88 research outputs found

    A novel population-based local search for nurse rostering problem

    Get PDF
    Population-based approaches regularly are better than single based (local search) approaches in exploring the search space. However, the drawback of population-based approaches is in exploiting the search space. Several hybrid approaches have proven their efficiency through different domains of optimization problems by incorporating and integrating the strength of population and local search approaches. Meanwhile, hybrid methods have a drawback of increasing the parameter tuning. Recently, population-based local search was proposed for a university course-timetabling problem with fewer parameters than existing approaches, the proposed approach proves its effectiveness. The proposed approach employs two operators to intensify and diversify the search space. The first operator is applied to a single solution, while the second is applied for all solutions. This paper aims to investigate the performance of population-based local search for the nurse rostering problem. The INRC2010 database with a dataset composed of 69 instances is used to test the performance of PB-LS. A comparison was made between the performance of PB-LS and other existing approaches in the literature. Results show good performances of proposed approach compared to other approaches, where population-based local search provided best results in 55 cases over 69 instances used in experiments

    A Hybrid ant colony optimization algorithm for solving a highly constrained nurse rostering problem

    Get PDF
    Distribution of work shifts and off days to nurses in a duty roster is a crucial task. In hospital wards, much effort is spent trying to produce workable and quality rosters for their nurses. However, there are cases, such as mandatory working days per week and balanced distribution of shift types that could not be achieved in the manually generated rosters, which are still being practiced. Hence, this study focused on solving those issues arising in nurse rostering problems (NRPs) strategizing on a hybrid of Ant Colony Optimization (ACO) algorithm with a hill climbing technique. The hybridization with the hill climbing is aiming at fine-tuning the initial solution or roster generated by the ACO algorithm to achieve better rosters. The hybrid model is developed with the goal of satisfying the hard constraints, while minimizing the violation of soft constraints in such a way that fulfill hospital’s rules and nurses’ preferences. The real data used for this highly constrained NRPs was obtained from a large Malaysian hospital. Specifically, three main phases were involved in developing the hybrid model, which are generating an initial roster, updating the roster through the ACO algorithm, and implementing the hill climbing to further search for a refined solution. The results show that at a larger value of pheromone, the chance of obtaining a good solution was found with only small penalty values. This study has proven that the hybrid ACO is able to solve NRPs with good potential solutions that fulfilled all the four important criteria, which are coverage, quality, flexibility, and cost. Subsequently, the hybrid model is also beneficial to the hospital’s management whereby nurses can be scheduled with balanced distribution of shifts, which fulfill their preferences as well

    Revisión de literatura sobre los modelos de optimización en programación de turnos de enfermería

    Get PDF
    Siendo la programación de turnos de enfermería (NSP) un componente esencial en la calidad del servicio de salud y debido al gran número de investigaciones desarrolladas sobre NSP en la literatura, se desarrolla una revisión de literatura sobre los artículos sobre NSP realizados desde 2003 hasta la fecha. A partir de este trabajo se logran identificar la tendencia y las necesidades propias de este problema, las cuales se caracterizan por (1) la necesidad de cerrar la brecha entre academia y práctica mediante el desarrollo de modelos objetivos de representación del problema y (2), desarrollar investigación sobre técnicas de solución capaces de tratar modelos de gran complejidad, sin sacrificar el recurso computacional. Este artículo presenta una revisión de literatura sobre los modelos de optimización en la programación de turnos de enfermería, publicados desde 2003 a la fecha.B Being the nurse shift scheduling an essential component of the quality of the health service and due to the big amount of research conducted regarding the Nurse Scheduling Problem (NSP), a literature review is carried out concerning articles on NSP published from 2003 up to now. As a result of this work, we were able to highlight the tendencies and own needs of this problem, which are characterized by: (1) the need to close the gap between academy and practice through the development of objective models that represent the problem and (2) research about solution techniques capable of processing models of great complexity, without sacrificing the computational resource. This article presents a literature review on optimization models in the NSP published since 2003

    Genetic based discrete particle swarm optimization for elderly day care center timetabling

    Get PDF
    The timetabling problem of local Elderly Day Care Centers (EDCCs) is formulated into a weighted maximum constraint satisfaction problem (Max-CSP) in this study. The EDCC timetabling problem is a multi-dimensional assignment problem, where users (elderly) are required to perform activities that require different venues and timeslots, depending on operational constraints. These constraints are categorized into two: hard constraints, which must be fulfilled strictly, and soft constraints, which may be violated but with a penalty. Numerous methods have been successfully applied to the weighted Max-CSP; these methods include exact algorithms based on branch and bound techniques, and approximation methods based on repair heuristics, such as the min-conflict heuristic. This study aims to explore the potential of evolutionary algorithms by proposing a genetic-based discrete particle swarm optimization (GDPSO) to solve the EDCC timetabling problem. The proposed method is compared with the min-conflict random-walk algorithm (MCRW), Tabu search (TS), standard particle swarm optimization (SPSO), and a guided genetic algorithm (GGA). Computational evidence shows that GDPSO significantly outperforms the other algorithms in terms of solution quality and efficiency

    Variable Neighbourhood Search: A Case Study for a Highly-Constrained Workforce Scheduling Problem

    Get PDF
    This paper describes a Variable Neighbourhood Search (VNS) combined with simulated annealing to tackle a highly constrained workforce scheduling problem at British Telecommunications plc (BT). A refined greedy algorithm is firstly designed to create an initial solution which meets all hard constraints and satisfies some of the soft constraints. The VNS is then used to swap out less promising combinations, continually moving towards a more optimal solution until meeting finishing requirements. The results are promising when compared to the stand- alone greedy algorithm. We believe there is scope for this to be extended in several ways, i.e. into a more complex variation of VNS to further improve results, to be applied to further data sets and workforce scheduling problem scenarios, and to have input parameters to the algorithm selectively optimized to discover what kind of improvements in efficiency and fitness are possible. There is also scope for this to be used in similar combinatorial optimization problems

    The Second International Nurse Rostering Competition

    Get PDF
    This paper reports on the Second International Nurse Rostering Competition (INRC-II). Its contributions are (1) a new problem formulation which, differently from INRC-I, is a multi-stage procedure, (2) a competition environment that, as in INRC-I, will continue to serve as a growing testbed for search approaches to the INRC-II problem, and (3) final results of the competition. We discuss also the competition environment, which is an infrastructure including problem and instance definitions, testbeds, validation/simulation tools and rules. The hardness of the competition instances has been evaluated through the behaviour of our own solvers, and confirmed by the solvers of the participants. Finally, we discuss general issues about both nurse rostering problems and optimisation competitions in general.PostprintPeer reviewe

    A modified migrating bird optimization for university course timetabling problem

    Get PDF
    University course timetabling problem is a dilemma which educational institutions are facing due to various demands to be achieved in limited resources. Migrating bird optimization (MBO) algorithm is a new meta-heuristic algorithm which is inspired by flying formation of migrating birds. It has been applied successfully in tackling quadratic assignment problem and credit cards fraud detection problem. However, it was reported that MBO will get stuck in local optima easily. Therefore, a modified migrating bird optimization algorithm is proposed to solve post enrolment-based course timetabling. An improved neighbourhood sharing mechanism is used with the aim of escaping from local optima. Besides that, iterated local search is selected to be hybridized with the migrating bird optimization in order to further enhance its exploitation ability. The proposed method was tested using Socha’s benchmark datasets. The experimental results show that the proposed method outperformed the basic MBO and it is capable of producing comparable results as compared with existing methods that have been presented in literature. Indeed, the proposed method is capable of addressing university course timetabling problem and promising results were obtained
    corecore