549 research outputs found

    A Game of One/Two Strategic Friendly Jammers Versus a Malicious Strategic Node

    Get PDF
    We present a game-theoretic analysis of the interaction between a malicious node, attempting to perform unauthorized radio transmission, and friendly jammers trying to disrupt the malicious communications. We investigate the strategic behavior of the jammers against a rational malicious node and highlight counterintuitive results for this conflict. We also analyze the impact of multiple friendly jammers sharing the same goal but acting without coordination; we find out that this scenario offers a better payoff for the jammers, which has some strong implications on how to implement friendly jamming

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    Pricing and Equilibrium Analysis of Network Market Systems

    Get PDF
    Markets have been the most successful method of identifying value of goods and services. Both large and small scale markets have gradually been moving into the Internet domain, with increasingly large numbers of diverse participants. In this dissertation, we consider several problems pertaining to equilibria in networked marketplaces under different application scenarios and market sizes. We approach the question of pricing and market design from two perspectives. On the one hand, we desire to understand how self-interested market participants would set prices and respond to prices resulting in certain allocations. On the other hand, we wish to evaluate how best to allocate resources so as to attain efficient equilibria. There might be a gap between these viewpoints, and characterizing this gap is desirable. Our technical approaches follow the number of market participants, and the nature of trades happening in the market. In our first problem, we consider a market of providing communication services at the level of providing Internet transit. Here, the transit Internet Service Provider (ISP) must determine billing volumes and set prices for its customers who are _rms that are content providers, sinks, or subsidiary ISPs. Demand from these customers is variable, and they have different impacts on the resources that the transit ISP needs to provision. Using measured data from several networks, we design a fair and flexible billing scheme that correctly identifies the impact of each customer on the amount of provisioning needed. While the customer set in the first problem is finite, many marketplaces deal with a very large number of agents that each have ephemeral lifetimes. Here, agents arrive, participate in the market for some time, and then vanish. We consider two such markets in such a regime. The first is one of apps on mobile devices that compete against each other for cellular data service, while the second is on service marketplaces wherein many providers compete with each other for jobs that consider both prices and provider reputations while making choices between them. Our goal is to show that a Mean Field Game can be used to accurately approximate these systems, determine how prices are set, and characterize the nature of equilibria in such markets. Finally, we consider efficiency metrics in large scale resource sharing networks in which bilateral exchange of resources is the norm. In particular, we consider peer-to-peer (P2P) file sharing under which peers obtain chunks of a file from each other. Here, contrary to the intuition that chunks must be shared whenever one peer has one of value to another, we show that a measure of suppression is needed to utilize resources efficiently. In particular, we propose a simple and stable algorithm entitled Mode suppression that attains near optimal file sharing times by disallowing the sharing of the most frequent chunks in the system

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Risk-averse multi-armed bandits and game theory

    Get PDF
    The multi-armed bandit (MAB) and game theory literature is mainly focused on the expected cumulative reward and the expected payoffs in a game, respectively. In contrast, the rewards and the payoffs are often random variables whose expected values only capture a vague idea of the overall distribution. The focus of this dissertation is to study the fundamental limits of the existing bandits and game theory problems in a risk-averse framework and propose new ideas that address the shortcomings. The author believes that human beings are mostly risk-averse, so studying multi-armed bandits and game theory from the point of view of risk aversion, rather than expected reward/payoff, better captures reality. In this manner, a specific class of multi-armed bandits, called explore-then-commit bandits, and stochastic games are studied in this dissertation, which are based on the notion of Risk-Averse Best Action Decision with Incomplete Information (R-ABADI, Abadi is the maiden name of the author's mother). The goal of the classical multi-armed bandits is to exploit the arm with the maximum score defined as the expected value of the arm reward. Instead, we propose a new definition of score that is derived from the joint distribution of all arm rewards and captures the reward of an arm relative to those of all other arms. We use a similar idea for games and propose a risk-averse R-ABADI equilibrium in game theory that is possibly different from the Nash equilibrium. The payoff distributions are taken into account to derive the risk-averse equilibrium, while the expected payoffs are used to find the Nash equilibrium. The fundamental properties of games, e.g. pure and mixed risk-averse R-ABADI equilibrium and strict dominance, are studied in the new framework and the results are expanded to finite-time games. Furthermore, the stochastic congestion games are studied from a risk-averse perspective and three classes of equilibria are proposed for such games. It is shown by examples that the risk-averse behavior of travelers in a stochastic congestion game can improve the price of anarchy in Pigou and Braess networks. Furthermore, the Braess paradox does not occur to the extent proposed originally when travelers are risk-averse. We also study an online affinity scheduling problem with no prior knowledge of the task arrival rates and processing rates of different task types on different servers. We propose the Blind GB-PANDAS algorithm that utilizes an exploration-exploitation scheme to load balance incoming tasks on servers in an online fashion. We prove that Blind GB-PANDAS is throughput optimal, i.e. it stabilizes the system as long as the task arrival rates are inside the capacity region. The Blind GB-PANDAS algorithm is compared to FCFS, Max-Weight, and c-mu-rule algorithms in terms of average task completion time through simulations, where the same exploration-exploitation approach as Blind GB-PANDAS is used for Max-Weight and c-ÎĽ\mu-rule. The extensive simulations show that the Blind GB-PANDAS algorithm conspicuously outperforms the three other algorithms at high loads

    Herding in Queues with Waiting Costs: Rationality and Regret

    Get PDF
    We study how consumers with waiting cost disutility choose between two congested services of unknown service value. Consumers observe an imperfect private signal indicating which service facility may provide better service value as well as the queue lengths at the service facilities before making their choice. If more consumers choose the same service facility because of their private information, longer queues will form at that facility and indicate higher quality. On the other hand, a long queue also implies more waiting time. We characterize the equilibrium queue-joining behavior of arriving consumers and the extent of their learning from the queue information in the presence of such positive and negative externalities. We find that when the arrival rates are low, utility-maximizing rational consumers herd and join the longer queue, ignoring any contrary private information. We show that even when consumers treat queues as independently evolving, herd behavior persists with consumers joining longer queues above a threshold queue difference. However, if the consumers seek to minimize ex post regret when making their decisions, herd behavior may be dampened

    Investigations into Elasticity in Cloud Computing

    Full text link
    The pay-as-you-go model supported by existing cloud infrastructure providers is appealing to most application service providers to deliver their applications in the cloud. Within this context, elasticity of applications has become one of the most important features in cloud computing. This elasticity enables real-time acquisition/release of compute resources to meet application performance demands. In this thesis we investigate the problem of delivering cost-effective elasticity services for cloud applications. Traditionally, the application level elasticity addresses the question of how to scale applications up and down to meet their performance requirements, but does not adequately address issues relating to minimising the costs of using the service. With this current limitation in mind, we propose a scaling approach that makes use of cost-aware criteria to detect the bottlenecks within multi-tier cloud applications, and scale these applications only at bottleneck tiers to reduce the costs incurred by consuming cloud infrastructure resources. Our approach is generic for a wide class of multi-tier applications, and we demonstrate its effectiveness by studying the behaviour of an example electronic commerce site application. Furthermore, we consider the characteristics of the algorithm for implementing the business logic of cloud applications, and investigate the elasticity at the algorithm level: when dealing with large-scale data under resource and time constraints, the algorithm's output should be elastic with respect to the resource consumed. We propose a novel framework to guide the development of elastic algorithms that adapt to the available budget while guaranteeing the quality of output result, e.g. prediction accuracy for classification tasks, improves monotonically with the used budget.Comment: 211 pages, 27 tables, 75 figure
    • …
    corecore