16,173 research outputs found

    A generalized approach to construct benchmark problems for dynamic optimization

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2008.There has been a growing interest in studying evolutionary algorithms in dynamic environments in recent years due to its importance in real applications. However, different dynamic test problems have been used to test and compare the performance of algorithms. This paper proposes a generalized dynamic benchmark generator (GDBG) that can be instantiated into the binary space, real space and combinatorial space. This generator can present a set of different properties to test algorithms by tuning some control parameters. Some experiments are carried out on the real space to study the performance of the generator.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Ant colony optimization approach for the capacitated vehicle routing problem with simultaneous delivery and pick-up

    Get PDF
    We propose an Ant Colony Optimization (ACO) algorithm to the NPhard Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP). In VRPSDP, commodities are delivered to customers from a single depot utilizing a fleet of identical vehicles and empty packages are collected from the customers and transported back to the depot. The objective is to minimize the total distance traveled. The algorithm is tested with the well-known benchmark problems from the literature. The experimental study indicates that our approach produces comparable results to those of the benchmark problems in the literature

    Benchmark problems and solutions

    Get PDF
    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available

    Airline planning benchmark problems—Part II : passenger groups, utility and demand allocation

    Get PDF
    This paper is the second of two papers entitled “Airline Planning Benchmark Problems”, aimed at developing benchmark data that can be used to stimulate innovation in airline planning, in particular, in flight schedule design and fleet assignment. The former has, to date, been under-represented in the optimisation literature, due in part to the difficulty of obtaining data that adequately reflects passenger choice, and hence schedule revenue. Revenue models in airline planning optimisation only roughly approximate the passenger decision process. However, there is a growing body of literature giving empirical insights into airline passenger choice. Here we propose a new paradigm for passenger modelling, that enriches our representation of passenger revenue, in a form designed to be useful for optimisation. We divide the market demand into market segments, or passenger groups, according to characteristics that differentiate behaviour in terms of airline product selection. Each passenger group has an origin, destination, size (number of passengers), departure time window, and departure time utility curve, indicating willingness to pay for departure in time sub-windows. Taking as input market demand for each origin–destination pair, we describe a process by which we construct realistic passenger group data, based on the analysis of empirical airline data collected by our industry partner. We give the results of that analysis, and describe 33 benchmark instances produced

    Limit-point buckling analyses using solid, shell and solid–shell elements

    Get PDF
    In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the. benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art shell elements. In contrast to shell elements, it allows for the accurate prescription of boundary conditions as applied to the actual edges of the structure.Agence Nationale de la Recherche, France (ANR-005-RNMP-007

    Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed

    Get PDF
    In this paper, we study the performance of IPOP-saACM-ES, recently proposed self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategy. The algorithm was tested using restarts till a total number of function evaluations of 106D10^6D was reached, where DD is the dimension of the function search space. The experiments show that the surrogate model control allows IPOP-saACM-ES to be as robust as the original IPOP-aCMA-ES and outperforms the latter by a factor from 2 to 3 on 6 benchmark problems with moderate noise. On 15 out of 30 benchmark problems in dimension 20, IPOP-saACM-ES exceeds the records observed during BBOB-2009 and BBOB-2010.Comment: Genetic and Evolutionary Computation Conference (GECCO 2012) (2012
    • …
    corecore