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ABSTRACT:  

In this paper, the efficient method of moments (EMM) estimation using a semi-

nonparametric (SNP) auxiliary model is employed to determine the best fitting model for 

the volatility dynamics of the U.S. weekly three-month interest rate.  A variety of 

volatility models are considered, including one-factor diffusion models, two-factor and 

three-factor stochastic volatility (SV) models, non-Gaussian diffusion models with  

Stable distributed errors, and a variety of Markov regime switching (RS) models.   The 

advantage of using EMM estimation is that all of the proposed structural models can be 

evaluated with respect to a common auxiliary model. We find that a continuous-time two-

factor SV model, a continuous-time three-factor SV model, and a discrete-time RS-in-

volatility model with level effect can well explain the salient features of the short rate as 

summarized by the auxiliary model.  We also show that either an SV model with a level 

effect or a RS model with a level effect, but not both, is needed for explaining the data.  

Our EMM estimates of the level effect are much lower than unity, but around 1/2 after 

incorporating the SV effect or the RS effect.   
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1.  Introduction 
 

The risk-free short-term interest rate is a key state variable in asset pricing models, term 

structure models and macroeconomic models.  It is used to express the expected 

equilibrium returns on risky assets in terms of excess.  It directly affects the short end of 

the term structure and thus has implications for the pricing of the full range of fixed 

income securities and derivatives.  Further, the short rate is an important input for 

business cycle analysis through its impact on the cost of credit, its sensitivity to the stance 

of monetary policy, and to inflationary expectations.1   

 

Originating from the Brownian motion representation of Merton (1973), an enormous 

amount of work has been directed towards modeling and estimating the dynamics of the 

short rate.  The mean-reverting model in Vasicek (1977) allows the dynamics of interest 

rates to be stationary.  The square-root model of Cox, Ingersoll, and Ross (1985) (CIR) 

guarantees positive interest rates and incorporates the “level effect,” which allows 

volatility to increase with the level of the interest rate.  Chan et al. (1992) (hereafter 

CKLS) compared a variety of single factor linear diffusion models for the short rate. 

They found that models that freely estimated the level effect outperformed other models, 

and that the level effect parameter estimate was significantly greater than unity. Due to 

the poor empirical performance of linear diffusion models, several authors have focused 

on the estimation of the functional form of the drift and volatility of the diffusion model.  

Conley et al. (1995) exploited the moment generating techniques of Hansen and 

Scheinkman (1995) to obtain nonparametric estimates of the drift; Ait-Sahalia (1996a) 

estimated the volatility function nonparametrically; and Stanton (1997) provided 

nonparametric discrete-time approximations to the drift and volatility functions.   

 

The poor performance of one factor models led to the incorporation of an additional 

stochastic volatility (SV) factor in order to accommodate the strong conditional 

                                                 
1 See Andersen (2005).   
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heteroskedasticity in short rates.  Longstaff and Schwartz (1992) derived a two-factor 

general equilibrium model for the short rate, with its level and its conditional volatility as 

factors.  They showed that a two-factor model improves upon a single factor model, and 

carries additional information about the term structure and leads to better pricing and 

hedging performance compared with a single factor model.  Similarly, Brenner et al. 

(1996) and Koedijk et al. (1997) modeled the conditional volatility process of the short 

rate as a GARCH process and found that a model with both level and GARCH effects 

outperforms models that exclude one of them.  Later, Anderson and Lund (1997) 

(hereafter AL) and Ball and Torous (1999) found that a two-factor model with level and 

SV factors outperforms the two-factor model with GARCH volatility.   

 

In the specification of interest rate models, evidence has been documented for regime 

switching (RS) behavior in short rates. Garcia and Perron (1996) provided a three-regime 

model using the methodology of Hamilton (1989), which allows the drift and volatility of 

the ex-post real interest rate to switch over regimes. Their results suggested that both the 

drift and volatility are essentially different for the periods 1961-1973, 1973-1980 and 

1980-1986.  Cai (1994) presented a RS-ARCH model for the excess returns of the three-

month T-bill over the thirty-day T-bill and reported two periods of high interest rate 

volatility: one is in 1974 (the energy crisis) and the other is between 1979 and 1982 (the 

“monetary experiment” of the Federal Reserve).  Gray (1996) developed a generalized 

RS model based on a CIR process with regime dependence in both mean reversion and 

conditional volatility driven by a GARCH process. He found evidence of a high (low) 

volatility regime with high (low) mean reversion for one-month U.S. T-Bill yields.  An 

additional high-volatility regime is found in 1987, corresponding to the stock market 

crash.  Gray argued that the RS and GARCH effect as well as the diffusion terms are 

necessary for accommodating the dynamics of the short rates.  Smith (2002) presented a 

model for the short rate based on the CKLS process but only allowed the unconditional 

volatility to switch between regimes. He empirically compared the RS models and SV 

models using a quasi-maximum likelihood estimation technique, and argued that either a 

RS or an SV effect, but not both, is needed to adequately describe the data.  Ang and 

Bekaert (2002a) found that regime-switching models of interest rates replicate non-linear 
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patterns in the drift and volatility functions of short rates found in non-parametric 

approaches.   

 

As pointed out by many authors, the RS model is more than a mere device used to fit the 

data; it has important implications for business cycle analysis and yield curve dynamics 

due to the natural association between the notion of regimes that underlie the econometric 

model and the large economy-wide shocks that have strong and persistent influences on 

the behavior of interest rates.  For example, Naik and Lee (1998) showed that the RS 

model generates an empirically more reasonable term structure of volatilities, fat tails, 

and persistence in volatility compared to those of the SV models.  Ang and Bekaert 

(2001) argued that the two-regime classification of U.S. nominal short term rates 

corresponds reasonably well with business cycles. Lahiri et al. (2000) studied the 

comparative performance of a number of interest rate spreads as predictors of the German 

inflation and business cycle in the post-Bretton Woods era using a two-regime RS model.  

Bansal and Zhou (2002) developed a term structure model, compared the two-factor RS 

model with the benchmark CIR model and affine models with up to three factors, and 

argued that only the RS model can account for the well documented violations of the 

expectations hypothesis, the observed conditional volatility, and the conditional 

correlation across yields with regimes intimately related to business cycles. Dai, 

Singleton, and Yang (2004) developed a term structure model with priced factor and RS 

risks, provided closed-form solutions for zero-coupon bond prices, and argued that the 

shapes of the term structures of bond yield volatilities are very different across regimes.    

 

In response to the non-Gaussian behavior of interest rates and asset returns, models have 

been developed that relax the assumption of conditionally normally distributed 

innovations to take into account of both volatility clustering and leptokurtosis in 

describing the financial series.. The GARCH model with Student-t distributed 

innovations was considered by Bollerslev (1987), and the GARCH model with the 

extended skewed Student-t distribution was utilized by Lambert and Laurent (2000). 

Other distributions have been examined, including the normal inverse Gaussian process 

by Barndorff-Nielsen (1997) and Andersson (2001), the variance-gamma process by 
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Madan and Seneta (1990), the generalized hyperbolic process of Eberlein, Keller and 

Prause (1998), and the CGMY process by Carr, Geman, Madan and Yor (2000). In 

general, estimates of conditional volatility using non-Gaussian distribution showed better 

results relative to estimates obtained assuming normality.  For a review of these results 

see Peters (2001), and Verhoven and McAleer (2003). 

 

While the SV model and its extensions have theoretical appeal, efficient estimation is not 

straightforward.  Standard statistical methods, both classical and Bayesian, are usually 

not applicable either because it is not practicable to obtain the likelihood for the entire 

state vector or because the integration required to eliminate unobservable factors from the 

likelihood is infeasible.  A variety of estimation procedures has been proposed to 

overcome these difficulties, including the generalized method of moments (GMM) used 

by Melino and Turnbull (1990), the quasi maximum likelihood (QML) approach 

followed by Harvey et al. (1994), the simulated maximum likelihood approaches used by 

Danielsson (1994) and Sandmann and Koopman (1998), the Markov-chain Monte Carlo 

(MCMC) procedures used by Jaquier et al. (1994) and Kim et al. (1998), and the efficient 

methods of moments (EMM) approach developed by Gallant and Tauchen (1996) and 

Gallant and Long (1997). 2  

 

Although there is a large literature on SV models for interest rates, there still remains 

substantial disagreement on the empirical performance of different model specifications.  

The main reason for these disagreements is the use of estimation techniques that make it 

difficult to compare competing models in a unified way. In this paper we follow the 

methodology of Gallant, Hsieh, and Tauchen (1997) and use the EMM to estimate and 

compare a comprehensive collection of univariate SV models for the short-term interest 

rate including one-factor diffusion models, two-factor and three-factor stochastic 

volatility (SV) models, non-Gaussian diffusion models with stable distributed errors, and 

a variety of Markov regime switching (RS) models.  The use of EMM allows for a 

straightforward comparison of models, even if the models are non-nested.   

                                                 
2 See Andersen et al. (1990) for performance comparisons, and Broto and Ruiz (2002) for a survey on 
asymptotic properties, finite sample experiments, limitations and advantages of various estimators.  
Shephard (2005) provides a general overview of the literature. 
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Our results favor the one-factor non-Gaussian diffusion model over the one-factor 

Gaussian diffusion model, and the multi-factor SV models and the RS models over the 

one-factor non-Gaussian diffusion model.  We show that a two-factor SV model, a three-

factor SV model, and a RS-in-volatility model that allows for a level effect adequately 

describe the salient features of the short rate process. Our results show that the EMM 

estimates of the level effect are much lower than unity in the accepted SV models and RS 

model. Specifically, in our two-factor SV and three-factor SV models, the level effects 

are estimated similarly to that found in other studies of two-factor models (e.g. AL). In 

addition, the level effect estimate obtained from our RS-in-volatility model is also found 

to be around 1/2.  Finally, we provide the first EMM estimations for a series of forms of 

the RS models and offer a performance comparison between different RS models and 

between the RS models and SV models for fitting the U.S. short rates. Our EMM 

estimation results clearly indicate that either an SV effect or a RS effect, but not both, are 

needed for describing the data accurately.   

 

The remainder of the paper is organized as follows.  Section 2 provides a description of 

the EMM methodology, procedure, and diagnostics.  Section 3 presents the models for 

the short rate to be estimated and compared.  Section 4 describes the data, and Section 5 

reports the EMM estimation results and processes the diagnostic tests.  Section 6 

summarizes and concludes.   

 

 

2. Methodology 
 

To facilitate a consistent evaluation and estimation across non-nested models, we rely on 

the EMM estimation technique developed in Gallant and Tauchen (1996) and extended in 

Gallant and Long (1997).  The basic procedure of EMM estimation, summarized in 

Figure 1.1, consists of two steps.3  First, in the projection step, the empirical conditional 

density of the observed time series is estimated by a semi-nonparametric (SNP) series 
                                                 
3See Bansal and Zhou (2002).  
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expansion.  This SNP expansion has a VAR-GARCH Gaussian density as its leading 

term, and departures from the Gaussian leading term are captured by a Hermite 

polynomial expansion.  Second, in the estimation step, a GMM-type criterion function is 

constructed using the score functions from the log-likelihood of the SNP density as 

moments.  The scores are evaluated using simulated data  from a given structural model, 

and the criterion function is minimized with respect to the parameters underlying the 

structural model.  A brief description of these steps, following Gallant and Tauchen 

(2001), is given below.  

 

2.1. Projection Step 

 

Gallant and Tauchen (2001) recommended the SNP model as the score generator for use 

with the EMM estimation.  The advantage of the SNP model is that it can approximate 

virtually any smooth distribution, even a mixture distribution (as is the case with a model 

of regime shifts).   

 

To describe the SNP model, let ty  denote the observed data, and let  { }1 1 1,...,t tx y y− −=  

denote the lagged observations representing the complete and relevant information set.  A 

SNP model starts with a Gaussian vector autoregression (VAR) with uL  lags, and a 

GARCH ( gL , rL ) or ARCH ( rL ) conditional variance specification.  The innovation 

density is a Hermite density of degree zK , having the form of a polynomial times the 

standard normal density.  

 

The SNP conditional density, 1( | , )t tf y x θ− , with parameter vector θ , has the form:  

                                      [ ]2
1( | , ) ( ) ( | , )t t t t x xf y x P z N yθ μ− ∝ Σ                                    (1.1) 

where 1( )x xz R y μ−= −  with 'x x xR RΣ = .  (.)N  is a normal density of y  with conditional 

mean xμ  and conditional variance xΣ , where xμ  is estimated using a VAR specification, 

and xΣ  is estimated using an ARCH/GARCH specification, which parameterizes xR .   
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To accommodate any remaining non-Gaussianity and time series structure in the 

innovation process, Ρ  is a Hermite polynomial with degree zK  in z ; to allow for 

additional conditional heterogeneity over that allowed by GARCH, the coefficients of the 

polynomial in the Hermite density are themselves polynomials of degree xK  in pL  lags 

of the data.4  For example, if only xt-1 is allowed to impact the conditional distribution, 

the Hermite polynomial P is given by                                    

                                              1
0

( , )
zK

i
t t i t

i
P z x a z−

=

=∑                                            

                         where 1 1
0

( )
xK

j
i t ij t

j

a x a x− −
=

= ∑                                                    (1.2) 

The order of the polynomial expansion, zK , controls the extent to which the tails deviate 

from normality.  If 0zK = , the SNP reduces to the normal density.  The order of the 

coefficients of the polynomial, xK , determines the degree of the heterogeneity of the 

innovations { }tz . When 0xK = , tz are homogeneous, that is, the conditional density is 

independent of the lagged observations, 1tx − .  If 0xK > , we effectively multiply the 

innovations by functions of 1tx − .   

 

Because the number of terms in a polynomial expansion becomes exponentially large as 

the dimension increases, two additional tuning parameters are introduced: 0zI >  implies 

that all interactions larger than z zK I−  are suppressed; similarly for 0xI > .  The tuning 

parameters that describe a SNP model are summarized by the vector 

( , , , , , , , )u g r p z z x xL L L L K I K I .  Table 1.1 gives a taxonomy of common SNP models.5   

 

For a given set of set of tuning parameters, the parameters θ of the SNP model are 

estimated by quasi-maximum likelihood (QML). The quasi-maximum likelihood 

estimator, nθ%  satisfies the first-order conditions of the optimization problem,  

                                                 
4 See Gallant and Tauchen (1996).   
5 See Gallant and Tauchen (1997).  



- 9 - 

                      1 1
1 1

1 1( ) ln ( | , ) ( | , ) 0
n n

n t t n f t t n
t t

m f y x s y x
n n

θ θ θ
θ − −

= =

∂
= = =

∂∑ ∑% % %                  (1.3) 

where 1 1( | , ) ln ( | , )f t t n t t ns y x f y xθ θ
θ− −

∂
=
∂

% %  denotes the quasi-score function.  The 

dimension of the auxiliary model, lθ , is selected by following an upward model 

expansion path, using the Schwarz’s Bayesian information criterion (BIC)  

( ) ( / 2 ) ln( )nBIC s l n nθθ= +% , where { } 1
( ) ( , )n

n n t t
s L yθ θ

=
= −% %  is the negative maximized 

objective function.  Implied by standard QML theory, even if the auxiliary model is 

misspecified, under suitable regularity, 0

p

nθ θ→% , where the limiting value, 0θ , is denoted 

the quasi-true value of θ .   

 

The projection step provides a summary of the data, which will be used as the score 

generator for the next step of estimation.  Gallant and Long (1997) show that a judicious 

selection of the auxiliary model, ensuring that it approximates the salient features of the 

observed data, will result in full asymptotic efficiency.  Effectively, as the score generator 

approaches the true conditional density, the estimated covariance matrix for the structural 

parameter approaches that of maximum likelihood.  This result embodies one of the main 

advantages of EMM.  It prescribes a systematic approach to the derivation of efficient 

moment conditions for estimation in a general parametric setting.   

 

2.2. Estimation Step  

 

In the estimation step estimates of the parameters of a candidate structural parameter are 

obtained from a GMM-type estimation procedure using the fitted scores from the SNP 

model as the moment conditions.  To do this, for a specific structural model represented 

by 1,( | )t tP y x ρ−  with a given parameter vector ρ , a simulated series 1ˆ{ }N
t ty =  is generated.  

Identification requires that the dimension of the quasi-score (the length of θ ), lθ , exceeds 

that of the structural parameter vector, lρ .  An average over a long simulation from the 

true structural model, reevaluated at the fixed QML estimate,  
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                                   1
1

1 ˆ ˆ( , ) ln ( ( ) | ( ), )
N

N n t t n
n

m f y x
N

ρ θ ρ ρ θ
θ −

=

∂
=

∂∑% %                           (1.4) 

would satisfy 0( , ) 0nm ρ θ =% . In the usual case in which l lθ ρ> , the structural parameters ρ 

are estimated by minimizing the EMM objective function 

                                      1ˆ arg min ( , ) ' ( , )n N n n N nm I m
ρ

ρ ρ θ ρ θ−⎡ ⎤= ⎣ ⎦
% %%                                 (1.5) 

where nI%  denotes a consistent estimator of the asymptotic covariance matrix sample 

quasi-score vector.  The estimate nI%  is obtained directly from the first step which avoids 

the need for computation of the weighting matrix during the second GMM-based 

estimation step.  In addition, if the auxiliary model is expanded to the point where it 

accommodates all main systematic features of the data, likelihood theory implies that the 

quasi-scores constitute a (near) martingale difference sequence, and a convenient 

estimator of the quasi-information matrix is obtained from the outer product of the score:  

                     1 1
1

1 ln ( | ( ), ) ln ( | ( ), ) '
n

n t t n t t n
t

I f y x f y x
n

ρ θ ρ θ
θ θ− −

=

∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∑ % %%              (1.6)  

 

Gallant and Tauchen (1996) show that, under suitable regularity conditions, the EMM 

estimator ˆnρ is almost surely consistent and asymptotically normal.  Moreover, the 

asymptotic variance-covariance matrix may be estimated consistently by  

                                
1

1ˆ ˆ( , ) ' ( , ) '1ˆcov( )
'

N n n N n n
n n

m mI
n

ρ θ ρ θρ
ρ ρ

−

−⎡ ⎤∂ ∂
= ⎢ ⎥∂ ∂⎣ ⎦

% %
%                            (1.7) 

 

The usual GMM test of over-identifying restrictions may be used to test model adequacy. 

If the structural model is correctly specified, then the normalized EMM objective 

function satisfies 

                                        1 2ˆ ˆ( , ) ' ( , ) ( )N n n n N n nnm I m l lθ ρρ θ ρ θ χ− −% %% �                              (1.8) 

If the overidentification test rejects an underlying structural model, the individual 

elements of the score vector may provide useful information regarding the dimensions in 

which the structural model fails to accommodate the data.  These model diagnostics are 

based on the standard t-statistics of the individual elements of the score vector, 
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ˆ( , )N n nm ρ θ% .  Obtained by normalizing the score vector by its standard error, these t-

statistics can be interpreted much as normalized regression residuals.  Thus, large t-ratios 

reveal those characteristics that are not well approximated.  Subject to the same risk as 

the interpretation of regression residual, the t-ratios are usually biased downward, and 

therefore conservative.  Nonetheless, as with regression residuals, inspecting normalized 

elements of ˆ( , )n nm ρ θ%  is usually the most informative diagnostic available.   

 

Another advantage of using EMM estimation is the ability to rank non-nested structural 

models.  Notice that the weight matrix in GMM used in constructing the specification test 

is identical across different model specifications.  Consequently, the p-value based on the 

overidentification test can be directly compared across different structural models to 

identify the best structural model.  It is well recognized in the literature that tests for the 

presence of regime shifts against an alternative require nonstandard approaches.  Our 

approach of comparing all the considered models to a common nonparametric density 

allows us to rank order all the considered models according to the p-values implied by the 

EMM criterion function.   

 

 

3. SV Models for the Short Rate  
 

In this section we discuss a series of models and extensions to explain short-term interest 

rate dynamics.  The first type of model is the generalized Gaussian diffusion model that is 

commonly used in building term structure models. To incorporate additional factors, we 

extend the one-factor diffusion model to the two-factor and three-factor SV models that 

has been proven to be more successful than the ARCH/GARCH model in modeling the 

dynamics of the second moment of many financial time series.  The second type of model 

is the non-Gaussian diffusion model with Stable distributed innovations, which has 

recently become popular in the empirical finance literature. The third type of model 

allows for Markov RS behavior in the specification of the volatility dynamics, with the 

flexibility of simultaneously mixing the RS effect with the SV effect and the level effect 
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of volatility.  The Gaussian and non-Gaussian diffusion models are continuous-time 

models and the RS models are discrete-time models.  

 

3.1. Gaussian Diffusion Models  

 

A.  One-Factor Gaussian Diffusion Model  

 

Firstly, we consider the generalized diffusion model, presented by Chan et al.  (1992), in 

which the instantaneous change in the short rate can been characterized as a stochastic 

differential equation (SDE) given by 

          0 1 1 1( ) ( )t t t r r t tdr r dt r dW k r dt r dWγ γφ φ σ μ σ= − + = − +            (1.9) 

where { }tr  is the short rate at time t, and 1dW  is a standard Wiener process.  We call (1.9) 

the CKLS model. The key characteristic of the dynamics is that the conditional mean and 

variance of changes in the short rate depend on the level of the rate.  Specifically, in this 

model, tr  mean-reverts towards the long-run level rμ , with the speed of the reversion 

measured by rk , and γ  captures the so-called “level effect” in which of the level of rates 

influences the conditional volatility.  By allowing γ  to be estimated freely, many well 

known models can be nested with appropriated parameter restrictions within this 

generalized model.6   

 

To empirically calibrate the general SDE (1.9), Chan et al (1992) employed the following 

discretization approximation  

                                 0 1 1 1( )t t t t r r t t tr r r z k r r zγ γφ φ σ μ σ+ −Δ = − + = − +                        (1.10)  

and estimated the model parameters with the generalized methods of moments (GMM) 

estimation technique of Hansen (1982).  Using monthly data from 1964-1989, they found 

that the short rate was mean reverting, and reported a point estimate of 1.4999 for the 

level effect parameter γ which implies the volatility of short-term interest rates is 

explosive.  With similar data, Smith (2002) estimated the CKLS model using a quasi-

maximum likelihood methodology and reported a similar level effect estimate of 1.4515.  
                                                 
6 See Chan et al (1992).   
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In order to obtain the maximum likelihood estimates and guarantee a compatible 

comparison with the SV and RS models, Smith used a two step procedure for estimating 

the models.  In the first step, he used the ordinary least square (OLS) to obtain an 

estimate of the mean reversion parameters 0φ  and 1φ . In the second step, he formed the 

fitted residuals 0 1 1t t tr r eφ φ −Δ = − + , and then estimated the remaining parameters from the 

transformation of the log of the squared residual. This estimation procedure is required to 

build up the likelihood functions for the SV and RS models.  

 

Although these findings are instructive for understanding the short-term rate dynamics, 

they are not entirely satisfactory.  First, Monte Carlo studies have questioned the 

efficiency of using GMM estimation in sense of the choice of the moment conditions and 

its finite sample performance.  The two-step estimation procedure used in Smith (2002) 

suffers from the loss of the estimation efficiency as well.  Lastly, evidence has been 

shown that the estimated parameters of the CKLS model are sensitive to the data 

frequency. In particular, the level effect parameter estimate from monthly data could be 

spuriously high and unstable; using more frequently sampled data leads to different 

results.  In addition, as pointed out by Andersen and Lund (1997), the internal dynamics 

proposed in the discrete-time models, at estimated parameter values, are excessively 

erratic. This severely limits their usefulness for numerical or simulation-based estimation 

procedures.  To avoid the previously mentioned difficulties in estimating models of the 

short rate, in this paper we rely on the EMM estimation using weekly data and estimate 

the continuous-time CKLS model directly rather than using a discretization 

approximation. 

   

 

B.  Two-Factor SV Model 

 

We consider the following CKLS model extended to have stochastic volatility in the 

spirit of Taylor (1986, 1994):  
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                         0 1 1
2 2

0 1 2

( ) ( )

log( ) ( log( ))
t t t t t r r t t t

t t

dr r dt r dz k r dt r dW

d dt dW

γ γφ φ σ μ σ

σ ω ω σ ξ

⎧ = − + = − +⎪
⎨

= + +⎪⎩
           (1.11) 

where 1dW  and 2dW  are mutually independent i.i.d. Wiener processes.  For these 

dynamics, the log-volatility of short rate series is assumed to follow a mean reverting 

process as well as the series itself.  Also, the conditional volatility is subject to random 

shocks, and the sensitivity to these shocks is measured by the parameter ξ  > 0.  

 

Maximum likelihood estimation is generally not feasible for estimating the SV models 

due to the presence of an unobserved volatility.  One procedure available is the quasi-

maximum likelihood procedure of Harvey, Ruiz, and Shephard (1994). This approach 

uses a transformation on the log of the squared residual in order to write the system in 

state-space form, and then applies the Kalman filter to recursively build up the likelihood 

function.  Smith (2002) followed this two-step estimation procedure and reported an 

estimate of 1.44 for the level effect parameter using monthly data.   

 

Andersen and Lund (hereafter AL) (1997) estimated (1.11) directly using the EMM 

estimation technique with a SNP auxiliary model that employs a Level-EGARCH leading 

term.  Using weekly data over the 1954-1995 sample periods, they found the level effect 

parameter to be close to 0.5. While their model was rejected by the data at the 5 percent 

significant level, the incorporation of the unobservable volatility factor was shown to 

greatly enhance the model’s ability to fit the data and the implied process was much less 

erratic than the process implied by the CKLS estimates7.  Following AL, we estimate 

(1.11) using the EMM estimation with a longer span of weekly data.  

 

 

C. Three-Factor SV Model   

                                                 
7 A number of other estimation procedures have been implemented for the two-factor SV model, including 

the Bayesian technique of Jacquier, Polson, and Rossi (1994), the maximum likelihood procedure of 

Fridman and Harris (1998), and the maximum likelihood Monte Carlo method of Sndmann and Koopman 

(1998).   
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We consider the following continuous-time three-factor SV model for the short rate:                                       

                            
0 1 , 1

2 2
0 1 2

0 1 3

( ) ( )

log( ) ( log( ))
( )

t t t t t r r t t t t

t t

t t

dr r dt r dz k r dt r dW

d dt dW
d dt dW

γ γφ φ σ μ σ

σ ω ω σ ξ
μ υ υ μ ζ

⎧ = − + = − +
⎪⎪ = + +⎨
⎪ = + +⎪⎩

             (1.12) 

where 1dW , 2dW and 3dW  are mutually independent i.i.d. Wiener processes.  In (1.12), 

the log-volatility of short rate series and the long-run mean are assumed to follow mean-

reverting process.  The sensitivity of shocks to the log-volatility and to the long-run mean 

are measured by the non-negative parametersξ  and ζ ,  respectively.   

 

The model (1.12) is an extension of the two-factor SV model (1.11) suggested by the AL. 

The introduction of a third factor associated with the reverting mean level may improve 

the data fitting through accommodating the time-varying drift behavior over the sample 

period.  According to AL, time variation in the reverting mean could be interpreted as 

variation in an underlying inflation rate.   

 

The three-factor model (1.12) is a particular form of a general class of affine multifactor 

models.  Dai and Singleton (2002) discussed the general issues for the identification and 

admissibility conditions of affine diffusion models, which are characterized by linearity 

of the drift and variance functions.  The investigation of other types of three-factor SV 

models or general affine diffusion models is left for further research.   

 

 

3.2. Non-Gaussian Diffusion Model 

 

The modern asset pricing theory and, more specific, the option pricing theory have been 

firmly built upon the Gaussian diffusion framework based on the beliefs that the financial 

data tends to become more Gaussian over longer timescales.  The popularity of the SV 

approach is partially due to its consistency with the Gaussian assumption making possible 

an appropriate generalization of the Black-Scholes option pricing framework. However, 
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empirically studies have shown that financial returns exhibit features that are 

incompatible with the assumption of Gaussian data. The leptokurtosis implied by the 

Gaussian diffusion and SV models tend to be far less than the sample kurtosis observed 

from many financial series, although the implied time-varying and persistent volatilities 

are consistent with the data.  

 

One generalization developed to explain the observed leptokurtosis and skewness is the 

jump-diffusion model originally proposed by Merton (1976). This model consists of two 

parts: a continuous part modeled by a geometric Brownian motion, and a jump part with 

the logarithm of the jump sizes having a double exponential distribution and the jump 

times corresponding to the event times of a Poisson process. General properties of jump-

diffusion models with independent identically distributed jump sizes have been 

extensively studied; for an excellent survey, see Duffie (2000).  

 

Another generalization is to consider diffusion models assuming non-Gaussian 

distributions to capture the departures from the Gaussian diffusion model.  Following this 

direction, a variety of non-Gaussian distributions has been considered in discrete-time 

models.8  However, these models  suffer from the lack of  “stability”; i.e., the distribution 

of the increments do not depend on the time intervals, which is a desirable property for 

asset returns particularly in the context of portfolio analysis and risk management as 

stressed by Mandelbrot (1963).  In fact, the stable law9 is the only possible weak limit of 

properly normalized sums of i.i.d. random variables and only for stable distributed 

returns do we have the property that linear combinations of different return series follow 

again a stable distribution.   

 

Motivated by the nice properties of the stable law and stability under-addition, we 

consider the following continuous-time non-Gaussian CKLS model with stable Lèvy 

increments  

                                                 
8 See a review of, among others, Peters (2001) and Verhoven and McAleer (2003). 
9 The sum of a number of random variables with power-law tail distributions having infinite variance will 
tend to a stable Lèvy distribution as the number of variables grows, also referred to as the generalized 
central theorem.  
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                                0 1 1( ) ( )t t t r r t t tdr r dt r dW k r dt r dLγ γφ φ σ μ σ= − + = − +                    (1.13) 

The key characteristics of this model are essentially the same as those of Gaussian CKLS 

model (mean-reverting process for the drift dynamics and the incorporated level effect for 

the variance dynamics of the short rate), except that tL  is a stable Lèvy process.  

 

Stable Lèvy processes are stochastic processes with independent and stationary 

increments.  A stochastic process tL  is a stable Lèvy process if and only if: (1) it has 

independent increments; that is, for 0 a b c d< < < < , d cL L− and b aL L−  are 

independent; (2) it has stationary increments; that is, the distribution of t s tL L+ −  does not 

depend on t ; (3) it is stochastically continuous (4) with probability one it has right-

continuous paths with finite left-limits; and (5) 0 0L =  almost surely.  The Brownian 

motion is a special example of Lèvy processes, one which is with stationary, independent 

increments having a Gaussian distribution; here we consider the standard stable process, 

which is a Lèvy process with stationary, independent increments having a standard stable 

distribution, S ( , ,0,1)α β .  A stable distribution is characterized by four parameters: 

( , , , )cα β δ .  The exponent,α , confined to the interval 0 2α< ≤ , is known as the shape 

variable, which influences the total probability contained in the extreme tails, or the 

shape of the distribution.  The smaller the value of α , the thicker the tails of the 

distribution.  In particular when α = 2 we get the normal distribution.  The parameter β  

measures asymmetry of the distribution.  If 0β = , the distribution is symmetric about the 

location parameterδ ; if 1β = , the distribution is totally skewed to the right and similarly 

it is totally to the left when 1β = − .  The scale parameter c  narrows or broadens the 

distribution about δ  in proportion to c .  A standard stable distribution has 0δ =  

and 1c = .  Note a stable distribution given by (2,0, , )c δ  is exactly a normal distribution 

with mean δ  and variance 22c .   

 

There is not much published literature on empirical volatility modeling using stable 

distributions.  The non-existence of moments of second or higher order is a major 

drawback of the use of the stable distribution from an empirical point of view.  Also, with 
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the exception of a few cases, the probability density function is not known in closed 

form; therefore, one has to use their characteristic functions instead.  On the other hand, 

one can use stable distributions to save the CLT argument, based on which a similar asset 

pricing framework to the current Gaussian one could be established; it also can easily 

accommodate heavy tails and skewness of financial series, which is a much desired 

property in empirical finance.  For these reasons, the use of stable processes has recently 

become substantially more popular in the modeling of stochastic volatility (Liu and 

Brosen (1995)), portfolio theory (Olotarev (1986), Mittnik and Rachev (1991), Cheng 

and Rachev (1995)), asset pricing theory (Connor (1984), Gamrowski and Rachev 

(1994,1995)), option pricing (Rachev and Samorodnitsky (1993), Janicki and Weron 

(1994), Bouleau and Lepingle (1994), Matacz (2004)), and other financial phenomena.10   

 

In our estimation of (1.13) using EMM, we fix the characteristic parameters α  and β  of 

the stable distribution and freely estimate the remaining parameters. The choices for α  

and β  are ad hoc and it would be desirable to estimate these parameters freely.11   

 

3.3.  RS Models 

 

The diffusion models discussed in the previous subsections are single-regime models in 

that they have a single structure for the conditional mean and variance.  For example, the 

CKLS model for the short rate is assumed to be mean reverting to the same long-run 

mean, with the same speed of reversion and the same level effect throughout the sample.  

A more flexible extension is to relax the assumption of a single regime in favor of a two-

state Markov RS specification.  Many authors have proposed RS models for fitting the 

dynamics of the short-term interest rate (see, Hamilton (1998), Garcia and Perron (1996), 

Gray (1996) and Ang and Bakeart (2001), Liechty and Roberts (2001)), for the impact on 

the entire yield curve using dynamic term structure models (see, Naik and Lee (1997), 

Boudoukh et al. (1999), Evans (2001) and Bansal and Zhou (2003), Dai, Singleton and 

                                                 
10 See Marinelli and Rachev (2002).  
11 Garcia, Renault and Veredas (2004) discussed the estimation of the parameters of a Stable distribution 
using the indirect inference methods relative to other prevalent methods based on the characteristic function 
and the empirical quantiles of the Stable distribution.  
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Yang (2004)), and for the bond pricing in the RS context (see, Landén (2000) and Wu 

and Zeng (2003)).  While many theoretical and empirical works show strong evidence for 

regime switching in interest rates, the specification issue of the RS model for the 

conditional mean and variance dynamics of the interest rates has not been extensively 

explored in the literature.  Considering that our interest in this paper is to model the 

volatility dynamics for the short rate, we assume a simple specification in which the 

conditional mean parameters are regime independent.  Furthermore, in our specification 

of RS models we use the discrete-time approximation to the continuous-time diffusion 

used in CKLS (1992), which is consistent with the rationale that large regime switching 

behavior only occurs infrequently over time. EMM estimation enables us to compare the 

RS models with the continuous-time models based on the EMM objective function p-

value.   

 

Given the assumption of the single-regime conditional mean dynamics, we propose four 

RS models to describe the volatility dynamics. The first model is a simplified regime 

switching-in-volatility model (RS-in- σ  model hereafter) based on a discretized OU 

process, given by  

                                            0 1 1t t i tr r zφ φ σ−Δ = − +                                 1, 2i =             (1.14) 

This model assumes the same speed of mean reversion 1φ  to a common long-run mean 

0 1( / )φ φ , but allows different shocks within each regime to accommodate time-varying 

volatility.  The switching states are governed by a first-order Markov process.  The time 

invariant transition probabilities from regime j to regime i are defined as 

1Pr( | )ij t tp S j S i−= = =  with the restriction 
2

1

1ij
i

p
=

=∑ .  For the case of two states, the 

matrix of transition probabilities is given by 12   

                                                 1 1

2 2

1
1

P P
P

P P
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
                                                    (1.15)  

                                                 
12 For future research, the RS models can be generalized to have a greater number of states or the regime 
switching probabilities can be made a function of the level of interest rates.  The latter case allows for the 
possibility that a switch to the high-volatility regime may be more likely when interest rates are high 
according to Gray (1996).  
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Due to the success of the two-factor SV model over the one-factor diffusion model, the 

second RS model we consider is an extension of the RS in σ− −  model where the 

conditional variance is driven by a SV process.  This model ( RS in SVσ− − +  model 

hereafter) is given by   

                                          0 1 1

2 2
0, 1 1log( ) log( )

t t t t

t i t t

r r z

u

φ φ σ

σ ω ω σ ξ
−

−

Δ = − +⎧⎪
⎨Δ = + +⎪⎩

        with 1,2i =    (1.16)  

The conditional variance of (3.3.3) has a regime independent random shock but regime-

dependent reverting mean. Thus, the RS in SVσ− − +  model nests the simple OU 

process, OU-SV process, and RS in σ− −  model as special cases.  

 

Different from the above two RS models built on the OU process, the following two RS 

models are based on the generalized CKLS process.  Incorporating both the RS-in-

volatility effect and the level effect, the third RS model is called the RS in Levelσ− − +  

model and is given by  

                                            0 1 1 1t t i t tr r r zγφ φ σ− −Δ = − +                           with 1,2i =     (1.17) 

The RS in Levelσ− − +  model incorporates the sensitivity of volatility to the current 

level of short rate, measured by γ , to accommodate additional time-varying behavior and 

conditional heteroskedasticity, although the level effect parameter is kept the same across 

the regimes.   

 

The fourth RS model is an extension of the RS in Levelσ− − +  model, which we call the 

RS in Level SVσ− − + + model, is given by                                

                                        0 1 1 1
2 2

0, 1 1log( ) log( )
t t t t t

t i t t

r r r z

u

γφ φ σ

σ ω ω σ ξ
− −

−

⎧Δ = − +⎪
⎨
Δ = + +⎪⎩

         with 1,2i =    (1.18) 

In addition to the characteristics of the RS in Levelσ− − +  model, the conditional log-

volatility process is driven by a SV process, with regime-dependent mean reversion 

0,( )iω  but regime-independent random shocks.  The RS in Level SVσ− − + +  model nests 

as special cases discrete-time versions of the CKLS model, the two-factor SV model, and 

the three other RS models.   
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The first two RS models based on a simple OU process are motivated by the work of 

Gray (1996). He used a generalized RS framework where all conditional mean 

parameters ( 0φ  and 1φ ) and conditional variance parameters (σ ) are allowed to switch 

across the two regimes. He considered a different extension of the RS in σ− −  model 

where the conditional variance is driven by a GARCH process rather than an SV process.  

Using weekly data on the 30-day T-bill rate, he argued that both the RS effect and the 

GARCH effect are important to adequately fit the data. He also constructed a likelihood 

ratio test to compare his RS in σ− − model with his RS in GARCHσ− − + model.   

 

The last two RS models, based on the CKLS model, are motivated by Smith (2002). He 

employed a two-step procedure in order to overcome the difficulty of estimating the RS 

model using the quasi-maximum likelihood approach of Harvey, Ruiz, and Shephard 

(1994).  Smith showed that the level effect parameter is spuriously high in the single-

regime models, and is reduced to around unity in his RS models.  He also argued that 

either the SV effect or the RS effect, but not both, are needed for describing the data 

accurately. We note that So, Lam, and Li (1998) developed a similar model as our 

RS in Level SVσ− − + +  model and estimated it using the Bayesian technique of 

Jacquier, Polson, and Rossi (1994).  

 

For RS models, EMM estimation has advantages over the QML Kalman filter procedure 

and other estimation techniques.  With EMM, we can estimate all the unknown 

parameters simultaneously to ensure that no important information has been lost in the 

process, which cannot be guaranteed by the two-step procedure of Smith (2002).  

Another problem that may relate to the efficiency loss of Smith (2002) is that the 

simulated conditional volatility process based on his parameter estimates (especially the 

positive volatility persistency parameter) is a highly explosive process.  In addition, the 

usual test statistics cannot be applied to test the existence of the second regime since 

parameters associated with the second state are unidentified under the null of one regime. 

Most of the past works obtained the evidence for the existence of the additional regime 

from the enormous increase in the likelihood value when moving from a single-regime 
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model to a two-regime model or carefully applied the LRT to compare the regime-

switching models.  With EMM, all the comparable models could be easily ranked 

according to the simple measurement of the p-values implied by the EMM criterion 

function. After the one-to-one model comparison, we expect to have a systematic answer 

for questions such as (1) whether the simple RS in σ− −  model could mimic the 

performance of complicated non-Gaussian diffusion models, (2) whether 

RS in Levelσ− − +  model could save the efforts of adding one stochastic factor as 

implied by SV models, and (3) which effect or effects among the three, the level effect, 

the SV effect, and the RS effect, are needed to adequately fit the data of US short rates.   

 

 

4. Data 
 

Our empirical work uses weekly (Wednesday) observations of the annualized yield on the 

3-month U.S. T-bill over the period January 1954 to September 2004, forming 2648 

observations.  The data was constructed from a daily series available from the Federal 

Reserve Bank, where the rates are calculated as unweighted averages of closing bid rates 

quoted by at lease five dealers in the secondary market, and the rates are posted on a bank 

discount basis, but converted into continuously compounded yields prior to analysis.  We 

analyze weekly rates over daily rates to avoid missing data, possible holiday and 

weekday effects, and other potential problems associated with market microstructure 

effects.   Wednesday data are used because of the least number of missing observations 

for this weekday.  When a Wednesday rate is missing, we use the Tuesday rate; when a 

Tuesday rate is missing, use the Thursday rate.  The data preparation procedure follows 

Andersen and Long (1997).   

 

The raw data plotted in Figure 1.2, and descriptive statistics are given in Table 1.2.  The 

basic stylized facts concerning the short-rate are: near nonstationary behavior (slow mean 

reversion), large changes and small changes are clustered together (ARCH effect), the 

volatility of rates increases with the level of rates (level effect), and positive skewness 
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and excess kurtosis13 (non Gaussian distribution). The non Gaussian behavior of the short 

rate is clearly shown in the qq-plot in Figure 1.4 and in the statistics summary in Table 

1.2, and the slow mean reversion and ARCH effect are illustrated in the autocorrelation 

plots in Figure 1.3.  

 

The data period of our sample, 1954 to 2004, represents the longest weekly set of 

observations on the 3-month T-bill rate, which is important for evaluating models that 

purport to explain mean and volatility dynamics.  Also, our sample contains seven major 

recessions and six major expansions, which provides economic motivation for 

incorporating regime shifts into the models.  Some important events that may cause 

strong shifts in the behavior of interest rates dynamics include: the Vietnam War from 

1961 to 1975, the simultaneous occurrence of recession and inflation in the early 1970s, 

the 1973 energy crisis due to the onset of an oil embargo by OPEC until 1975, the 

"Monetary experiment" conducted by the Federal Reserve during 1979-82 when its 

policy shifted away from targeting federal fund rate, the largest stock market crash on 

October 19, 1987, the Gulf War which started in August 1990, and the longest peacetime 

economic expansion in U.S. history beginning in March 1991.14 The period from 1996 to 

2004, which was not covered by many previous analyses of the short rate, poses an 

especially tough challenge for standard asset pricing models.  This period started with an 

unprecedented period of long economic growth and a bull stock market run, which was 

interrupted by the September 11, 2001 terrorist attack, and was followed by a downturn 

of the stock market, and finally ended with the "War on Terrorism" campaign with the 

invasion of Iraq on March 2003.15 

 

 

5. Empirical Results:  
 

5.1. Estimation of the SNP Auxiliary Model 

                                                 
13 Kurtosis of the Gaussian distribution is three; excess kurtosis for a non-Gaussian distribution is the 
different between its kurtosis and three.   
14 See Choi (2004).   
15 See Bansal, Tauchen and Zhou (2003).   
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The first step in EMM estimation is to project the observed data onto an auxiliary model 

that captures all of the relevant characteristics of the data. We use the semi-nonparametric 

(SNP) conditional density model described in Gallant and Tauchen (2001) as our 

auxiliary model. The selection of an appropriate auxiliary model is essential for the 

success of EMM estimation, especially for interest rate data as stressed by Andersen and 

Lund (1997) and Gallant and Tauchen (2004).  The empirical literature on EMM 

estimation of the short-rate, however, has not explored the relevance of this issue in a 

systematic manner.16   

 

We follow Gallant and Tauchen (2001) and use a specific-to-general model selection 

procedure based on minimizing a Bayesian information criterion (BIC). In particular, the 

SNP tuning parameters ( , , , , , 0, , 0)u g r p z z x xL L L L K I K I= =  are selected by moving 

upward along a model expansion path where small values of BIC are preferred.  The 

expansion paths we follow are illustrated in Table 1.3.  First, the autoregressive order Lu 

is determined. The expansion path with ARCH leading terms is to expand rL , then to 

expand zK , and finally expand xK .  For GARCH leading terms, the strategy is to put 

1r gL L= =  first, then expand zK  and xK . The expansion paths we follow are not 

exhaustive across models and it sometimes happens that the best set of the tuning 

parameters lies elsewhere within the expansion path.  Therefore, we also explore some 

other paths which slightly deviate from the ones specified in Table 1.3.     

 

The best fitting SNP models for the 3-month T-bill rate in terms of BIC, characterized by 

the set of tuning parameters, ( , , , , , 0, , 0)u g r p z z x xL L L L K I K I= = , are reported in Table 

1.4.  Following the upward BIC protocol and exploring beyond the expansion path a bit, 

the preferred auxiliary model is the SNP 11117000 model. The SNP 11117000 model is a 

GARCH (1,1) model with a nonparametric error density represented as a seven-degree 

Hermite polynomial expansion of the normal density where the Hermite coefficients are 

state independent.  The model is similar to the semi-parametric GARCH of Engle and 
                                                 
16 See Brandt and Chapman (2002).  
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Gonzalez-Rivera (1991). Table 1.5 gives the parameter estimates. The estimated AR 

coefficient is 0.999 which implies a very slow mean reversion and near nonstationary 

behavior.  The sum of the ARCH and GARCH terms implies highly persistent 

conditional volatility.17 The large positive coefficient on the 4th order Hermite term and 

the positive coefficient on the seventh order Hermite term capture the fat tails and 

positive skewness in the demeaned short-rate series. Our preferred SNP model for the 

short rate is similar to the SNP models used by other authors as shown in Table 1.6.  

 

As stressed by Gallant and Tauchen (2001), if the fitted SNP model is to be used as the 

score generator in conjunction with EMM it is important to check the dynamic stability of 

the model.  For complicated SNP models, a simple way to check dynamic stability is to 

generate long simulations from the fitted model and observe if these simulations become 

explosive. For non-explosive models, the simulations should capture all the salient 

feathers of the observed data.  The simulated series based on the fitted SNP models are 

shown in Figure 1.5.  From the plots, it can be observed that the 11117000 SNP model 

mimics the observed data fairly well, although it produces simulations with negative 

interest rates.  The simulation from the 11118000 SNP model is also plotted in Figure 

1.5, and it appears mildly explosive.   

 

Residual diagnostic checks on the fitted model are conducted to verify that it is adequate 

and appropriate.  Panel (A) in Figure 1.6 gives the estimated conditional volatilities from 

the 11117000 model, and these capture the observed volatility patterns in the observed 

data.  Panel (B) shows the estimated conditional density, which is more peaked in the 

center with heavy tails relative to the Gaussian distribution. The qq-plots for the 

simulated series from the fitted SNP 11117000 model and its first order change are 

shown in Panel (C) and Panel (D), both of which capture the patterns of the real data 

series. The standardized residuals, shown in Panel (E), mostly resemble a white noise 

process. However, there are some large outliers present.  The autocorrelation plots of the 

residuals and squared residuals in Panel (F) reveal no significant autocorrelation and 

                                                 
17 Because of the absolute value formulation in the GARCH specification, the sum of the ARCH and 
GARCH coefficients do not have to be less than one for the model to be stationary. 
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indicate that the fitted SNP model adequately captures the conditional dynamics in the 

mean and volatility.   

 

5.2. EMM Estimation Results 

 

In this subsection we report the EMM estimation results for a number of structural 

models for interest rates described in Section 3.2. The single regime structural models we 

consider are: the one-factor CKLS model with Gaussian errors (CKLS-N), the two and 

three-factor SV model (SV2, SV3), the non-Gaussian stable diffusion model with shape 

variable α and skewness variable β  (CKLS-S(α , β )). The Markov regime switching 

(RS) models we consider are: the RS-in-σ  and RS-in- SVσ +  model based on a simple 

OU process, and the RS-in- Levelσ + and RS-in- Level SVσ + + model based on the 

generalized CKLS model.   

 

The EMM estimation procedure requires the simulation of a long sample from the 

underlying structural models. For both the discrete-time and continuous-time models, the 

EMM objective function is formed using a default simulation size of 75,000, where we 

have discarded the first 5,000 observations. Restarts of the optimizer at random 

perturbation of the initial value values are employed for EMM to avoid local optima.  For 

continuous-time diffusion models, the simulations are generated by the Euler scheme 

using 25 subintervals per week.18 Tables 1.7-1.9 contain the results for short rate from 

estimating each model outlined above.19 In the following sections, we present in detail 

the one-by-one model performance and comparison.    

 

5.2.1. Gaussian Diffusion Models 

 

Table 1.7a reports the EMM estimation results for the Gaussian diffusion models: the 

one-factor Gaussian CKLS model, the two-factor SV model, and the three-factor SV 

                                                 
18 Further details regarding the implementation refer to the appendix in AL (1997). 
19 The estimation is conducted using the S-PLUS implementation of Gallant and Tauchen’s EMM 
FORTRAN code available in S+FinMetrics 2.0 and described in Zivot and Wang (2006). 
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model.  The small p-value based on the 2χ  distribution associated with the EMM 

objective function values, leads to a strong rejection of the one-factor Gaussian CKLS 

model. On the other hand, the two-factor SV model and the three-factor SV model are not 

rejected at the 10% level; the former is in contrast to what Andersen and Lund (AL) 

(1997) found.  Our results indicate that the introduction of an additional stochastic 

volatility factor is important for explaining observed interest rate behavior. 

 

Our estimation results suggest the following insights about the dynamics of the short rate.  

The signs of all the parameter estimates for the mean dynamics are consistent with the 

GMM estimates of the one factor CKLS model reported in Chan et al (1992) based on 

monthly data.  All of the models indicate that short rates revert ( 1 0φ− < ) to a positive 

long-run mean ( 0 1/ 0φ φ > ), with a very slow rate of mean reversion.20 Based on our 

estimates of the two-factor SV model, the implied estimated measure of log-volatility 

persistence, 1exp( / 52)ω− , is about 0.9893 at the weekly level, and the discrete-time 

autoregressive coefficient in the mean dynamics, 1exp( / 52)φ− , is about 0.994.  These 

estimates are comparable with those reported in AL. Moreover, we find that the 

conditional volatility of rates is sensitive to the level of the rates; that is, the elasticity of 

volatility measured by γ  is significantly in excess of zero.   

 

The incorporation of data after 1989 in the estimation changes the implied dynamics of 

the short rate substantially in many aspects from previous estimates.  For example, our 

two-factor SV model implies a lower long-run mean, measured by 0 1/φ φ , of 2.85% and a 

faster speed of mean reversion than the results found by AL using a similar model.  This 

difference may be partially explained by the fact that the Federal Reserve started to 

decrease the Federal Funds rate dramatically after 2001 in order to boost the economy 

after the “9/11” recession.  More striking is the change in the estimate of the level effect, 

measured by γ . The level effect estimate in our one-factor CKLS model is 0.3 which is 

                                                 
20 Notice that the reason that the long-run reverting mean for the short rates implied by the estimation of 
our one-factor CKLS models differs substantially from the GMM estimation is due to the fact that we use 
percentage interest rates for the analysis, rather than decimal interest rates as Chan et al (1992).   
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substantially lower than the GMM estimate, 1.49γ = , reported in CKLS (1992). AL 

showed that the level effect is weakened if a second volatility factor is incorporated.  Our 

results show that the evidence for a strong level effect is significantly weakened without 

an additional SV factor.  The estimate of the level effect in our two-factor SV model is 

0.67 which is a bit larger than what AL found in their SV2 model.  

 

Our SV3 model involves the introduction of a third factor associated with the mean level 

as suggested by AL who suspected that a time-varying long-run reverting mean as well as 

a time-varying conditional volatility is needed to accommodate the data.21 We are not 

surprised to see that the three-factor SV model is favored over the two-factor SV model 

and the result improves significantly by adding this mean related factor. Implied from the 

SV3 model, the short rate process is reverting to a time-varying unconditional mean, 

which itself is also a mean reverting process with reverting trend measured by 0 1/υ υ , of 

2.50%.  This estimate is close to the reverting mean implied from the previous SV2 

model. Moreover, the corresponding level effect estimate is lowered to round 1/2, which 

is slightly smaller than that of the two-factor SV model.  

 

Part of Table 1.8a displays the diagnostics for all Gaussian diffusion models, based on the 

informative standard t-ratios of the individual elements of the score vector.  These t-

statistics can be interpreted conveniently as normalized regression residuals.  Therefore, 

large t-ratios reveal those characteristics that are not well approximated.  It appears that 

the one-factor CKLS model encounters difficulties to accommodate the scores; the large 

t-ratios on individual score elements associated with the second to sixth Hermite 

polynomial elements show that the it fails to capture certain aspects of volatility 

clustering that exists in the data as summarized by the 11117000 auxiliary model.  On the 

other hand, for the accepted two-factor and three-factor SV models, all adjusted t-ratios 

are well below 2.0.  

 

 

                                                 
21 See also Gallant and Tauchen (2002), in which they proposed a two-factor SV model with a mean factor 
for the Microsoft stock returns.  
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5.2.2. Non-Gaussian Diffusion Model 

 

Table 1.7b reports the EMM estimation results for the non-Gaussian stable diffusion 

models with fixed combinations of the shape and skewness parameters. The small p-

values for the EMM objective function lead to rejections for all the non-Gaussian 

diffusion models at the 5 percent significance level.  The score diagnostics provided in 

Table 1.8 provide some explanations for the failure of these models. For example, the 

CKLS model with stable ( 1.95, 0)α =  errors fails to capture certain aspects of volatility 

clustering associated with the third and fifth order Hermite polynomial elements.  The 

best fitting model, with a p-value of 0.045, is the CKLS-S( 1.9α = , 0.1β = ) model. All of 

the score t-ratios for this model are smaller than two.   

 

The parameter estimates from the best fitting CKLS-S( 1.9α = , 0.1β = ) model are 

similar to the one-factor Gaussian diffusion model, implying a strong mean reversion in 

the short-term rates and a slightly larger level effect that is less than unity.  Overall, the 

stable diffusion models with 1.9α ≥  have higher 2χ  values than the Gaussian model 

which shows that allowing for heavier tails for the innovation density improves the model 

fit.  In addition, the best fitting CKLS-Stable model has a positive skewness parameter 

0.1β = , implying that fat-tailed and positive skewed innovations are important for 

explaining the data.   

 

The one-factor CKLS-S( 1.9α = , 0.1β = ) model  that allows for fat tails and positive 

skewness can accommodate many of the complex features of the interest rate series.  This 

model can accommodate outliers much more easily than the Gaussian model, and its fit is 

similar to the three-factor continuous-time SV model. However, there are some 

drawbacks associated with the stable diffusion models.  In the estimation, we do not 

freely estimate the shape parameters of the stable Lèvy process.  We instead specify 

several reasonable combinations of the shape and skewness parameters along a rough 
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grid.22  Estimating the shape parameters freely may make an even better use of the stable 

process.  Still, many relevant issues associated with using the stable distribution need to 

be explored in a systematic manner.  For example, the non-existence of moments of 

second or higher order is a potential problem from an empirical point of view.  Also, 

when using simulation-based estimation techniques, the value of the shape variable is 

found to be closely related to the size of the simulation, which introduces difficulties in 

model comparisons.   

 

5.2.3. RS Models 

 

The first two columns of Table 1.7c reports EMM estimates for the RS models that do 

not incorporate a level effect: the RS-in-σ  model, and the RS-in- SVσ +  model.  For 

these RS models, the p-values on the EMM objective function are higher than 5% but 

lower than 10%, providing mild evidence in support of the models.  The fitted models 

imply strong mean reversion in the short rate. They indicate that the short rates are 

reverting to a positive long-run mean of 9.08% and 6.75%, respectively, which are 

substantially higher than the long-run mean estimates implied by the single-regime 

models.23 The estimates of the regime dependent volatility parameters reveal that regime 

1 is a high-volatility regime and regime 2 is a low-volatility regime. The two estimated 

regime switching probabilities, 1P  and 2P , exceed 0.90 and are similar to estimates 

reported by other authors.  Notice that while the transition probability of staying in the 

low-volatility regime, 1P , are estimated similarly to those in previous empirical works, the 

estimates of 2P   (0.91 and 0.94) are slightly lower than what has been shown, implying 

less persistence of staying in the high-volatility regime for the dynamics of the short rate.  

 

Without implementing the level effect, the RS-in-σ  model only allows the conditional 

volatility to switch across two regimes; that is, any conditional heteroskedasticity can 

                                                 
22 This strategy has been used in Gallant et al. (1997) for their discrete-time SV model with Student-t 
errors. Further research on how the SNP model will encompass the Stable distributed errors is of strong 
interest.  
23 The substantially large difference of the long-run mean estimates in the single-regime models and RS 
models may suggest a regime-switching mean scenario, which could be left for future research.   



- 31 - 

only be driven by switches of conditional volatility between two regimes.  For such a 

simple model, the RS-in-σ  model does a good job of modeling the volatility dynamics of 

short rates.  It fits much better than the one factor Gaussian CKLS model, and slightly 

better than the one-factor non-Gaussian Stable CKLS model. The flexibility of 

incorporating two different levels of volatility is the main reason for the success of this 

simple RS model relative to many single-regime models.  As argued by Gray (1996), the 

single-regime models treat volatility as being constant at an average level, in which case 

volatility estimates are uniformly too high during periods of low volatility and uniformly 

too low during periods of high volatility. Hence, the models fail to describe well the data 

in either regime.  

 

Contrary to our expectations, the RS-in- SVσ +  model does not explain the dynamic 

behavior of short rates appreciably better than the RS-in-σ  model even though it allows 

for an additional source of conditional heteroskedasticity driven by the volatility 

persistence beyond the regime switched conditional volatility.  This is in contrast what 

Gray (1996) found with his RS-GARCH model.  Using a likelihood ratio (LR) test to 

compare his RS-in-σ model with his RS-in- GARCHσ + model, Gray (1996) showed that 

both the RS effect and the GARCH effect are important. Our EMM estimation results 

imply that it is not necessary to incorporate the more complex RS-in- SVσ +  model.   

 

The third column of Table 1.7c reports EMM estimates of the RS-in- Levelσ + model. 

This model, with an EMM objective function p-value of 0.29, fits much better than the 

RS models that do not incorporate the level effect. The RS-in- Levelσ +  model can be 

described as a generalized CKLS model in which the conditional volatility switches 

between two very persistent regimes.  Incorporating both a level effect and a RS effect, 

the RS-in- Levelσ +  model provides the best performance in terms of fitting the volatility 

of short rates; it fits even better than the three-factor SV model, in which both the level 

effect and SV effect are implemented in the underlying structural model.  It appears that 

the flexibility of having two volatility regimes and having the level effect picking up the 

remaining information is the main reason for the relative success of the RS-in-

Levelσ + model over the single-regime models and the previous RS-in-σ   models.   



- 32 - 

 

Compared with the ML estimates in Smith (2002), our EMM results are quite different in 

several respects. The estimated process is reverting to a lower long-term mean with a fast 

speed and smaller regime-dependent variances. Although the transition probability 1P  is 

similar, the estimate of 2P  at 0.89 is much lower than what has been shown by Smith 

(2002). In terms of the estimate for the level effect, the estimated conditional volatility in 

the RS-in- Levelσ + model is sensitive to the level of the short rates; that is, the level 

effect parameter is significantly different from zero. However, the magnitude of the 

estimated level effect, much lower than that reported in Smith (2002) at 0.92, is very 

similar as these in our multi-factor SV models. It appears that the combination of the 

level effect with either a RS factor or a SV factor does not influence the importance of 

the level effect.   

 

The last column of Table 1.7c shows results for the RS-in- Level SVσ + +  model. 

Characterized by combining all three effects of the level, RS, and SV effects within one 

model, the RS-in- Level SVσ + +  model is rejected by the EMM objective function at the 

significant level 5%. The score diagnostic t-ratios in Table 1.8b show that the score 

elements associated with the first, second, fourth Hermite polynomial elements and 

ARCH and GARCH coefficients are larger than two, which suggests that the RS-in-

Level SVσ + +  model has trouble capturing the associated features as summarized by the 

11117000 auxiliary model. A noticeable result for this most complex model specification 

is that the level effect has been almost squeezed out by the SV effect and the RS effect; 

its estimate is not significant from zero. Comparing the EMM results for the RS-in-

Level SVσ + +  model with the other models, provides a way for addressing an important 

issue; that is, whether or not we need to include both RS and SV in the process of fitting 

the dynamics of the short rates.  The answers from Gray (1996), Smith (2002), and many 

others are somewhat ambiguous due to the fact that traditional hypothesis testing 

procedures for evaluating the existence of Markov switching are nonstandard.  For 

example, using the LR test, the statistical significance of the second regime cannot be 

tested using chi-square critical values because the parameters associated with the second 

regime are not identified under the null of a single regime.  Although some extended tests 
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have been developed for solving such kinds of difficulties, EMM provides a rather easy 

procedure to answer the issue by simply comparing the corresponding p-values for 

different non-nested model specifications.  From our estimation, it indicates that either a 

RS with level effect or an SV with level effect, but not both, are needed to adequately fit 

the data series of the short rate.   

 

 

6. Conclusion:  
 

In this paper we develop a framework for evaluating and comparing the empirical fit of a 

number of discrete-time and continuous-time models for the US short rate. The models 

we consider include Gaussian diffusion models, non-Gaussian diffusion models with 

stable process, and different types of Markov RS models.  A comprehensive model 

comparison is provided by utilizing the EMM estimation, which allows for ranking the 

non-nested model specifications. For the continuous-time models, we confirm the results 

from the existing empirical literature that the one-factor Gaussian diffusion model 

constitutes a poor candidate model for the short rate process. We find that a one-factor 

stable diffusion model shows stronger explanatory power to that of the one-factor 

Gaussian model, and that the multi-factor SV models (a two-factor SV model and a three-

factor SV model) shows much better fitting performances. For the discrete-time RS 

models, we find that the simple RS-in-σ  model, which allows the conditional variance to 

switch between regimes, describes the data surprisingly well. We also find that there are 

no fitting improvements of the extended RS-in- SVσ +  model over the RS-in-σ  model, 

and of the extended RS-in- Level SVσ + +  model over the RS-in- Levelσ +  model. 

These results suggest that either an SV effect or a RS effect, but not both, are needed for 

describing the data accurately. This point is consistent with the argument of Smith 

(2002), although his conclusion is much more informal and ambiguous. In summary, our 

multi-factor SV models and the RS-in- Levelσ +  model provide the overall best fits for 

the short rate process. The success of our two-factor SV model is opposite to the general 

belief exiting in the literature that two factors are not enough to accommodate the 

complex process of short rates. Figure 1.7 displays representative simulated paths from 
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three preferred models. Relative to the actual interest rate series in Figure 1.2, the three 

simulation series are capable of generating some extreme volatile periods as the monetary 

experiment experience, and share qualitative features with the actual interest rate data.  

 

We also provide insights on the measurement of one of the important features of the US 

short rates, the level effect.  Our finding shows that the level effect is similarly estimated 

a bit higher than 1/2 in the preferred multi-factor SV models and the RS-in- Levelσ +  

model, which is consistent with the finding in AL (1997).  Although the corresponding 

estimate obtained from the RS-in- Level SVσ + +  model is significantly weakened, the 

estimated parameter is not significantly different from zero. Our estimations imply that 

the estimated level effect is relatively robust to the sample used for estimation; it may be 

spuriously low or high for misspecified models that fail to capture the time-varying and 

heteroskedastic behavior of the short rates.   
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 Appendix:  Implementation of SNP Selection 
 

To enhance the searching efficiency, we utilize the following strategies for determining 

the most appropriate SNP model. The expository discussion is in Gallant and Tauchen 

(2001).   

 

(1) As a general rule with financial data, we always move zK  from 0 up to 4.  Due to the 

fat-tailed error densities relative to the Gaussian for financial data, the polynomials has to 

increase the mass around zero, depress the mass on either side of zero and then increase 

the mass in the tails by going to infinity on the left and right side.  Not linear, quadratic, 

cubic, but only the quartic polynomial is needed in order to reach the above goal easily 

and successfully.  (2) We put an upper bound of 8 for zK  in order to improve the stability 

of computation, because the polynomials fit little wiggles when 8zK > .  (3) We also put 

an upper bound of 8 for rL  when fitting the SNP density as VAR-ARGH leading terms.  

(4) The spline transformation is recommended to use, which is essential for extremely 

persistent data such as interest rates.  (5) In processing a specific starting parameter set, 

we perturb each active parameter as  

                                               (1 )i iu tweakρ ρ→ + ×  

where u is uniform (-1,1), then iterate from these values for 10 iterations, and repeat this 

process for many trials.  Lastly, it iterates from the best parameter values of these 10 

trials until convergence.  Therefore, bad starting values leading to local optima are not a 

concern.  This random restart strategy yielded satisfactory fits, sometime improving the 

estimations substantially; we also utilize this strategy in the estimation step.   
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Figure 1.1: Procedures of EMM Methodology  
 

EMM procedure consists of two steps (1) the projection step, which is accomplished by 
projecting the data onto the SNP model, and (2) the estimation step, in which structural 
parameters are extracted from the summary of the data by minimizing the chi-squared 
criterion.   
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Figure 1.2: Time Series Plots 

 
There are 2648 weekly observations of the 3-month T-Bill rates, ranging from January 4, 
1954 to September 24, 2004.  The raw data (percent) is plotted in panel (A); the first 
order difference of the raw data is presented in panel (B).  
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Figure 1.3: Autocorrelation Plots 
 
The ACF plots for the raw data (percent) and the squared series are given in panel (A); 
the ACF plots of the first order difference of the raw data and its squared series are 
presented in panel (B).  
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Figure 1.4: QQ Plots with 45° QQ Line 

 
The qq-plot for the raw data (percent) is given in panel (A); the qq-plot of the first order 
difference of the raw data is presented in panel (B).   
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Figure 1.5: Simulated data from Fitted SNP Models 
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Figure 1.6: Diagnostic Tests for SNP Model 11117000  
 
The panel (A) gives the estimated conditional volatilities of the data, which is persistent 
and volatile; the panel (B) shows the conditional density, which is peaked in the center 
with heavy tails.   
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Figure 1.6: Diagnostic Tests for SNP Model 11117000 (Conj) 
 
The panel (C) gives the qq-plot of the simulated series from the preferred SNP model 
1117000; the panel (D) shows the qq-plot of the change of the simulated series.   
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Figure 1.6: Diagnostic Tests for SNP Model 11117000 (Conj) 
 

The panel (E) represents the standardized residuals, which seems to resemble a Gaussian 
white noise process.  Lastly, the panel (F) provides the autocorrelation plot for the 
residuals and the squared residuals, implying no significant autocorrelation for both of 
them.  
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Figure 1.7: Plots of Simulations from Preferred Models  
 

(A) Simulation from the fitted two-factor SV model 
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Table 1.1: SNP Tuning Parameters 
 

A useful taxonomy of SNP models is defined by putting certain restrictions on the tuning 
parameters, according to Gallant and Tauchen (1997).  

 
 

Parameter Setting Characterization of 
0, 0, 0, 0, 0, 0u g r p z xL L L L K K= = = ≥ = =  iid Gaussian 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K> = = ≥ = =  Gaussian VAR 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K> = = ≥ > =  Semiparametric VAR 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K≥ = > ≥ = =  Gaussian ARCH 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K≥ = > ≥ > =  Semiparametric ARCH 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K≥ > > ≥ = =  Gaussian GARCH 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K≥ > > ≥ > =  Semiparametric GARCH 

0, 0, 0, 0, 0, 0u g r p z xL L L L K K≥ ≥ ≥ > > >  Nonlinear nonparametric 

 
 
 
 
 
 
 
 

Table 1.2:  Descriptive Statistics 
 
The statistics summary is given in Panel (A) for the raw data, which are 2648 weekly 
observations of the 3-month T-Bill rates, ranging from January 4, 1954 to September 24, 
2004.  The panel (B) shows the statistics summary for the change of the raw data.   

 
 

(A) 
Sample Quantiles Min: 0.6 1Q:    3.18 Median: 4.99 3Q:    6.67 Max:17.01 
Sample Moments Mean: 5.246 Std. Dev. : 2.849 Skewness: 1.065 Kurtosis: 4. 712  
 

(B) 
Sample Quantiles Min: -2.47 1Q:   -0.07 Median: 0 3Q:   0.077 Max:2.22 
Sample Moments Mean:1.5e-4 Std. Dev. : 0.236 Skewness: -0.522 Kurtosis: 24.81  
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Table 1.3: SNP Fitting Strategy 
 
The SNP score generator has a leading (G)ARCH term with uL lags in conditional mean.  
The standardized innovation has a normal density stretched by a squared Hermite 
polynomial with degree of zK .  Similarly, the coefficient of the z-polynomial may 
depend on the lagged observations through a xK  degree polynomial.  For univariae SNP 
density, the interaction polynomial terms, zI  and xI , are ignored.  The fitting strategy is 
shown by the following diagram.  
 
 
VAR-ARCH leading:  
 
          10010000  10110000 

  20010000                  10210000 
          30010000                  … 
          …                              10810000  10814000  
          70010000                                       10815000 
          80010000                                       … 
                                                                 10818000  10818010; 10818020 
 
VAR-GARCH leading:  
 
         10010000  11110000 
                              11114000 
                              … 
                              11117000    11117010; 11117020 (check conditional heterogeneity) 
                              11118000    11118010; 11118020  
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Table 1.4: SNP Estimation and Selection 
 
The continued table reports the choice of SNP density and the BIC value, based on which 
we choose our preferred specification.  We find that a VAR-GARCH model 11117000 is 
the BIC preferred model for T-Bill rates using the searching strategy specified in Table 3.   
 
 

ARCH-Leading uL  gL  rL  pL zK zI  xK  xI  BIC 
10110000 1 0 1 1 0 0 0 0 -1.377 
10210000 1 0 2 1 0 0 0 0 -1.4851 
10310000 1 0 3 1 0 0 0 0 -1.5307 
10410000 1 0 4 1 0 0 0 0 -1.5618 
10510000 1 0 5 1 0 0 0 0 -1.5729 
10610000 1 0 6 1 0 0 0 0 -1.5836 
10710000 1 0 7 1 0 0 0 0 -1.5866 
10810000 1 0 8 1 0 0 0 0 -1.587 
10814000 1 0 8 1 4 0 0 0 -1.6238 
10815000 1 0 8 1 5 0 0 0 -1.6221 
10816000 1 0 8 1 6 0 0 0 -1.6301 
10817000 1 0 8 1 7 0 0 0 -1.6287 
10818000 1 0 8 1 8 0 0 0 -1.6285 
10816010 1 0 8 1 6 0 1 0 -1.6247 
10816020 1 0 8 1 6 0 2 0 -1.6152 

GARCH-Leading uL  gL  rL  pL zK zI  xK  xI  BIC 
11110000 1 1 1 1 0 0 0 0 -1.5957 
11114000 1 1 1 1 4 0 0 0 -1.6374 
11115000 1 1 1 1 5 0 0 0 -1.6359 
11116000 1 1 1 1 6 0 0 0 -1.6344 
11117000 1 1 1 1 7 0 0 0 -1.6407 
11118000 1 1 1 1 8 0 0 0 -1.6395 
11117010 1 1 1 1 7 0 1 0 -1.6325 
11117020 1 1 1 1 7 0 2 0 -1.622 
11118010 1 1 1 1 8 0 1 0 -1.6298 
11118020 1 1 1 1 8 0 2 0 -1.618 
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Table 1.5: Parameter Estimates of Projected SNP Density 
 
This preferred SNP model of 11117000 is a GARCH (1,1) with a nonparametric error 
density represented as a seven-degree Hermite expansion where the Hermite coefficients 
are state independent.  The auxiliary model and the conditional density 1117000 are 
given by 

0 1 1t t t ty b x zμ σ−= + +  

20 1 1 1 1| |
tt t x tp y gσ ρ μ σ
−− −= + − +  

                  [ ]2 2
1 1 0 1 1( | , ) ( , ) ( ; , )t t t t t t tf y x P z x N y b yθ μ σ− − −= +  

               with 
7

1
0

( , )
zK

i
t t i t

i
P z x a z

=

−
=

= ∑  

 
Parameter Estimate Standard Error T-statistics 

Hermite  0a  0.0000 0. 0000 0.000 
Hermite  1a  -0.0431 0. 0330 -1.3072 
Hermite  2a  -0.3073 0. 0215 -14.3144 
Hermite  3a  0.0299 0. 0189 1.5790 
Hermite  4a  0.0523 0. 0059 8.8977 
Hermite  5a  -0.0071 0. 0033 -21358 
Hermite  6a  -0.0021 0. 0004 -5.3421 
Hermite  7a  0.0004 0. 0002 2.8532 
Mean  0μ  0.0021 0. 0012 1.7891 
Mean  1b  0.9996 0. 0009 1106.6166 

ARCH 0ρ  0.0017 0. 0001 12.3629 
GARCH 1p  0.2463 0. 0150 16.4166 
GARCH 1g  0.8517 0. 0072 117.8965 

BIC:  -1.6418 HQ:  -1.6503 AIC: -1.6551 Log L: 4371.665 
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Table 1.6: SNP Models used by Selected Papers for Financial Data 
 

This table lists a number of SNP models that have been utilized for EMM estimations in 
selected papers with applications of the stochastic volatility modeling, the term structural 
dynamics and long memory study for the interest rates and equity returns.  
 

 
 
 

Selected Papers SNP model Application 
Andersen and Lund (1997) 51116000*  

 
Stochastic volatility models of the short-
term interest rate.  

Bansal and Zhou (2000) 10514300 Term structure models using the 
bivariate dynamics of the yields on the 
six-month bill and the five-year note.  

Ahn et al. (2003) 11114300 Term structure models using the 
bivariate dynamics of the yields on the 
six-month bill and the three-year note.  

Dai and Singleton (2000) 10214000 Affine term structure models using the 
swap rates of maturities from six months 
to ten years.  

Andersen et al. (2002) 01118000* Stochastic volatility models of the S&P 
500 Index return.   

Chernov et al. (2000) 11118000 Stochastic volatility models and jump 
diffusion models of the Dow Jones 
Industrial Average Index return.   

Liu (2000) 0025018000** Long memory of equity returns. 
 
 
 
 
 
 
 
 

                                                 
* Andersen and Lund (1997) used an SNP model with EGARCH (1,1), instead of Level-GARCH (1,1), as 
the leading term.   
** This SNP model is a VAR(0) with ARCH(25) conditional variance and the nonparametric error is 
represented by a stage-independent Hermite Polynomial of degree 18.  
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Table 1.7a: EMM Model Estimations I 
 
The EMM estimations are given for the one-factor Gaussian diffusion model based on the 
CKLS model (CKLS-N) and corresponding two-factor and three-factor SV models (SV2 
and SV3), which are laid out in section 3.1. The CKLS-N model refers to the model (1.9); 
the SV2 model refers to the one (1.11); and the SV3 model refers to the one (1.12) with 
three stochastic factors.    
 
 

Parameter CKLS* CKLS-N SV2 SV3 

0φ  0.0408 
(0.022) 

0.4818 
(0.02593) 

0.8428 
(0.2669) -  

1φ−  -0.5921 
(0.382) 

-0.1927 
(0.01830) 

-0.2956    
(0.1816)     

-1.0947    
(0.8463) 

0 1/φ φ ** 0.0690 
(-) 

2.5003 
(-) 

2.8512 
(-) 

- 
(-) 

γ  1.4999  
(0.252)   

0.3076  
(0.05062)    

0.6659 
(0.1163) 

0.5167    
(0.0755)   

σ  1.6704 
(2.169) 

1.3624 
(0.19325) - - 

0ω  - - -0.5912   
(0.5122) 

-1.4491  
(0.3003)   

1ω  - - -0.5629    
(0.1983)     

-0.9250    
(0.1990) 

ξ  - - 1.7765    
(0.0474) 

2.5433    
(0.0959)   

0υ  - - - 2.5494   
(0.7520)   

1υ  - - - -0.9801    
(16.5030) 

ζ  - - - 0.4715   
(2.1140)   

2χ  - 50.47 10.35 5.55 

p value−  - 3.32e-08   0.1107 0.2357 

. .d o f *** - 8 6 4 

 
 

                                                 
* The model of Chan et al (1992) with monthly short-term interest rates over period of 6/1964 to 12/1989.   
** The fitted long-run reverting mean.  
*** The “d.o.f” stands for the “degree of freedom”. 
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Table 1.7b: EMM Model Estimations II 
 
The EMM estimations are given for the non-Gaussian diffusion models based on the 
CKLS model, which is specified by  
 

0 1( ) ( )t t t t r r t t tdr r dt r dL k r dt r dLγ γφ φ σ μ σ= − + = − +  
 

where the tL  is stable Lèvy process with shape variable α , and skewness variable β .  
The CKLS-N model where tL  is Wiener process is listed for the comparison with the 
CKLS-S(α ,β ) models.  
 
 
 

Parameter CKLS* CKLS-N CKLS-S 
(1.8,0) 

CKLS-S 
(1.9,0) 

CKLS-S 
(1.95,0) 

CKLS-S 
(1.9,0.1) 

0φ  0.0408 
(0.022) 

0.4818 
(0.02593) 

0.9043 
(0.05396) 

0.7546 
(0.1272) 

0.7202  
(0.06407) 

1.2154    
(0.08063) 

1φ−  -0.5921 
(0.382) 

-0.1927 
(0.01830) 

-1.2370 
(1.237) 

-0.5325  
(0.373) 

-0.4502  
(0.12936)   

-4.7425    
(0.31014)   

0 1/φ φ  0.0690 
(-) 

2.5003 
(-) 

0.7310 
(-) 

1.4171 
(-) 

1.5997 
(-) 

0.2563 
(-) 

γ  1.4999  
(0.252)   

0.3076  
(0.05062)   

0.3727  
(0.01508)   

0.3664 
(0.0177) 

1.0675  
(0.06533) 

0.4905    
(0.03837) 

σ  1.6704 
(2.169) 

1.3624 
(0.19325) 

-0.5207 
(0.19325) 

0.9694  
(0.0171) 

1.0675  
(0.02534) 

0.8965    
(0.05622) 

2χ  - 50.47 82.19 33.39 23.89 15.8 
p value−  - 3.32e-08  1.765e-14 5.238e-05  1.195e-04 0.0454** 

. .d o f  - 8 8 8 8 8 
 
 
 
 
 

 
 
 
 
 
                                                 
* The model of Chan et al (1992) with monthly short-term interest rates over period of 6/1964 to 12/1989.   
** The corresponding p-value with degree of freedom of six is 0.0149.  
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Table 1.7c: EMM Model Estimation III 

 
The following estimations are given for the different types of Markov Regime Switching 
(RS) models, which are laid out in section 3.3.  The first two models are OU-based RS 
models, given by equations of (1.14) and (1.16) respectively. The last two models are 
CKLS-based, given by equations of (1.17) and (1.18) respectively.  
 
 

OU Based CKLS Based 
Parameter RS-in-σ  RS-in-σ + SV RS-in-σ + 

Level 
RS-in-σ + 
Level + SV 

0φ  0.2580 
(0.0336) 

0.2240 
(0.6623) 

0.1769 
(0.5818) 

0.4027 
(0.3227) 

1φ−  -0.0284 
(0.1640) 

-0.0332 
(0.5006) 

-0.0285 
(0.2976) 

-0.0408 
(1.0771) 

0 1/φ φ  9.0845 
(-) 

6.7470 
(-) 

6.2070 
(-) 

9.8701 
(-) 

γ  - - 0.5076 
(0.1266) 

0.0063 
(4.5077) 

1σ  0.1472 
(0.0628) - 0.0389 

(0.0914) - 

2σ  0.4613 
(0.0556) - 0.1400 

(0.0874) - 

01ω  - -2.1187 
(1.6037) - -2.8481 

(0.3137) 

02ω  - -1.0078 
(0.6564) - -1.3966 

(0.1915) 

1ω  - -0.5326 
(1.5275) - -0.1570 

(0.4406) 
ξ  - 0.2902 

(0.3272) - 0.2210 
(0.2212) 

1P  0.98 0.98 0.98 0.98 
   2P  0.91 0.94 0.89 0.94 

2χ  11.01 8.94 6.53 5.55 
p value− * 0.0881 0.0626 0.2916 0.0253 

. .d o f  6 4 5 3 
   
 
 
 

  

                                                 
* The p-values are calculated based on the degree of freedom equal to the d.o.f less two.  
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Table 1.8a: Models Diagnostic T-Ratios I 
 
The adjusted t-rations* are reported for different model specifications based on the same 
score generator (11117000), for which the parameters refers to the following equations.  
The adjusted t-ratios are testing whether the fitted sample moments are equal to zero, as 
predicted by population moments of the SNP density.   

0 1 1t t t ty b x zμ σ−= + + ,  where 
20 1 1 1 1| |

tt t x tp y gσ ρ μ σ
−− −= + − + , 

                    [ ]2 2
1 1 0 1 1( | , ) ( , ) ( ; , )t t t t t t tf y x P z x N y b yθ μ σ− − −= +    with    

7

1
0

( , )
zK

i
t t i t

i
P z x a z

=

−
=

= ∑  

 
 

Parameter CKLS-N CKLS-
S(1.95, 0) 

CKLS-
S(1.9, 0.1) SV2 SV3 

Hermite  1a  -1.5845 -1.2618 0.03594 -0.3861 0.5721 
Hermite  2a  -2.4841 -0.7672 -0.5429 0.08518 -0.8662 
Hermite  3a  -2.7178 -3.4528 -1.884 -1.5801 -0.8818 
Hermite  4a  2.0221 0.5788 -0.3106 1.05861 -0.0750 
Hermite  5a  -2.0172 -3.0735 -1.9019 -1.2937 -0.7872 
Hermite  6a  2.7662 1.1112 0.09164 1.30066 0.2805 
Hermite  7a  -0.5218 -1.4579 -1.324 -0.2149 -0.1253 
Mean  0μ  1.1283 0.8312 0.27349 1.71367 1.7819 
Mean  1b  -2.4661 -1.6667 0.13483 -1.1658 -0.5640 

GARCH 0ρ  -1.6397 0.3467 -1.8993 0.6306 0.5843 
GARCH 1p  -2.1221 0.4447 -1.6631 0.2647 0.3493 
GARCH 1g  -1.9152 0.2685 -1.6 -0.3861 0.4326 

p value−  3.32e-08 1.20e-04 0.0454 0.1107 0.2357 
 
 

 
 
 
 
 
 

                                                 
* According to Gallant and Tauchen (2000), the unadjusted t-ratios are biased downward.  
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Table 1.8b: Models Diagnostic T-Ratios II 
 
The t-rations are reported for different model specifications based on the same score 
generator (11117000), for which the parameters refers to the following equations.  The t-
ratios are testing whether the fitted sample moments are equal to zero, as predicted by 
population moments of the SNP density.   

0 1 1t t t ty b x zμ σ−= + + ,  where 
20 1 1 1 1| |

tt t x tp y gσ ρ μ σ
−− −= + − + , 

                    [ ]2 2
1 1 0 1 1( | , ) ( , ) ( ; , )t t t t t t tf y x P z x N y b yθ μ σ− − −= +    with    

7

1
0

( , )
zK

i
t t i t

i
P z x a z

=

−
=

= ∑  

 
 

OU Based CKLS Based 
Parameter RS-in-σ  RS-in-σ + SV RS-in-σ + 

Level 
RS-in-σ + 
Level + SV 

Hermite  1a  -0.7338 0.6262 0.7327 -2.1586 
Hermite  2a  -1.7376 -2.4572 -1.5314 -5.6508 
Hermite  3a  -0.7855 -0.2299 0.3636 -0.4873 
Hermite  4a  -1.0537 -1.6070 -1.1830 -2.5206 
Hermite  5a  -0.6400 -0.3290 -0.0961 -0.0609 
Hermite  6a  -0.8775 -0.2241 -0.9017 -0.7921 
Hermite  7a  -0.8047 0.3008 -0.9423 0.1670 
Mean  0μ  -0.3481 1.7798 0.2709 -0.8511 
Mean  1b  0.4950 -0.9013 0.9051 1.4379 

GARCH 0ρ  -1.6486 -0.4648 -1.5102 -1.7896 
GARCH 1p  -1.5090 -0.7646 -0.5848 -2.7740 
GARCH 1g  -1.5210 -0.4723 -0.5863 -2.5500 

p value−  
 

0.0881 0.0626 0.2916 0.0253 

 
 
 


