101 research outputs found

    Beating Exhaustive Search for Quantified Boolean Formulas and Connections to Circuit Complexity

    Get PDF

    Satisfiability on Mixed Instances

    Get PDF

    Criticality of Regular Formulas

    Get PDF

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness and randomness extraction. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    Scheduling Lower Bounds via AND Subset Sum

    Get PDF
    Given NN instances (X1,t1),,(XN,tN)(X_1,t_1),\ldots,(X_N,t_N) of Subset Sum, the AND Subset Sum problem asks to determine whether all of these instances are yes-instances; that is, whether each set of integers XiX_i has a subset that sums up to the target integer tit_i. We prove that this problem cannot be solved in time O~((Ntmax)1ϵ)\tilde{O}((N \cdot t_{max})^{1-\epsilon}), for tmax=maxitit_{max}=\max_i t_i and any ϵ>0\epsilon > 0, assuming the \forall \exists Strong Exponential Time Hypothesis (\forall \exists-SETH). We then use this result to exclude O~(n+Pmaxn1ϵ)\tilde{O}(n+P_{max} \cdot n^{1-\epsilon})-time algorithms for several scheduling problems on nn jobs with maximum processing time PmaxP_{max}, based on \forall \exists-SETH. These include classical problems such as 1wjUj1||\sum w_jU_j, the problem of minimizing the total weight of tardy jobs on a single machine, and P2UjP_2||\sum U_j, the problem of minimizing the number of tardy jobs on two identical parallel machines.Comment: 14 pages, ICALP'2

    Hardness of KT Characterizes Parallel Cryptography

    Get PDF
    A recent breakthrough of Liu and Pass (FOCS'20) shows that one-way functions exist if and only if the (polynomial-)time-bounded Kolmogorov complexity, K^t, is bounded-error hard on average to compute. In this paper, we strengthen this result and extend it to other complexity measures: - We show, perhaps surprisingly, that the KT complexity is bounded-error average-case hard if and only if there exist one-way functions in constant parallel time (i.e. NC⁰). This result crucially relies on the idea of randomized encodings. Previously, a seminal work of Applebaum, Ishai, and Kushilevitz (FOCS'04; SICOMP'06) used the same idea to show that NC⁰-computable one-way functions exist if and only if logspace-computable one-way functions exist. - Inspired by the above result, we present randomized average-case reductions among the NC¹-versions and logspace-versions of K^t complexity, and the KT complexity. Our reductions preserve both bounded-error average-case hardness and zero-error average-case hardness. To the best of our knowledge, this is the first reduction between the KT complexity and a variant of K^t complexity. - We prove tight connections between the hardness of K^t complexity and the hardness of (the hardest) one-way functions. In analogy with the Exponential-Time Hypothesis and its variants, we define and motivate the Perebor Hypotheses for complexity measures such as K^t and KT. We show that a Strong Perebor Hypothesis for K^t implies the existence of (weak) one-way functions of near-optimal hardness 2^{n-o(n)}. To the best of our knowledge, this is the first construction of one-way functions of near-optimal hardness based on a natural complexity assumption about a search problem. - We show that a Weak Perebor Hypothesis for MCSP implies the existence of one-way functions, and establish a partial converse. This is the first unconditional construction of one-way functions from the hardness of MCSP over a natural distribution. - Finally, we study the average-case hardness of MKtP. We show that it characterizes cryptographic pseudorandomness in one natural regime of parameters, and complexity-theoretic pseudorandomness in another natural regime.</p

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Progress Report : 1991 - 1994

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore