to wild type levels in deletion mutants. Similarly, histone 

modifications often co-occur as a result of histone modification “crosstalk”, in 

which the enzyme that deposits mark B preferentially acts on A-marked 

nucleosomes (SUGANUMA AND WORKMAN 2008). Histone modification networks 

thus include many feedforward and feedback loops of varying degrees of 

complexity. One way to uncover mechanisms of homeostasis is to perturb a 

network and study the time-evolution of as many individual nodes in the network 

as possible – such observations can potentially distinguish direct effects from 

slower indirect effects. 

Functional genetic studies confirm the value of extending steady-state 

studies to a dynamic context. Time course analyses of transcriptional response 

to perturbations have previously uncovered unanticipated roles for chromatin-

related mutants – a multitude of single gene studies (see, e.g.,(KORBER et al. 

2006)), as well as genome-scale studies (WEINER et al. 2012), have shown that 

chromatin regulators are more important during changes in transcription than 

they are for steady-state transcription. 

These considerations lead us to further explore the effects of 

transcriptional reprogramming on histone modification dynamics. We used ChIP-
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seq to systematically map dynamic changes of 26 histone modifications in 

response to a stress signal in yeast (Figure 4.1A). Our data recover known 

aspects of the steady-state histone modification landscape, and show that 

relationships between histone modifications and transcription are maintained 

during the stress response. Most interestingly, during the stress response 

roughly 3% of all nucleosomes occupy unusual regions of histone modification 

space that are unoccupied in steady state. Inspection of these nucleosomes 

identifies differences in the kinetics of different histone modifications, and reveals 

multiple stages of the chromatin response to transcriptional changes. 

 

Results 

Genome-wide patterns of covalent histone modifications 

We focus here on the yeast response to the sulfhydryl reducing agent diamide, 

which involves rapid and massive transcriptional reprograming of both the 

common stress response genes and ~200 genes involved in cell wall protection 

and redox homeostasis (GASCH et al. 2000). Overall 19% of all mRNAs change 

expression during this response.  

 Using MNase-ChIP-seq (LIU et al. 2005; RADMAN-LIVAJA et al. 2011a) we 

mapped 26 histone modifications at mononucleosome resolution at varying times 

(t=0, 4, 8, 15, 30, and 60 minutes) after diamide addition (Figure 4.1). Easily 

apparent in the resulting genomic tracks (Figure 4.1B) are many well-described 

features of yeast chromatin, including: 1) Generally well-positioned nucleosomes, 
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2) nucleosome depletion at promoters, 3) H3K4me3 and acetylation enrichment 

at 5’ ends of genes, 4) H3K36me3 covering mid- and 3’ coding regions, and 

many more steady-state chromatin hallmarks. Zooming in on the dynamics 

during diamide response (Figure 4.1C) demonstrates typical behavior for the 

highly-induced gene GLK1 with H3K4me3, H3K36me3, and other transcription-

correlated marks increasing over the gene body over time. Conversely, H4K16ac 

decreases over GLK1, presumably as a result of increased histone turnover 

during transcriptional induction. 
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Figure 4.1. Epigenomic landscape of a yeast stress response. 
(A) Experimental outline. Yeast were subject to 1.5 mM diamide stress, and cultures 

were harvested for MNase-ChIP-seq mapping at the indicated time points. (B) Steady-
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state histone modification landscape for budding yeast. ChIP-Seq signal for 26 histone 

modifications and nucleosome mapping data. Top panel shows genomic annotations. 

(C) Histone modification dynamics over GLK1, a typical stress-induced gene. Data is 

shown for six time points following diamide stress. 

 

Steady-state histone modifications follow stereotypical patterns 

We start by refining models of the chromatin landscape. Using the nucleosome 

mapping data to call 66,360 nucleosomes, we calculated the occupancy of each 

nucleosome, as well as the level of the 26 mapped modifications, normalized to 

nucleosome occupancy. 

To explore the relationships between histone modifications, we calculated 

the correlation between the levels of all modifications, at all time points, across all 

nucleosomes (Figures 4.2A-D). The 156X156 correlation matrix (Figure 4.2A) 

shows a strong concordance between all 6 time points for each modification – 

each 6X6 box on the diagonal is bright red – indicating that the global genomic 

landscape of any given modification is not drastically altered by diamide stress. 

The 26 marks studied here show relatively few basic types of genomic 

modification patterns. This is consistent with previous observations in yeast (LIU 

et al. 2005), flies (FILION et al. 2010), and mammals (ERNST et al. 2011) of low 

combinatorial complexity among histone modifications. The majority of histone 

modifications are found in two large groups (Figure 4.2A). The first group 

includes H3K4me3 and lysine acetylation marks that occur at the 5’ ends of 

coding regions and that scale with transcription rate (Figure 4.2E and H). The 
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second (albeit less coherent) group in Figure 4.2A is of modifications occurring 

over middle and 3’ ends of coding regions, such as H3K36me3 (Figure 4.2F). In 

addition, several modifications exhibit localization patterns related to gene 

structure that are somewhat distinct from the two main groups, including 

H4K16ac, the H2A variant Htz1 (H2A.Z), and various mono- and di-methylation 

marks (see below). 

Finally, in addition to marks with localization patterns related to gene 

structure, the two phosphorylations stood out as unusual (Figures 4.2A and G). 

The localization pattern of H3S10ph is dominated by a ~20 kb pericentric domain 

(Figure 4.2I) deposited every M phase (CROSIO et al. 2002), a signal which 

overwhelms the minor coding region signal of anticorrelation with histone 

turnover (WEINER et al. 2012). The other unusual mark in this dataset is the DNA 

damage-related H2AS129ph modification (often referred to as γ-H2AX), which 

occurs over subtelomeric regions and actively repressed genes (SZILARD et al. 

2010) (Figures 4.1B, 4.2G, and 4.2I). Analysis of the chromatin packaging state 

of rDNA genes (Figure 4.2K) shows similar correlation structure to that observed 

over the Pol2-transcribed regions of the genome.  

Overall, our results recapitulate essentially all known aspects of the steady-state 

landscape of histone modifications in yeast, showing the quality of the dataset. 
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Figure 4.2. Characterization of histone modification patterns during midlog 
growth. 
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(A) Correlation matrix for 26 histone modifications. For each modification, 6 time points 

are arranged from t=0 to t=60 from left to right. (B-D) Scatterplots for strongly correlated 

(B), uncorrelated (C), and anticorrelated (D) pairs of modifications. Each scatterplot 

compares levels of the two modifications, normalized to nucleosome occupancy, for 

66,360 individual nucleosomes in the yeast genome at t=0. Colors indicate density. (E-
G) Metagene profiles for exemplary histone modifications. For each modification, data 

were aligned by the transcription start site (TSS) of annotated genes, grouped according 

to transcription rate (CHURCHMAN AND WEISSMAN 2011). (H) Metagene profiles at steady-

state. For each modification, data were aligned by the transcription start site (TSS) of 

annotated open reading frames, and grouped according to transcription rate as in 

Figures 4.2E-G. (I-J) Features contributing to steady-state histone modification patterns. 

(I) Genome browser views for chromosomes II and IV, showing H3S10ph enriched 

around centromeres, and H2AS129ph enriched at telomeres, as indicated. (J) 
Contribution of experimental noise to the total variance in different histone modifications. 

For each modification dataset, we used the difference between adjacent diamide time 

points to estimate noise in the measurement, assuming that histone marks are relatively 

stable between adjacent time points. This naturally overestimates the noise in the 

dataset as yeast are changing their transcriptome and modifying the chromatin template 

in response to diamide stress. Nonetheless, this provides a reasonable measure of 

noise given that the features with the lowest noise here are generally associated with 

transcription-related marks (H3K4me3, etc.) which would be expected based on diamide 

stress to exhibit the most changes between time points. The higher noise estimated for 

marks such as H3S10ph and others thus likely reflects true measurement noise, either 

resulting from relatively nonspecific antibodies, or resulting from widespread marks with 

lower peak to trough values and thus lower “signal to noise”. (K) Chromatin landscape of 

rDNA repeats. The mapping of nucleosomes and 26 histone modifications in the 9.1kb 

rDNA repeat region. (top) Browser track showing transcripts from the repeat region. 

(bottom) Tracks showing enrichment of modifications along the repeat region. Line color 

saturation in each track ranges from dark (0’) to light (60’). 
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Steady-state histone modifications are mostly shaped by transcription and 

turnover 

What are the major processes that shape the steady-state chromatin landscape? 

The first, detailed above, is the passage of RNA polymerase, which carries with it 

a large number of histone modifying enzymes as it traverses the genome 

(BURATOWSKI 2009). Second, genomic replication is pervasive and results in a 

dramatic but temporary restructuring of the chromatin template (GRUSS et al. 

1993). Finally, histone modifications are altered by replication-independent 

histone turnover – newly synthesized histones are incorporated into the genome 

and replace old ones, thus removing old marks. New histones also carry a set of 

covalent modifications, some of which are deposited by enzymes that act 

specifically on free, but not nucleosomal, histones (DION et al. 2007; RUFIANGE et 

al. 2007; KAPLAN et al. 2008; DEAL AND HENIKOFF 2010). Beyond these pervasive 

processes, locus-specific processes can target specific chromosome positions, 

as for example observed at the pericentric domain of H3S10ph. 

 To quantify the extent to which the chromatin landscape is explained by 

these processes, we built a regression model that predicts the modification state 

of each nucleosome at midlog, based on the nucleosome position along the 

gene, its occupancy levels, the RNA polymerase level (in sense and anti-sense 

directions (CHURCHMAN AND WEISSMAN 2011)), the nucleosome’s turnover rate 

(DION et al. 2007), its position relative to the centromere or telomeres, and its 

relative replication timing (RAGHURAMAN et al. 2001). This model explains 58% of 
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the overall variation in the 26-dimensional histone modification dataset, although 

the success of the model varies for different histone marks (Figure 4.3A). Some 

of the poorly explained modifications have higher inherent levels of measurement 

noise (Figure 4.2J), suggesting either a lower-quality antibody, or a relatively 

even genomic distribution of the histone mark in vivo. Note that the reported 

percentages are based on a relatively simple linear regression model, and 

represent a lower bound on predictive power. 

To quantify the contribution of each feature to these predictions, we 

removed each feature in turn from the overall model, re-learned model 

parameters with remaining features, and determined the loss in variance 

explained (Figure 4.3B). These differences highlight the unique contribution of 

the removed feature to explaining a given process. These unique contributions 

do not necessarily sum to 100% of the signal, as many modifications are partially 

explained by several features (such as transcription and turnover, which are not 

purely uncorrelated with one another). In this case, removal of a single 

contributing feature will be partly compensated by other features in the re-learned 

model. Therefore, we describe the remaining fraction of 100% as synergistic 

interactions between features. 

The most informative feature in our model was nucleosome position within 

the gene, consistent with the observation that many histone modifying enzymes 

are recruited to genes by either the initiation or elongation form of RNA Pol2 

(BURATOWSKI 2009). The second most informative feature was transcription rate, 
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which predicted both well-characterized transcription-deposited marks, as well as 

marks that are anti-correlated with transcription (Figure 4.3C). Replication-

independent turnover strongly predicts H3K56ac, a known mark of soluble 

histone proteins (TSUBOTA et al. 2007), as well as other marks of new histones 

such as H3K4ac and H3K9ac (GUILLEMETTE et al. 2011). Turnover was also 

predictive for slowly accumulating marks that are enriched in older nucleosomes 

– H3K79me3 and H4K16ac (Figure 4.3C). Chromosomal position was the best 

predictor of the pericentric H3S10ph and telomeric H2AS129ph marks (Figures 

4.3C and 4.2I), but unexpectedly also contributed to prediction of H3K79me 

levels. Replication timing explained little overall variance – as expected given 

that every locus in the genome is duplicated once per cell cycle – with its 

strongest explanatory power for the subtelomeric H2AS129ph mark. 

 While our analysis recapitulates many known features of chromatin, many 

additional connections are also documented. Most surprisingly, comparisons of 

sense and antisense transcription revealed a dichotomy among transcription-

correlated marks between methylation and acetylation marks. Gene body marks 

were correlated mostly with sense transcription, while 5’ marks appeared to read 

out total Pol2 transit in both directions (Figures 4.3B-C). This likely reflects rapid 

termination of inappropriate antisense transcripts (XU et al. 2009), which would 

prevent Pol2 from transitioning from initiation to elongation modification states. 

 Analysis of this predictive model shows subtle differences between highly 

correlated marks. For example, both H3K36me3 and H3K79me3 are 
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transcription-correlated gene body marks (Figures 4.2A and 4.2H). However, 

their levels are explained to a different extent by transcription and turnover 

(Figure 4.3C), with H3K36 methylation mostly explained by genic position and 

sense transcription levels, while H3K79me3 levels are far more influenced by 

turnover rates. This likely reflects the fact that there is no known H3K79 

demethylase, and thus this mark is presumably removed only by nucleosome 

eviction (DE VOS et al. 2011; RADMAN-LIVAJA et al. 2011b). 

 

Histone modifications predict genomic processes 

The fact that processes such as transcription and turnover are predictive of 

histone modifications allows the reverse – prediction of genomic transactions 

from chromatin data – to be used as a powerful experimental tool (GUTTMAN et al. 

2009; HON et al. 2009; ERNST et al. 2011; GARBER et al. 2012). We thus asked 

whether the larger number of modifications mapped here identify more precise 

predictors for genomic processes. We applied sparse linear regression 

(Methods) to predict genomic features based on genome-wide modification data.  

The regression coefficients of this model confirm the expectation that the most 

predictive histone modifications are usually the ones that are most closely 

associated with the genomic process (Figure 4.3D). Thus, for example, 

H3K18ac, H3K4me3, and H3K36me3 are predictive of transcription, with positive 

regression weights, while H3K79me3 and H2AS129ph are also predictive, with 

negative weights. The best predictor of turnover rates is H3K79me3, which is 
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negatively correlated with turnover, while H3K18ac and H3K56ac provide 

positively-correlated predictors of turnover (Figures 4.3D-F). 

 Histone modifications are also predictive of replication timing. In particular, 

H3K56ac and H3K9ac – both marks associated with new nucleosomes – have 

opposite weights in this prediction. Higher H3K56ac levels are predictive of early 

replication times, while higher H3K9ac is predictive of later replication time. The 

connection between H3K56ac and early replication reflects both the length of 

time between a locus’ replication time and M phase H3K56 deacetylation (CELIC 

et al. 2006; MAAS et al. 2006), as well as the high turnover characteristic of early 

origins (KAPLAN et al. 2008). The connection between H3K9ac and late 

replication is less clear – newly synthesized histone H3 is enriched for H3K9ac 

during S phase (ADKINS et al. 2007), but whether this mark is generated 

preferentially later during replication or is otherwise targeted to late-replicating 

domains is presently unknown. 

 Taken together, these analyses provide an expanded list of marks to be 

used for annotation of genomic features and processes. 
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Figure 4.3. Determinants of the steady-state modification landscape 
(A) Predicting modification data from genomic features. A model incorporating genomic 

features (sense and antisense transcription (CHURCHMAN AND WEISSMAN 2011), 

nucleosome turnover rate (DION et al. 2007), distance from centromere and telomere, 

replication timing (RAGHURAMAN et al. 2001), and nucleosome position) predicts genomic 

patterns of all 26 histone marks. Plot shows the percent of signal explained per histone 

modification (see Figure 4.2J). (B) Contribution of genomic processes to explanatory 

power of the model. Heatmap shows the percentage of explained signal that is lost when 

a given process is removed from the model. Synergistic refers to remaining explained 

variance not lost upon removing any single feature. (C) Piecharts showing the variance 

explained by different aspects of the model for the indicated modifications. (D) Predicting 

genomic features from modification data. For each entry, the heatmap shows the sparse 

linear regression coefficient for the mark in question. (E) Turnover model parameters 

from (D) are shown here in numeric form. (F) Turnover model accurately captures 

turnover rates genome-wide. Model predictions (x axis) are scatterplotted against 

experimental turnover data (y axis). 

 

Dynamics of individual histone modifications during transcriptional 

reprogramming 

We next asked how individual histone modifications change during genome-wide 

transcriptional reprogramming (GASCH et al. 2000). We evaluated the 

nucleosome-specific change in each modification in terms of both the change 

relative to the t=0 level, and the extent to which the six time points show a 

consistent trajectory (Methods). At a 10% FDR, we find that many nucleosomes 

change in at least one modification (~60% of all nucleosomes), but substantially 

fewer show changes in several modifications, with ~7% changed in five or more 

marks (Figures 4.4K-Q). As expected, reprogrammed genes are significantly 
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enriched with changed nucleosomes. Although these numbers reflect changes 

across a large fraction of the genome, the gross chromatin landscape features 

changed little during the stress response – see correlations for each modification 

across all six time points in Figure 4.2A. 

Next, we asked whether the relationship between histone modifications 

and transcription rate was altered by transcriptional reprograming. Steady state 

correlations observed between modifications and transcription might be universal 

to Pol2 passage itself, or alternatively could be linked to the specifics of the mid-

log transcriptional program. Supporting the former model, we find that stress-

induced transcriptional reprogramming generally maintains the mid-log relations 

between histone modifications and transcription rate. For example, levels of 

H3K18ac, a 5’ mark correlated with transcription rate in mid-log (Figure 4.2E), 

increase at the 5’ ends of activated genes and decrease over repressed genes 

(Figures 4.4A-B). Most other transcription-correlated marks have similar 

patterns. Similarly, the anti-correlation between H2AS129ph and transcription 

rate is also dynamic (Figures 4.4C-D), consistent with a previous study showing 

H2AS129ph being gained at GAL genes upon repression (SZILARD et al. 2010). 

In both cases, the peak of histone modification change coincided at t=30 with the 

peak change in mRNA and Pol2 levels (GASCH et al. 2000; KIM et al. 2010), 

before levels of all three fall at t=60 as yeast acclimate to the stressful 

environment (Figures 4.4E-F). 
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To visually compress the relationship between transcriptional dynamics 

and chromatin dynamics, for each histone modification and at each nucleosome 

position (+1, +2, etc.) we calculated the correlation between stress-induced 

changes in modification level, and changes in transcription (Figures 4.4G-H and 

4.4M). This analysis reveals the expected positive correlations between H3 

acetylation states and transcription, and anti-correlation between H2AS129ph 

and transcription. Globally, we find strong concordance between the correlations 

of modifications with transcription rate at steady-state, and the correlation of the 

changes in modification levels with the transcriptional response (Figures 4.4H-

J).  

Notable exceptions to this general trend are two di-methylation states 

(H3K4me2 and H3K36me2), the histone variant Htz1 (H2A.Z), and H4K16ac, all 

of which are mostly uncorrelated with expression in steady state measurements 

but exhibit anti-correlation with transcriptional changes. These observations 

highlight the power of our approach to identify transient chromatin states – 

dimethylation states occur transiently during the accumulation of trimethylation as 

gene expression increases, and thus exhibit changes during reprogramming but 

are not captured at steady state. The transient changes in H4K16ac and Htz1, 

both of which have well-established links to histone turnover, likely reflect a 

transient phase of turnover during gene induction/repression. 
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Figure 4.4. Dynamics of histone modifications during the stress response. 
(A-B) Metagenes showing levels of the transcription-correlated H3K18ac mark, 

averaged for upregulated (A) or downregulated (B) genes in response to diamide stress. 

(C-D) As in (A-B), for the repression-correlated H2AS129ph modification. (E-F) 
Dynamics of H3K18ac (E) or H2AS129ph (F) changes over time are shown averaged for 

various nucleosome positions along a gene body – the -1, +1, +2, etc. nucleosomes – as 

indicated. For each nucleosome, time course data for the modification in question are 

averaged for genes upregulated, or downregulated, relatively rapidly or slowly 

(Methods). (G) Schematic of approach to correlations between histone modification 

dynamics and transcriptional dynamics.  (H) Correlations calculated as shown in (G), 

with red dots showing midlog correlations, and grey bars showing correlations between 

change in modification and change in transcription. (I-J) The correspondence between 

modification changes during diamide stress and transcription changes. In each case, a 

specific nucleosome location (+1, +5) as indicated. Top panel: histogram of the maximal 

change in the listed modification. Bottom panel: violin plots of changes in mRNA 

abundance for the genes carrying the nucleosomes in the bins above. (L-M) Stress-

induced changes in histone modifications. (K) Venn diagram showing the overlap 

between nucleosomes on genes that changed expression or Pol2 levels (red and blue 

circle respectively) to nucleosomes that changed in at least 1, 2, …, 7 modifications 

(gray circles). Inset: histogram of the number of nucleosomes in each gray circle. (L) 
The number of nucleosomes that show significant movement in each of the modification. 

These numbers are broken according to location within induced, repressed genes, and 

other locations. (M) Correlation of change in expression to change of modification (as in 

Figure 4.4H) broken by nucleosome position. (N-Q) Patterns of stress-induced changes 

in histone modifications. Hierarchical clustering of histone modification patterns for 5948 

nucleosomes with four or more changing marks (see Figure 4.4K). Each row is a 

nucleosome, and columns as follows. (N) Time course values of input levels (relative to 

median levels), and histone marks relative to input. (O) Time course values of input and 

histone marks relative to their levels at t=0. (P) Annotation of the nucleosome as 5’ or 

gene body. (Q) Maximum change in RNA for the associated gene during diamide 

response. Gray cell denote missing values. Although clustering was performed on the 
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values of (A) and (B), they form coherent clusters in terms of nucleosome position and 

direction of RNA change. 

 

A modest increase in combinatorial complexity during the stress response 

A key goal of this study was to determine whether tracing the time evolution of 

the histone modification network following a perturbation could uncover 

regulatory mechanisms (Figure 4.5A). We therefore sought to determine to what 

extent new combinatorial histone modification patterns appear during the stress 

response. We used Principal Component Analysis (PCA) to represent our 26-

dimensional t=0 (steady-state) dataset, finding that three principal components 

could account for 76% of the variance in this dataset (Figure 4.5B). Interestingly, 

the variance in the dataset explained by these components decreased somewhat 

to ~67% during the early (8-15 min) response to diamide, before recovering 

nearly to baseline at the final time point of this response (Figure 4.5B). This 

increase in signal which is not explained by these three principal components 

indicates a transient increase in combinatorial complexity. Moreover, visualizing 

nucleosomes with the same two principal components for each time point 

revealed that nucleosomes transiently populate previously sparse regions of this 

2D space early in the stress response (Figure 4.5C, black arrows).  

 To better understand such chromatin state transitions and how they are 

related to regulatory mechanisms, we further analyze 1) the shape of histone 

modification space, 2) the trajectories of nucleosomes through modification 

space (Figure 4.5D), and 3) kinetic distinctions between different histone marks. 
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A small number of unusual histone mark pairwise combinations 

To identify changes in histone modification space in response to stress we asked 

what histone modification combinations are unique to, or at least enriched during, 

the early stages of the stress response. We estimated the density of the 26-

dimensional space defined by nucleosome states at t=0, then sought 

nucleosomes that relocalize during stress to regions of this space that are 

sparsely-populated at t=0. Based on this 26D space, we identified ~2000 (3%) 

nucleosomes that moved to these low density regions during the stress response 

(Methods). 

What novel histone modifications occur during the stress response? We 

considered 2-dimensional “slices” of this histone modification space for pairs of 

histone modifications (Figure 4.5D). In such space, we can distinguish between 

nucleosomes that move about inside the high-density region (e.g., a and b in 

Figure 4.5D) and ones that start inside the region and move outside during the 

response (e.g., c and d in Figure 4.5D). For example, 459 nucleosomes in the 

H3K4me3/H3K18ac space leave the high-density region out of 14,926 

nucleosomes that change in this space (Figure 4.5E). Color coding of a 

nucleosome’s location at t=0 allows the rough trajectory of the unusual 

nucleosomes at t=30 to be understood. 

Analysis of all pairwise combinations identifies dramatic changes 

occurring for pairs of 1) H3K4me3 with various acetylation marks such as 
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H3K18ac or H3K14ac, 2) Htz1 with acetylation marks and gene body tri-

methylation marks, and 3) H3K56ac with a range of marks. Although an average 

of 47 nucleosomes occupy rare regions of 2D space for each of the 325 pairwise 

modification combinations, the same nucleosomes are outliers in many separate 

2D comparisons. Clustering of all rare nucleosomes in 26D space reveals a 

handful of behaviors that result in unusual modification combinations (Figure 

4.5I-M), the most prevalent of which is the disconnect between H3K4me3 and 

histone acetylation marks.  

While H3K4me3 and H3K18ac are normally extremely well-correlated 

(Figures 4.2A and 4.5E), during diamide stress we find scores of nucleosomes 

carrying high levels of H3K4me3 but lacking H3K18ac, as well as the converse 

situation with highly-acetylated nucleosomes lacking H3K4me3 (Figure 4.5E). 

These nucleosomes are enriched at stress-repressed and -induced genes 

respectively.  

 A qualitatively distinct behavior from the H3K4me3/H3K18ac disconnect is 

seen for Htz1 and H3K56ac (Figure 4.5F). Although at t=0 these modifications 

are correlated, during the stress response we see two groups of nucleosomes 

that move into either the H3K56ac enriched / Htz1 depleted region (top left) or 

the opposite region (bottom right). Both groups of nucleosomes start with mild 

enrichment of both marks, meaning that during stress they gain one modification 

at the expense of the other. This behavior may result from a delay between 

H3/H4 replacement and Htz1 incorporation – Htz1 levels are low at promoters 
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with the highest H3/H4 turnover (GUILLEMETTE et al. 2005; DION et al. 2007) – as 

here an increase (for example) in H3K56ac indicates increased H3/H4 turnover 

that would also displace Htz1. In contrast, reduction in H3K56ac could speed up 

Htz1 accumulation by decreasing the ability of the SWR complex to carry out 

futile Htz1/H2A replacement cycles (WATANABE et al. 2013). We thus speculate 

that the transient disconnect between these marks results from a delay between 

stress-induced turnover and SWR recruitment, or vice versa.  

These results reveal, firstly, that ~97% of nucleosomes do not explore 

novel areas of histone modification space (for the 26 modifications profiled here, 

at our time resolution) even in response to a dramatic transcriptional perturbation 

in which 60% of all nucleosomes change levels of at least one modification. The 

remaining 3% of nucleosomes do transiently gain novel combinations of histone 

marks during the stress response, with 3-4 possible ways of achieving this 

behavior. Below, we explore the mechanistic basis for the generation of one such 

noncanonical histone modification pattern. 

 

Noncanonical histone modification patterns represent coherent responses 

Do nucleosomes that move to underrepresented regions of modification space 

reflect a biologically coherent response, or are these nucleosomes “aberrantly 

modified” based on accidental genomic juxtapositions between overlapping gene 

control programs? More specifically, do unusual modification patterns occur 

specifically in association with genes sharing a common regulatory strategy? 
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Searching a compendium of gene set annotations against the set of 

nucleosomes that explore non-canonical modification patterns revealed 

enrichment in multiple gene sets.  For example, both ribosomal biogenesis genes 

(RiBi) and ribosomal protein genes (RPGs) are highly-expressed during mid-log 

growth and strongly repressed by diamide, and both were enriched with non-

canonical modification patterns during stress, although they exhibit distinct 

trajectories (Figures 4.5G-H and 4.5L-M). +1 nucleosomes of RiBi genes begin 

with high levels of K4me3 and K18ac, and in response to stress show rapid and 

dramatic loss of K18ac but much slower changes in H3K4me3, leading a large 

number of them to the K4me3 high/K18ac low state. In contrast, +1 nucleosomes 

of RPGs start in an extreme region of this 2D space as nucleosomes with the 

strongest signal for H3K18ac. They then show a transient increase in H3K4me3, 

followed by mild H3K18 deacetylation. This difference is consistent with the fact 

that repression of these two groups of genes involves different pathways (WEINER 

et al. 2012).  

 These and other examples (Figures 4.5G-H and 4.5M) suggest that our 

approach identifies rare, but biologically meaningful, cases where regulatory 

features of specific groups of genes leads their chromatin transactions to differ 

from the standard pathways for gene induction/repression used by most genes. 
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Figure 4.5. Changes in histone modification space during stress 
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(A) Schematic showing one potential mechanism leading to increased combinatorial 

complexity during a transient response. Briefly, if two histone marks are correlated but 

exhibit different relative response kinetics, then early during a change in transcription the 

nucleosomes will carry the rapid mark, but lack the lagging mark. (B) Principal 

Component Analysis of all 26 histone modifications. Percent variance explained for 

different time points. (C) Transient population of low-density modification space during 

stress. Density of nucleosomes across the first two Principal Components at the 

indicated diamide time points. Arrows show regions that are more highly populated from 

t=8 to 30 than during midlog growth. (D) Visualization of histone modification trajectories. 

Contour map shows the predominant locations of nucleosomes in the indicated 2D 

modification space at t=0. Arrows indicate the paths of two specific nucleosomes during 

the diamide time course. (E) Transient population of new regions of histone modification 

space. Left panel: 2D contour map for nucleosomes at t=0 for H3K4me3 and H3K18ac. 

Nucleosomes that will fall significantly (Methods) outside this contour during stress are 

color-coded according to their location at t=0. Right panel: the t=30 locations of 

nucleosomes that move to rare regions, with the t=0 contour. (F) As in (E), but for Htz1 

and H3K56ac. (G-H) Coherent groups of nucleosomes account for the unusual 

nucleosomes during stress. Trajectories for specific sets of nucleosomes as indicated, 

with the t=0 domain marked by an empty oval, and the stress domain marked by points 

and a filled oval. (I-M) Nucleosomes traversing non-canonical combinations. (I) Heatmap 

showing input levels and modification levels (relative to input) for 1915 nucleosomes that 

leave the high-density region in the 26-dimensional space. Several prominent clusters 

are noted. (J-K). Movements of nucleosomes through 2D modification space. (J) The 

anticorrelation between H3K36me3 and Htz1 (and H2AK5ac) was violated by a number 

of nucleosomes at late timepoints. (K) Nucleosomes that transiently gain the repression-

related H2AS129ph despite carrying high levels of H3K36me3 throughout the time 

course. (L) Movement of +1 nucleosomes of Ribosome Protein Genes in the 

H3K18ac/H3K4me3 space. Blue dots show nucleosomes at the relevant time point, gray 

dots show nucleosomes at t=0. (M) Trajectories for specific sets of nucleosomes are 

shown, with the t=0 domain being shown as an empty oval, and the stress domain 

shown as points and a filled oval (as in Figures 4.5G and H). 
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Dynamics of chromatin responses reveal subtle distinctions between 

histone marks 

How do rare histone modification states become populated in response to stress 

signals? In the case of H3K4me3/H3K18ac, the transient uncoupling of 

H3K4me3 status and H3K18ac levels appears to result from a difference in the 

kinetics of each modification’s response to transcriptional reprogramming – 

H3K18 deacetylation is rapid and occurs over genes subject to both short and 

longer-term repression, while H3K4 demethylation significantly lags deacetylation 

and is specific to longer-term gene repression. 

To interrogate the dynamic behavior of individual histone modifications, we 

modeled the time course of histone modification changes at each nucleosome 

and extracted the time to half-maximal response (t1/2), and the amplitude of 

maximal response (h) (Figure 4.6A).  Our model interpolation enables 

continuous assignment of t1/2 times across our time course (Figure 4.6B), 

allowing us to compare differences in kinetic behavior between similar 

modifications. We also estimated kinetic parameters for mRNA abundance 

changes (GASCH et al. 2000) – similar results are obtained with analyses based 

on Pol2 ChIP-chip data (KIM et al. 2010).   

Comparison of average timings of different modifications revealed a range 

of behaviors (Figure 4.7H). For example, acetylation marks tend to change more 

rapidly than methylation, with gene body marks H3K36me3 and H3K79me3 

changing later than the majority of other modifications. As the dynamics of 
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changes can depend on the location of the nucleosome on a gene and the 

transcriptional response of the gene, we focused on kinetics of those 

modifications whose change is correlated/anti-correlated with transcription 

(Figure 4.4H), and analyzed modification dynamics associated with the relevant 

gene region (Figure 4.6C). Interestingly, modification dynamics differ significantly 

between induced and repressed genes. For example, loss of H3K4me3 at the 5’ 

end of repressed genes is more rapid than establishment of the same mark over 

induced genes, presumably reflecting the time required for successive addition of 

up to three methyl marks. In contrast, establishment of H3 tail acetylations (with 

the exception of H3K27ac) at promoters of induced genes is more rapid than 

corresponding deacetylation at repressed genes. Modifications that are anti-

correlated with transcription tend to occur later than acetylation marks, with more 

widely distributed t1/2 values. Among these, we notice a significant difference 

between the timing of H2AS129ph increase at repressed genes and its decrease 

at induced genes. 

These results show clear differences in the timing of events based on their 

location and function. Changes at the 5’ end of genes, which are associated with 

either promoting or inhibiting initiation, tend to occur early in the response, while 

changes at the gene body, which are associated with elongating transcription, 

tend to appear later. 
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Figure 4.6. Analysis of histone modification dynamics 
(A) Extraction of kinetic parameters from time course data. RNA abundance and the 

indicated modification levels for the GLK1 +1 nucleosome. For each time course we 

extracted the maximal response (h) and the time to half-maximal response (t1/2). (B) 
Comparison of measurements with extracted kinetic data, with rows showing individual 

genes. Left panel: time course data for H3K23ac levels at the +1 nucleosome sorted by 

t1/2; Middle panel: interpolated data; Right panel: mRNA abundance changes. (C) 
Genome-wide kinetic offsets for up- and down-regulated genes. For each modification, 

boxplot of the t1/2 is shown for up- or down-regulated genes, as indicated. 
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Modification cascades in transcriptional reprogramming  

Finally, we turn to single gene analysis of dynamics to gain a more biologically 

relevant picture of chromatin events in transcriptional reprogramming. To 

systematically analyze the ordering of 26 histone marks and transcription events, 

we calculated timing differences (Δt) between all pairs of marks for every gene in 

the yeast genome, revealing behaviors not apparent in individual plots of timing 

distributions. For example, analysis of the 5’ nucleosomes of Msn2-dependent 

induced genes revealed a subtle difference in the timing of H3K14ac and 

H2AS129ph across all genes as a group (Figure 4.7A). However, examining the 

t1/2 difference between these marks on a gene-by-gene basis revealed a striking 

and significant timing difference (Figure 4.7B). In this example, H3K14 

acetylation precedes a change in H2AS129ph at the majority of Msn2 target 

genes (74%). These timing differences may suggest ordered recruitment of 

chromatin regulators in response to stress. 

Gene-by-gene analysis of repressed and induced genes (Figures 4.7I-J) 

recovers cascades of events occurring during changes in transcription, which 

mainly recapitulates the order of events we observed above (Figure 4.6C). The 

dominant pattern in both analyses reflects 5’ acetylation marks changing prior to 

changes in mRNA abundance, with gene body methylation following. By 

assessing significant kinetic differences between pairs of events (Methods), we 
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can identify at least four clearly distinct temporal stages in the chromatin 

response to transcriptional activation (Figures 4.7C-D).  

Beyond aggregating our gene-by-gene kinetic offsets into gross genesets 

consisting of all up- or down-regulated genes, these data can identify gene sets 

that have significantly coherent temporal event cascades. For example, the 

analysis above (Figures 4.5E-G) suggested that histone modifications might 

exhibit distinct kinetic behaviors at the Ribosomal Biogenesis genes and 

Ribosomal Protein genes. Indeed, although both groups are repressed, they 

show rather different histone modification cascades (Figures 4.7E-G and 4.7K). 

Several substantial differences can be appreciated between these highly 

repressed genesets, including modifications that change over different 

timescales (e.g., H3K9ac and other H3 acetylation marks), and modifications 

exhibiting different magnitudes of change (e.g., H3S10ph and H2AK5ac). More 

interestingly, several modifications exhibit opposite behaviors: for example, H4 

N-terminal lysines are deacetylated at RiBi, but not RPG, 5’ ends, and conversely 

are strongly acetylated only over RPG gene bodies. Finally, we confirm our 

previous finding (WEINER et al. 2012) that H3K4me3 is transiently induced at the 

5’ ends of RPGs prior to being lost later during RPG repression. Curiously, most 

of these differences in modification profiles during stress reflect initial differences 

between RiBi and RPGs at t=0, as for most modifications the two groups are 

more similar in the “off” state (at t=30) than in the “on” state (t=0) (Figure 4.7G). 
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This suggests that some of the observed differences are due to different 

mechanisms involved in their mid-log transcription.  
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Figure 4.7. Cascades of chromatin events differ between genesets 
(A) Distribution of t1/2 values for the four indicated marks for all MSN2-induced genes. 

(B) Gene-by-gene analysis for differences in modification onset times. The distribution of 

the difference in t1/2 is calculated for all individual genes in the MSN2-dependent geneset 

for the indicated modification pair. (C) Four “epochs” in the MSN2 induction cascade. 

Groups of histone modification changes: modifications in each group roughly co-occur, 

but differ significantly in timing in pairwise comparisons from the other groups. For each 

box, the mean and 25th and 75th percentile values are shown for the distribution of 

differences in t1/2 between modifications in adjacent boxes. (D) Heatmap showing all 

pairwise comparisons for MSN2-dependent upregulated genes. Each row/column 

represents a modification and a genic location (5’ end, or gene body) that changes 

coherently for MSN2-upregulated genes. Heavy lines show demarcation for the boxes 

summarized in (C). (E-F) Summary diagrams, as in (C), for RiBi genes and RPGs, as 

indicated. (G) Interpolated time course data for RiBi genes and RPGs for 30 minutes of 

stress response. The shown modification levels are average over genes in each group of 

the log2 ratio to genome-wide mean at t=0. (H-K) Timing of changes. (H) t1/2 global by 

mod. Moreover, there are noticeable differences between specific acetylation marks, as 

H3K18ac, H3K23ac, H3K27ac, and H4K5ac change earlier in the response, while 

H3K56ac and H4K16ac are slower. Changes in H3S10ph and Htz1 also change as 

rapidly as the earliest acetylations, while H2AS129ph is relatively slow. (I) Repressed 

genes and (J) Induced genes. Right: matrix of relative timing as in Figure 4.7D. Left: 

box-plot of t1/2 for each modification relative to RNA t1/2. (K) Interpolated time course data 

for RiBi genes and RPGs for 30 minutes of stress response (as in Figure 4.7G), shown 

in heat map representation. The left-most and right-most cells denote level relative to 

genome wide mean at t=0, 30, respectively. The middle row shows changes relative to 

t=0.  

 

DISCUSSION 

This study represents the deepest characterization to date of the primary 

structure of the yeast chromatin landscape, with nucleosome positioning and 26 
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histone modifications mapped at nucleosome resolution genome-wide under 

standard conditions (growth in YPD), and during five time points of a well-

characterized stress response. The data reproduce essentially all known 

characteristics of yeast histone modification localization, and provide further 

insights into histone modification biology. 

 

Steady-state patterns of histone modifications 

Analysis of histone modifications in actively growing “midlog” yeast confirms and 

extends a great deal of prior knowledge. In general, histone modification patterns 

exhibit little combinatorial complexity, as repeatedly observed in many organisms 

(RANDO 2012). Essentially, we identify three major features that explain 

nucleosomal modification patterns. First, chromosome context impacts histone 

phosphorylation states – H3S10ph marks broad pericentric domains, while 

H2AS129ph marks subtelomeric domains. Second, the process of transcription 

leaves a massive footprint on chromatin, with enzymes carried by the initiation or 

the elongation form of RNA Pol2 being responsible for the majority of the 

variation in histone modifications across the genome. Finally, replication-

independent histone replacement – which is modestly correlated with, and 

affected by, transcription – is responsible for deposition of histones carrying 

marks such as H3K56ac and lacking H3K79me3 and other marks. The roles of 

these factors in chromatin structure are all conserved to varying extents in other 
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organisms, with many other organisms exhibiting additional elaborations such as 

the H3K9 and H3K27 methylation-dependent repressive mechanisms. 

 

Rules of chromatin marks are broadly maintained during reprogramming 

Our analysis of a stress response reveals that the relationships observed 

between modifications and transcription levels in mid-log growth are generally 

maintained during transcriptional reprograming – modifications that are 

correlated with transcription rate in steady-state conditions also increase during 

gene activation and decrease during gene repression. These observations imply 

that, broadly, the mechanisms that maintain the chromatin modification 

landscape in mid-log growth are the same or similar to the ones involved in 

changes during stress-induced transcriptional reprogramming. Thus, we argue 

that while the shift in cellular context from mid-log growth to stress response 

changes the transcription program (eg from TFIID-dominated to SAGA-

dominated gene regulation), it does not change the rules governing the 

deposition and maintenance of chromatin marks. This suggests that the 

mechanisms that deposit most transcription-related marks are generic to 

transcriptional machinery rather than to the context in which it is activated or 

repressed. 

 

Combinatorial complexity during transcriptional reprogramming 
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The extensive crosstalk between transcription and histone modifications results 

in limited histone modification complexity. Despite the potential for widespread 

network motifs such as incoherent feedforward loops to generate transient 

combinatorial complexity in the histone modification network, we only observed a 

modest increase in combinatorial complexity during the peak of the stress 

response. Overall, we found that 3% of nucleosomes move into normally sparse 

regions of the histone modification space in response to diamide stress, despite 

~60% of all nucleosomes moving within this space during the stress response 

(Figure 4.5). 

A number of mechanistically distinct processes could transiently violate 

steady-state histone modification correlations, including complex crosstalk loops, 

kinetic offsets between correlated marks, or population heterogeneity in gene 

induction. In the case of H3K4me3/H3K18ac, these traces reveal two major 

behaviors of nucleosomes that are rapidly deacetylated at H3K18 while still 

H3K4-methylated: a subset recover to the original modification status as yeast 

adapt to stress and reactivate transiently-repressed genes, while another group 

of these nucleosomes instead lose H3K4me3 due to ongoing repression of the 

associated gene. In other words, transient uncoupling of H3K4me3 status and 

H3K18ac levels results from a difference in the kinetics of each modification’s 

response to transcriptional reprogramming – H3K18 deacetylation is rapid and 

occurs over genes subject to both short and longer-term repression, while H3K4 
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demethylation significantly lags deacetylation and is specific to longer-term gene 

repression. 

 

Ordered waves of histone modifications during transcriptional 

reprogramming 

Although transcription-related modifications increase and decrease in expected 

ways upon changes in transcription, we see marked differences in the timing of 

these changes. In general, acetylation changes at the 5’ of genes appear early in 

the transcriptional response, while gene body methylation occurs more slowly. 

Similar timing differences were recently observed during yeast exit from 

starvation state (MEWS et al. 2014). Here, the timing of changes depends on the 

transcriptional program, as different co-regulated gene sets exhibit distinct 

cascades of modification changes. Understanding whether these cascades 

reflect independent events with different temporal delays, or linear chains of 

dependent events, will require further experiments with denser temporal samples 

and genetic or drug interventions. Our analysis provides an inventory of the 

relevant time scales and the representative modifications to follow in such 

detailed experiments. 

Furthermore, although in general modification changes are generic, there 

are subtle differences in the timing and intensity of changes during 

repression/induction of differently regulated genesets. This observation suggests 

that regulatory mechanisms alter the footprints made on the chromatin 
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modification landscape. Most notably, ribosomal protein genes and ribosomal 

biogenesis genes, both of which are strongly growth-related in expression, 

exhibit significant differences in chromatin dynamics during repression.  

 

Toward a comprehensive view of chromatin dynamics 

The dataset and analysis presented here provide a detailed and comprehensive 

view of chromatin state in yeast and how it responds to a massive transcriptional 

reprogramming event. Chromatin changes are intimately connected to 

transcriptional changes, occurring with clearly defined ordering relative to 

transcription. Although such observational data does not provide evidence of 

causality, it provides a rich resource for evaluating potential pathways and 

suggesting interventional experiments to further resolve the myriad interactions 

between chromatin marks and transcription. 

 

Materials and Methods 

Cell culture and MNase-ChIP 

Wild-type yeast (BY4741) cells were grown in six flasks of 400 mL YPD to mid-

log phase (OD600=0.55) shaking (220 rpm) at 30°C. Cells were treated with 

diamide (1.5 mM) and fixed at 0, 4, 8, 15, 30, and 60 min with 1% formaldehyde 

for 15 min. Cell pellets were harvested, washed by water, and subjected to bead-

beating, MNase digestion, and chromatin immunoprecipitation (LIU et al. 2005).  
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Library preparation and sequencing 

Multiplexed libraries were prepared using HT-ChIP (BLECHER-GONEN et al. 2013). 

Libraries were sequenced on an Illumina HiSeq-1500 (50bp single end 

sequencing) to obtain ~5-10 million aligned reads per sample. Reads were 

mapped to the S. cerevisiae sacCer3 assembly using ‘bowtie2’ with default 

parameters, and only tags that uniquely mapped were used for further analysis. 

 

Data processing and normalization 

Except for metagene views, all analyses where performed on nucleosome 

discretized and occupancy-normalized data. Using these values, we estimated 

the log ratio of ChIP coverage compared to input in each sample. Values within 

each time series (antibody X time points) were quantile-normalized using 

MATLAB (version R2013a) quantilenorm function. 

 

Regression and sparse regression  

We used multiple linear regression analysis to reconstruct histone modifications 

levels from a collection of features: Nucleosome position, mid-log occupancy 

(input), NET-seq (CHURCHMAN AND WEISSMAN 2011) coverage both in sense and 

anti-sense directions, turnover rate (DION et al. 2007), replication time 

(RAGHURAMAN et al. 2001), and log of distance to nearest telomere or 

centromere.  Since position is a discrete feature, we estimated a different 

regression model for each nucleosome position.  
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 To use histone modifications to predict genomic features we applied 

sparse linear regression (MATLAB’s lasso procedure) with 5-fold cross validation 

to estimate mean squared error (MSE). We fitted the Lambda parameter value 

(nonnegative regularization parameter) with the minimum MSE using the default 

Lambda scan method.  

 

Detecting nucleosomes at low density regions 

To investigate the 26-dimensional modification space, we used kernel density 

estimation, with bandwidth determined by cross-validation. To mark nucleosomes 

that arrive at low-density regions, we take the 0.1% quantile of the density at mid-

log as our threshold for the definition of  ”low” density at all other time points. We 

used the same approach to detect low-density regions in pairwise dimensional 

projections of the data. 

 

Fit and t1/2 estimation 

We use a non-parametric approach using multiple leave-one-out estimates to 

interpolate modification changes at each nucleosome and evaluate the accuracy 

of the interpolation. Given the estimate, the peak change, h, is defined as the 

point in time which has the maximal absolute change, relative to t=0.  We define 

t1/2, as the time at which the estimated response reaches half the peak change. 

For each nucleosome and each modification, we use a permutation test to 

evaluate whether the observed time trajectory is non-random. 
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Timing of events in a gene set 

To identify coherent events at the level of genes and gene sets we partition 

nucleosomes in each gene to 5' (-2,-1,+1,+2) and gene body (>= +3). For each 

gene, we average only the timing statistics of coherent nucleosomal changes (as 

defined above, 25% FDR) across these nucleosome sets to obtain events per 

gene and position (5’/gene body) for each modification, and for occupancy, and 

RNA levels. Each of these events has its peak change and t1/2. Next, for given 

set of genes, each of the above events is considered coherent in the gene set, if: 

1) at least 40% of genes show a coherent response. 2) 75% of those responses 

changed in the same direction ("up"/"down"), and 3) the distribution of changes 

was significantly non 0-centered (t-test with 5% FDR). 

 

Ordering events 

We define the precedence of one event, A, over the other, B, with respect to a 

gene-set G as the fraction of genes in which event A is preceded by event B by 

at least one minute. For each such coherent event pair, we performed one-sided 

t-tests (with 5% FDR). Pairs that pass the test are defined as significant 

precedence relations. The set of these pairs define the Timing of Events (TOE) 

graph w.r.t to the gene-set G. We cluster events to “comparable” clusters.  
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CHAPTER V 

Discussion 

 

Chromosome conformation at single-nucleosome resolution 

The compaction and organization of the physical genome have wide-ranging 

causes and consequences for genomic functions. In eukaryotes, the 

characteristic “beads-on-a-string” structures are depicted as the first level of 

genome compaction, with the “beads” being separated by relatively accessible 

linker DNA at an average ~147 bp of nucleosome repeat length (FELSENFELD AND 

GROUDINE 2003). This primary structure of chromatin has been well-

characterized, with multiple solved crystal structures for the nucleosome (LUGER 

et al. 1997; KORNBERG AND LORCH 1999), and a plethora of genome-wide studies 

(HUGHES AND RANDO 2014) that identify the locations and the chemical 

modifications of individual nucleosomes across the genome in various 

organisms, sometimes at single nucleotide-resolution (BROGAARD et al. 2012). In 

general, well-positioned nucleosomes are located at the borders of nucleosome 

depletion regions (NDRs), with chemical marks enriched for multiple acetylations 

on histone tails and di/trimethylation on H3K4. Precise nucleosome positioning 

gradually decays with distance, as fuzzy nucleosomes are widely observed at 1 – 

2 kb downstream of the transcription start sites (HUGHES AND RANDO 2014). 

However, the next level of chromatin folding is increasingly subjected to debate. 

Do regular chromatin structures (e.g., the 30 nm chromatin fiber) exist in vivo? 
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What kind of helical paths (e.g., zigzag or solenoid) are more entropically 

favorable? How do these chromatin structures manage to fold into higher-order 

structures, and how do these structures relate to genomic functions?  

The Chromosome Conformation Capture (3C) family of techniques have 

revolutionized our understanding of chromosome conformation beyond the 30 

nm chromatin level (DEKKER et al. 2002; SIMONIS et al. 2006; ZHAO et al. 2006; 

DOSTIE AND DEKKER 2007; LIEBERMAN-AIDEN et al. 2009). The methods measure 

interaction probability between genomic loci that are crosslinked together in vivo, 

and the resulting measurements of ligated products can be translated to spatial 

distance and physical models of chromosome conformation in the nucleus. The 

3C-related methods with increasingly fine resolution and improved 

experimental/analytical workflows have redefined our understanding of the 

organizational features of eukaryotic genomes, zooming in on the order of 

chromosome folding including full scale chromosomal territories, multiple-

megabase compartments (LIEBERMAN-AIDEN et al. 2009), hundred-kilobase 

topologically-associating domains (TADs) (DIXON et al. 2012; NORA et al. 2012), 

and various sizes of chromatin loops (PHILLIPS-CREMINS et al. 2013; SOFUEVA et 

al. 2013; RAO et al. 2014). These chromatin structures play key roles in a large 

number of nuclear processes. For example, gene loops are proposed to enforce 

transcriptional activity and directionality in yeast (O'SULLIVAN et al. 2004; ANSARI 

AND HAMPSEY 2005; TAN-WONG et al. 2009), TADs correlate with many tightly 

regulated operations in mammals such as replication timing (TAKEBAYASHI et al. 
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2012; POPE et al. 2014) and developmental clusters (SYMMONS et al. 2014; 

CHANDRA et al. 2015; LUPIANEZ et al. 2015; FRANKE et al. 2016), and LADs 

enclose silencing genes at the nuclear periphery during development (GUELEN et 

al. 2008; REDDY et al. 2008; KIND et al. 2013; KIND et al. 2015). Many biological 

consequences and diseases have been identified in relation to chromatin 

domains, such as cancer (GROSCHEL et al. 2014; LE DILY et al. 2014; ACHINGER-

KAWECKA AND CLARK 2017), aging (CHANDRA et al. 2015; CRISCIONE et al. 2016a; 

CRISCIONE et al. 2016b), and autoimmune diseases (MARTIN et al. 2016; 

MCGOVERN et al. 2016). However, the suboptimal resolution of the current 

methods, typically yielding few kilobase average fragment size, leaves a “blind 

spot” on our full understanding of chromatin organization, including the length 

scale relevant to secondary chromatin folding such as 30 nm fibers, gene loops, 

or nucleosome stacking. Filling in the missing pieces of chromatin folding at the 

scale of individual genes or ~1 – 10 nucleosomes will also uncover how 

chromatin associates with local transcriptional regulation, nucleosome 

positioning, and histone modifications in unprecedented detail. 

 

Concepts of Micro-C protocol 

In Chapter II, we developed an innovative 3C-based method – Micro-C – in which 

chromatin is fragmented into mononucleosomes using micrococcal nuclease 

(MNase), thus essentially enabling nucleosome-resolution maps of chromosome 

folding. Each step in the protocol uniquely contributes to generating high-quality 
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of Micro-C data. First, precise control of chromatin fragmentation is the most 

critical step in the protocol. Underdigestion results in overrepresentation of 

adjacent nucleosomes which contaminate the pool of ligated products (particular 

in the “IN-IN” dataset), while overdigestion leaves nucleosomal ends too short to 

be ligatable (data not shown). Ideal digestion results in an optimal range of 90 – 

95% monomers and 5 – 10% dimers. Second, to prepare ligatable ends, we used 

the 3’ to 5’ exonuclease activity of T4 DNA polymerase or DNA polymerase 

Klenow in the absence of dNTP to chew-in one strand of DNA, which stops once 

the enzyme hits the border of a crosslinked nucleosome. The 5’ to 3’ polymerase 

activity of these enzymes instantly overrides their exonuclease function upon 

providing dNTPs, which then generates ligatable blunt ends (Figure 2.1A). Third, 

the two-step size-selection process, with the first selection after ligation and the 

second selection after library construction, ensures only chimeric DNA from 

genuine nucleosomal contact will be sequenced (Figure 2.1A). We then 

generated high-coverage chromatin interaction maps at single-nucleosome 

resolution for the budding yeast S. cerevisiae, along with the proof-of-principle 

controls, including no-crosslinking, no-ligation, and mix-n-ligation with K. lactis, 

proving the extraordinary specificity and sensitivity of Micro-C protocol (Figures 

2.1B-D). It worth noting that the materials of the no-crosslinking control were 

prepared from reverse crosslinked DNA because theoretically this yields the 

maximal random contact frequency over native chromatin (BELTON et al. 2012; 

LAJOIE et al. 2015). A recent Hi-C study on native chromatin argued that the 
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intrinsic forces between proteins and proteins or proteins and DNA/RNA are 

sufficient to maintain some extent of stable interactions rather than yielding 

completely random contacts (BRANT et al. 2016). 

Micro-C efficiently captures short-range chromatin interactions, but 

provides very weak signals for well-validated long-range interactions (e.g., 

telomere-telomere and centromere-centromere interactions) (Figures 2.2E-F). 

Curiously, this seems to be a common effect of increasing resolution in 3C 

methods: Hi-C studies using 4-cutters are less effective at identifying long-range 

interactions than are 6-cutter-based Hi-C methods. The reason for this is unclear; 

however, as the vast majority of Micro-C ligation products occur within ~1 – 2 kb, 

it seems likely that being unable to sequence these products in traditional 4 kb 

resolution assays allows observation of very rare long-distance ligation products. 

It is possible that fine-tuning the Micro-C protocol (e.g., crosslinking or ligation) 

may improve the capture of long-range interactions (Chapter III).  

 

Chromatin domains and boundaries 

Analysis of Micro-C results revealed abundant self-associating domains typically 

spanning 1 – 5 genes (~2 – 10 kb) (Figures 2.2A-F), which resemble chromatin 

domains (TADs) found in mammals but previously were unidentifiable in 

organisms with small-genome. Prior Hi-C data indicated that chromatin domains 

are physically demarcated by the boundaries/insulators, whose activity tightly 

associates with active genes and epigenomic marks, architectural proteins 
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(CTCF, Cohesin, and Mediators), and repetitive elements (SINEs) in mammals 

as well to some extent in drosophila (DIXON et al. 2012; SEXTON et al. 2012). The 

increased resolution of Micro-C data allows us to further define the boundaries in 

yeast preferentially localized at promoters of highly-transcribed genes, enriched 

with the active epigenomic marks (e.g. acetylation on histone tails and 

H3K4me3), and regions of rapid histone turnover (Figures 2.3A-C). Binding of 

the complexes for RSC ATP-dependent chromatin remodeling and Cohesin 

loading at the boundary regions (Figures 2.3D-E) strongly suggests that they 

help facilitate the boundary forming process, as the working model posits that the 

RSC complex first binds onto the stiff poly A/T tracks in promoter regions, evicts 

local nucleosomes, and then recruits Cohesin-loading complex. RSC and 

Cohesin loader have synergetic effects on transcription regulations (LOPEZ-

SERRA et al. 2014), which further argues that the formation of boundaries is 

tightly associated with transcriptional regulation. Although Cohesin is recruited by 

Cohesin loaders, their biological functions may differ from each other: FISH 

imaging and ChIP assays show differing DNA binding signatures (CIOSK et al. 

2000), and Cohesin-depletion and loader-depletion mutants show inconsistent 

effects on chromosome conformation (SEITAN et al. 2013; SOFUEVA et al. 2013; 

ZUIN et al. 2014; SCHWARZER et al. 2016). Moreover, evaluation of a range of 

MNase digestions of chromatin has negligible effects on global interactions and 

boundary callings. Underdigestion (with a visible trinucleosome band) or 

overdigestion (with a faint dinucleosome band) of chromatin prior to Micro-C 
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looks nearly identical to standard Micro-C data, arguing against the idea that 

boundary calling is biased by MNase digestion (Figures 2.2L-M). 

Interestingly, self-associating domains tend to be conserved between 

species as scaled by gene numbers, rather than linear sequence. The genomic 

length of mammalian TADs (> 100 kb) (DIXON et al. 2012; RAO et al. 2014) or 

drosophila TADs (> 50 bp) (HOU et al. 2012; SEXTON et al. 2012) is much longer 

than in yeast, while the domains in these species cover roughly the same 

number of genes per domain. This disparity in length scale suggests that the 

primary determinant of chromosome folding may be the boundaries that separate 

compacted domains, rather than the internal structure of the domains 

themselves, as the detailed folding of the “beads on a string” within a given 

domain likely varies quite a bit between different organisms. In other words, we 

speculate that establishment of boundaries delimiting chromatin domains is the 

major driver of chromosome folding behavior, with the folding of the chromosome 

within each boundary-delimited domain not necessarily conforming to any regular 

secondary structure. 

 

Gene loops vs. Gene crumples 

Gene looping structures suggest direct contacts between 5’ and 3’ ends of gene, 

mediated by Pol2, general transcription factors (GTFs) (O'SULLIVAN et al. 2004; 

SINGH AND HAMPSEY 2007; MEDLER et al. 2011; MEDLER AND ANSARI 2015), 

activators (e.g., Mediators) (EL KADERI et al. 2009; MUKUNDAN AND ANSARI 2011; 
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MUKUNDAN AND ANSARI 2013), and terminator factors (ANSARI AND HAMPSEY 2005; 

MEDLER et al. 2011; AL HUSINI et al. 2013). They commonly have been proposed 

to facilitate transcriptional regulation such as gene activation or repression 

(YADON et al. 2013; LIU et al. 2016), recycling of transcription machinery (TAN-

WONG et al. 2009), and promoter directionality (TAN-WONG et al. 2012). However, 

there is no evidence in the Micro-C data indicating that gene loops exist, at least 

not a ubiquitous structure in vivo (Figures 2.1B and 2.4A-B). If they were to 

exist, the gene looping structure would appear as a spike signal at the corner of 

the gene box. However, we were only able to find heterogeneous interactions 

across each individual gene box, either by visual examination or in a metagene 

pile-up analysis, suggesting the presence of gene crumples or gene globules 

rather than gene loops. Several possibilities could result in the discrepancy 

between Micro-C data and prior restriction enzyme-based studies. First, although 

nucleosomes are capable of inhibiting restriction enzyme digestion of DNA, and, 

in principle, should prevent complete digestion of the genome, and bias cut sites 

to long linkers (such as those found at regulatory DNA), the aggressive detergent 

conditions typically used prior to restriction digestion in most Hi-C protocols 

results in complete or near-complete digestion of the genome in most studies 

(BELTON et al. 2012). The detergent conditions used for typical Hi-C methods 

presumably loosen histone-DNA contacts and potentially lead to dissociation of 

uncrosslinked proteins from DNA. Loss of nucleosomes during restriction 

digestion of chromatin in Hi-C could plausibly bias restriction enzyme-based 
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methods away from nucleosome-nucleosome interactions. From an experimental 

perspective, when chromatin is solubilized by detergent conditions prior to 

MNase digestion, as in the typical Hi-C protocol, the DNA ladder pattern is 

diminished, and the DNA loosened from nucleosomes is over chewed-in by 

MNase, as shown in the resultant size of DNA below 100 bp, even with a low 

level of MNase digestion. Second, previous studies suffered from suboptimal 

resolution, and an inability to conclude gene structures, as restriction enzymes 

often have only 2 – 3 cutting sites within a single gene in yeast regardless of 

gene length, thus leading to biases in interpretation of results with a limited 

number of ligatable ends (O'SULLIVAN et al. 2004; TAN-WONG et al. 2012). Third, 

the 3C protocol used in yeast gene loop studies includes a step to separate 

soluble and insoluble chromatin (ANSARI AND HAMPSEY 2005; TAN-WONG et al. 

2012). Therefore, nucleosomes associated with relatively insoluble transcriptional 

machinery, such as the nucleosomes at the 5’ and 3’ ends of gene could be 

enriched preferentially in gene loop assays. Finally, the gene loop signals also 

could reflect the TF-TF interactions or transcriptional hubs. Another technical 

distinction between restriction enzymes and MNase is that restriction enzyme-

based methods have the potential to identify direct TF-TF crosslinks, while the 

use of MNase digestion and gel isolation of dinucleosome-sized ligation products 

in Micro-C means that our method will only identify those interactions between 

transcription factors that also cause nearby nucleosomes to come into contact in 

a geometry amenable to DNA ligation (which presumably is common, but may 
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not be universal). However, efforts to specifically purify TF-TF interactions, by 

gel-purifying post-ligation products of <100 bp or 100-200 bp (average size of TF 

binding site is ~35 – 75 bp), resulted in massive overrepresentation of IN-IN DNA 

resulting from undigested DNA, and so were not pursued further. In sum, these 

are possible explanations for the differences in the structures of compacted 

genes between prior 3C studies in yeast, which reported “gene loop” structures, 

and the “gene crumple” structures observed within CIDs in this study. 

 

Mutant effects on gene crumples 

Levels of gene compaction are moderately anticorrelated to the transcription rate, 

as confirmed by measuring the changes in gene compaction under conditions of 

transcription inhibition and diamide oxidative stress (Figures 2.2E-H). Gene 

compaction increases for transcriptionally downregulated genes and decreases 

for transcriptionally upregulated genes. It is worth noting that the subtle ~5 – 10 

bp difference in average linker length between highly-transcribed genes and 

poorly transcribed genes cannot simply explain the magnitude of differences in 

gene compaction changes, even though nucleosomes over highly transcribed 

genes are located closer to one another than nucleosomes over in poorly 

transcribed genes (WEINER et al. 2010). Although transcriptional activity appears 

to be the major driving force for chromatin folding at the gene level, this only 

accounts for ~31% of gene compaction, suggesting other “crumple factors” (e.g., 

chromatin remodelers, histone modifiers, architecture proteins, and 
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topoisomerases) may also contribute to the folding behavior of genes (Figures 

2.5A-C). We investigated chromosome folding in detail in 14 mutants, confirming 

two categories of regulation in a transcription-dependent or -independent manner 

(Figure 2.5D). Increasing compaction in ribosomal protein genes and highly-

transcribed genes dominated the signal in the transcription-dependent group 

including mutants in the RSC-SCC and Pol2-associated complexes. In contrast, 

mutations in chromatin regulators result in a global loss of gene compaction, 

suggesting a structural role in chromatin folding. 

As mentioned above, in addition to their roles as domain insulators in 

yeast, the RSC complex and Cohesin loader promote transcriptional firing via 

maintenance of nucleosome depletion at promoters (HARTLEY AND MADHANI 2009; 

LOPEZ-SERRA et al. 2014), as well as facilitating Pol2 processing by evicting 

nucleosomes while traveling with the Pol2 machinery (SPAIN et al. 2014). 

Mutation of the RSC-SCC complex severely impaired transcriptional activity, 

resulting in gene condensing particularly in highly transcribed genes, consistent 

with the results of transcription perturbations (Figures 2.4E-H and 2.6C-D). 

However, boundary calling is not accurate with such low-coverage datasets, 

leaving the functional consequences between boundaries and the RSC-SCC 

complex for future investigation. Moreover, the mutation of “gene looping factor” 

Ssu72 resulted in a moderate but significant loss of over 70% of gene crumples, 

and an increase in compaction for highly-transcribed genes, suggesting that 

Ssu72 may mediate chromatin compaction in both models (Figures 2.6A-B). 
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The multivalent Mediator complex roughly encompasses 25 subunits in 

yeast and over 30 subunits in mammals. It consists of five modules (Tail, Middle, 

Head, Scaffold, and Kinase), and a detailed structure been resolved recently by 

cryo-EM (TSAI et al. 2014; PLASCHKA et al. 2015). The Head, Middle, and Scaffold 

modules are essential for viability, while depletion of the Tail and Kinase modules 

only causes minor effects in yeast. Mediator complex has been seen as a 

transcriptional activator in earlier studies, with the capacity to promote pre-

initiation (PIC) assembly, recruit Pol2, and stimulate the phosphorylation of the 

Pol2 CTD. Recent studies revealed Mediator can undergo compositional 

remodeling and participate many more biological processes than previously 

thought, such as transcription elongation, termination, mRNA splicing, DNA 

looping, chromatin remodeling, histone modification, and DNA methylation, as 

well mediating enhancer-promoter looping in metazoans (KAGEY et al. 2010; 

MALIK AND ROEDER 2010; NOCK et al. 2012; CARLSTEN et al. 2013; PHILLIPS-

CREMINS et al. 2013; KEMMEREN et al. 2014; ALLEN AND TAATJES 2015). These 

complicated functions lead to controversial findings in Mediator studies, as even 

their chromatin binding profiles often disagree with each other. A consensus 

opinion that the Tail module is required for Mediator recruitment to the UAS, but 

dispensable to the core promoter regions; in other words, the Head and Middle 

modules can bind on the core promoter regions without need of the Tail, 

suggesting discrete functions (GRUNBERG et al. 2016; JERONIMO et al. 2016; 

PETRENKO et al. 2016). In addition, the mutations of 14 non-essential Mediator 
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subunits revealed the uncoupling of effects on transcription regulation, with 

changes in gene expression clustered by the groups of modules (VAN DE PEPPEL 

et al. 2005; KEMMEREN et al. 2014). Such evidence of multivalent Mediator 

modules explains the disparity of gene compaction effects between the mutants 

in the Tail and Middle (Figures 2.6E-I). We proposed that the Tail mainly 

functions on transcriptional activation via bridging the UAS-activator to the 

transcriptional machinery, and affects chromatin compaction in a transcription-

dependent manner. On the contrary, the Head and Middle may play structural 

roles in chromatin folding regardless of transcriptional regulation, at least at the 

gene level. 

Other candidates (Figures 2.5D-I) such as architectural proteins 

(Cohesin, Condensin) and histone modifiers (Rpd3, Swr1) regulate chromatin 

folding largely independent of transcriptional regulation, while the R-loop cleaner 

(Rnh201) or Topoisomerase (Top1) have subtle or target-specific effects on gene 

compaction. Interestingly, Rtt109, an H3K56 acetyltransferase which enhances 

replication-independent histone turnover, has global effects on chromosome 

compaction. The possibility that incorporating newly-synthesized histones 

influences chromatin folding opens an avenue for further exploration. 

Several mutants in this study, including ssu72-2, H4∆4-14, and med1∆, 

exhibit dramatic decreases in nucleosome interactions as measured by Micro-C. 

In each of these cases, the loss of interactions is observed in normalized data, 

meaning that the “lost” interactions are compensated for by a gain in nonspecific 
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N/N+1 dinucleosome capture, and nonspecific long-range (N/N+60 or more) 

interactions. The simplest interpretation of a global loss of Micro-C interactions is 

as loss of physical interactions between nucleosomes, but more generally results 

from an inability to crosslink nucleosomes to one another, whether due to a lack 

of physical contact between nucleosomes, or obscuring of or loss of lysines 

involved in crosslinking. For some mutants – most notably H4∆4-14 – it is quite 

plausible that crosslinking artifacts cause the loss of Micro-C interactions, while 

this explanation is unlikely for mutants such as ssu72-2, rtt109∆, and med1∆. 

 

Micro-C XL: improving capture of long-range interactions 

While the improved resolution afforded by Micro-C enabled the identification of 

fine-scale features such as chromosomally-interacting domains (CIDs) in budding 

yeast that were not discernible in typical restriction-based 3C techniques, the 

known high-order chromosomal interactions such as centromere clusters were 

poorly recovered by Micro-C. In addition, as discussed above, we found no 

evidence for gene loops in Micro-C data, possibly due to using different fractions 

of digested chromatin or different levels of detergent treatment. These 

discrepancies with the literature motivated a deeper exploration of the effects of 

specific protocol steps on the results of Micro-C analysis of chromosome folding. 

In Chapter III, we developed an improved Micro-C protocol, termed Micro-C XL, 

which exhibits greatly increased signal to noise ratio, and provides further insight 

into the folding of the yeast genome.  
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Two modified steps greatly improved the Micro-C protocol in capturing 

higher-order interactions while maintaining the ability to map chromatin at single-

nucleosome resolution. First, in addition to the “zero-length” crosslinker 

formaldehyde (3 Å), longer crosslinkers were supplemented to crosslink 

chromatin interactions. In our preliminary screening, we successfully identified 

two crosslinkers (DSG (7.7 Å) and EGS (16.1 Å)) that are capable of enhancing 

interactions between genomic loci at longer ranges of distance surrounding ~6 kb 

of MDJ1 regions and between centromeres (Figures 3.1B-F). Genome-wide 

interaction maps confirmed that the dual crosslinking protocol significantly 

improved the recovery of high-order chromatin features, with the identification of 

centromere clusters and Rabl-like chromosome structures (Figure 3.2). Second, 

fragmented chromatin was separated into soluble and insoluble fractions prior to 

ligation of crosslinked genomic loci. The signals of chromosome features, such 

as centromere and telomere clusters, were sharpened further with the addition of 

insoluble materials, compared to using only soluble material or combining the 

fractions for Micro-C, suggesting longer distance interactions (or overall 

chromatin interactions) are predominantly enriched in the insoluble over the 

soluble fraction (Figure 3.3). Recent technical reports for typical Hi-C methods 

agree with the interaction data from insoluble materials (e.g., in pellet, in situ, in 

nucleus), and yielded more consistent, reproducible, and cleaner datasets 

(NAGANO et al. 2015b).  
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Contrary to our initial expectations, the dramatic improvement seen in the 

apparent capture of long-range interactions using the Micro-C XL protocol likely 

results not from the ability of long-range crosslinkers to bridge interacting 

genomic loci associated with proteins that are more than 3 Å away from one 

another, but rather from a decrease in the noise caused by soluble nucleosomes 

encountering one another in solution during the ligation reaction, and causing 

artefactual byproducts between unlinked nucleosomes. This hypothesis is based 

on the fact that DSG- and EGS-based Micro-C maps are extremely similar 

despite their substantial difference in crosslinking distance, as well as the finding 

that isolation of soluble chromatin results in greatly increased noise in Micro-C 

maps. In addition, we note that chromatin fragments generated by restriction 

enzymes in typical Hi-C protocols are significantly larger than mononucleosomes, 

increasing the number of crosslinking opportunities per fragment and thus 

presumably restricting their diffusion (or solubility) and resultant ability to 

generate artefactual ligation products. We propose that this difference in 

fragment size/mobility accounts for the increased noise seen previously in Micro-

C relative to standard Hi-C protocols. Further supporting this idea, we find that 

the improved protocol strongly reduces the incidence of artefactual ligation 

products between the nuclear genome and the mitochondrial genome, relative to 

the standard Micro-C protocol. Together, these considerations support the idea 

that the use of long crosslinkers and isolation of insoluble chromatin may be 

important to prevent mononucleosomes from freely diffusing prior to ligation and 
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introducing noise into Micro-C measurements. Still, this does not rule out the 

additional possibility that in some cases, our long crosslinkers capture nearby 

genomic loci for which the closest crosslinkable proteins are not in immediate 

physical proximity, and indeed both of these features may contribute to the 

improvement in data quality seen in Micro-C XL. 

The improved technique Micro-C XL enables mapping of chromatin 

conformation at a full-scale range, from a single nucleosome to the entire 

genome, in a single assay, with the potential to be applied broadly to other 

species and organisms. A comparison of chromosome folding maps of S. 

cerevisiae and S. pombe by Micro-C XL revealed widespread qualitative 

similarities, yet quantitative differences, between these distantly-related species 

(Figure 3.4). At a high-order scale, Rabl-like chromosome conformation was 

clearly observed in both budding and fission yeasts, with multiple known 

characteristics seen in microscopic and Hi-C studies being recapitulated by 

Micro-C XL, including 1) centromere clustering, 2) avoidance of interaction 

between centromere and chromosome arms, and 3) telomere interactions of 

chromosome arms with similar length. Although the global chromosome 

organizations are very similar between the two species, we found S. pombe has 

stronger telomere-telomere interactions and a moderate increase in centromere 

clustering, leading to the presumption that the H3K9me3-mediated 

heterochromatin enhances the interactions between these repetitive regions in 

fission yeast. On a finer scale, individual genes tend to fold into crumples/globule 
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structures rather than loops in both species. Even the relatively insoluble 

materials were used in the protocol as prior gene loop studies, we found no 

evidence to support gene loop as a common structure existing in vivo. We were 

only able to identify on average five chromatin loops after screening through the 

entire yeast genome, with the sizes being much larger than the scale of a single 

gene. Chromatin domains (CIDs) broadly encompass ~1 – 5 genes, ~2 – 10 kb in 

both species, which can be further merged with neighboring domains in a 

hierarchical manner to form larger self-associating domains at a gradually 

increasing size (e.g., 20 kb, 40 kb, 80 kb). Boundaries between CIDs generally 

occur at active promoters, highly-transcribed genes, and tRNA genes, with the 

strongest group of boundaries localizing to divergent promoters or longer NDRs. 

In addition, the distinct slopes of interaction decay curves between species 

revealed a unique chromatin structure at size ~ 80 kb in S. pombe, reflecting the 

Cohesin-delimited globule found in a previous Hi-C study but not observed in 

budding yeast (MIZUGUCHI et al. 2014). Further analysis revealed that genomic 

regions surrounding Cohesin-associated loci are relatively insulated from 

physically interacting with one another. However, this insulation is stronger and 

persists over greater genomic distance in S. pombe relative to S. cerevisiae, 

hinting at important differences in the role of Cohesin between species, 

potentially in a cell-cycle dependent fashion. In conclusion, the modified protocol 

– Micro-C XL – is capable of mapping genome-wide, 3D chromatin structures at 

all scales of resolution in a single assay. The method is highly applicable to 
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different organisms such as drosophila and mammals, and broadly utilized in 

studying a magnitude of biological systems as discussed briefly below. 

 

Determinants of chromatin folding in yeast 

Biochemical and microscopic studies have identified many key factors that can 

influence chromatin folding behaviors such as salt concentrations, molecular 

crowding, the presence of histone H1, and nucleosome repeat lengths (LI AND 

REINBERG 2011; GRIGORYEV AND WOODCOCK 2012). However, most studies used 

identical repeats of the Widom 601 nucleosome positioning sequence, which 

lacks the key features of native chromatin (LOWARY AND WIDOM 1998). For 

example, nucleosome positions are not evenly spaced in vivo, genomic features 

such as poly A/T sequences can affect the stiffness and helical pitch of the DNA 

fiber, and histones are subject to a multitude of chemical modifications that 

essentially alter the properties of nucleosomes. We aim to dissect the role of 

individual factors in regulating chromatin folding by using a native chromatin 

template in both in vitro (bottom-up) and ex vivo (top-down) systems. 

A key goal of the proposed research is to manipulate biochemical 

conditions coupled with genome-wide analysis of chromosome conformation 

(e.g., Micro-C) to understand the principles underlying the folding of the genome. 

In preliminary trials, we first established the top-down system in yeast that is 

based on the permeabilization of yeast cells to enable biochemical access to 

otherwise native chromatin. In brief, yeast cells were permeabilized by 



202 
 

treatments with enzyme and detergent, permeabilized nuclei were dialyzed in situ 

by eight different buffers, and ex vivo reconstituted nuclei were subjected to the 

Micro-C XL protocol and library construction. To this end, we have generated 

preliminary chromosome folding maps from permeabilized yeast nuclei subjected 

to a variety of salt conditions including 1) 1mM EDTA, 2) 1mM Mg2+, 3) 2.5mM 

Mg2+, 4) 5mM Mg2+, 5) 5mM Na+ and 1mM EDTA, 6) 150mM Na+ and 1mM 

EDTA, 7) 150mM Na+ and 1mM Mg2+, and 8) 150mM Na+ and 5 mM Mg2+, 

expecting to fully or partially unfold native chromosomes. 

The Micro-C data were broadly consistent with prior microscopic and 

biochemical studies (GRIGORYEV et al. 2009; GRIGORYEV AND WOODCOCK 2012) 

showing that monovalent and divalent cations can enhance compaction of 

nucleosome-repeat arrays in vitro or in permeabilized nuclei (Figure 5.1). We 

confirmed a nearly complete loss of chromatin interactions – observed as either 

the width of the diagonal in contact heatmaps, or as the slope of interaction 

frequency as a function of genomic distance – in yeast nuclei washed with no 

(1mM EDTA) and low salt (5mM NaCl) conditions, intermediate levels of folding 

in 150 mM NaCl along, and strong retention of native chromatin features in 

150mM NaCl and 1mM MgCl2, or in higher concentrations of MgCl2 (Figure 5.1A 

and C). Interactions between interchromosomal arms, centromeres, and 

telomeres are further enhanced in the presence of divalent cations, indicating 

their global chromosomal conformations are more condensed than wild-type. 

Curiously, although we found that CEN-CEN interactions are maintained in salt-
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washed nuclei in a Mg2+-dependent manner, the centromere cluster was 

unexpectedly maintained in nuclei washed by 150mM NaCl. In addition, despite a 

high concentration of Mg2+-induced overall chromosomal compaction, we found a 

multitude of local changes in chromatin including loss of a subset of boundaries 

and chromatin domains, and formation of “neo”-chromatin loops (Figure 5.1B). 

These preliminary results demonstrate that Micro-C can characterize the folding 

behavior of biochemically accessible chromatin from yeast, which in general 

recapitulates the features of chromatin folding observed in prior studies, while 

providing additional genomic information at single nucleosome resolution. 
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Figure 5.1. Salt-dependent chromatin folding.  
(A-B) Contact maps for 7 of the salt conditions as indicated, compared to in vivo 

chromatin (BY4741, WT). In (A), the interaction maps shown for chromosome VII 

through X were binned to 5 kb and corrected by matrix balance. Global chromatin 

interactions are disrupted in low-salt condition (5mM NaCl) and moderately maintained 

in mid-range of salt conditions (150mM NaCl). The large-scale chromosomal interactions 

such as centromere and telomere clusters are maintained or even strengthened in the 

presence of divalent cation. More surprisingly, the intermediate level of salt condition 

(150mM NaCl) recovered the centromere interactions. In (B), the 1kb-binned interaction 

maps were corrected by matrix balance and further zoomed into a 250kb region on 

chromosome VII. The local chromatin folding is also largely dependent on salt 

conditions. Interestingly, some chromatin structures (e.g., domains or loops) were 
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disrupted in ex vivo conditions (blue arrow), while some neo chromatin structures were 

formed in the divalent salt buffers (red arrow). (C) Plots show chromatin interactions (y-

axis, log10) vs. distance (x-axis, log10) decay curves for 7 of the salt reconstitutions. 

Interactions are globally lost in chromatin washed with low salt buffers, and partially 

maintained in 150mM NaCl alone, and are highly similar to native chromatin in the 

presence of divalent cation. Note that the distinct decaying behaviors through 1kb to 

1Mb between different concentrations of Mg2+ (e.g., 1mM Mg2+ vs. 5mM Mg2+ vs. 150mM 

Na++5mM Mg2+) suggest Mg2+-dependent chromatin organizations beyond local short-

range interactions. 

 

Future research will move beyond cation concentration, and explore a 

wide range of additional conditions to check for effects on chromatin folding. This 

includes treating of nuclei with various enzymes, such as RNase H to remove R-

loops, or light trypsin digestion to remove histone tails. Second, both our 

preliminary results and recent atomic force microscopic studies (KRZEMIEN et al. 

2017) show that salt mediates chromatin compaction in a non-monotonic fashion 

including roughly three phases from low to high concentration, leading us to map 

chromatin conformations in a smaller range of salt condition (e.g. 5mM, 10mM, 

20mM). In addition, very high salt conditions (> 500mM) strip off non-histone 

binding proteins, such as transcription factors or chromatin remodelers, from 

chromatin without affecting the binding between histones and DNA. This will 

allow us to compare chromatin folding behaviors with the presence or the 

absence of non-histone DNA binding proteins bound to chromatin. Finally, we will 

investigate the role of intrinsic forces in folding chromatin, measuring the 

reversibility of chromatin folding by carrying the successive washes in different 
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strengths of folding buffers. We showed that chromatin washed with a low salt 

buffer exhibits a widespread decompaction of chromatin, along with loss of 

centromere interactions. Does this loss of compaction result from key folding 

proteins being washed off the genome under low-salt conditions? Can 

interactions be restored upon reintroduction of Mg2+? To this end, we will 

generate Micro-C datasets from permeabilized nuclei washed in low salt 

conditions, then washed a final time with high salt to “re-fold” the genome. The 

proposed research aims to promote our understanding of the mechanistic 

principles of chromatin folding with a genome-wide view. 

 

Toward a nucleosome-scale of chromatin structure in mammals 

A major concern in applying Micro-C to large genome organisms (such as human 

and mouse) is the possibility that achieving sufficient sequencing coverage to 

visualization a single nucleosome level map may come at a high cost. As 

discussed in Chapter III, given that Micro-C data does not display a 

preponderance of molecular byproducts, the sequencing depth required to 

achieve a given genomic resolution should be similar to or less than the typical 

Hi-C protocol. In addition, a key analysis of chromatin folding behavior is the 

decay of interaction frequency as a function of genomic distance, which is an 

averaged measure across the entire genome and is thus extremely robust in 

undersequenced data. We anticipate that very low coverage (< 5 million reads) of 
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Micro-C data will allow a robust comparison of average chromatin folding for 

Polycomb-repressed genes or HP1-associated regions. 

To this end, we developed a modified Micro-C protocol for mammalian 

cells and generated a proof-of-principle group of Micro-C data for mouse 

embryonic stem cells, with five different crosslinking conditions including 1% 

formaldehyde, 1% formaldehyde prior to DSG or EGS, and DSG or EGS prior to 

1% formaldehyde (Figure 5.2). Strikingly, although these libraries were 

extremely undersequenced, with only ~30 million reads per sample (Figure 

5.2A), and the FA1%+DSG library resulting in ~200 million reads (Figures 5.2B-

F), Micro-C robustly captured known chromosome features such as chromosome 

compartment A/B, topologically-associating domains (TADs), and even 

CTCF/Cohesin-mediated chromatin loops and short-range promoter-enhancer 

loops (Figures 5.2B-D). The analysis of interaction versus decay curves 

revealed distinct chromatin folding behaviors in 15 chromatin states (BOGU et al. 

2015) on the scale of 100 – 5000 bp (~1 – 25 nucleosome), with overall highly 

compact folding in H3K9me3-enriched regions and loose folding in active and 

regulatory regions (Figures 5.2E-F). Curiously, the annotated polycomb-

repressed chromatin (H3K27me3) has relatively lower levels of compaction in 

comparison to heterochromatin and elongating chromatin, which may reflect the 

bivalent features in mES cells. We also examined short-range chromatin folding 

in LADs, and found an increase in internucleosomal interactions within LADs 

compared to the interactions in the Pol2-enriched domains (data not shown). 



209 
 

Taken together, these preliminary results confirmed that our Micro-C protocol is 

extremely robust and can be applied to other organisms without the limitation of 

sequencing coverage. We anticipate using Micro-C to uncover more details in 

chromatin folding with unprecedented sensitivity and resolution for mapping 

chromatin conformations. 
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Figure 5.2. Mapping mammalian chromatin folding by Micro-C.  
(A) Contact maps for Micro-C data generated using crosslinking conditions such as 1% 

Formaldehyde, 1% Formaldehyde following by DSG or EGS, and DSG or EGS following 

by 1% Formaldehyde are shown as indicated for chromosome 17 in mouse embryonic 

stem cells. The contact maps were binned to 500kb and normalized by matrix balancing 
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method. Although the preliminary datasets were only sequenced for ~30M reads per 

sample, it is worth noting that multiple-Mb chromosome compartments can be visualized 

as cells fixed with an additional crosslinker. (B-F) 1%FA/DSG library was further 

sequenced for ~200M reads. Interactions were normalized with sequence depth and 

corrected by matrix balance. In (B), the 500kb-binned contact matrix displays multiple-

Mb chromosome compartments for chromosome 17 in mESC, and the 

compartmentalized genome (orange for compartment A and blue for compartment B) is 

clearer as shown in the Pearson’s correlation map. In (C), the 5-kb binned interaction 

map was zoomed into 2Mb area surrounding the bivalent HoxD region. The bivalent 

regions separate two topologically-associating domains. Multiple CTCF-Cohesin 

mediated chromatin loops within an individual TAD are shown as sharp dots at the edge 

of TAD box. In (D), the sharp signal represents as the promoter-enhancer loop between 

Sox2 gene and 100kb downstream regulatory region. In (E), plot shows genome-wide 

averaged chromatin interactions (y-axis, log10) vs. distance (x-axis, log10) decay curve for 

mouse ES cells at the range from 100bp through 1Mb. The curve exhibits three stages 

of chromatin folding behavior including short-range nucleosome interactions/stacking 

(100bp – 1000bp), a monotonic decaying from 1kb – 100kb, and a bump representing 

chromatin domains around 100kb – 1Mb. In (F), plots show interactions vs. distance 

decay curves for 15 chromatin states at the scale of 100bp – 2000bp. Heterochromatic 

chromatin (H3K9me2/3) contains the highest level of local nucleosome interactions (or 

chromatin compaction), while a low level of nucleosomal interactions is found in the 

highly-transcribed and regulatory regions. Unexpectedly, the repressive chromatin 

enriched with H3K27me3 only has an intermediate level of compaction. Note that only 

the “UNI” interactions were used for the scaling plots in (E-F) in order to eliminate the 

undigested dinucleosomes. 

 

Chromatin dynamics during a stress response 

A major challenge in the chromatin field is understanding the role of chromatin 

marks in transcription. Multiple chromatin modifiers and readers form complexes 

that are recruited during transcription initiation and elongation, suggesting that 



212 
 

histone marks play a crucial role in transcriptional processes (SUGANUMA AND 

WORKMAN 2008; RANDO 2012). However, single gene and genome-wide studies 

have shown that genetic perturbation of such marks results in, at most, subtle 

differences in transcription (KORBER et al. 2006; WEINER et al. 2012). Moreover, 

previous studies in our lab showed that while loss of histone marks can be 

compensated for in steady state conditions, many effects of these mutants can 

be exposed during transcriptional reprogramming. In other words, because 

transcript levels are buffered by feedback mechanisms, many of them are 

restored to wild-type levels in deletion mutants (WEINER et al. 2012). This 

observation raised the questions of which chromatin marks change during such 

reprogramming and how these changes relate to the transcriptional machinery. 

These inspire us to further explore the effects of transcriptional reprogramming 

on histone modification dynamics.  

In Chapter IV, we used multiplexed ChIP-seq to systematically map 

dynamic changes of 26 histone modifications in response to a stress signal 

during a dense time course in yeast. We generated a thorough characterization 

of the yeast chromatin landscape, which reproduces almost all known features of 

yeast histone modification localization (Figures 4.1-4.3), and provide further 

insights into the kinetics of histone modification (Figures 4.4-4.7). Analysis of 

histone modifications in actively growing yeast argues that histone marks exhibit 

little combinatorial complexity, as repeatedly observed in many studies (RANDO 

2012), and conceptually disputes the histone code theory. In general, we 
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identified three major features that explain the patterns of nucleosome 

modification at steady state. First, the phosphorylation state delineates a specific 

subset of the primary chromosomal landscape; for example, pericentromeric 

regions are broadly marked by H3S10ph, and H2AS129ph marks subtelomeric 

and repressive regions. Second, the process of transcription leaves a massive 

footprint on chromatin. Enzymes associated with the initiation or elongation form 

of the Pol2 complex are responsible for the majority of the variation of histone 

modifications across the genome. Finally, replication-independent histone 

turnover is responsible for the deposition of histone marks such as H3K56ac, and 

lacks H3K79me3 and other marks. These features are well conserved in other 

organisms, although chromatin in many other organisms contains additional 

H3K9 and H3K27 di/trimethylations on repressive chromatin.  

Analysis of a stress response revealed three key relationships observed 

between histone modifications and transcription reprogramming (Figures 4.4-

4.7). First, the mechanisms that maintain the chromatin modification landscape in 

mid-log growth are similar to the ones involved in changes during stress-induced 

transcriptional reprogramming. In other words, modifications that are correlated 

with transcriptional activity in the steady state also increase during gene 

activation and decrease during gene repression, suggesting that the transcription 

machinery is responsible for depositing most transcription-related marks. 

Second, we only observed a modest increase in the combinatorial complexity of 

histone modification during diamide stress, resulting from roughly 3% of all 
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nucleosomes transiently populating rare histone modification states. Most of 

these rare histone states result from differences in the kinetics of histone 

modification that transiently uncouple highly correlated marks, with slow histone 

methylation changes often lagging behind more rapid acetylation changes. For 

example, H3K18 acetylation is usually deposited or removed ahead of H3K4 

methylation in response to transcription activity. Finally, we carried out explicit 

analysis of histone modification dynamics, making a number of discoveries of 

interest that will motivate future studies. These include the general categorization 

of rapid and slow marks, the finding that modification dynamics are significantly 

different for addition vs. removal of marks, and the discovery of differences in 

modification cascades for different biological gene sets. Most notably, ribosomal-

related genes exhibit the unique regulatory kinetics during transcriptional 

repression. Taken together, the study in Chapter IV provides a comprehensive 

view of the chromatin landscape and the kinetics involved during massive 

transcriptional reprogramming. 
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