37 research outputs found

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    An Experimental Comparison of Monocular and Stereo Visual FastSLAM Implementations

    Get PDF
    Implementazione e confronto di FastSLAM monoculare e stereo evidenziando le differenti performances riguardo a mappatura e stima della traiettoria. E' inoltre proposto un algoritmo integrante Visual Odometry e SLAM da stereovisione per robot dotati di sole fotocamere come sensoriope

    Multi-camera simultaneous localization and mapping

    Get PDF
    In this thesis, we study two aspects of simultaneous localization and mapping (SLAM) for multi-camera systems: minimal solution methods for the scaled motion of non-overlapping and partially overlapping two camera systems and enabling online, real-time mapping of large areas using the parallelism inherent in the visual simultaneous localization and mapping (VSLAM) problem. We present the only existing minimal solution method for six degree of freedom structure and motion estimation using a non-overlapping, rigid two camera system with known intrinsic and extrinsic calibration. One example application of our method is the three-dimensional reconstruction of urban scenes from video. Because our method does not require the cameras' fields-of-view to overlap, we are able to maximize coverage of the scene and avoid processing redundant, overlapping imagery. Additionally, we developed a minimal solution method for partially overlapping stereo camera systems to overcome degeneracies inherent to non-overlapping two-camera systems but still have a wide total field of view. The method takes two stereo images as its input. It uses one feature visible in all four views and three features visible across two temporal view pairs to constrain the system camera's motion. We show in synthetic experiments that our method creates rotation and translation estimates that are more accurate than the perspective three-point method as the overlap in the stereo camera's fields-of-view is reduced. A final part of this thesis is the development of an online, real-time visual SLAM system that achieves real-time speed by exploiting the parallelism inherent in the VSLAM problem. We show that feature tracking, relative pose estimation, and global mapping operations such as loop detection and loop correction can be effectively parallelized. Additionally, we demonstrate that a combination of short baseline, differentially tracked corner features, which can be tracked at high frame rates and wide baseline matchable but slower to compute features such as the scale-invariant feature transform can facilitate high speed visual odometry and at the same time support location recognition for loop detection and global geometric error correction

    Metric and appearance based visual SLAM for mobile robots

    Get PDF
    Simultaneous Localization and Mapping (SLAM) maintains autonomy for mobile robots and it has been studied extensively during the last two decades. It is the process of building the map of an unknown environment and determining the location of the robot using this map concurrently. Different kinds of sensors such as Global Positioning System (GPS), Inertial Measurement Unit (IMU), laser range finder and sonar are used for data acquisition in SLAM. In recent years, passive visual sensors are utilized in visual SLAM (vSLAM) problem because of their increasing ubiquity. This thesis is concerned with the metric and appearance-based vSLAM problems for mobile robots. From the point of view of metric-based vSLAM, a performance improvement technique is developed. Template matching based video stabilization and Harris corner detector are integrated. Extracting Harris corner features from stabilized video consistently increases the accuracy of the localization. Data coming from a video camera and odometry are fused in an Extended Kalman Filter (EKF) to determine the pose of the robot and build the map of the environment. Simulation results validate the performance improvement obtained by the proposed technique. Moreover, a visual perception system is proposed for appearance-based vSLAM and used for under vehicle classification. The proposed system consists of three main parts: monitoring, detection and classification. In the first part a new catadioptric camera system, where a perspective camera points downwards to a convex mirror mounted to the body of a mobile robot, is designed. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part speeded up robust features (SURF) are used to detect the hidden objects that are under vehicles. Fast appearance based mapping algorithm (FAB-MAP) is then exploited for the classification of the means of transportations in the third part. Experimental results show the feasibility of the proposed system. The proposed solution is implemented using a non-holonomic mobile robot. In the implementations the bottom of the tables in the laboratory are considered as the under vehicles. A database that includes di erent under vehicle images is used. All the algorithms are implemented in Microsoft Visual C++ and OpenCV 2.4.4

    Acoustic SLAM based on the Direction-of-Arrival and the Direct-to-Reverberant Energy Ratio

    Full text link
    This paper proposes a new method that fuses acoustic measurements in the reverberation field and low-accuracy inertial measurement unit (IMU) motion reports for simultaneous localization and mapping (SLAM). Different from existing studies that only use acoustic data for direction-of-arrival (DoA) estimates, the source's distance from sensors is calculated with the direct-to-reverberant energy ratio (DRR) and applied as a new constraint to eliminate the nonlinear noise from motion reports. A particle filter is applied to estimate the critical distance, which is key for associating the source's distance with the DRR. A keyframe method is used to eliminate the deviation of the source position estimation toward the robot. The proposed DoA-DRR acoustic SLAM (D-D SLAM) is designed for three-dimensional motion and is suitable for most robots. The method is the first acoustic SLAM algorithm that has been validated on a real-world indoor scene dataset that contains only acoustic data and IMU measurements. Compared with previous methods, D-D SLAM has acceptable performance in locating the robot and building a source map from a real-world indoor dataset. The average location accuracy is 0.48 m, while the source position error converges to less than 0.25 m within 2.8 s. These results prove the effectiveness of D-D SLAM in real-world indoor scenes, which may be especially useful in search and rescue missions after disasters where the environment is foggy, i.e., unsuitable for light or laser irradiation

    A multi-hypothesis approach for range-only simultaneous localization and mapping with aerial robots

    Get PDF
    Los sistemas de Range-only SLAM (o RO-SLAM) tienen como objetivo la construcción de un mapa formado por la posición de un conjunto de sensores de distancia y la localización simultánea del robot con respecto a dicho mapa, utilizando únicamente para ello medidas de distancia. Los sensores de distancia son dispositivos capaces de medir la distancia relativa entre cada par de dispositivos. Estos sensores son especialmente interesantes para su applicación a vehículos aéreos debido a su reducido tamaño y peso. Además, estos dispositivos son capaces de operar en interiores o zonas con carencia de señal GPS y no requieren de una línea de visión directa entre cada par de dispositivos a diferencia de otros sensores como cámaras o sensores laser, permitiendo así obtener una lectura de datos continuada sin oclusiones. Sin embargo, estos sensores presentan un modelo de observación no lineal con una deficiencia de rango debido a la carencia de información de orientación relativa entre cada par de sensores. Además, cuando se incrementa la dimensionalidad del problema de 2D a 3D para su aplicación a vehículos aéreos, el número de variables ocultas del modelo aumenta haciendo el problema más costoso computacionalmente especialmente ante implementaciones multi-hipótesis. Esta tesis estudia y propone diferentes métodos que permitan la aplicación eficiente de estos sistemas RO-SLAM con vehículos terrestres o aéreos en entornos reales. Para ello se estudia la escalabilidad del sistema en relación al número de variables ocultas y el número de dispositivos a posicionar en el mapa. A diferencia de otros métodos descritos en la literatura de RO-SLAM, los algoritmos propuestos en esta tesis tienen en cuenta las correlaciones existentes entre cada par de dispositivos especialmente para la integración de medidas estÃa˛ticas entre pares de sensores del mapa. Además, esta tesis estudia el ruido y las medidas espúreas que puedan generar los sensores de distancia para mejorar la robustez de los algoritmos propuestos con técnicas de detección y filtración. También se proponen métodos de integración de medidas de otros sensores como cámaras, altímetros o GPS para refinar las estimaciones realizadas por el sistema RO-SLAM. Otros capítulos estudian y proponen técnicas para la integración de los algoritmos RO-SLAM presentados a sistemas con múltiples robots, así como el uso de técnicas de percepción activa que permitan reducir la incertidumbre del sistema ante trayectorias con carencia de trilateración entre el robot y los sensores de destancia estáticos del mapa. Todos los métodos propuestos han sido validados mediante simulaciones y experimentos con sistemas reales detallados en esta tesis. Además, todos los sistemas software implementados, así como los conjuntos de datos registrados durante la experimentación han sido publicados y documentados para su uso en la comunidad científica

    Inertial Navigation and Mapping for Autonomous Vehicles

    Full text link

    Eye-to-Eye Calibration: Extrinsische Kalibrierung von Mehrkamerasystemen mittels Hand-Auge-Kalibrierverfahren

    Get PDF
    The problem addressed in this thesis is the extrinsic calibration of embedded multi-camera systems without overlapping views, i.e., to determine the positions and orientations of rigidly coupled cameras with respect to a common coordinate frame from captured images. Such camera systems are of increasing interest for computer vision applications due to their large combined field of view, providing practical use for visual navigation and 3d scene reconstruction. However, in order to propagate observations from one camera to another, the parameters of the coordinate transformation between both cameras have to be determined accurately. Classical methods for extrinsic camera calibration relying on spatial correspondences between images cannot be applied here. The central topic of this work is an analysis of methods based on hand-eye calibration that exploit constraints of rigidly coupled motions to solve this problem from visual camera ego-motion estimation only, without need for additional sensors for pose tracking such as inertial measurement units or vehicle odometry. The resulting extrinsic calibration methods are referred to as "eye-to-eye calibration". We provide solutions based on pose measurements (geometric eye-to-eye calibration), decoupling the actual pose estimation from the extrinsic calibration, and solutions based on images measurements (visual eye-to-eye calibration), integrating both steps within a general Structure from Motion framework. Specific solutions are also proposed for critical motion configurations such as planar motion which often occurs in vehicle-based applications.Diese Arbeit beschäftigt sich mit der extrinsischen Kalibrierung von Mehrkamerasystemen ohne überlappende Sichtbereiche aus Bildfolgen. Die extrinsischen Parameter fassen dabei Lage und Orientierung der als starr-gekoppelt vorausgesetzten Kameras in Bezug auf ein gemeinsames Referenzkoordinatensystem zusammen. Die Minimierung der Redundanz der einzelnen Sichtfelder zielt dabei auf ein möglichst großes kombiniertes Sichtfeld aller Kameras ab. Solche Aufnahmesysteme haben sich in den letzten Jahren als hilfreich für eine Reihe von Aufgabenstellungen der Computer Vision erwiesen, z. B. in den Bereichen der visuellen Navigation und der bildbasierten 3D-Szenenrekonstruktion. Um Messungen der einzelnen Kameras sinnvoll zusammenzuführen, müssen die Parameter der Koordinatentransformationen zwischen den Kamerakoordinatensystemen möglichst exakt bestimmt werden. Klassische Methoden zur extrinsischen Kamerakalibrierung basieren in der Regel auf räumlichen Korrespondenzen zwischen Kamerabildern, was ein überlappendes Sichtfeld voraussetzt. In dieser Arbeit werden alternative Methoden zur Lagebestimmung von Kameras innerhalb eines Mehrkamerasystems untersucht, die auf der Hand-Auge-Kalibrierung basieren und Zwangsbedingungen starr-gekoppelter Bewegung ausnutzen. Das Problem soll dabei im Wesentlichen anhand von Bilddaten gelöst werden, also unter Verzicht auf zusätzliche Inertialsensoren oder odometrische Daten. Die daraus abgeleiteten extrinsischen Kalibrierverfahren werden in Anlehnung an die Hand-Auge-Kalibrierung als Eye-to-Eye Calibration bezeichnet. Es werden Lösungsverfahren vorgestellt, die ausschließlich auf Posemessdaten basieren und den Prozess der Poseschätzung von der eigentlichen Kalibrierung entkoppeln, sowie Erweiterungen, die direkt auf visuellen Informationen der einzelnen Kameras basieren. Die beschriebenen Ansätze führen zu dem Entwurf eines Structure-from-Motion-Verfahrens, das Poseschätzung, Rekonstruktion der Szenengeometrie und extrinsische Kalibrierung der Kameras integriert. Bewegungskonfigurationen, die zu Singularitäten in den Kopplungsgleichungen führen, werden gesondert analysiert und es werden spezielle Lösungsstrategien zur partiellen Kalibrierung für solche Fälle entworfen. Ein Schwerpunkt liegt hier auf Bewegung in der Ebene, da diese besonders häufig in Anwendungsszenarien auftritt, in denen sich das Kamerasystem in oder auf einem Fahrzeug befindet

    Lidar-based scale recovery dense SLAM for UAV navigation

    Get PDF
    Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements
    corecore