954 research outputs found

    Gene expression in large pedigrees: analytic approaches.

    Get PDF
    BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies

    Generalized Species Sampling Priors with Latent Beta reinforcements

    Full text link
    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.Comment: For correspondence purposes, Edoardo M. Airoldi's email is [email protected]; Federico Bassetti's email is [email protected]; Michele Guindani's email is [email protected] ; Fabrizo Leisen's email is [email protected]. To appear in the Journal of the American Statistical Associatio

    A Comparison of Univariate Stochastic Volatility Models for U.S. Short Rates Using EMM Estimation

    Get PDF
    In this paper, the efficient method of moments (EMM) estimation using a seminonparametric (SNP) auxiliary model is employed to determine the best fitting model for the volatility dynamics of the U.S. weekly three-month interest rate. A variety of volatility models are considered, including one-factor diffusion models, two-factor and three-factor stochastic volatility (SV) models, non-Gaussian diffusion models with Stable distributed errors, and a variety of Markov regime switching (RS) models. The advantage of using EMM estimation is that all of the proposed structural models can be evaluated with respect to a common auxiliary model. We find that a continuous-time twofactor SV model, a continuous-time three-factor SV model, and a discrete-time RS-involatility model with level effect can well explain the salient features of the short rate as summarized by the auxiliary model. We also show that either an SV model with a level effect or a RS model with a level effect, but not both, is needed for explaining the data. Our EMM estimates of the level effect are much lower than unity, but around 1/2 after incorporating the SV effect or the RS effect.

    Bayesian Conditional Tensor Factorizations for High-Dimensional Classification

    Full text link
    In many application areas, data are collected on a categorical response and high-dimensional categorical predictors, with the goals being to build a parsimonious model for classification while doing inferences on the important predictors. In settings such as genomics, there can be complex interactions among the predictors. By using a carefully-structured Tucker factorization, we define a model that can characterize any conditional probability, while facilitating variable selection and modeling of higher-order interactions. Following a Bayesian approach, we propose a Markov chain Monte Carlo algorithm for posterior computation accommodating uncertainty in the predictors to be included. Under near sparsity assumptions, the posterior distribution for the conditional probability is shown to achieve close to the parametric rate of contraction even in ultra high-dimensional settings. The methods are illustrated using simulation examples and biomedical applications

    A hierarchical Dirichlet process mixture model for haplotype reconstruction from multi-population data

    Full text link
    The perennial problem of "how many clusters?" remains an issue of substantial interest in data mining and machine learning communities, and becomes particularly salient in large data sets such as populational genomic data where the number of clusters needs to be relatively large and open-ended. This problem gets further complicated in a co-clustering scenario in which one needs to solve multiple clustering problems simultaneously because of the presence of common centroids (e.g., ancestors) shared by clusters (e.g., possible descents from a certain ancestor) from different multiple-cluster samples (e.g., different human subpopulations). In this paper we present a hierarchical nonparametric Bayesian model to address this problem in the context of multi-population haplotype inference. Uncovering the haplotypes of single nucleotide polymorphisms is essential for many biological and medical applications. While it is uncommon for the genotype data to be pooled from multiple ethnically distinct populations, few existing programs have explicitly leveraged the individual ethnic information for haplotype inference. In this paper we present a new haplotype inference program, Haploi, which makes use of such information and is readily applicable to genotype sequences with thousands of SNPs from heterogeneous populations, with competent and sometimes superior speed and accuracy comparing to the state-of-the-art programs. Underlying Haploi is a new haplotype distribution model based on a nonparametric Bayesian formalism known as the hierarchical Dirichlet process, which represents a tractable surrogate to the coalescent process. The proposed model is exchangeable, unbounded, and capable of coupling demographic information of different populations.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS225 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore