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ABSTRACT

The multi-armed bandit (MAB) and game theory literature is mainly focused

on the expected cumulative reward and the expected payoffs in a game, re-

spectively. In contrast, the rewards and the payoffs are often random vari-

ables whose expected values only capture a vague idea of the overall distri-

bution. The focus of this dissertation is to study the fundamental limits of

the existing bandits and game theory problems in a risk-averse framework

and propose new ideas that address the shortcomings. The author believes

that human beings are mostly risk-averse, so studying multi-armed bandits

and game theory from the point of view of risk aversion, rather than ex-

pected reward/payoff, better captures reality. In this manner, a specific class

of multi-armed bandits, called explore-then-commit bandits, and stochastic

games are studied in this dissertation, which are based on the notion of

Risk-Averse Best Action Decision with Incomplete Information (R-ABADI,

Abadi is the maiden name of the author’s mother). The goal of the classical

multi-armed bandits is to exploit the arm with the maximum score defined

as the expected value of the arm reward. Instead, we propose a new defi-

nition of score that is derived from the joint distribution of all arm rewards

and captures the reward of an arm relative to those of all other arms. We

use a similar idea for games and propose a risk-averse R-ABADI equilibrium

in game theory that is possibly different from the Nash equilibrium. The

payoff distributions are taken into account to derive the risk-averse equilib-

rium, while the expected payoffs are used to find the Nash equilibrium. The

fundamental properties of games, e.g. pure and mixed risk-averse R-ABADI

equilibrium and strict dominance, are studied in the new framework and the

results are expanded to finite-time games. Furthermore, the stochastic con-

gestion games are studied from a risk-averse perspective and three classes of

equilibria are proposed for such games. It is shown by examples that the

risk-averse behavior of travelers in a stochastic congestion game can improve
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the price of anarchy in Pigou and Braess networks. Furthermore, the Braess

paradox does not occur to the extent proposed originally when travelers are

risk-averse.

We also study an online affinity scheduling problem with no prior knowl-

edge of the task arrival rates and processing rates of different task types on

different servers. We propose the Blind GB-PANDAS algorithm that utilizes

an exploration-exploitation scheme to load balance incoming tasks on servers

in an online fashion. We prove that Blind GB-PANDAS is throughput opti-

mal, i.e. it stabilizes the system as long as the task arrival rates are inside the

capacity region. The Blind GB-PANDAS algorithm is compared to FCFS,

Max-Weight, and c-µ-rule algorithms in terms of average task completion

time through simulations, where the same exploration-exploitation approach

as Blind GB-PANDAS is used for Max-Weight and c-µ-rule. The exten-

sive simulations show that the Blind GB-PANDAS algorithm conspicuously

outperforms the three other algorithms at high loads.
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Chapter 1

INTRODUCTION

1.1 Introduction and Contributions

The multi-armed bandit (MAB) and game theory literature is mainly focused

on the expected cumulative reward and the expected payoffs in a game, re-

spectively. In contrast, the rewards and the payoffs are often random vari-

ables whose expected values are vague representations of the overall distribu-

tions and do not capture the mean-variance trade-off that is associated with

the risk of taking a specific action. The focus of this dissertation is to study

the fundamental limits of the existing bandits and game theory problems in

a risk-averse framework and propose new ideas to overcome the issues. The

author believes that the human beings mostly behave in risk-averse man-

ners, so studying multi-armed bandits and games from a risk-aversion point

of view better captures reality. Risk-averse algorithms for MAB problems

and risk-averse equilibria for (congestion) games are introduced in this dis-

sertation, which are based on the notion of Risk-Averse Best Action Decision

with Incomplete Information (R-ABADI1).

Multi-armed bandits have a wide range of applications as diverse as config-

uring web interfaces, paging and caching, routing in both wired and wireless

networks, data structures, advertisement placement, dynamic pricing and

online auction mechanisms, experiment design, and recommender systems,

to name a few. A specific class of multi-armed bandits, called explore-then-

commit (ETC) bandits, is studied in Chapter 2. This class of bandits is

widely used in autonomous vehicles, clinical trial design, and investment

companies. The objective in classical multi-armed bandit problems is to ex-

ploit the arm with the maximum expected reward. However, the expected

reward does not capture the risk associated with arm rewards. As a result,

1Abadi is the maiden name of the author’s mother.
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if the objective of a player is not to maximize the cumulative reward, but to

have a balanced reward in each and every play of the arms, or if the player

only exploits one arm once after a pure exploration phase, then exploiting the

arm with the maximum expected reward may no longer be desirable. The

goal in explore-then-commit finite bandits is to identify the best arm after a

pure experimentation phase to exploit it once or for a given finite number of

times. In this setting, we observe that pulling the arm with the highest ex-

pected reward is not necessarily the most desirable objective for exploitation.

Alternatively, we advocate the idea of risk aversion where the objective is to

compete against the arm with the best risk-return trade-off. We propose a

class of hyper-parameter-free risk-averse algorithms, called OTE/FTE-MAB

(One/Finite-Time Exploitation Multi-Armed Bandit), whose objectives are

to select the arm that will most likely provide the greatest reward in a single

or finite-time exploitation. To analyze these algorithms, we define a new no-

tion of finite-time exploitation regret for our setting of interest. We provide

an upper bound of order ln
(

1
εr

)
for the minimum number of experiments

that should be done to guarantee upper bound εr for regret. In contrast to

the existing risk-averse bandit algorithms, our proposed algorithms do not

rely on hyper-parameters, resulting in a more robust behavior in practice. In

the case that pulling an arm in the exploration phase has a cost, a trade-off

between cost and regret emerges. We propose the c-OTE-MAB algorithm

for two-armed bandits that addresses the cost-regret trade-off by minimiz-

ing a linear combination of cost and regret, using a hyper-parameter, that

is called cost-regret function. This algorithm estimates the optimal number

of explorations whose cost-regret value approaches the minimum value of

the cost-regret function at the rate 1√
ne

with an associated confidence level,

where ne is the number of explorations of each arm.

The risk-averse R-ABADI equilibrium for stochastic games is studied in

Chapter 3. The term rational has become synonymous with maximizing

expected payoff in the definition of the best response in the Nash setting.

In this chapter, we consider stochastic games in which players engage only

once, or at most a limited number of times. In such games, it may not be

rational for players to maximize their expected payoff as they cannot wait

for the law of large numbers to take effect. We instead introduce probability

statements on the best response by defining a new notion of a risk-averse

best response that takes the payoff distributions into account. This results
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in a risk-averse R-ABADI equilibrium in which players choose to play the

strategy that maximizes the probability of their being rewarded the most in

a single round of the game rather than maximizing the expected received

reward, subject to the actions of other players. Note that the psychology of

risk-averse players is such that they do not often take the expected payoffs

into account, but consider the payoff distributions instead. A strategy with

high expected payoff may be less likely to have a higher payoff than another

strategy with lower expected payoff, which is shown in an illustrative example

in this chapter. The Nash equilibrium is such that no player has any incentive

to deviate from his/her strategy since all his/her strategies have the same

expected payoff given the other players’ strategies. In contrast, the risk-

averse R-ABADI equilibrium makes each player indifferent to his/her choice

of strategies by giving all strategies the same probability of rewarding more

than or equal to all the other strategies, given the other players’ strategies.

We show that the risk-averse equilibrium based on the mentioned probability

statement can be found by realizing the Nash equilibrium of a new game

whose payoffs are derived from the probability distributions of the payoffs of

the original game.

Stochastic congestion games are studied in Chapter 4. The fast-growing

market of autonomous vehicles, unmanned aerial vehicles, and fleets in gen-

eral necessitates the design of smart and automatic navigation systems con-

sidering the stochastic latency along different paths in the traffic network.

The longstanding shortest path problem in a deterministic network, whose

counterpart in a congestion game setting is Wardrop equilibrium, has been

studied extensively, but it is well known that finding the notion of an optimal

path is challenging in a traffic network with stochastic arc delays. In order

to address this issue, several researchers have attempted to take the uncer-

tainty in travel times into account when defining the notion of best response

in a stochastic congestion game by considering a safety margin to arrive on

time, the probability of being late/on time, or adding mean travel time and

an additional component related to the variance of travel time. However,

simplifying assumptions are made in these works such as considering the arc

delay distributions to be independent of their loads or adding independent

and identically distributed errors to nominal delays of arcs neglecting their

differences. In this chapter, we propose three classes of risk-averse equilib-

ria for an atomic stochastic congestion game in its general case where the

3



arc delay distributions are load dependent and not necessarily independent of

each other. The three classed are R-ABADI equilibrium, mean-variance equi-

librium (MVE), and conditional value at risk level α equilibrium (CVaRαE)

whose notions of risk-averse best responses are based on maximizing the prob-

ability of taking the shortest path, minimizing a linear combination of mean

and variance of path delay, and minimizing the expected delay at a specified

risky quantile of the delay distributions, respectively. We prove that for any

finite stochastic atomic congestion game, the risk-averse, mean-variance, and

CVaRα equilibria exist. We show that for risk-averse travelers, the Braess

paradox may not occur to the extent presented originally since players do

not necessarily travel along the shortest path in expectation, but they take

the uncertainty of travel time into consideration as well. Although the focus

of this work is not on deriving bounds on price of anarchy, we show through

some examples that the price of anarchy/social delay can be improved when

players are risk-averse and travel according to one of the three classes of

risk-averse equilibria rather than when travelers are risk-neutral/selfish and

travel according to the Wardrop equilibrium.

In Chapter 5, an exploration-exploitation scheme is used for load balanc-

ing with incomplete knowledge of the processing rates of tasks on servers.

Dynamic affinity load balancing of multi-type tasks on multi-skilled servers,

when the service rate of each task type on each of the servers is known and

can possibly be different from the others, has been an open problem for over

three decades. The goal is to do task assignment on servers in a real-time

manner so that the system becomes stable, which means that the queue

lengths do not diverge to infinity in steady state (throughput optimality),

and the mean task completion time is minimized (delay optimality). The

fluid model planning, Max-Weight, and c-µ-rule algorithms have theoretical

guarantees on optimality in some aspects for the affinity problem, but they

consider a complicated queueing structure and require either the task arrival

rates, the service rates of tasks on servers, or both. In many real-world ap-

plications, both task arrival rates and service rates of different task types

on different servers are unknown. To tackle this issue, we propose the Blind

GB-PANDAS algorithm which is completely blind to task arrival rates and

service rates. Blind GB-PANDAS uses an exploration-exploitation approach

for load balancing. We prove that Blind GB-PANDAS is throughput opti-

mal under arbitrary and unknown distributions for service times of different

4



task types on different servers and unknown task arrival rates. Blind GB-

PANDAS aims to route an incoming task to the server with the minimum

weighted-workload, but since the service rates are unknown, such routing of

incoming tasks is not guaranteed, making the throughput optimality analy-

sis more complicated than in the case where service rates are known. The

extensive experimental results reveal that Blind GB-PANDAS significantly

outperforms existing methods in terms of mean task completion time at high

loads.

1.2 Related Work

We present the related work on multi-armed bandits, risk-averse stochas-

tic games, stochastic congestion games, and affinity load balancing in the

following subsections.

1.2.1 Budgeted Explore-Then-Commit Bandits and
Risk-Averse Algorithms

Explore-then-commit bandit is a class of multi-armed bandit problems that

has two consecutive phases called exploration (experimentation) and com-

mitment [1, 2]. The decision-maker can arbitrarily explore each arm in the

experimentation phase; however, he/she needs to commit to one selected arm

in the commitment phase. There are few studies on explore-then-commit

bandits in the literature that are summarized below. Bui et al. [1] studied

the optimal number of explorations when cost is incurred in both phases.

Liau et al. [3] designed an explore-then-commit algorithm for the case where

there is a limited space to record the arm reward statistics. Perchet et al. [4]

studied explore-then-commit policy under the assumption that the employed

policy must split explorations into a number of batches. To the best of our

knowledge, there is no cost-based study that considers risk-aversion in an

explore-then-commit bandit with finite exploitations, which is the focus of

this work. In the following, a review on bandits is presented that consid-

ers both arm rewards and the exploration-exploitation cost. The review is

followed by an overview of risk-averse bandits.
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A class of multi-armed bandit problems is associated with budget con-

straints where a player receives a reward with a cost by pulling an arm.

Two types of MAB with budget constraint have been mainly studied [5].

First, pulling an arm is associated with a cost or constrained by a budget

in both exploration and exploitation phases. Second, pulling an arm has a

cost constrained by a budget only in the exploration phase. This type of

MAB with budget constraint is called pure exploration or best arm identifi-

cation [6]. There are several studies of the first type. Tran-Thanh et al. [7]

proposed the ε-first algorithm for MAB with a limited budget imposed on

pulling arms, where pulling each arm has a different fixed cost. In the ε-

first algorithm, ε of the budget is used for the exploration phase and the

remaining budget is used for the exploitation phase. The regret bound of the

ε-first algorithm is O
(
B

2
3

)
, where B is the budget value. The drawbacks

of this algorithm are the polynomial regret bound and that a large ε assures

a more accurate exploration but with an ineffective exploitation, and vice

versa. In order to resolve these issues, Tran-Thanh et al. [5] used a knapsack

setting and improved the regret bound from O
(
B

2
3

)
to O (lnB). In another

study, Ding et al. [6] considered the cost of pulling arms as a discrete random

variable rather than a fixed cost and proposed the UCB-BV1 and UCB-BV2

algorithms. In the UCB-BV1 algorithm, the lower bound of the expected

costs needs to be known, but the UCB-BV2 algorithm estimates this lower

bound. The regret bound for both these algorithms is proven to be O (lnB).

Xia et al. [8] studied the limited budget setting in both multi-armed ban-

dits and linear bandits with continuous random costs. They proposed the

Budget-UCB and Budget-CB algorithms for MAB and linear bandit with

distribution-dependent regret bound O (lnB) and polylog(B), respectively.

Additionally, Xia et al. [8] studied the limited budget MAB with multiple

plays, where the player pulls multiple arms in each round. They proposed

the MP-BMAB algorithm that uses a multiple ratio confidence bound to

determine the best arms to play with a sublinear regret. Xia et al. [9] ap-

plied Thompson sampling to the limited budget MAB problem with random

cost associated for pulling an arm and proposed the BTS algorithm that

has a distribution-dependent regret bound of O (lnB). In another work,

Badanidiyuru et al. [10] studied the MAB problem with multiple budget

constraints where the budget consumption of pulling an arm is a random

multi-dimensional vector. They used the knapsacks model to address this

6



problem and proposed the PD-BwK algorithm with a sublinear regret. The

above setting is called bandits with knapsacks and is extended in conceptual

bandits by [11] and [12]. In the second type, best arm identification, there

are several studies. Bubeck et al. [13] studied a case where a player explores

arms with a limited budget without concern about the received rewards in

order to identify the best arm after the pure exploration phase. To evaluate

the best identified arm, they defined simple regret as the difference between

the maximal expected reward and the expected reward of the best identified

arm. They find upper bounds for the simple regret for two cases. In the first

case, arms are played uniformly in the pure exploration phase and the best

identified arm is the empirical best arm. In the second case, a UCB-based

exploration is performed and the best identified arm is the most played arm.

Audibert and Bubeck [14] defined the probability of selecting a suboptimal

arm as regret for the pure exploration setting. They found upper bounds on

the regret for both UCB exploration and their own proposed SR algorithm.

Gabillon et al. [15] studied the best arm identification for each of the bandits

in a multi-bandit multi-armed setting. They defined regret as the maximum

error among all bandits, where error is defined as the probability of selecting

a suboptimal arm. They proposed the GapE and GapE-V algorithms for ex-

ploration and obtained upper bounds on their regret. The GapE algorithm is

UCB-based which takes into account the gap between the expected rewards

of the optimal arm and the best identified arm. The GapE-V algorithm is

also UCB-based and not only uses the gap but also considers the estimated

reward variances.

There are several criteria to measure and to model risk in the risk-averse

multi-armed bandit problem. One of the common risk measurements is

the mean-variance paradigm [16]. The two algorithms MV-LCB and Ex-

pExp proposed by Sani et al. [17] are based on the mean-variance concept.

They define the mean-variance of an arm with mean µ and variance σ2 as

MV= σ2 − ρ · µ, where ρ ≥ 0 is the absolute risk tolerance coefficient. In an

infinite horizon multi-armed bandit problem, MV-LCB plays the arm with

minimum lower confidence bound for estimation of MV. In a best-arm iden-

tification setting, the ExpExp algorithm explores each of the arms for the

same number of times and selects the arm with minimum estimated MV. This

approach is followed by numerous researchers in risk-averse multi-armed ban-

dit problems [18–21]. Another way of considering risk in multi-armed bandit
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problems is to use conditional value at risk level α, CVaRα, where it is the

expected policy return in a specified quantile. CVaRα is utilized by Galichet

et al. [22] in risk-aware multi-armed bandit problems. They presented the

Multi-Armed Risk-Aware Bandit (MaRaB) algorithm aiming to select the

arm with the maximum conditional value at risk level α, CVaRα. Formally,

let 0 < α < 1 be the target quantile level and vα defined as P(R < vα) = α

be the associated quantile value, where R is the arm reward. The condi-

tional value at risk α is then defined as CVaRα = E [R|R < vα]. CVaRα is

also followed by researchers in multi-armed bandit problems [18,23–26]. The

performances of both MV and CVaR are highly dependent on different sin-

gle scalar hyper-parameters, and selecting an inappropriate hyper-parameter

might degrade the performance substantially. The negative impact of hyper-

parameter mismatch is studied in Section 2.4.

1.2.2 Risk-Averse Equilibrium for Games

Since the seminal works of von Neumann [27], von Neumann and Morgen-

stern [28], and Nash [29], expected utility has emerged as the dominant

objective value within game theory as each player attempts to maximize

his/her expected utility given the actions of other players. This concept was

extended naturally into games of incomplete information (Bayesian games)

by Harsanyi [30], as players can still maximize their expected utility given a

distribution from which the game will be drawn. These games have received

a great deal of attention as they more accurately model real-world situa-

tions where not all parameters are known precisely, with later works such as

Wiseman [31] addressing how players sequentially refine their equilibria as

they learn the distributions and the more recent work of Mertikopoulos and

Zhou [32] addressing how players learn their payoffs with continuous action

sets. Another recent work by Sugaya and Yamamoto [33] considers the more

specific question of how firms in a duopoly should play when the payoff dis-

tributions are based on the market state, a random variable with possibly

unknown distribution.

Despite all the work that has gone into expected utility as the objective

value players wish to maximize, it is still questionable whether this is a good

assumption [34, 35]. Several papers have focused on adding a degree of risk
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aversion to player’s utility functions in specific games, with Angelidakis et

al. [36] and Bell and Cassir [37] analyzing variations of this in congestion

games, and Yamazaki [38] doing so in rent-seeking games, Harrington [39]

doing so in bargaining games. Additionally Goeree et al. [40] present an

empirical study of risk-aversion in the matching-pennies game, where they

observe marked deviations from Nash behavior (expected utility maximiza-

tion) as the payoffs/costs become larger. This is consistent with the concept

of prospect theory based on empirical observations across several experi-

ments in which the subjects deviate from actions which would maximize

their expected utility. Kahneman and Tversky [41] formulated the idea of

prospect theory, which states that consumers are naturally risk-averse when

addressing situations with potential gains and naturally risk-seeking when

facing situations with potential losses. Prospect theory has since been widely

studied, with an extension of the original paper provided in [42] to address

more general payoff/cost functions. Levy [43] provides a good overview of

classical prospect theory, particularly from a political perspective. Unsur-

prisingly, prospect theory has received a great deal of attention in financial

studies [44, 45], with Barberis et al. [46] using it for asset pricing. Prospect

theory is not without its critics; e.g., List [47] posits that the results of the

studies on prospect theory are due to inexperienced consumers, and designs

an experiment to show these behaviors disappear with experience. However,

experienced consumers are by definition consumers who engage in similar

trials multiple times, which means that for these consumers expected utility

is an appropriate metric. As we are explicitly interested in games which will

be played at most a small number of times, we do not need to be concerned

with this effect.

1.2.3 Stochastic Congestion Games

In this section, the literature on navigation for both deterministic and stochas-

tic networks is presented first, then the literature on deterministic and stochas-

tic congestion games is discussed in detail. The main focus of the literature

review is to motivate the necessity of risk-averse algorithms for navigation

and congestion games in a stochastic setting.

The problem of finding the shortest path in a transportation or telecom-
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munication traffic network is one of the main parts of the in-vehicle naviga-

tion systems. This problem has been studied well in deterministic networks

resulting in many efficient algorithms, e.g., the algorithms developed by Bell-

man [48], Dijkstra [49], and Dreyfus [50], also see [51–60]. Although finding

the shortest path problem is well understood in deterministic networks, the

definition of an optimal path and how to identify such a path is more chal-

lenging in the stochastic version of the problem. There have been multiple

approaches to define the optimal path in stochastic networks as summarized

below. The least expected travel time is studied by Loui [61] and is equiv-

alent to the deterministic case from the computational point of view. The

path with the least expected time may be sub-optimal for risk-averse travel-

ers due to its high variability and uncertainty; as the result, the probability

distributions of link travel times need to be considered explicitly to find the

most reliable path. In this manner, Frank [62] proposed the optimal path

to be the one that maximizes the probability of realizing a travel time that

less than a threshold, Sigal et al. [63] proposed the optimal path to be the

one that maximizes the probability of realizing the shortest time, and Chen

and Ji [64] proposed the optimal path to be the one with minimum travel

time budget required to meet a travel time reliability constraint. For more

variants of the mentioned algorithms, refer to [65–81].

In the context of route selection in a fleet of vehicles, a game emerges be-

tween all travelers where the action of each traveler affects the travel time

of the other travelers, which creates a competitive situation forcing travel-

ers to strategize their decisions. In a deterministic network, the mentioned

game is formalized by Wardrop and Whitehead [82], von Neumann [83], von

Neumann and Morgenstern [84], and Nash et al. [85]. However, it is not

realistic to consider the link delays to be known prior to making a decision

due to external factors that make the travel times uncertain. In order to

put this in perspective, several approaches have been adopted by researchers

to capture the stochastic behavior of the traffic networks. For example,

Harsanyi [86, 87] proposed Bayesian games that consider the incomplete in-

formation of payoffs, Ordóñez and Stier-Moses [88] modeled the risk-averse

behavior of travelers by padding the expected travel time along paths with a

safety margin, Watling [89] proposed an equilibrium based on the optimality

measure of minimizing the probability of being late or maximizing the prob-

ability of being on time, Szeto et al. [90] associated a cost with the travel
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time uncertainty based on travelers’ risk-averse behavior, Chen and Zhou [91]

proposed an equilibrium based on the optimality measure of minimizing the

conditional expectation of travel time beyond a travel time budget, and Bell

and Cassir [92] proposed to play out all possible scenarios before making a

choice. For more details in the context of traffic networks, we refer readers

to [93–105].

1.2.4 Affinity Scheduling Algorithms

There is a huge body of work on a specific class of affinity problems with

applications in scheduling for data centers considering data locality, which

can be divided into two main categories: (1) Heuristic scheduling algo-

rithms with no theoretical guarantees on throughput or delay optimality,

see e.g. [106–116]. Although some of these heuristic algorithms are being

used in real applications, simple facts about their optimality are not investi-

gated. Among these algorithms, the Fair Scheduler is the de facto standard

in Hadoop [108]. Other than map task scheduling for map-intensive jobs,

heuristic algorithms like [117–119] study the joint scheduling of map and re-

duce tasks. (2) Algorithms that theoretically guarantee throughput or delay

optimality or both [120–148]. The works by Harrison [120], Harrison and

Lopez [121], and Bell and Williams [122,123] on affinity scheduling not only

require the knowledge of mean arrival rates of all task types, but also consider

one queue per task type. In a data center, if a task is replicated on three

servers, the number of task types can be in the cubic order of number of

servers, which causes unnecessary and intolerable complexity of the system.

The MaxWeight algorithm (the generalized cµ-rule) by Stolyar and Mandel-

baum [124, 127] does not require the arrival rates, but still needs one queue

per task type. The JSQ-MaxWeight algorithm by Wang et al. [132] solves

the per-task-type problem for a system with two levels of data locality. The

JSQ-MaxWeight algorithm is throughput optimal, but it is delay optimal

for a special traffic scenario. The priority algorithm for near data schedul-

ing [133] is both throughput and heavy-traffic optimal for systems with two

locality levels. The weighted-workload routing and priority scheduling algo-

rithm [134] for systems with three locality levels is shown to be throughput

optimal and delay optimal in a larger region of the capacity region compared
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to the JSQ-MW algorithm with a further assumption on the processing rates.

A related direction of work on scheduling for data centers with multi-

level data locality, which is a direct application of affinity scheduling, is to

efficiently do data replication on servers in MapReduce framework to increase

availability. Increasing the availability is translated to increasing service

rates in the context of this dissertation which enlarges the capacity region

and reduces the mean task completion time. For more information on data

replication algorithms refer to Google File System [149], Hadoop Distributed

File System [106], Scarlett [150], and Dare [151]. Data replication algorithms

are complementary and orthogonal to the throughput and delay optimality

that is studied in this dissertation.

In addition to data-locality, fairness is another concern in task scheduling

which actually conflicts with delay optimality. A delay optimal load bal-

ancing algorithm can cooperate with fair scheduling strategies, though, by

compromising on delay optimality to achieve partial fairness. For more de-

tails on fair scheduling [152–154], see Zaharia et al. [108], Isard et al. [107],

and the references therein. A different line of work studies the performance

of load balancing algorithms under uncertainty of system parameters. It is

desirable to design algorithms that are robust to the changes in task arrival

loads, change of service rates, and other factors. Some robust policies are

studied in [155–159].

1.2.5 Applications of Affinity Scheduling in MapReduce
Framework

In large scale data-intensive applications like the healthcare industry, ad

placement, online social networks, large-scale data mining, machine learning,

search engines, and web indexing, the de facto standard is the MapReduce

framework. MapReduce framework is implemented on tens of thousands

of machines (servers) in systems like Google’s MapReduce [160], Hadoop

[106], and Dryad [161] as well as grid-computing environments [107]. Such

vast investments do require improvements in the performance of MapReduce,

which gives them new opportunities to optimize and develop their products

faster [150]. In MapReduce framework, a large data-set is split into small

data chunks (typically 64 or 128 MB) and each one is saved on a number of
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machines (three machines by default) which are chosen uniformly at random.

A request for processing the large data-set, called a job, consists mainly of

two phases, map and reduce. The map tasks read their corresponding data

chunks which are distributed across machines and output intermediary key-

value results. The reduce tasks aggregate the intermediary results produced

by map tasks to generate the job’s final result.

In MapReduce framework, a master node (centralized scheduler) assigns

map and reduce tasks to slaves (servers) in response to heartbeats received

from slaves. Since jobs are either map-intensive or only require map tasks

[162, 163], and since map tasks read a large volume of data, we only focus

on map task scheduling as an immediate application of our load balancing

algorithm. Local servers of a map task refer to those servers having the data

associated with the map task. Local servers process map tasks faster, so the

map tasks are preferred to be co-located with their data chunks or at least be

assigned to machines that are close to map tasks’ data, which is commonly

referred to as near-data scheduling or scheduling with data locality.

In contrast to the improvements in the speed of data center networks, there

is still a huge difference between accessing data locally and fetching it from

another server [164, 165]. Hence, improving data locality increases system

throughput, alleviates network congestion due to less data transmission, and

enhances users’ satisfaction due to less delay in receiving their job’s response.

There are two main approaches to increase data locality: (1) Employing

data replication algorithms to determine the number of data chunk replicas

and where to place them (instead of choosing a fixed number of machines

uniformly at random, which is done in Google File System [149] and Hadoop

Distributed File System [106]). For more details see the algorithms Scarlett

[150] and Dare [151]. (2) Scheduling map tasks on or close to local servers in

a way to keep balance between data-locality and load-balancing (assigning

all tasks to their local machines can lead to hotspots on servers with popular

data). These two methods are complementary and orthogonal to each other.

The focus of this dissertation is on the second method.
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Chapter 2

A COST-BASED ANALYSIS FOR
RISK-AVERSE EXPLORE-THEN-COMMIT

FINITE-TIME BANDITS

One of the classes of decision making models is the multi-armed bandit

(MAB) framework where decision makers learn the model of different arms

that are unknown and actions do not change the state of arms [166]. The

MAB problem was originally proposed by Robbins [167], and has a wide

range of applications in finance [168,169], communication and networks [170],

health-care [171], autonomous vehicles [172], dynamic spectrum access sys-

tems [173], and energy management [22,174,175] to name but a few. In the

classical MAB problem, the decision-maker sequentially selects an arm (ac-

tion) with an unknown reward distribution out of K arms. The noisy reward

of the selected arm is revealed and the values of other arms remain unknown.

At each step, the decision-maker encounters a dilemma between exploitation

of the best identified arm versus exploration of alternative arms. The goal

of the classical model of multi-armed bandit is to maximize the expected

cumulative reward over a time horizon.

In this chapter, the focus is on a setting where a player is allowed to explore

different arms in the exploration (or experimentation, used interchangeably)

phase before committing to the best identified arm for exploitation in one or

a given finite number of times. A preliminary treatment of this problem has

been introduced in [176]. Besides, pulling an arm in the exploration phase

can incur a cost. This setting of interest is motivated by several application

domains such as personalized health-care and one-time investment. In such

applications, exploitation is costly and/or it is infeasible to exploit for a

large number of times, but arms can be tested by simulation and/or based

on the historical data for multiple times with a relatively small cost [1].

The big step in personalized health-care is to provide an individual patient

with his/her disease risk profile based on his/her electronic medical record

Portions of this chapter were previously published in Yekkehkhany et al. [176] and
is used here with permission.
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and personalized assessments [177,178]. The different treatments (arms) are

evaluated for a person by simulation or mice trials for many times with a

low cost, but one personalized treatment is exploited once for a patient in

the end [179, 180]. Another example of one-time exploitation is one-time

investment where an investor chooses a factory out of multiple ones. Based

on experimentation on historical data, he/she selects a factory to invest in

once. The common theme in both above examples is to identify the best arm

for one-time exploitation after an experimentation phase of pure exploration.

This setting falls in the class of MAB problems called explore-then-commit

[1, 2].

Note that although pulling the arm with the maximum expected reward

is desirable in the settings with infinite exploitations, it is not necessarily

the best objective in the explore-then-commit setting with a single or fi-

nite exploitations. In such scenarios, players not only aim to achieve the

maximum expected cumulative reward, but they also want to minimize the

uncertainty such as risk in the outcome [18]. These approaches are known as

risk-averse MAB. We advocate a risk-averse approach in which the objective

is to select an arm that is most probable to reward the most. The previous

works [1,2,17,22,181,182] on explore-then-commit bandits, to the best of our

knowledge, try to identify the arm with an optimal risk-return criterion on an

expectation sense up to a hyper-parameter. The choice of hyper-parameter

is tricky which will be further elaborated by an illustrative example in Sec-

tion 2.1. We propose a class of hyper-parameter-free risk-averse algorithms,

called OTE/FTE-MAB, for explore-then-commit bandits with finite-time ex-

ploitations. We define a new notion of finite-time exploitation regret for our

setting of interest and obtain an upper bound for the minimum number of

experiments that should be done to guarantee an upper bound for regret that

are elaborated in Section 2.2.

In the mentioned single or finite exploitation explore-then-commit ban-

dit applications, although the exploration cost of arms is relatively small, a

trade-off between cost and regret emerges at large numbers of explorations.

Increasing the number of explorations decreases regret but increases cost and

vice versa. In order to capture this issue, we formalize this trade-off for a

two-armed bandit problem and propose an algorithm to determine an esti-

mation of the optimal number of explorations. The cost-regret trade-off is

studied in details in Section 2.3.
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The contributions of this chapter are summarized below. We propose a

class of hyper-parameter-free risk-averse algorithms (called OTE/FTE-MAB)

for explore-then-commit bandits with finite-time exploitations. The goal of

the algorithms is to select the arm that is most probable to give the player

the highest reward. To analyze the algorithms, we define a new notion of

finite-time exploitation regret for our setting of interest. We provide con-

crete mathematical support to obtain an upper bound of order ln( 1
εr

) for

the minimum number of experiments that should be done to guarantee up-

per bound εr for regret. As a salient feature, the OTE/FTE-MAB algorithm is

hyper-parameter-free, so it is not prone to errors due to the hyper-parameter

mismatch. We further study the case where the cost of pulling arms in the

exploration phase is not negligible, and as a result, a trade-off between cost

and regret should be considered. We propose the c-OTE-MAB algorithm for a

two-armed bandit that addresses this trade-off by minimizing a linear combi-

nation of cost and regret, using a hyper-parameter, that is called cost-regret

function. This algorithm determines an estimation of the optimal number of

explorations whose cost-regret value approaches the minimum value of the

cost-regret function at the rate 1√
ne

with an associated confidence level, where

ne is the number of explorations of each arm. The c-OTE-MAB algorithm

is designed for one-time exploitation that can be extended to finite-time ex-

ploitations.

The rest of the chapter is organized as follows. Subsection 1.2.1 discusses

related work. In Section 2.1, the one/finite-time exploitation multi-armed

bandit problem after an experimentation phase is formally described. We

define a new notion of one/finite-time exploitation regret for our problem

setup. An example is provided clarifying the motivation of our work. In Sec-

tion 2.2, we propose the OTE-MAB and FTE-MAB algorithms, and find an

upper bound for the minimum number of pure explorations needed to guaran-

tee an upper bound for regret. In Section 2.3, we propose the c-OTE-MAB

algorithm that determines an estimation of the optimal number of explo-

rations for a two-armed bandit problem, where exploring arms is associated

with a cost. In Section 2.4, we evaluate the OTE-MAB algorithm versus risk-

averse baselines and compare the minimum number of experiments needed to

guarantee an upper bound on regret for both the OTE-MAB and FTE-MAB

algorithms. Additionally, we show by an example that the expected value of

the estimated optimal number of explorations derived from the c-OTE-MAB
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algorithm converges to the optimal value of the number of explorations. For

conclusion of the chapter and a discussion of opportunities for future work,

refer to Chapter 6.

2.1 Formulation of Explore-Then-Commit Finite

Bandits

Consider arms K = {1, 2, . . . , K} whose rewards are random variables R1, R2,

. . . , RK that have an unknown joint distribution function f1,2,...,K

(
u1, u2, . . . ,

uK
)

with marginal distribution functions f1(u), f2(u), . . . , fK(u) with un-

known finite expected values µ1, µ2, . . . , µK and variances σ2
1, σ

2
2, . . . , σ

2
K , re-

spectively. Note that a bandit with independent arms is a specific case of a

bandit with dependent arms since the joint distribution of arms in the former

case is given by f1,2,...,K(u1, u2, . . . , uK) = f1(u1)×f2(u2)×· · ·×fK(uK). The

goal is to identify the best arm at the end of an experimentation phase that is

followed by an exploitation phase, where the best arm is exploited for a given

number of times, M < ∞. In the experimentation phase, all arms are sam-

pled together for N independent times. Denote the observed reward of arm

k ∈ K at sample n ∈ {1, 2, . . . , N} of experimentation by rk,n. The uniform

exploration of all arms for the same number of times is a common practice

in bandit problems with pure exploration [13,17,183]. Note that if arms are

independent, rewards of different arms can be sampled independently from

each other. In Section 2.2, the cost of exploration is not considered, but in

Section 2.3, a two-armed bandit is studied where the cost of pulling the two

arms for n times is formulated by C(n) and limn→∞ =∞.

Let RM
k = X1

k + X2
k + · · · + XM

k , for k ∈ K, where (Xm
1 , X

m
2 , . . . , X

m
K )

for m ∈ {1, 2, . . . ,M} are independent and identically distributed multivari-

ate random variables and (X1
1 , X

1
2 , . . . , X

1
K) ∼ f1,2,...,K . The optimal arm

for M exploitations in the sense that maximizes the hyper-parameter-free

probability of receiving the highest reward is

k∗ = arg max
k

P(RM
k ≥ RM

−k), (2.1)

whereRM
−k = {RM

1 , R
M
2 , . . . , R

M
k−1, R

M
k+1, . . . , R

M
K } and RM

k being greater than

or equal to a vector means that it is greater than or equal to all elements
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of the vector. The mentioned measure of optimality is called Risk-Averse

Best Action Decision with Incomplete Information (R-ABADI). Let pMk =

P(RM
k ≥ RM

−k) be the score of arm k. Given the above preliminaries, the

finite-time exploitation regret is defined below.

Definition 1. The finite-time exploitation regret, rM(∆p), is defined to be

the probability that the score of the selected arm k̂, where k̂ is a random

variable, deviates from the score of the optimal arm by a tolerance threshold

0 < ∆p < 1; i.e.,

rM(∆p) = P
(
pMk∗ − pMk̂ ≥ ∆p

)
. (2.2)

Regret can also be defined hyper-parameter-free as rM = P
(
k̂ 6= k∗

)
,

in which case the theoretical results in Section 2.2 become distribution-

dependent, which is discussed in detail in that section. Note that the above

definitions of regret and arm optimality are different from the commonly

used regret and optimality criteria in bandit problems. In the following, an

example is presented that motivates the definition of the new notion of regret

as well as the new optimality criteria for the finite-time exploitation setting.

2.1.1 Illustrative Example

As mentioned in the Introduction, although the arm with the highest ex-

pected reward is the optimal arm for utilization in infinite number of ex-

ploitations, it is not necessarily the one that is most probable to have the

highest reward in a single or some finite number of exploitations. In the

following example, two arms are considered such that µ2 > µ1, but it is more

probable that a one-time exploitation of the first arm rewards us more than

a one-time exploitation of the second arm. Hence, arm arg max
k

µk is not

necessarily the ideal arm for one-time exploitation let alone the arm with the

maximum empirical mean, i.e. arg max
k

∑N
n=1 rk,n
n

.

Example 1. Consider two arms with the following independent reward dis-

tributions:

f1(u) = αe−2(u−3)2 · 1{0 ≤ u ≤ 10}

f2(u) = β
(

3e−8(u−1)2

+ 2e−8(u−8)2
)
· 1{0 ≤ u ≤ 10},
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where α and β are constants for which each of the two distributions integrate

to one and 1{.} is the indicator function.

In Example 1, although the second arm has a larger mean than the first

one, µ2 ≈ 3.8 and µ1 ≈ 3, the variance of reward received from the second

arm is larger than that from the first one, which increases the risk of choosing

the second arm for a one-time exploitation application. In fact, the first arm

with lower mean is more probable to reward us more than the second arm

since P(R1 ≥ R2) ≈ 0.6 > 0.5. In general, a larger variance for the received

reward is against the principle of risk-aversion where the objective is to keep a

balance in the trade-off between the expected return and risk of an action [17].

Mean-variance is an existing approach to tackle this scenario. However, it

has some drawbacks that are explained in detail in the following.

The mean-variance (MV) of arm k is defined as σ2
k − ρ · µk that depends

on the hyper-parameter ρ ≥ 0, which is the absolute risk tolerance coeffi-

cient. The arm with the minimum MV value is defined to be optimal in

this framework. The trade-off on ρ is that if it is set to zero, the arm with

the minimum variance is selected. On the other hand, if ρ goes to infinity,

the arm with the maximum expected reward is selected, which is the same

as classical multi-armed bandit approach. Although the behavior of mean-

variance trade-off is known for marginal values of ρ, it is not obvious what

value of the hyper-parameter ρ keeps a desirable balance between return

and risk. The choice of this hyper-parameter can be tricky and as will be

shown in Section 2.4; an inappropriate choice can increase the regret dramat-

ically. As a simple example, consider two arms with unknown parameters

µ1 = 10, σ2
1 = 10, µ2 = 1, σ2

2 = 1, and P(R1 > R2) = 1. The mean-variance

trade-off is formalized as σ̂2
k − ρµ̂k, where σ̂2

k and µ̂k are empirical estimates

of variance and mean of each arm. Note that the empirical means and vari-

ances converge to true values, so the second arm that is performing worse

with probability one is selected in limit if ρ < 1. The mean-variance frame-

work aims at keeping a balance on choosing an arm with low variance and

high expected reward. However, the limitation of this method is that high

variance is not necessarily against the player. This fact is presented in an-

other example depicted in Figure 2.1, where the blue arm, R1, rewards more

than the red arm, R2, with probability one, so a logical player would choose

the first arm to play. However, the mean-variance framework would choose
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Mean-Variance (MV):

1

𝑘∗ = argm𝑖𝑛
1≤𝑘≤𝐾

𝜎𝑘
2 − 𝜌. 𝜇𝑘

𝔼 𝑅1 > 𝔼 𝑅2

ℙ 𝑅1 > 𝑅2 = 1

If 𝜌 <
64

9
≈ 7.11, MV selects arm 2.

Figure 2.1: The example shows that mean-variance framework does not
necessarily behave in a risk-averse manner.

the second arm if ρ < 64/9. On the other hand, the CVaRα framework

has a local view on the bottom of the support of the marginal distribu-

tions, so it misses the opportunities on the top part of the support. This

fact is shown as an example in Figure 2.2, where the blue arm, R1, rewards

more than the red arm, R2, with probability 0.81, but the CVaRα selects

the second arm if α < 0.2081. In order to address these issues, we alterna-

tively propose the following best arm identification algorithm for One-Time

(Finite-time) Exploitation in a Multi-Armed Bandit problem (OTE/FTE-

MAB algorithm) that has concrete mathematical support for its action and

is hyper-parameter-free.

2.2 Risk-Averse Explore-Then-Commit Bandits with

One/Finite-Time Exploitations

In this section, we propose the OTE-MAB and FTE-MAB algorithms. The

OTE-MAB algorithm is a specific case of the FTE-MAB algorithm. Since the

proof of theorem related to the FTE-MAB algorithm is notationally heavy,
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Conditional Value at Risk Level 𝛼, CVaR𝛼:

1

𝑘∗ = argm𝑎𝑥
1≤𝑘≤𝐾

CVaR𝛼,𝑘, where CVaR𝛼,𝑘 = 𝔼 𝑅𝑘|𝑅𝑘 < 𝑣𝛼,𝑘 ,

ℙ 𝑅𝑘 < 𝑣𝛼,𝑘 = 𝛼, for 0 < 𝛼 < 1.

𝔼 𝑅1 > 𝔼 𝑅2

ℙ 𝑅1 > 𝑅2 = 0.81

If 𝛼 < 0.2081, CVaR𝛼 selects arm 2.

Figure 2.2: The example shows that the local view on the bottom of
support of reward distributions in the CVaRα framework misses the
opportunities on the top part of the support.

the OTE-MAB algorithm is proposed first in Subsection 2.2.1 and the FTE-

MAB algorithm is postponed to Subsection 2.2.2.

2.2.1 The OTE-MAB Algorithm

The OTE-MAB algorithm seeks to identify the arm that is most probable to

reward the most for the case M = 1 as

k∗ = arg max
k

P(Rk ≥ R−k), (2.3)

which is a specific case of Equation (2.1). For ease of notation, the M -

notation is eliminated in this subsection.

Remark 1. If there is any hard constraint on the minimum required reward

in the one-time exploitation, c, the hard constraint can be concatenated to

vector R−k as R−k = {R1, R2, . . . , Rk−1, Rk+1, . . . , RK , c}.

21



Algorithm 1 The OTE-MAB Algorithm

Input 0 < εr, ∆p < 1

choose N ≥ 2 ln( 2K
εr

)
∆p2

Experimentation Phase:
for n = 1 to N do
rk,n is observed for all k ∈ K

end for
Calculate p̂k =

∑N
n=1 1{rk,n≥r−k,n}

N

One-Time Exploitation:
Play arm k̂ = arg max

k
p̂k.

Since the joint reward distribution of the K arms are not known, the

exact values of pk = P(Rk ≥ R−k) are unknown. Hence, estimates of these

probabilities, p̂k, are needed to be evaluated based on the observations in the

experimentation phase as follows:

p̂k =

∑N
n=1 1{rk,n ≥ r−k,n}

N
, (2.4)

where r−k,n =
(
r1,n, r2,n, . . . , rk−1,n, rk+1,n, . . . , rK,n

)
. The OTE-MAB algo-

rithm selects arm k̂ = arg max
k

p̂k as the best arm in terms of rewarding the

most with the highest probability in one-time exploitation. The one-time

exploitation regret for selecting arm k̂, r(∆p), which is a specific case of

Definition 1, is

r(∆p) = P (pk∗ − pk̂ ≥ ∆p) . (2.5)

The OTE-MAB algorithm is summarized in Algorithm 1. The reason uni-

form exploration is utilized rather than a dynamic exploration in the pure

exploration phase of Algorithm 1 is the following. The score of any arm is

derived from the joint distribution of all arm rewards; as a result, stopping

the exploration of any arm results in ceasing the concentration of the other

arm scores. We next present a theorem on an upper bound of the minimum

number of experiments needed to guarantee an upper bound on regret of

Algorithm 1.

Theorem 1. For any 0 < εr, ∆p < 1, if all of the K arms are experimented

jointly for N ≥ 2 ln( 2K
εr

)
∆p2 times in the experimentation phase, the one-time

exploitation regret is bounded by εr, i.e. r(∆p) ≤ εr.
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Refer to Appendix A.1 for the proof of Theorem 1.

According to Theorem 1 and using the law of total probability, the se-

lected arm by Algorithm 1, k̂, satisfies E [pk̂] ≥ (1− εr) · (pk∗ −∆p) for any

0 < εr, ∆p < 1, if all of the K arms are explored jointly in the experimen-

tation phase for N ≥ 2 ln( 2K
εr

)
∆p2 times. Furthermore, pk̂ ≤ pk∗ , so pk̂ can get

arbitrarily close to pk∗ by increasing the number of pure explorations in the

experimentation phase.

Let p(1), p(2), . . . , p(K) be the ordered list of p1, p2, . . . , pK in descending

order. Note that arm (1) is actually arm k∗ defined in Equation (2.3). Define

the difference between the two maximum pk’s as ∆p∗ = p(1) − p(2), where

without loss of generality is assumed to be nonzero. Having the knowledge

of ∆p∗ or a lower bound on it, a stronger notion of regret can be defined as

r = inf
∆p>0

r(∆p) = P
(
k̂ 6= k∗

)
, (2.6)

and have the following corollary.

Corollary 1. From the theoretical point of view, upon the knowledge of ∆p∗

or a lower bound on it, for any 0 < εr < 1, the regret defined in Equation

(2.6) is bounded by εr, i.e. r < εr, if all of the K arms are explored jointly

for N ≥ 2 ln( 2K
εr

)
∆p∗2

times.

Remark 2. If the K arms are independent, instead of estimating pk by

Equation (2.4), the following can be used:

p̂k =

∑N
n1=1

∑N
n2=1 · · ·

∑N
nK=1 1{rk,nk ≥ r−k,n−k}
NK

, (2.7)

where r−k,n−k =
(
r1,n1 , r2,n2 , . . . , rk−1,nk−1

, rk+1,nk+1
, . . . , rK,nK

)
. The above

estimation can outperform the one in Equation (2.7), which is a promising

future work. In the following, the challenge for obtaining a tighter confidence

interval for estimates of pk from Equation (2.7) versus Equation (2.4) is

presented. For the case of dependent arms, there is an N-tuple containing

the instantaneous observation of the K arm rewards as (r1,n, r2,n, . . . , rK,n)

for n ∈ {1, 2, . . . , N}, which is used for estimation of p̂k in Equation (2.4).

On the other hand, for the case of independent arms, any of the NK orderings

of the N observations of the K arm rewards can be used for estimation of

p̂k as is done in Equation (2.7). However,
(
p̂k − a

2
√
NK

, p̂k + a

2
√
NK

)
cannot

23



be used as confidence interval with confidence level 1 − 2e−
a2

2 . The reason

is that, although p̂k is derived from NK samples, not all those samples are

independent, but exactly N of the NK samples are independent. In fact,

the observed independent rewards can be classified as N-tuples of the K arm

rewards with independent elements in Nk−1×(N−1)k−1×· · ·×1k−1 = (N !)K−1

different ways. None of such N-tuples has any priority over the other ones

to estimate pk, so p̂k can be computed based on any of the N-tuples. The

estimate of pk derived from any of those N-tuples is in
(
pk − a

2
√
N
, pk + a

2
√
N

)
with probability at least 1−2e−

a2

2 , so the average of those estimations is again

in the mentioned interval with probability at least 1 − 2e−
a2

2 . Note that the

average of estimates of pk derived from all of the (N !)K−1 different N-tuples

is equal to p̂k derived from Equation (2.7) due to the following reason. An

element of an N-tuple is repeated for ((N − 1)!)K−1 times in all N-tuples.

Hence, averaging over the (N !)K−1·N
((N−1)!)K−1 = NK number of distinct elements of

N-tuples results in the same answer as the case of averaging the estimates of

pk derived from all of (N !)K−1 different N-tuples. As a result, a
2
√
N

can be

used as the half width of the confidence interval for estimators obtained from

Equation (2.7) for independent arms.

2.2.2 The FTE-MAB Algorithm

Consider the case where an arm is going to be exploited for finite number of

times, M <∞. The best arm for M -time exploitations is defined in Equation

(2.1). Since the joint reward distribution is unknown, pMk ’s are needed to be

estimated based on observations in the pure exploration phase. Define the

vector RM
k , that is not unique, with cardinality bN

M
c as

RM
k =

{∑
n∈Si

rk,n for 1≤ i≤ bN
M
c s.t. Si, Sj ⊆ {1, . . . , N},

|Si| = |Sj| = M, and Si ∩ Sj = ∅, 1 ≤ ∀i 6= j ≤ bN
M
c
}
,

(2.8)

where rMk,j for 1 ≤ j ≤ bN
M
c are the different elements of RM

k . Let the set Si

corresponding to rMk,j be used for generating rMk′,j for all k′ ∈ K. Let p̂Mk be
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Algorithm 2 The FTE-MAB Algorithm

Input 0 < εr, ∆p < 1 and M ≥ 1

choose N such that bN
M
c ≥ 2 ln( 2K

εr
)

∆p2

Experimentation Phase:
for n = 1 to N do
rk,n is observed for all k ∈ K

end for
Let RM

k =
{∑

n∈Si rk,n for 1 ≤ i ≤ bN
M
c s.t. Si, Sj ⊆ {1, 2, . . . , N}, |Si| =

|Sj| = M, and Si ∩ Sj = ∅, 1 ≤ ∀i 6= j ≤ bN
M
c
}
, where rMk,j for 1 ≤ j ≤

bN
M
c are the different elements of RM

k . Let the set Si corresponding to rMk,j
be used for generating rMk′,j for all k′ ∈ K.

Calculate p̂Mk =
∑b N

M
c

j=1 1{rMk,j≥r
M
−k,j}

b N
M
c

M-Time Exploitation:
Play arm k̂ = arg max

k
p̂Mk for M times.

the estimate of pMk that can be computed as

p̂Mk =

∑b N
M
c

j=1 1{rMk,j ≥ rM−k,j}
bN
M
c

. (2.9)

The FTE-MAB algorithm selects arm k̂ = arg max
k

p̂Mk for M -time exploita-

tions. This algorithm is summarized in Algorithm 2. We next present a

theorem for an upper bound of the minimum number of experiments needed

to guarantee an upper bound on regret of Algorithm 2 which is the general-

ization of Theorem 1.

Theorem 2. For any 0 < εr, ∆p < 1, if all of the K arms are explored

jointly for N times in the experimentation phase such that bN
M
c ≥ 2 ln( 2K

εr
)

∆p2 ,

the finite-time exploitation regret is bounded by εr, i.e. rM(∆p) ≤ εr.

The proof of Theorem 2 is similar to that of Theorem 1, which can be

found in Appendix A.2.

Let pM(1), p
M
(2), . . . , p

M
(K) be the ordered list of pM1 , p

M
2 , . . . , p

M
K in descending

order. Note that arm (1) is actually arm k∗ defined in Equation (1). Define

the difference between the two maximum pMk ’s as ∆p∗M = pM(1) − pM(2), where

without loss of generality is assumed to be nonzero. Having the knowledge
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of ∆p∗M or a lower bound on it, a stronger notion of regret can be defined as

rM = inf
∆p>0

rM(∆p) = P
(
k̂ 6= k∗

)
, (2.10)

and the following corollary follows.

Corollary 2. From the theoretical point of view, upon the knowledge of ∆p∗M
or a lower bound on it, for any 0 < εr < 1, the regret defined in Equation

(2.10) is bounded by εr, i.e. rM < εr, if all of the K arms are explored jointly

for N times, where bN
M
c ≥ 2 ln( 2K

εr
)

∆p∗M
2 .

Remark 3. We note that the need for the number of samples to scale linearly

with M in Theorem 2 may seem sub-optimal at first. This is a consequence

of having a distribution-independent statement of the theorem. We provide

an example in Section 2.4 that shows the linear scaling for M = 2. If M

converges to infinity, the problem becomes the classical multi-armed bandit

problem since arg max
k

P(RM
k ≥ RM

−k) is the same as arg max
k

P
(
RMk
M
≥ RM−k

M

)
and due to the law of large numbers

RMk
M
→ µk as M →∞. Hence, the FTE-

MAB algorithm selects the arm with maximum expected reward if the arm is

going to be exploited for infinitely many times and the cumulative reward is

desired to be maximized.

Remark 4. Let RM
k =

{∑
n∈SK rk,n s.t. SK ⊆ {1, 2, . . . , N} and |SK| =

M
}
, where rMk,j for 1 ≤ j ≤

(
N
M

)
are the different elements of RM

k . Let the

set SK corresponding to rMk,j be used for generating rMk′,j for all k′ ∈ K. The

estimates of pMk can be calculated as

p̂Mk =

∑(NM)
j=1 1{rMk,j ≥ rM−k,j}(

N
M

) (2.11)

or if the K arms are independent, pMk can be estimated as

p̂Mk =

∑(NM)
j1=1

∑(NM)
j2=1 · · ·

∑(NM)
jK=1 1{rMk,jk ≥ r

M
−k,j−k}(

N
M

)K . (2.12)

An interesting future work is to obtain a tighter confidence interval for esti-

mates of pMk from Equation (2.11) or Equation (2.12) versus Equation (2.9).
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2.3 A Cost-Based Analysis for Risk-Averse

Explore-Then-Commit Two-Armed Bandits

Up to this point, the experimentation cost is not considered. However, if ex-

perimentation is time-consuming, there is a cost in postponing the exploita-

tion of the best identified arm. For example, for more experimentation, a

patient receives medication by delay or an investor keeps his/her money on

hold with zero interest, both of which incur costs. As explained in Section 2.1,

let such a cost be formulated by a function C(.), where C(n) is the incurred

cost of n joint experiments of all arms. Then, a trade-off between cost and

regret emerges, where increasing the number of explorations decreases regret,

but increases the incurred cost. Such a trade-off can be formalized using a

hyper-parameter by solving

N∗ = arg min
n

C(n) + α · r∗(n, pk∗), (2.13)

where α characterizes the cost-regret trade-off, r∗(n, pk∗) = P(k̂ 6= k∗), de-

fined in Equation (2.5) when ∆p = 0, is the regret when n experiments are

done, and pk∗ = max (P(R1 ≥ R2),P(R2 ≥ R1)), which is unknown. Define

Cr(n, p) = C(n) + α · r∗(n, p) as the cost-regret function. Note that upon

the knowledge of pk∗ , the regret can be formulated as

r∗(n, pk∗) =
n∑

i=bn
2
c+1

(
n

i

)
· (1− pk∗)i · pn−ik∗

+
1

2
·
(
n
n
2

)
· (1− pk∗)

n
2 · p

n
2
k∗ · 1{n is even}.

(2.14)

Deriving regret from the above equation meets simulation-based results for

regret of the OTE-MAB algorithm that is plotted in Figure 2.5 which is pre-

sented in Section 2.4. Figure 2.3 shows the cost-regret function Cr(n, pk∗) =

C(n) + α · r∗(n, pk∗) under Example 1 for C(n) = n
10000

, α = 1, and when

the parameter pk∗ is known. As shown, the cost-regret function is minimized

at N∗ = 168. Note that the parameter pk∗ is unknown, which raises ques-

tions on how confident one can be on finding an estimate of N∗ based on an

estimate of pk∗ which is discussed in more detail below.

After ne number of joint explorations of arms, denote the estimates of
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Figure 2.3: Cost-regret trade-off is addressed by minimizing a linear
combination of cost and regret.

p1 = P(R1 ≥ R2) and p2 = P(R2 ≥ R1) by p̂1(ne) and p̂2(ne) that are derived

from Equation (2.4). The parameter ne should not be confused with sample

iteration that is denoted by n ∈ {1, 2, 3, 4, . . . }. After the ne observations

of the joint arm rewards, the regret function r∗(n, pk∗) can be estimated as

r∗(n, p̂∗(ne)), where p̂∗(ne) = max (p̂1(ne), p̂2(ne)), and the optimal number

of experiments, N∗, can be estimated by a confidence level as

N̂∗(ne) = arg min
n

C(n) + α · r∗(n, p̂∗(ne)). (2.15)

As a complementary method, we suggest to use the confidence interval

of p̂∗(ne) in order to present an interval, I(ne), that includes the optimal

stopping point, N∗, with a confidence level. It is proved later that the interval

I(ne) shrinks towards N∗ as ne increases. For a confidence level 1 − 2e−
a2

2 ,

the estimate of pk∗ , p̂
∗(ne), has the property that

P

(
pk∗ ∈

(
max

{
p̂∗(ne)−

a

2
√
ne
, 0.5

}
,min

{
p̂∗(ne) +

a

2
√
ne
, 1
}))

≥1− 2e−
a2

2 .

(2.16)

Denote the lower and upper bounds of the confidence interval as p̂∗l (ne) =

max
{
p̂∗(ne)− a

2
√
ne
, 0.5

}
and p̂∗u(ne) = min

{
p̂∗(ne) + a

2
√
ne
, 1
}

, respectively.

Let Crl(n, ne) , Cr(n, p̂∗u(ne)) and Cru(n, ne) , Cr(n, p̂∗l (ne)). It is shown

later that Cr(n, p) is decreasing with respect to 0.5 ≤ p ≤ 1, and that is

why Crl(n, ne) is associated with p̂∗u(ne) and Cru(n, ne) with p̂∗l (ne) so that

Crl(n, ne) ≤ Cru(n, ne) for any n ∈ {1, 2, 3, . . . }. Let the minimizer of
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Algorithm 3 The c-OTE-MAB Algorithm

Input a >
√

2 ln(2) and ne ≥ 1 experiments for the joint arm rewards as
rk,nk for k ∈ {1, 2} and 1 ≤ nk ≤ ne.
Parameter and function estimations:

Calculate p̂1(ne) =
∑ne
n=1 1{r1,n≥r2,n}

N

p̂∗(ne) = max{p̂1(ne), 1− p̂1(ne)}
p̂∗l (ne) = max

{
p̂∗(ne)− a

2
√
ne
, 0.5

}
p̂∗u(ne) = min

{
p̂∗(ne) + a

2
√
ne
, 1
}

Crl(n, ne) , Cr(n, p̂∗u(ne))
Cru(n, ne) , Cr(n, p̂∗l (ne))
N∗u = arg min

n
Cru(n, ne)

Exploration stopping iteration N̂∗(ne) and stopping interval I(ne):
N̂∗(ne) = arg min

n
C(n) + α · r∗(n, p̂∗(ne))

I(ne) = {n : Crl(n, ne) ≤ Cru(N
∗
u , ne)}

the upper-bound function be N∗u = arg min
n

Cru(n, ne), then the following

interval is proposed that includes the optimal stopping point and shrinks

towards it as ne increases with the aforementioned confidence level:

I(ne) = {n : Crl(n, ne) ≤ Cru(N
∗
u , ne)} . (2.17)

Note that arg min{Cru(n, ne)} can have multiple solutions, so N∗u is not nec-

essarily a unique number. Hence, throughout this chapter, we set a conven-

tion as Cru(N
∗
u , ne) = Cru(n, ne) for any n ∈ N∗u . The cost-based algorithm,

called the c-OTE-MAB algorithm, discussed in this section is summarized in

Algorithm 3. The pictorial expression of this algorithm is depicted in Figure

2.4 for a non-monotonic cost function. In this figure, the minimum of each

plot is shown by a cross sign. In the following, we present a theorem on

N̂∗(ne) and I(ne) given by Algorithm 3.

Theorem 3. Possessing ne number of joint experiments for the two arms and

assuming that pk∗ ∈ [0.5 + εp, 1] when εp ∈ (0, 0.5] is an unknown parameter,

we have

Cr
(
N̂∗(ne), pk∗

)
− Cr (N∗, pk∗)

≤ Dp

2
√
ne

+∆Cr(N̂∗(ne), ne)
ne→∞−−−−→ 0

(2.18)
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Figure 2.4: The pictorial expression of the stopping interval I(ne) in
Algorithm 3.

and

max
n∈I(ne)

(
Cr(n, pk∗)− Cr(N∗, pk∗)

)
≤ Dp√

ne
(2.19)

with confidence level 1− 2e−
a2

2 , where N̂∗(ne), N∗, and I(ne) are defined in

Equations (2.15), (2.13), and (2.17), respectively, Dp is a constant as Dp =

a·α·2(4δp+1− 1
2 ln 2)√

2δp ln 2
, where δp = 1

2
(−2− log2(0.5 + εp)− log2(0.5− εp)) > 0, and

∆Cr(n, ne) = a·α·
√
n+2·2−δp·(n−2)
√
ne

≤ Dp
2
√
ne

for any n ∈ {1, 2, 3, . . . }.

Refer to Appendix A.3 for the proof of Theorem 3.

Using the proof results of Theorem 3, the following corollaries are followed.

Corollary 3.

lim
ne→∞

E
[
N̂∗(ne)

]
= N∗. (2.20)

Refer to Appendix A.4 for the proof of Corollary 3. We note that in

practice E
[
N̂∗(ne)

]
converges to N∗ relatively fast when the exploration

cost is relatively small as is shown by simulation in Section 2.4.

Corollary 4. The set of optimal stopping points N∗ defined in Equation

(2.13) is a subset of the set I(ne) defined in Equation (2.17) with the asso-

ciated confidence level, i.e. N∗ ⊆ I(ne) with confidence level 1 − 2e−
a2

2 .

Furthermore, I(ne) = N∗ with the mentioned confidence level for ne >
D2
p(

Cr(N∗,pk∗ )− min
n/∈N∗

Cr(n,pk∗ )

)2 .

For the proof of Corollary 4 refer to Appendix A.5.
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Figure 2.5: Comparison of regret for OTE-MAB against the state-of-the-art
algorithms for Example 1.

2.4 Simulation Results

In this section, numerical simulations validating the theoretical results pre-

sented in this chapter are reported. The proposed OTE-MAB algorithm is

compared with the Upper Confidence Bound (UCB) [184], Mean-Variance

based ExpExp [17], and CVaRα based MaRaB [22] algorithms. Consider two

arms with the reward distributions given in Example 1. The regret defined

in Equation (2.6) versus the number of pure explorations for each arm, N ,

is averaged over 100,000 runs. The result is plotted in Figure 2.5 and as it is

shown, OTE-MAB outperforms the state-of-the-art algorithms for the pur-

pose of risk-aversion in terms of the regret defined in this chapter. Note that

the UCB algorithm aims at selecting an arm that maximizes the expected

received reward, but in Example 1, the arm with higher expected reward is

less probable to have the highest reward for one-time exploitation, which is

why the UCB algorithm performs poorly in this example. However, in the

following example where the arm that rewards more on expectation is also

more probable to reward more, the UCB, ExpExp, and MaRaB algorithms

perform as well as the OTE-MAB algorithm.

Example 2. Consider two arms with the following unknown independent

reward distributions:

f1(u) = αe−0.5(u−2)2 · 1{0 ≤ u ≤ 10}

f2(u) = βe−0.5(u−1)2 · 1{0 ≤ u ≤ 10},

31



0 10 20 30 40 50 60 70 80 90 100

Number of pure explorations for each arm

0

0.05

0.1

0.15

0.2

0.25

0.3

O
ne

-ti
m

e 
ex

pl
oi

ta
tio

n 
re

g
re

t

 UCB

 ExpExp

 MaRaB

 OTE-MAB

Figure 2.6: Comparison of regret for OTE-MAB against the state-of-the-art
algorithms for Example 2.
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Figure 2.7: Comparison of probability of selecting the arm with higher
reward for OTE-MAB against the state-of-the-art algorithms for Example
1.

where α and β are constants so that the two probability distribution functions

integrate to one.

Note that in example 2, E[R1] > E[R2] and P(R1 ≥ R2) > 0.5. For

this scenario, the regret defined in Equation (2.6) versus the number of pure

explorations for each arm, N , averaged over 100,000 runs is plotted in Figure

2.6.

In another experiment, the multi-armed bandit is simulated for Example

1, where the probability that the selected arm has the higher reward is cal-

culated over 500,000 runs for different algorithms. The result is shown in

Figure 2.7. This result confirms the motivation of our study on risk-averse
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Figure 2.8: Regret of the ExpExp algorithm versus the hyper-parameter ρ
for two examples.

finite-time exploitations in multi-armed bandits.

In the above comparison of OTE-MAB with state-of-the-art algorithms,

three different choices of hyper-parameters for the ExpExp and MaRaB al-

gorithms are tested and the best performance is presented. However, note

that the performances of these algorithms depend on the choice of hyper-

parameter. In Figure 2.8, the sensitivity of the performance of the ExpExp

algorithm with respect to the choice of hyper-parameter ρ is depicted for

Example 1 and a third example where the variance of the best arm is larger

than the variance of the arm with lower expected reward. The two plots are

the averaged regret over 100,000 runs versus the value of ρ for the ExpExp

algorithm for two different multi-armed bandit problems when N = 100. As

depicted in Figure 2.8, a choice of ρ can be good for one multi-armed bandit

problem, but not good for another one. Due to our observations, the sen-

sitivity of the MaRaB algorithm to its hyper-parameter can even be more

complex. Figure 2.9 depicts the averaged regret over 100,000 runs versus the

value of MaRaB hyper-parameter, α, when N = 100. This figure is plotted

for Example 1 and a fourth example where reward of the first arm has a

truncated normal distribution with mean three and variance two over the

interval [0, 10] and the second arm is the same as the one in Example 1.

In another experiment, the minimum number of explorations needed to

guarantee a bound on regret is compared for two cases of one-time and two-

time exploitations. Theorems 1 and 2 suggest that for given K, εr, and ∆p∗ =

∆p∗M , the upper bound of minimum number of explorations needed for M -
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Figure 2.9: Regret of the MaRaB algorithm versus the hyper-parameter α
for two examples.
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Figure 2.10: The minimum number of explorations needed to guarantee a
bound on regret for two cases of one-time and two-time exploitations.

time exploitations to guarantee that the regret is bounded by εr is M times

that of one-time exploitation. We design two examples of two-armed bandits

such that ∆p∗ = ∆p∗2 = 0.28 and plot the minimum number of explorations

to guarantee bounded regret by εr in Figure 2.10. The dashed line is the

plot of the OTE-MAB algorithm multiplied by two which is close to the one

related to the FTE-MAB algorithm for two-armed bandits. This observation

provides support to our theoretical results.

Theorem 3 states that the expected of N̂∗(ne) converges to N∗ as the num-

ber of explorations goes to infinity. In practice, it is observed that E
[
N̂∗(ne)

]
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Figure 2.11: E
[
N̂∗(ne)

]
versus ne for pk∗ = 0.54 and α = 1, where

N∗ = 587.

converges relatively fast. The distribution of p̂∗(ne) for an odd ne is

P
(
p̂∗(ne) = 1− j

ne

)
=

(
ne

ne − j

)
· pne−jk∗ · (1− pk∗)j +

(
ne
j

)
· pjk∗ · (1− pk∗)

ne−j,

(2.21)

for 0 ≤ j ≤ ne−1
2

, and the distribution of p̂∗(ne) for an even ne is

P
(
p̂∗(ne) = 1− j

ne

)
=

(
ne

ne − j

)
· pne−jk∗ · (1− pk∗)j +

(
ne
j

)
· pjk∗ · (1− pk∗)

ne−j,

(2.22)

for 0 ≤ j < ne
2
− 1 and P

(
p̂∗(ne) = 1

2

)
=
(
ne
ne
2

)
· p

ne
2
k∗ · (1 − pk∗)

ne
2 . Equations

(2.15), (2.21), and (2.22) are used to plot Figure 2.11 that shows E
[
N̂∗(ne)

]
versus ne for pk∗ = 0.54 and α = 1. Note that the optimal stopping point

when pk∗ = 0.54 and α = 1 is N∗ = 587 and E
[
N̂∗(ne)

]
is approaching this

value as depicted in the figure.

35



Chapter 3

RISK-AVERSE EQUILIBRIUM FOR
STOCHASTIC GAMES

Since the seminal work of von Neumann and Morgenstern [28], the term ra-

tional has become synonymous with expected utility maximization. Whether

in game theoretic situations or simply decision-making under uncertainty, the

only agent who can be considered rational is the one who attempts to max-

imize their mean utility, no matter how many trials will likely be necessary

for the realized value to resemble the expected value. However, consider an

agent faced with multiple options, one of which is an opportunity with max-

imum expected utility, but it will bankrupt them with high probability if it

fails. In the event of failure, consider that the lack of funds will severely limit

any future options the agent may have. For such an agent the fact that the

opportunity has maximum expected value among the options cannot be the

only relevant factor in deciding whether to pursue the opportunity. If the

opportunity does not lead to success, the agent will not be able to pursue

any later actions, as they will not have the funds necessary to do so. As a

result, players should not solely rely on factors such as expected utility and

must instead also consider the probability of success for the opportunity.

This observation applies to almost all stochastic decision-making situa-

tions, including competitive situations best modeled through game theory.

To see this, consider a market composed of only a few large firms and a

smaller firm considering how to compete with large firms or whether to even

enter the market. We take as our example the smartphone industry, in which

large companies such as Apple, Samsung, Google, LG, Motorola, Amazon,

and Microsoft have all competed in recent years. While Apple and Samsung

are market leaders at the time of writing, both have undergone expensive

setbacks. Apple’s iPhone 5 was widely criticized due to issues with the Ap-

ple Maps application and Samsung had to recall its Galaxy Note 7 due to its

batteries catching fire, costing an estimated 3 billion USD [185], in what may

have been an attempt to improve on the criticized battery life of their Galaxy
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S6. Similarly, Google’s original Nexus line of phones dropped in popularity

to the point where the company went to the expense of creating a new line

of Pixel phones rather than continuing the Nexus. Amazon and Microsoft

were forced out of the market entirely, with Amazon’s Fire Phone lasting just

over a year (July 2014 - August 2015) between release and the cessation of

production, causing a loss of at least 170 million USD for Amazon’s 2014 Q3

alone [186]. Microsoft meanwhile acquired Nokia for 7.2 billion USD in an

attempt to become more competitive in the market [187], but ceased mobile

device production entirely only a few years later.

Despite the cost of the setbacks mentioned above, each of these companies

is still valuable with Apple and Microsoft having market caps of over 1 trillion

USD at the time of writing and Amazon recently passing that milestone as

well. Samsung is worth approximately 300 billion USD at the time of writing,

and while they are smaller LG and Motorola are quite valuable as well, worth

approximately 14.5 billion and 30 billion USD, respectively. Because of their

size, each of these companies was able to take risks to compete with each

other which, although expected to end in a positive outcome, resulted in

expensive losses. Indeed, Microsoft currently appears to be preparing for

another attempt to enter the smartphone market with the Surface Duo. In

other words, these companies are still able to compete with each other by

making products which maximize their expected values because they are large

enough that they can afford to wait for the law of large numbers to take

effect. This allows their competition to be modeled through a traditional

game theoretic framework.

In contrast, consider a company with a smaller valuation, say 500 million

USD, deciding whether to compete in the smartphone market. If such a

company attempted to do so, it would have to commit most if not all of its

resources to the attempt. Even if such a strategy has a large positive expected

value, it has a large risk of bankrupting the company, as seen with the scale

of the losses incurred by Samsung, Amazon, and Microsoft. More generally,

firms in markets where the cost of competition is a significant portion of

the value of the firm itself must consider more than just maximizing their

expected value. A misstep in such a setting means that the firm is out of

the market and unable to compete further. This highlights an important

facet of competition with random or unknown variables; i.e., it is not just

the expected value of a strategy that is important, it is how many times you
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get to compete.

In this chapter, we build a new framework to apply this observation to

game theoretic situations. We use a risk-averse best-response approach for

incomplete information games drawn from known distributions in which play-

ers engage once or for a given finite number of times. Because of the finite

number of times that players engage in these games, given the strategies of

all other players, expected utility may not be a suitable metric for a player

to attempt to maximize. Instead, we formulate a new definition of a risk-

averse best response, where given the strategies of all other agents, an agent

chooses to play the strategy that is most likely to have the highest utility

in a single realization of the stochastic game. We show that the risk-averse

equilibrium based on the mentioned probability statement can be found by

realizing the Nash equilibrium of a new game whose payoffs are derived from

the probability distributions of the payoffs of the original game. While the

mathematical particulars of this definition will be discussed in Section 3.2,

conceptually it can best be understood through the lens of prospect theory.

In its most basic form, prospect theory states that consumers prefer choices

with lower volatility, even when this results in lower expected utility. An

excellent example of this is retirement planning where there are many highly

volatile assets which in expectation provide a large return on investment, but

which also have a high chance of dropping in value due to their volatility.

Most individuals try to avoid investing too much in these assets, receiving

a lower average return in order to avoid the chance of a significant loss.

Similarly, a risk-averse best response as we have loosely defined it so far

would possibly limit the expected return of assets in order to maximize the

probability of making the most profit.

The rest of this chapter is organized as follows. The problem statement

of stochastic games is provided in Section 3.1. Section 3.2 provides the for-

mal mathematical definition of the proposed risk-averse equilibrium, with

several subsequent sections detailing topics such as equilibrium properties

(Section 3.3), computation (Section 3.4), and worked-out examples (Section

3.5). Section 3.6 considers finite-time commit games and how the risk-averse

equilibria shift as the number of times the games are played increases. Sec-

tion 3.7 compares the classical Nash equilibrium and the proposed risk-averse

equilibrium through simulation. The concluding remarks as well as future

directions in which to advance this research are provided in Chapter 6.
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3.1 Problem Statement of Stochastic Games

Consider a game that consists of a finite set ofN players, [N ] := {1, 2, . . . , N},
where player i ∈ [N ] has a set of possible pure strategies (or actions, used

interchangeably) denoted by Si. A pure strategy profile, which is one pure

strategy for each player in the game, is denoted by s = (s1, s2, . . . , sN), where

si ∈ Si is the pure strategy of player i ∈ [N ]. Hence, S = S1×S2×· · ·×SN is

the set of pure strategy profiles. A pure strategy choice for all players except

player i is denoted by s−i, i.e. s = (si, s−i). The payoff of player i for a pure

strategy profile s ∈ S is denoted by Ui(s) (or Ui(si, s−i)), which is a random

variable with probability density function (pdf) fi(x|s) and mean ui(s). The

payoffs Ui(s) for i ∈ [N ] and s ∈ S are considered to be continuous-type

random variables that are independent from each other.

Remark 5. The same analysis holds for discrete-type random variables if

the analysis is treated with a bit more subtlety as discussed in the end of this

section.

For any set Si, let Σi be the set of all probability distributions over Si. The

Cartesian product of all players’ mixed strategy sets, Σ = Σ1×Σ2×· · ·×ΣN ,

is the set of mixed strategy profiles. Denote a specific mixed strategy of player

i by σi ∈ Σi, where σi(si) is the probability that player i plays strategy si.

If the [N ] \ i players choose to play a mixed strategy σ−i, the payoff for

player i if he/she plays si ∈ Si is denoted by U i(si,σ−i). Using the law of

total probability, the marginal distribution of U i(si,σ−i) has the probability

distribution function

f̄i(x|(si,σ−i)) =
∑

s−i∈S−i

(
fi(x|(si, s−i)) · σ(s−i)

)
, (3.1)

where σ(s−i) =
∏

j∈[N ]\i σj(sj) and sj is the corresponding strategy of player

j in s−i. Note that for si 6= s′i ∈ Si, the random variables U i(si,σ−i) and

U i(s
′
i,σ−i) are not independent of each other in a single play of the game.
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3.2 Risk-Averse Equilibrium

In a stochastic game where the payoffs are random variables, playing the Nash

equilibrium considering the expected payoffs may create a risky situation;

e.g., see [176] and [188] and the references therein for examples on multi-

armed bandits. The reason is that payoffs with larger expectations may

have a larger variance as well. As a result, it may be the case that playing

strategies with lower expectations is more probable to have a larger payoff.

This concept is mostly helpful when players play the game once, so they do

not have the chance to repeat the game and gain a larger cumulative payoff

by playing the strategy with the largest expected payoff. As a result, we

propose the risk-averse equilibrium in a probabilistic sense rather than in an

expectation sense as the Nash equilibrium. From an individual player’s point

of view, the best response to a mixed strategy of the rest of players is defined

as follows, which is based on the notion of Risk-Averse Best Action Decision

with Incomplete Information (R-ABADI).

Definition 2. The set of mixed strategy risk-averse best responses of player

i to the mixed strategy profile σ−i is the set of all probability distributions

over the set

arg max
si∈Si

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
, (3.2)

where what we mean by U i (si,σ−i) being greater than or equal to U i

(
Si \

si,σ−i
)

when Si \ si 6= ∅ is that U i (si,σ−i) is greater than or equal to

U i (s
′
i,σ−i) for all s′i ∈ Si \ si; otherwise, if Si \ si = ∅, player i only has

a single option that can be played. The same randomness on the action of

players [N ] \ i is considered in U i(si,σ−i) for all si ∈ Si, and independent

randomness on actions is discussed in Appendix B.2. We denote the risk-

averse best response set of player i’s strategies, given the other players’ mixed

strategies σ−i, by RB(σ−i), which is in general a set-valued function.

Given the definition of the risk-averse best response, the risk-averse R-

ABADI equilibrium (RAE) is defined as follows. Note that the risk-averse

best-response/equilibrium and R-ABADI best-response/equilibrium are used

interchangeably throughout this chapter.
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Definition 3. A strategy profile σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
N) is a risk-averse R-

ABADI equilibrium (RAE), if and only if σ∗i ∈ RB(σ∗−i) for all i ∈ [N ].

The following theorem proves the existence of a mixed strategy risk-averse

equilibrium for a game with finite number of players and finite number of

strategies per player.

Theorem 4. For any finite N-player game, a risk-averse equilibrium exists.

The proof of Theorem 4 is provided in Appendix B.1.

3.2.1 Pure Strategy Risk-Averse Equilibrium

The pure strategy risk-averse best response is defined in the following as a

specific case of the risk-averse best response defined in Definition 2.

Definition 4. Pure strategy ŝi of player i is a risk-averse best response (RB)

to the pure strategy s−i of the other players if{
ŝi ∈ arg maxsi∈Si P

(
Ui (si, s−i) ≥ U i (Si \ si, s−i)

)
, if Si \ si 6= ∅,

ŝi = si, if Si \ si = ∅,
(3.3)

where what we mean by Ui (si, s−i) being greater than or equal to U i

(
Si \

si, s−i
)

is that Ui (si, s−i) is greater than or equal to Ui (s
′
i, s−i) for all s′i ∈

Si \ si. We denote the risk-averse best response set of player i, given the

other players’ pure strategies s−i, by RB(s−i) (overloading notation, RB(.)

is used for both pure and mixed strategy risk-averse best response).

Given the definition of the pure strategy risk-averse best response, the pure

strategy risk-averse equilibrium (RAE), which does not necessarily exist, is

defined below.

Definition 5. A pure strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
N) is a pure strategy

risk-averse equilibrium (RAE), if and only if s∗i ∈ RB(s∗−i) for all i ∈ [N ].
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3.3 Strict Dominance and Iterated Elimination of

Strictly Dominated Strategies

Probably the most basic solution concept for a game is the dominant strategy

equilibrium. In the following definition, the strict dominance is described.

Definition 6. A pure strategy si ∈ Si of player i strictly dominates a second

pure strategy s′i ∈ Si of the player if

P
(
Ui (si, s−i) ≥ U i (Si \ si, s−i)

)
>P
(
Ui (s

′
i, s−i) ≥ U i (Si \ s′i, s−i)

)
,∀s−i ∈ S−i.

(3.4)

A strictly dominated strategy cannot be the risk-averse best response to

any mixed strategy profile of other players due to the following reason. Con-

sider that s′i ∈ Si is strictly dominated by si ∈ Si for player i as is stated in

Definition 6. Then, for any σ−i ∈ Σ−i, we have

P
(
U i(si,σ−i) ≥ U i(Si \ si,σ−i)

)
(a)
=

∑
s−i∈S−i

(
P
(
Ui(si, s−i) ≥ U i(Si \ si, s−i)

)
· σ(s−i)

)
(b)
>

∑
s−i∈S−i

(
P
(
Ui(s

′
i, s−i) ≥ U i(Si \ s′i, s−i)

)
· σ(s−i)

)
= P

(
U i(s

′
i,σ−i) ≥ U i(Si \ s′i,σ−i)

)
,

(3.5)

where (a) is followed by using the law of total probability by partitioning

on the strategies of players [N ] \ i, σ(s−i) =
∏

j∈[N ]\i σj(sj) and sj is the

corresponding strategy of player j in s−i, and (b) is true by the assumption

that the pure strategy s′i is strictly dominated by the pure strategy si and

using Equation (3.4) in Definition 6 on strict dominance. By Equation (3.5)

and Equation (3.2) in Definition 2 on the best response to a mixed strategy

profile of other players, a strictly dominated pure strategy can never be a

best response to any mixed strategy profile of other players. As a result, a

strictly dominated pure strategy can be removed from the set of strategies

of a player and iterated elimination of strictly dominated strategies can be

applied to a game under the risk-averse framework.
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3.4 Finding the Risk-Averse Equilibrium

The mixed strategy risk-averse equilibrium of a game can be found by choos-

ing players’ mixed strategy profiles in such a way that a player cannot strate-

gize against other players. In other words, under a mixed strategy risk-averse

equilibrium, all players are indifferent to their mixed strategies, so they use

a mixed strategy to make other players indifferent as well. If all players are

indifferent to their mixed risk-averse strategies, then no player has an in-

centive to change strategies, so we end up with a mixed strategy risk-averse

equilibrium. Formally speaking, a risk-averse mixed strategy is characterized

by σi(si) for all i ∈ [N ] and for all si ∈ Si, so there are
∑

i∈[N ] |Si| parameters

that should be found. Letting the mixed strategy profile for players [N ] \ i
be σ−i ∈ Σ−i, then in order for player i to be indifferent to his/her set of

strategies among a subset S ′i ⊆ Si, we need to have

P
(
U i (s

′
i,σ−i) ≥ U i (Si \ s′i,σ−i)

)
≥P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
, ∀si ∈ Si, s′i ∈ S ′i.

The above equations reveal |Si| − 1 independent equations for each player i,

so in total
∑

i∈[N ] |Si|−N equations are derived. The remaining N equations

are provided by the fact that the mixed strategy of each player adds to one

for their set of strategies. As a result, if there is a mixed strategy risk-

averse equilibrium for which only a subset S′ = {S ′1, S ′2, ..., S ′N} of the pure

strategies, denoted as the support of the equilibrium, are played with non-

zero probability, this equilibrium is a solution of the following set of equations

for σ ∈ Σ:

P
(
U i (s

′
i,σ−i) ≥ U i (Si \ s′i,σ−i)

)
≥ P

(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
, ∀si ∈ Si, s′i ∈ S ′i,∀i ∈ [N ],

∑
si∈Si σi(si) = 1,∀i ∈ [N ],

σi(si) = 0,∀si /∈ S ′i,∀i ∈ [N ].

(3.6)

Any solution to Equation set (3.6) is a risk-averse equilibrium, so we can

check if an equilibrium exists for any support S′ ⊆ Σ.

43



Note that as is stated in Equation (3.5), we have the following by using

the law of total probability:

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
=

∑
s−i∈S−i

(
σ(s−i) · P

(
Ui(si, s−i) ≥ U i(Si \ si, s−i)

))
,

(3.7)

where σ(s−i) =
∏

j∈[N ]\i σj(sj) and sj is the corresponding strategy of player

j in s−i. Hence, Equation (3.7) is polynomial of order N − 1 in terms of

σ(si) for si ∈ Si and i ∈ [N ]. We can define a risk-averse probability tensor

of dimension |S1| × |S2| × · · · × |SN |, where the i-th dimension has all pure

strategies si ∈ Si and each element of the tensor is an N dimensional vec-

tor defined in the following. The i-th element of the N dimensional vector

corresponding to the pure strategy profile (si, s−i) is defined as

pi(si, s−i) = P
(
Ui (si, s−i) ≥ U i (Si \ si, s−i)

)
. (3.8)

As a result, an equivalent approach for finding the risk-averse equilibrium

is to find the Nash equilibrium of the risk-averse probability tensor, as any

such Nash equilibrium must maximize the probability of playing a utility-

maximizing response to σ−i for each player i. In the following two sub-

sections, two illustrative examples are provided to make the concept of the

risk-averse equilibrium clear.

3.5 Illustrative Examples

In the following two subsections, two illustrative examples are provided to

shed light on the definition of the pure and mixed strategy risk-averse equi-

libria.

3.5.1 Illustrative Example 3

The following example is presented to shed light on the notion of pure strat-

egy risk-averse equilibrium.
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Example 3. Consider a game between two players where each player has

two pure strategies, S1 = {U,D} and S2 = {L,R}, with independent payoff

distributions specified as

(i) U1(U,L) and U2(U,L) are independent and have the same pdf as

f4(u) = α
(

3e−20(u−2)2 ·1{3

2
≤ u ≤ 5

2
}+ 2e−20(u−7)2 ·1{13

2
≤ u ≤ 15

2
}
)
,

(ii) U1(U,R) and U2(U,R) are independent and have the same pdf as

f3(u) = βe−20(u−3)2 · 1{5

2
≤ u ≤ 7

2
},

(iii) U1(D,L) and U2(D,L) are independent and have the same pdf as

f̂3(u) = γ
(

3e−20(u−1)2 ·1{1

2
≤ u ≤ 3

2
}+ 2e−20(u−6)2 ·1{11

2
≤ u ≤ 13

2
}
)
,

(iv) U1(D,R) and U2(D,R) are independent and have the same pdf as

f5(u) = δ
(

7e−20(u−2)2 ·1{3

2
≤ u ≤ 5

2
}+3e−20(u−12)2 ·1{23

2
≤ u ≤ 25

2
}
)
,

where α, β, γ, and δ are constants for which each of the corresponding distri-

butions integrate to one and 1{.} is the indicator function.

The above example is depicted in Figure 3.1. Considering the expected

payoffs in Example 3 as
E [U1(U,L)] = E [U2(U,L)] = 4,

E [U1(U,R)] = E [U2(U,R)] = E [U1(D,L)] = E [U2(D,L)] = 3,

E [U1(D,R)] = E [U2(D,R)] = 5,

the pure Nash equilibria of the game are (U,L) and (D,R), and the mixed

Nash equilibrium is that the first player selects U with probability two-thirds

and selects D otherwise and the second player selects L with probability two-

thirds and selects R otherwise. On the other hand, it follows by using the
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Figure 3.1: The payoff matrix of Example 3. The pure and mixed strategy
Nash equilibria are shown on the top-right and the pure strategy risk-averse
equilibrium is shown on the bottom-right.

payoff density functions that

P
(
U1(U,L) ≥ U1(D,L)

)
= 0.76,

P
(
U1(U,R) ≥ U1(D,R)

)
= 0.7,

P
(
U2(U,L) ≥ U2(U,R)

)
= 0.4,

P
(
U2(D,L) ≥ U2(D,R)

)
= 0.28,

which are used to form the risk-averse probability bi-matrix of the game de-

rived based on Equation (3.8). The risk-averse probability matrix is depicted

in Figure 3.1. According to Definition 5, (U,R) is a pure strategy risk-averse

equilibrium that is different from the Nash equilibria of the game. Taking

a close look at the payoff distributions, (U,R) is less risky than (U,L) and

(D,R) in a single round of the game.

3.5.2 Illustrative Example 4

In this subsection, the mixed strategy risk-averse equilibrium of a two-player

game proposed in the following example is computed.

Example 4. Consider a game between two players where each player has

two pure strategies, S1 = {U,D} and S2 = {L,R}, with independent payoff
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Figure 3.2: The payoff matrix of Example 4. The pure strategy Nash
equilibrium is shown on the top-right and the pure and mixed strategy
risk-averse equilibria are shown on the bottom-right.

distributions specified as

(i) U1(U,L) and U2(U,L) are independent and have the same pdf as

f4(u) = α
(

3e−20(u−2)2 ·1{3

2
≤ u ≤ 5

2
}+ 2e−20(u−7)2 ·1{13

2
≤ u ≤ 15

2
}
)
,

(ii) U1(U,R), U2(U,R), U1(D,L), and U2(D,L) are independent and have

the same pdf as

f3(u) = βe−20(u−3)2 · 1{5

2
≤ u ≤ 7

2
},

(iii) U1(D,R) and U2(D,R) are independent and have the same pdf as

f1(u) = γe−20(u−1)2 · 1{1

2
≤ u ≤ 3

2
},

where α, β, and γ are constants for which each of the corresponding distribu-

tions integrate to one.

The above example is depicted in Figure 3.2. Considering the expected
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payoffs in Example 4 as
E [U1(U,L)] = E [U2(U,L)] = 4,

E [U1(U,R)] = E [U2(U,R)] = E [U1(D,L)] = E [U2(D,L)] = 3,

E [U1(D,R)] = E [U2(D,R)] = 1,

the pure Nash equilibrium of the game is (U,L) as depicted in Figure 3.2

with no mixed strategy Nash equilibrium. On the other hand, it follows by

using the payoff density functions that

P
(
U1(U,L) ≥ U1(D,L)

)
= 0.4,

P
(
U1(U,R) ≥ U1(D,R)

)
= 1,

P
(
U2(U,L) ≥ U2(U,R)

)
= 0.4,

P
(
U2(D,L) ≥ U2(D,R)

)
= 1,

which are used to form the risk-averse probability bi-matrix of the game de-

rived based on Equation (3.8). The risk-averse probability matrix is depicted

in Figure 3.2. According to Definition 5, (U,R) and (D,L) are the pure strat-

egy risk-averse equilibria. In order to find the mixed strategy risk-averse equi-

librium, consider that the first player selects U with probability σU and selects

D otherwise. Given the first player’s mixed strategy (σU , 1−σU), with a little

misuse of notation, denote the random variables denoting the second player’s

payoffs by selecting L or R with L and R, respectively. The second player is

indifferent between selecting L and R if P (L ≥ R) = P (R ≥ L). Since pay-

offs are continuous random variables, P (R ≥ L) = 1−P (L ≥ R); as a result,

the second player is indifferent between the strategies if P (L ≥ R) = 0.5. By

using the law of total probability and independence of payoff distributions,
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P (L ≥ R) can be computed as

P (L ≥ R) = σU · P
(
U2(U,L) ≥ U2(U,R)

∣∣∣Player 1 plays U
)

+ (1− σU) · P
(
U2(D,L) ≥ U2(D,R)

∣∣∣Player 1 plays D
)

= σU ·
∫ ∞
−∞

∫ ∞
v

f4(u) · f3(v) dudv

+ (1− σU) ·
∫ ∞
∞

∫ ∞
v

f3(u) · f1(v) dudv

=
2

5
σU + (1− σU) = 1− 3

5
σU .

(3.9)

Letting P (L ≥ R) = 0.5, then σU = 5
6
, which determines the mixed strat-

egy risk-averse equilibrium. As a result, due to symmetry,
(
σ1(U), σ1(D)

)
=

(5
6
, 1

6
) and

(
σ2(L), σ2(R)

)
= (5

6
, 1

6
) form the mixed strategy risk-averse equi-

librium of the game in Example 4.

It is easy to verify that the game proposed in Example 3 does not have

any mixed strategy risk-averse equilibria. The game in Example 3 has both

pure and mixed strategy Nash equilibria, but it only has pure strategy risk-

averse equilibrium. On the other hand, the game in Example 4 only has

pure strategy Nash equilibrium, but it has both pure and mixed risk-averse

equilibria. As can be seen, the distributions of payoffs can have a significant

impact on the behavior of players if they take risk into account when taking

their decisions.

Remark 6. As mentioned earlier in this section, the analysis for risk-averse

equilibrium holds for discrete-time random variables as well. For example,

consider random variables X, Y , and Z with distributions

P (X = 1) = 0.8, P (X = 2) = 0.2,

P (Y = 1) = 1,

P (Z = 1) = 0.5, P (Z = 2) = 0.5.

Denote the observations of the three random variables by triple (X, Y, Z) and

let {X ≥ (Y, Z)} be the event that X is greater than or equal to both Y and
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Z. Then

P
(
X ≥ (Y, Z)

)
= P

(
{(1, 1, 1), (2, 1, 1), (2, 1, 2)}

)
= 0.4 + 0.1 + 0.1 = 0.6,

P
(
Y ≥ (X,Z)

)
= P

(
(1, 1, 1)

)
= 0.4,

P
(
Z ≥ (X, Y )

)
= P

(
{(1, 1, 1), (1, 1, 2), (2, 1, 2)}

)
= 0.4 + 0.4 + 0.1 = 0.9.

As can be seen, P
(
X ≥ (Y, Z)

)
+P
(
Y ≥ (X,Z)

)
+P
(
Z ≥ (X, Y )

)
= 1.9 > 1.

In order to resolve this issue, we can break ties uniformly at random as

P
(
X ≥ (Y, Z)

)
=

1

3
× 0.4 + 0.1 +

1

2
× 0.1 =

17

60
,

P
(
Y ≥ (X,Z)

)
=

1

3
× 0.4 =

2

15
,

P
(
Z ≥ (X, Y )

)
=

1

3
× 0.4 + 0.4 +

1

2
× 0.1 =

35

60
,

which results in P
(
X ≥ (Y, Z)

)
+ P

(
Y ≥ (X,Z)

)
+ P

(
Z ≥ (X, Y )

)
= 1.

3.6 Finite-Time Commit Games

The risk-averse framework discussed in Section 3.2 provides risk-averse play-

ers with pure or mixed strategies such that given the other players’ strategies,

risk-averse equilibrium maximizes the probability that a player is rewarded

the most in a single round of the game rather than maximizing the expected

received reward. On the other hand, for infinite rounds of playing the game,

given the other players’ strategies, selecting the strategy that maximizes the

expected reward guarantees maximum cumulative reward. However, the re-

wards may not be satisfying for a risk-averse player in each and every round

of playing the game. As a result, risk-averse players may even choose to play

the risk-averse equilibrium in infinite (or finite) rounds of games to have more

or less balanced rewards in all rounds of the game rather than have maxi-

mum cumulative reward in the end. Despite this fact, we present a slightly

different approach for finite-time games that aims to maximize not the ex-

pected cumulative reward but rather the probability of receiving the highest

cumulative reward. Note that the proposed equilibrium for finite-time com-

mit games in this section may be different from the Nash equilibrium or the

equilibrium presented in Section 3.2.
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Consider that the N players plan to play a game for M independent times

where all players have to commit to the pure strategy they play in the first

round for the whole game. The strategy in the first round of the game does

not have to be pure and can be mixed, but a player has to commit to the

randomly sampled pure strategy according to the mixed strategy forM times.

Let UM
i (si, s−i) = UM

i (s) = X1+X2+· · ·+XM , where Xj for 1 ≤ j ≤M are

independent and identically distributed random variables and X1 ∼ fi(x|s).

If players choose to play s ∈ S for the whole game with M rounds, the

random variable UM
i (s) denotes the cumulative payoff for player i ∈ [N ] in

the end of the M plays and UM
i (s) ∼ fMi (x|s) = fi(x|s) ~ · · ·~ fi(x|s)︸ ︷︷ ︸

M times

.

If the [N ]\ i players choose to play a mixed strategy σ−i in the first round

of the game and commit to it for M − 1 other rounds of the game, using the

law of total probability, the distribution of the cumulative payoff for player

i in the end of the game when he/she plays si, denoted by U
M

i (si,σ−i), has

the probability distribution function

f̄Mi (x|(si,σ−i)) =
∑

s−i∈S−i

(
fMi (x|(si, s−i)) · σ(s−i)

)
, (3.10)

where σ(s−i) =
∏

j∈[N ]\i σj(sj) and sj is the corresponding strategy of player

j in s−i. Note that for si, s
′
i ∈ Si, the random variables U

M

i (si,σ−i) and

U
M

i (s′i,σ−i) are not independent from each other in a single play of the

game. The risk-averse equilibrium for an M -time commit game can be de-

rived similarly to the derivations in Section 3.2 and is described below. From

an individual player’s point of view, the best response to a mixed strategy

of the rest of the players for an M -time commit game is defined as follows.

Definition 7. The set of mixed strategy risk-averse best responses of player

i to the mixed strategy profile σ−i for an M-time commit game is the set of

all probability distributions over the set

arg max
si∈Si

P
(
U
M

i (si,σ−i) ≥ U
M

i (Si \ si,σ−i)
)
, (3.11)

where what we mean by U
M

i (si,σ−i) being greater than or equal to U
M

i

(
Si \

si,σ−i
)

is that U
M

i (si,σ−i) is greater than or equal to U
M

i (s′i,σ−i) for all

s′i ∈ Si \si; otherwise, if Si \si = ∅, player i has only a single option to play.
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We denote the risk-averse best response set of player i’s mixed strategies for

an M-time commit game, given the other players’ mixed strategies σ−i, by

RBM(σ−i), which is a set-valued function.

Given the definition of the risk-averse best response for M -time commit

games, the risk-averse equilibrium (RAE) for M -time commit games is de-

fined as follows.

Definition 8. A strategy profile σ∗M = (σ∗M1 , σ∗M2 , . . . , σ∗MN ) is a risk-

averse equilibrium (RAE) for an M-time commit game, if and only if σ∗Mi ∈
RBM(σ∗M−i ) for all i ∈ [N ].

The following corollary is resulted directly from Theorem 4.

Corollary 5. For any finite N-player finite-time commit game, a risk-averse

equilibrium exists.

The pure strategy risk-averse best response for an M -time commit game

is defined in the following as a specific case of the risk-averse best response

defined in Definition 7.

Definition 9. Pure strategy ŝi of player i is a risk-averse best response (RB)

to the pure strategy s−i of the other players for an M-time commit game if{
ŝi ∈ arg maxsi∈Si P

(
UM
i (si, s−i) ≥ UM

i (Si \ si, s−i)
)
, if Si \ si 6= ∅,

ŝi = si, if Si \ si = ∅,
(3.12)

where what we mean by UM
i (si, s−i) being greater than or equal to UM

i

(
Si \

si, s−i
)

is that UM
i (si, s−i) is greater than or equal to UM

i (s′i, s−i) for all

s′i ∈ Si \ si. We denote the risk-averse best response set of player i for

an M-time commit game, given the other players’ pure strategies s−i, by

RBM(s−i) (overloading notation, BRM(.) is used for both mixed and pure

strategy risk-averse best response for M-time commit games).

Given the definition of the pure strategy risk-averse best response for anM -

time commit game, the pure strategy risk-averse equilibrium (RAE), which

does not necessarily exist, is defined below.

Definition 10. A pure strategy profile s∗M = (s∗M1 , s∗M2 , . . . , s∗MN ) is a pure

strategy risk-averse equilibrium (RAE) for an M-time commit game, if and

only if s∗Mi ∈ RBM(s∗M−i ) for all i ∈ [N ].
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3.7 Numerical Results

In this section, the classical Nash equilibrium is compared with the proposed

risk-averse equilibrium. To this end, the likelihood of receiving the higher

reward in a two-player game is evaluated under the two types of equilibria

for the following example.

Example 5. Consider a game between two players where each player has

two pure strategies, S1 = {U,D} and S2 = {L,R}, with independent payoff

distributions specified as

(i) U1(U,L) and U2(U,L) are independent and have the same pdf as

f1,1(u) =α
(

3e−20(u−1)2 · 1{1

2
≤ u ≤ 3

2
}

+ 2e−20(u−a)2 · 1{a− 1

2
≤ u ≤ a+

1

2
}
)
,

(ii) U1(U,R), U2(U,R), U1(D,L), and U2(D,L) are independent and have

the same pdf as

f1,2(u) = βe−20(u−3)2 · 1{5

2
≤ u ≤ 7

2
},

(iii) U1(D,R) and U2(D,R) are independent and have the same pdf as

f2,2(u) =γ
(

7e−20(u−2)2 · 1{3

2
≤ u ≤ 5

2
}

+ 3e−20(u−a−2)2 · 1{a+
3

2
≤ u ≤ a+

5

2
}
)
,

where α, β, and γ are constants for which each of the corresponding distribu-

tions integrate to one, a ≥ 0 is a constant, and 1{.} is the indicator function.

The Nash equilibrium in the above example depends on the value of the

constant a. If 0 ≤ a < 3.333, there are two pure Nash equilibria (U,R) and

(D,L) for the game in addition to a mixed Nash equilibrium. If 3.333 ≤
a ≤ 6, the pure strategy (D,R) is the only Nash equilibrium of the game. If

a > 6, pure strategies (U,L) and (D,R) are the two pure Nash equilibria of

the game in addition to a mixed Nash equilibrium. On the other hand, no

matter what the value of the constant a is, the game has a mixed risk-averse

equilibrium as well as two pure risk-averse equilibria, which are (U,R) and
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Figure 3.3: The mixed strategy Nash and risk-averse equilibria are
determined by the value of σ1(U) in Example 5. The mixed strategies
depend on the value of the constant a, where σ1(U) is plotted above as a
function of the constant a.

(D,L). The mixed strategy Nash equilibrium and the mixed strategy risk-

averse equilibrium depend on the value of the constant a. Note that the game

is symmetric from the perspective of the two players, so the mixed strategy

Nash and risk-averse equilibria are characterized by σ1(U) that is plotted in

Figure 3.3.

A game according to Example 5 is simulated for 106 rounds for a fixed

constant a. In each realization of the game, both Nash and risk-averse equi-

libria are played and their corresponding payoffs are compared for one of

the players to see which one is larger. The mixed strategies under Nash and

risk-averse equilibria are compared against each other and the pure strategies

under Nash and risk-averse equilibria, if different, are compared as well. Af-

ter the 106 games, the proportion of the games in which playing according to

the risk-averse equilibrium outperforms playing according to the Nash equi-

librium by having a larger payoff is computed and plotted in Figure 3.4 as a

function of the constant a. In the plot in Figure 3.4, the curves comparing

the Nash and risk-averse mixed strategies are dotted lines, the curve com-

paring the Nash equilibrium (D,R) and the risk-averse pure strategy (U,R)

(or (D,L)) is a solid line for a > 3.333, and the curve comparing the Nash

equilibrium (U,L) and risk-averse pure strategy (U,R) (or (D,L)) is a dash-
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Figure 3.4: The likelihood of the payoff of the risk-averse equilibrium being
greater than the payoff of the Nash equilibrium.

dotted line for a > 6. Note that the payoff distributions are the same for

pure risk-averse equilibria (PRAE) (U,R) and (D,L), and that is why pure

Nash equilibria (D,R) (PNE1) and (U,L) (PNE2) are compared with only

one of the PRAEs. For the interval 0 ≤ a < 3.333 the pure equilibria for both

risk-averse and Nash are the same under both approaches so neither of the

pure equilibria comparison curves are shown. Figure 3.4 demonstrates that

agents who play in a risk-averse manner are more likely to receive a higher

payoff than under the Nash equilibrium in any single play of the game.
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Chapter 4

RISK-AVERSE EQUILIBRIUM FOR
AUTONOMOUS VEHICLES IN

STOCHASTIC CONGESTION GAMES

The intelligent transportation systems are growing faster than ever with the

speedy emergence of autonomous vehicles, unmanned aerial vehicles, Ama-

zon delivery robots, Uber/Lyft self-driving cars, and such. One of the prin-

cipal components of such systems is the navigation system whose goal is to

provide travelers with fast and reliable paths from their sources to destina-

tions. In a fleet of vehicles, an equilibrium is achieved when no travelers

have any incentives in a certain sense to change routes unilaterally. In the

classical Wardrop equilibrium [82, 189], travelers have incentives to change

routes if they have an alternative route that has lower expected travel time.

In other words, the optimality metric is based on minimizing the expected

travel time in the Wardrop equilibrium. In the context of transportation

though, collisions, weather conditions, road work, traffic signals, and varying

traffic conditions can cause deviations in travel times [88]. As a result, the

path with the minimum expected travel time may not be reliable due to its

high variability. Similarly, in the context of telecommunication networks,

noise, signal degradation, interference, re-transmission, and malfunctioning

equipment can cause variability in transmission time from source to destina-

tion [88]. The empirical works by Abdel-Aty et al. [190], Kazimi et al. [191],

Lam [192], Lam and Small [193], and Small [194] also support the fact that

taking travel time uncertainty into account is indeed an essential criterion in

navigation systems.

As mentioned above, minimizing the expected travel time is inadequate in

scenarios involving risk due to variability of travel times. In order to address

this issue, we study a richer class of congestion games called stochastic con-

gestion games in an atomic setting, where the travel times along different

arcs of the network are random variables that are not necessarily indepen-

dent of each other and atomic games are those with finite numbers of players.

In this framework, we introduce probability statements regarding the Risk-
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Averse Best Action Decision with Incomplete Information (R-ABADI) of a

traveler given the choice of the rest of travelers in the network. We pro-

pose three classes of risk-averse equilibria for stochastic congestion games:

risk-averse R-ABADI equilibrium (RAE), mean-variance equilibrium (MVE),

and conditional value at risk level α equilibrium (CVaRαE), whose notions of

risk-averse best responses are based on maximizing the probability of travel-

ing along the shortest path (also known as Risk-Averse Best Action Decision

with Incomplete Information (R-ABADI)), minimizing a linear combination

of mean and variance of path delay, and minimizing the expected delay at

a specified risky quantile of the delay distributions, respectively. We prove

that the R-ABADI, mean-variance, and CVaRα equilibria exist for any finite

stochastic atomic congestion game. Note that two equilibria similar to the

mean-variance and CVaR equilibria exist in the literature and are discussed

in the related work section, but the probability distributions of travel times

are load independent or link delays are considered to be independent in the

literature, which is not the case in this work. It is noteworthy that most

studies on stochastic congestion games make use of simplifying assumptions

such as considering the arc delay distributions to be independent of their

loads or adding independent and identically distributed errors to nominal

delays of arcs neglecting their differences. In the Braess paradox [195], [196],

which is known to be a counterintuitive example rather than a paradox,

the risk-neutral/selfish travelers select the shortest path in expected travel

time, which maximizes the social delay/cost incurred by the whole society.

Although the focus of this chapter is not on deriving bounds on price of an-

archy, we study the Braess paradox in a stochastic setting under the three

proposed risk-averse equilibria and show that the risk-averse behavior of trav-

elers results in improving the social delay/cost incurred by the society; and as

a result, the price of anarchy is improved if travelers are risk-averse. As the

result, the Braess paradox may not occur to the extent presented originally

if travelers are risk-averse. Furthermore, we study the Pigou network [197]

in a stochastic setting and observe that the price of anarchy is also improved

if travelers are risk-averse in the senses discussed above. Note that the Pigou

networks are prevalent in traffic/telecommunication networks. Hence, pro-

viding travelers with risk-averse navigation can decrease the social delay/cost

in the real world applications.

The rest of the chapter is structured in the following way. The stochastic
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congestion game is formally defined in Section 4.1. The three proposed classes

of equilibria, i.e. risk-averse R-ABADI, mean-variance, and CVaRα equilib-

ria, are presented in Section 4.2 and their existences in any finite stochastic

congestion game are proven; detailed proofs can be found in Appendix C.

Numerical results including the study of the Pigou and Braess networks as

well as notes for practitioners are provided in Section 4.3. Conclusions and

discussion of opportunities for future work are provided in Chapter 6.

4.1 Problem Statement of Stochastic Congestion

Games

Consider a directed graph (network) G = (N , E) with a node set N = [N ] :=

{1, 2, . . . , N} and directed link (edge) set E with cardinality |E|, where the

pair (i, j) ∈ E indicates a directed link from node i ∈ N to node j ∈ N
in the directed graph. Denote the set of source-destination (SD) pairs with

K ⊆ N × N , where for the SD pair k = (sk, dk) ∈ K, sk 6= dk, the set

of simple directed paths from sk to dk in G is denoted by Pk, and let nk

be the number of players (travelers, vehicles, or data packages) associated

with source-destination k. Let P := ∪k∈KPk be the set of all paths. A

feasible assignment m := {mp : p ∈ P} allocates a non-negative number of

players to every path p ∈ P such that
∑

p∈Pk m
p = nk for all k ∈ K. As

a result, the number of players along link e ∈ E denoted by me is given by

me =
∑
{p∈P:e∈p}m

p.

The latency (delay or travel time) along link e is load-dependent which

is denoted by the non-negative continuous random variable Le(me) with

marginal probability density function (pdf) fe(x|me) and mean le(me). Note

that the number of players along an edge is determined by an assignment

m, so Le(m), fe(x|m), and le(m) can be used instead of Le(me), fe(x|me),

and le(me), respectively. Furthermore, the latency along links of the graph

can be dependent, in which case, the joint pdf of latency over all links is de-

noted by fe1,e2,...,e|E|(x1, x2, . . . , x|E||m1,m2, . . . ,m|E|), which can be denoted

as fE(x1, x2, . . . , x|E||m). Given the link latency defined above, the nominal

latency of player i along path pi ∈ P under a given assignment m is simply
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Li(m) :=
∑

e∈pi Le(m) with pdf

f i(x|m)

= ∂

(∫ ∫
· · ·
∫
{
∑
e∈pi

xe≤x}
fE(x1, x2, . . . , x|E||m) dx1dx2 . . . dx|E|

)/
∂x

and mean li(m) =
∑

e∈pi le(m).

The stochastic congestion game consists of n :=
∑

k∈K nk players (trav-

elers), where player i ∈ [n] := {1, 2, . . . , n} is associated with the corre-

sponding source-destination pair k(i) ∈ K. As a result, Pk(i) is the set of

possible pure strategies (actions) for player i. The pure strategy profile of

all n players is denoted by p := (p1, p2, . . . , pn), where pi ∈ Pk(i), that fully

specifies all actions in the game. The set of all pure strategy profiles is the

Cartesian product of pure strategy sets of all players which is denoted by

P := Pk(1) × Pk(2) · · · × Pk(n). Let p−i := (p1, p2, . . . , pi−1, pi+1, . . . , pn) be

the pure strategies of all players except player i, so p = (pi,p−i). Given the

pure strategy profile p, the number of players on a path p ∈ P is given by

mp =
∑n

i=1 1{pi = p}, and the number of players on a link e ∈ E is given by

me =
∑
{p∈P:e∈p}

∑n
i=1 1{pi = p}. Let m(p) show the number of players on

all paths which is fully determined by the pure strategy p. As a result, given

the pure strategy profile p = (pi,p−i), the latency of player i by choosing

the path pi is the random variable Li(m(p)) =
∑

e∈pi Le(m(p)) with pdf

f i(x|m(p)) and mean li(m(p)) =
∑

e∈pi le(m(p)). For simplicity, instead of

using Li(m(p)), f i(x|m(p)), and li(m(p)), we use Li(p), f i(x|p), and li(p),

respectively.

The mixed strategy of player i is denoted by σi ∈ Σi, where Σi is the

set of all probability distributions over the set of pure strategies Pk(i), and

σi(p) is the probability that player i selects path p. The mixed strategy

profile of all n players is denoted by σ := (σ1, σ2, . . . , σn), where σi ∈ Σi.

The set of all mixed strategy profiles is the Cartesian product of mixed

strategy sets of all players which is denoted by Σ := Σ1 × Σ2 · · · × Σn. Let

σ−i := (σ1, σ2, . . . , σi−1, σi+1, . . . , σn) be the mixed strategies of all players

except player i, so σ = (σi,σ−i). The latency of player i by selecting path

pi when the other [n] \ i players select paths according to a mixed strategy

σ−i is denoted by the random variable L
i
(pi,σ−i) that has the following pdf
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using the law of total probability:

f̄ i(x|(pi,σ−i)) =
∑

p−i∈P−i

(
f i(x|(pi,p−i)) · σ(p−i)

)
, (4.1)

where σ(p−i) =
∏

j∈[n]\i σj(pj) and pj is the corresponding strategy of player

j in p−i, and the mean of the random variable is given as

l
i
(pi,σ−i) := E[L

i
(pi,σ−i)] =

∑
p−i∈P−i

(
li(pi,p−i) · σ(p−i)

)
. (4.2)

The expected average delay (latency) incurred by the n players in the

stochastic congestion game under the pure strategy profile p, also known

as the social cost or social delay in this context, is denoted by D(p) :=
1
n

∑n
i=1 l

i(p). The social delay under the mixed strategy σ is D(σ) :=
1
n

∑
p∈P

∑n
i=1 σ(p) · li(p), where σ(p) =

∏
i∈[n] σi(pi) and pi is the corre-

sponding strategy of player i in p. The (pure) optimal load assignment

denoted by o minimizes social delay among all possible (pure) load assign-

ments which might be in contrast with the selfish behavior of players. The

(pure) price of anarchy (PoA) of a congestion game is the maximum ratio

D(p)/D(o) over all equilibria p of the game. Throughout the chapter, we

follow the convention that y ≤ x means that y is less than or equal to all

elements of the vector x.

4.2 Risk-Averse Equilibrium for Stochastic Congestion

Games

In the following subsection, illustrative examples are provided with analysis

of their equilibria in classic and risk-averse frameworks which motivate the

novel risk-averse best-response approach for incomplete information conges-

tion games presented in this chapter.

4.2.1 Illustrative Examples

The Pigou network [198] is one of the simplest networks studied in conges-

tion games. We first use the Pigou network to clearly state the motivation
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of the current work in the first example. We then study the more contro-

versial network used by Braess [195] in the famous Braess’s paradox in the

second example. The two examples below set grounding for the risk-averse

equilibrium for congestion games proposed in this chapter.

Example 6. Consider the Pigou network with two parallel links between

source and destination as shown in Figure 4.1. There are n players (vehicles

or data packages) to travel from source to destination. The top and bottom

links are labeled as 1 and 2 with loads m1 and m2 = n−m1, respectively. The

travel times on links 1 and 2 are respectively independent random variables

L1(m1) and L2(m2) with expected values l1(m1) = m1

n
and l2(m2) = 1 and

pdfs

f1(x|m1) = α

(
2 exp

(
− 100

(
x− m1

4n

)2
)
· 1
{

0 ≤ x ≤ m1

2n

}
+ 3 exp

(
− 100

(
x− 3m1

2n

)2
)
· 1
{

5m1

4n
≤ x ≤ 7m1

4n

})
,

f2(x|m2) = β exp
(
−100 (x− 1)2) · 1{3

4
≤ x ≤ 5

4

}
,

where α and β are constants for which each of the two distributions integrate

to one and 1{.} is the indicator function.

The well-known Wardrop equilibrium [82,189], also Nash equilibrium [28],

for the Pigou network in Example 6 is that all the n players travel along the

top link since it is the weakly dominant strategy for any player as the expected

latency incurred along the top link is always less than or equal to the expected

latency incurred along the bottom link, l1(m1) = m1

n
≤ 1 = l2(m2). As a

result, the Wardrop equilibrium for Pigou network is p∗W = (1, 1, . . . , 1) with

social delay DW (p∗W ) = 1. However, although the expected latency along the

top link is less than or equal to that of the bottom link, l1(m1) ≤ l2(m2), the

variance of travel time along the top link at full capacity is larger than that

along the bottom link, which increases the risk and uncertainty of traveling

along the top link. In fact, the bottom link with higher expected travel time

is more likely to have a lower delay than the top link at full capacity; i.e.,

P
(
L2(0) ≤ L1(n)

)
= 0.6 > 0.5. As a result, a risk-averse player selects the

bottom link for commute when the top link is at full capacity, especially if

it is a one-time trip, for which, as is shown later, the risk-averse behavior of
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Figure 4.1: The Pigou network in Example 6 with the load-dependent
latency pdfs and the corresponding means of links.

players decreases social delay for this example. As an example, consider a

traveler who wants to go from hotel to airport who has two options for this

trip: taking the highway that has lower expected travel time, but is more

likely to get congested due to traffic jams and crashes (top link in Pigou

network), or taking the urban streets with a higher expected travel time

and lower congestion (the bottom link in Pigou network). A risk-neutral

player travels along the top link with lower expected latency, but a risk-

averse player travels along the bottom link to assure not to incur a long

delay and miss the flight. Even in everyday commutes between home and

work, the expected delay over many days may not be a desirable objective

to minimize. No-one desires to arrive early to work some days but late on

others, and to be penalized accordingly. The Braess network, studied in the

next example, enforces the fact that minimizing the expected delay is not

desirable for risk-averse players.

Example 7. Consider the Braess network depicted in Figure 4.2. There are

n players (vehicles or data packages) to travel from source to destination.

Other than the source and destination, there are two nodes A and B in the

network. The directed links (S,A), (A,D), (S,B), (B,D), and (A,B) are

referred to as links 1, 2, 3, 4, and 5 with loads m1, m2, m3, m4, and m5,
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Figure 4.2: The Braess network in Example 7 with the load-dependent
latency pdfs and the corresponding means of links.

respectively. The travel times on links 1, 2, 3, 4, and 5 are respectively

independent random variables L1(m1), L2(m2), L3(m3), L4(m4), and L5(m5)

with expected values l1(m1) = m1

n
, l2(m2) = 1, l3(m3) = 1, l4(m4) = m4

n
, and

l5(m5) = 0 and pdfs

f1(x|m1) = γ

(
exp

(
− 100

(
x− m1

2n

)2
)
· 1
{

0 ≤ x ≤ m1

n

}
+ exp

(
− 100

(
x− 3m1

2n

)2
)
· 1
{
m1

n
< x ≤ 2m1

n

})
,

f2(x|m2) = ζ exp
(
−100 (x− 1)2) · 1{1

2
≤ x ≤ 3

2

}
,

f3(x|m3) = ζ exp
(
−100 (x− 1)2) · 1{1

2
≤ x ≤ 3

2

}
,

f4(x|m4) = γ

(
exp

(
− 100

(
x− m4

2n

)2
)
· 1
{

0 ≤ x ≤ m4

n

}
+ exp

(
− 100

(
x− 3m4

2n

)2
)
· 1
{
m4

n
< x ≤ 2m4

n

})
,

where γ and ζ are constants for which the distributions integrate to one, 1{.}
is the indicator function, and P

(
L5(m5) = 0

)
= 1. There are three paths from

source to destination, (S,A,D), (S,A,B,D), and (S,B,D), that are referred
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to as paths 1, 2, and 3 with loads m1,m2, and m3, respectively, where the

difference between links and paths should be clear from the context. Note that

the link loads are related to path loads as m1 = m1 +m2, m2 = m1, m3 = m3,

m4 = m2 +m3, and m5 = m2, and the delays along paths are related to link

delays as L1(m) = L1(m1)+L2(m2), L2(m) = L1(m1)+L5(m5)+L4(m4) =

L1(m1) + L4(m4), and L3(m) = L3(m3) + L4(m4).

The Wardrop (Nash) equilibrium for the Braess network in Example 7 is

that all the n players travel along path 2 since it is the weakly dominant path

for any player as the expected latency incurred along path 2 is always less

than or equal to the expected latency incurred along the other two paths 1

and 3,

l2(m) = l1(m1) + l5(m5) + l4(m4)

=
m1

n
+
m4

n

≤ m1

n
+ 1 = l1(m1) + l2(m2) = l1(m),

≤ 1 + m4

n
= l3(m3) + l4(m4) = l3(m).

As a result, the Wardrop equilibrium for Braess network is p∗W = (2, 2, . . . , 2)

with social delay DW (p∗W ) = 2. However, although path 2 has latency less

than or equal to that of paths 1 and 3, l2(m) ≤
(
l1(m), l3(m)

)
, the variance

of travel time along path 2 at full capacity is larger than that along paths

1 and 3, which increases the risk and uncertainty of traveling along path 2.

In fact, path 1 (or 3) with higher expected travel time is more likely to have

a lower delay than the rest of the paths; i.e., P
(
L1(0) ≤

(
L2(n), L3(0)

))
=

3
8
> 1

4
= P

(
L2(n) ≤

(
L1(0), L3(0)

))
. As a result, a risk-averse player selects

paths 1 or 3 for commute when path 2 is at full capacity, and as is shown later,

the risk-averse behavior of players decreases social delay for this example.

4.2.2 R-ABADI Equilibrium

In the classical Wardrop (Nash) equilibrium, the best response of player

i ∈ [n] to the mixed strategy σ−i of the other [n] \ i players is defined as the

set

arg min
pi∈Pi

l
i
(pi,σ−i).
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In other words, the best response for player i given σ−i is defined as the path

that minimizes the expected travel time. However, motivated by Examples

6 and 7, the path with minimum expected latency may have a high volatility

as well that causes risky scenarios for travelers. As a result, the classical

Wardrop (Nash) equilibrium that ignores the distribution of path latency

except for taking the expected latency into account, that does not carry any

information about variance and the shape of the distribution, falls short in

addressing risk-averse behavior of players. In this chapter, motivated by

Examples 6 and 7, we propose a Risk-Averse Best Action Decision with

Incomplete Information (R-ABADI) of a player to the strategy of the other

players in a stochastic congestion game as follows. Note that the risk-averse

best-response/equilibrium and R-ABADI best-response/equilibrium are used

interchangeably throughout this chapter.

Definition 11. Given the mixed strategy profile σ−i of players [n]\ i, the set

of mixed strategy risk-averse R-ABADI best responses of player i is the set

of all probability distributions over the set

arg max
pi∈Pi

P
(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
, (4.3)

where what we mean by L
i
(pi,σ−i) being less than or equal to L

i
(Pi \pi,σ−i)

when Pi \ pi 6= ∅ is that L
i
(pi,σ−i) is less than or equal to L

i
(p′i,σ−i) for

all p′i ∈ Pi \ pi; otherwise, if Pi \ pi = ∅, player i only has a single option

that can be played. The same randomness on the action of players [n] \ i
is considered in L

i
(pi,σ−i) for all pi ∈ Pi. Given the mixed strategy σ−i

of players [n] \ i, the risk-averse best response set of player i’s strategies is

denoted by RB(σ−i), which is in general a set-valued function.

The risk-averse equilibrium for stochastic congestion games is defined as

follows.

Definition 12. A strategy profile σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
N) is a risk-averse

R-ABADI equilibrium if and only if σ∗i ∈ RB(σ∗−i) for all i ∈ [n].

The following theorem, which is a special case of Theorem 4, proves the

existence of a risk-averse equilibrium for any stochastic congestion game with

finite number of players and pure strategy sets Pi for all i ∈ [n] with finite

cardinality.
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Theorem 5. For any finite n-player stochastic congestion game, a risk-

averse equilibrium exists.

The proof of Theorem 5 is provided in Appendix C.1.

As a direct result of Definitions 11 and 12, the pure strategy risk-averse

best response and pure strategy risk-averse equilibrium are defined as follows.

The pure strategy risk-averse best response of player i to the pure strategy

p−i of players [n] \ i is the set{
arg maxpi∈Pi P

(
Li
(
pi,p−i

)
≤ Li

(
Pi \ pi,p−i

) )
, if Pi \ pi 6= ∅,

pi, if Pi \ pi = ∅.
(4.4)

Given the pure strategy p−i of players [n]\i, the risk-averse best response set

of player i in Equation (4.4) is denoted by RB(p−i) (overloading notation,

RB(.) is used for both pure and mixed strategy risk-averse best responses).

As a result, a pure strategy profile p∗ = (p∗1, p
∗
2, . . . , p

∗
n) is a pure strategy

risk-averse equilibrium if and only if p∗i ∈ RB(p∗−i) for all i ∈ [n].

Strict dominance in the classical Wardrop (Nash) equilibrium is defined as

follows. A pure strategy pi ∈ Pi of player i strictly dominates a second pure

strategy p′i ∈ Pi of the player if

li(pi,p−i) < li(p′i,p−i), ∀p−i ∈ P−i.

The solution concept of iterated elimination of strictly dominated strategies

can also be applied to the risk-averse equilibrium using the following defini-

tion.

Definition 13. A pure strategy pi ∈ Pi of player i strictly dominates a

second pure strategy p′i ∈ Pi of the player in the risk-averse equilibrium if

P
(
Li
(
pi,p−i

)
≤ Li

(
Pi \ pi,p−i

) )
>P
(
Li
(
p′i,p−i

)
≤ Li

(
Pi \ p′i,p−i

) )
, ∀p−i ∈ P−i.

(4.5)

Consider path pi ∈ Pi strictly dominates path p′i ∈ Pi for player i; then,
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for any σ−i ∈ Σ−i

P
(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
(a)
=

∑
p−i∈P−i

(
P
(
Li(pi,p−i) ≤ Li(Pi \ pi,p−i)

)
· σ(p−i)

)
(b)
>

∑
p−i∈P−i

(
P
(
Li(p′i,p−i) ≤ Li(Pi \ p′i,p−i)

)
· σ(p−i)

)

= P
(
L
i
(p′i,σ−i) ≤ L

i
(Pi \ p′i,σ−i)

)
,

(4.6)

where (a) is true by the law of total probability, σ(p−i) =
∏

j∈[n]\i σj(pj)

and pj is the corresponding strategy of player j in p−i, and (b) is followed

by Equation (4.5) in Definition 13. By Equation (4.6) and Equation (4.3) in

Definition 11, a strictly dominated pure strategy cannot be a best response

to any mixed strategy profile σ−i ∈ Σ−i, so it can be removed from the set

of strategies of player i.

In order to find the risk-averse equilibrium for a stochastic congestion

game, we use support enumeration. For example, hypothesize that P ′ :=

{P ′1,P ′2, . . . ,P ′n} is the support of a risk-averse equilibrium, where P ′i is the

set of pure strategies of player i that are played with non-zero probability

and σi(pi) for pi ∈ P ′i indicates the probability mass function on the support.

At equilibrium, player i ∈ [n] should be indifferent between strategies in the

set P ′i, has no incentive to deviate to the rest of strategies in the set Pi \ P ′i,
and the probability mass function over the support should add to one. As a

result, if there is a risk-averse equilibrium with the mentioned support, it is

the solution of the following set of equations for σ ∈ Σ:

P
(
L
i
(p′i,σ−i) ≤ L

i
(Pi \ p′i,σ−i)

)
≥ P

(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
,∀pi ∈ Pi, p′i ∈ P ′i,∀i ∈ [n],

∑
pi∈P ′i

σi(pi) = 1,∀i ∈ [n],

σi(pi) = 0,∀pi ∈ Pi \ P ′i, ∀i ∈ [n].

(4.7)

As mentioned earlier in Equation (4.6), using the law of total probability,
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we have

P
(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
=

∑
p−i∈P−i

(
P
(
Li(pi,p−i) ≤ Li(Pi \ pi,p−i)

)
· σ(p−i)

)

=
∑

p−i∈P−i

(
ti(pi,p−i) · σ(p−i)

)
,

(4.8)

where ti(pi,p−i) := P
(
Li(pi,p−i) ≤ Li(Pi \ pi,p−i)

)
is the i-th element of

an n-dimensional vector called t(pi,p−i). Construct a risk-averse probability

tensor of rank n where Pi forms the i-th dimension of the tensor. Let the

element associated with (pi,p−i) in the tensor be the vector t(pi,p−i). Equa-

tions (4.7) and (4.8) along with the definition of the risk-averse probability

tensor provide us with an alternative approach for deriving the risk-averse

equilibrium, which is to find the Wardrop (Nash) equilibrium on the risk-

averse probability tensor.

The mean-variance (MV) and conditional value at risk level α (CVaRα)

methods are two well-known frameworks to consider risk in statistics. In

the next two subsections, two new risk-averse equilibria based on these two

concepts are proposed.

4.2.3 Mean-Variance Equilibrium

As seen in Examples 6 and 7, the high variance of paths with lower expected

travel time can result in uncertainty and impose high latency for travelers.

The mean-variance framework in statistics addresses this issue by keeping

a balance between low latency and low variance. Applying this method

to the proposed stochastic congestion game setting, the mean-variance best

response and mean-variance equilibrium are defined as follows.

Definition 14. Given the mixed strategy profile σ−i of players [n] \ i, the

set of mixed strategy mean-variance best responses of player i is the set of all

probability distributions over the set

arg min
pi∈Pi

Var
(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i), (4.9)
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where the variance Var
(
L
i
(pi,σ−i)

)
can be calculated using the pdf of the

random variable L
i
(pi,σ−i) provided in Equation (4.1) and ρ ≥ 0 is a hyper-

parameter capturing the absolute risk tolerance. Given the mixed strategy σ−i

of players [n] \ i, the mean-variance best response set of player i’s strategies

is denoted by MB(σ−i), which is in general a set-valued function.

Definition 15. A strategy profile σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
N) is a mean-variance

equilibrium if and only if σ∗i ∈MB(σ∗−i) for all i ∈ [n].

The existence of the mean-variance equilibrium is discussed in the following

theorem.

Theorem 6. For any finite n-player stochastic congestion game, a mean-

variance equilibrium exists.

The proof of Theorem 6 is provided in Appendix C.2.

The pure strategy mean-variance best response of player i to the pure

strategy p−i of players [n] \ i is the set

arg min
pi∈Pi

Var
(
Li(pi,p−i)

)
+ ρ · li(pi,p−i), (4.10)

where

Var
(
Li(pi,p−i)

)
= Var

(∑
e∈pi

Le(pi,p−i)

)
=
∑
e∈pi

∑
e′∈pi

Cov
(
Le(pi,p−i), Le′(pi,p−i)

)
.

Given the pure strategy p−i of players [n]\i, the mean-variance best response

set of player i in Equation (4.10) is denoted by MB(p−i) (overloading no-

tation, MB(.) is used for both pure and mixed strategy mean-variance best

responses). As a result, a pure strategy profile p∗ = (p∗1, p
∗
2, . . . , p

∗
n) is a

pure strategy mean-variance equilibrium if and only if p∗i ∈MB(p∗−i) for all

i ∈ [n]. The strict dominance concept is straightforward among pure strat-

egy profiles in mean-variance equilibrium that is defined as follows. A pure

strategy pi ∈ Pi of player i strictly dominates a second pure strategy p′i ∈ Pi
of the player in pure strategy mean-variance equilibrium if

Var
(
Li(pi,p−i)

)
+ ρ · li(pi,p−i)

< Var
(
Li(p′i,p−i)

)
+ ρ · li(p′i,p−i), ∀p−i ∈ P−i.

(4.11)
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However, due to the fact that variance is not a linear operator, strict dom-

inance may not be derived from Equation (4.11) for mixed strategy mean-

variance equilibrium as described below.

Var
(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i)

(a)
= E

[(
L
i
(pi,σ−i)

)2
]
−
(
l
i
(pi,σ−i)

)2

+ ρ · li(pi,σ−i)

(b)
=

∑
p−i∈P−i

(
σ(p−i) · E

[(
Li(pi,p−i)

)2
])

−

 ∑
p−i∈P−i

(
σ(p−i) · li(pi,p−i)

)2

+ ρ
∑

p−i∈P−i

(
σ(p−i) · li(pi,p−i)

)
(c)
=

∑
p−i∈P−i

(
σ(p−i) · E

[(
Li(pi,p−i)

)2
])

−
∑

p−i∈P−i

 ∑
p′−i∈P−i

(
σ(p−i) · σ(p′−i) · li(pi,p−i) · li(pi,p′−i)

)
+ ρ ·

∑
p−i∈P−i

(
σ(p−i) · li(pi,p−i)

)
(d)
=

∑
p−i∈P−i

σ(p−i) ·

(
E
[(
Li(pi,p−i)

)2
]
− li(pi,p−i)×

∑
p′−i∈P−i

(
σ(p′−i) · li(pi,p′−i)

)
+ ρ · li(pi,p−i)

)

=
∑

p−i∈P−i

σ(p−i) ·

(
E
[(
Li(pi,p−i)

)2
]
− li(pi,p−i)×( ∑
p′−i∈P−i

(
σ(p′−i) · li(pi,p′−i)

)
+ ρ

))
,

(4.12)

where (a) is true by the definition of variance, (b) is followed by Equation

(4.2), (c) is derived by expanding the second term, and (d) is true by com-

bining the summation over p−i ∈ P−i and factoring σ(p−i). As can be seen

in Equation (4.12), since variance is a non-linear operator, it is not clear

whether Equation (4.11) can result in Var
(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i) <

Var
(
L
i
(p′i,σ−i)

)
+ ρ · li(p′i,σ−i) for all σ−i ∈ Σ−i. As a result, use of strict
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dominance in the mixed strategy mean-variance equilibrium is not advised.

In certain circumstances though, we can propose conditions for strict domi-

nance; e.g., when li(p) ≤ ρ
2

for all p ∈ P and for all i ∈ [n] which is discussed

in the following definition or when li(p) ≥ ρ
2

for all p ∈ P and for all i ∈ [n].

Definition 16. Suppose li(p) ≤ ρ
2

for all p ∈ P and for all i ∈ [n]. Then,

pure strategy pi ∈ Pi of player i strictly dominates a second pure strategy

p′i ∈ Pi of the player in the mean-variance equilibrium if

li
(
pi,p−i

)
< li

(
p′i,p−i

)
, ∀p−i ∈ P−i, (4.13)

and

E

[(
Li
(
pi,p−i

) )2
]
< E

[(
Li
(
p′i,p−i

) )2
]
, ∀p−i ∈ P−i. (4.14)

Consider that path pi ∈ Pi strictly dominates path p′i ∈ Pi for player i as

defined in Definition 16; then, using Equation (4.13), for any σ−i ∈ Σ−i,

l
i
(pi,σ−i) =

∑
p−i∈P−i

(
σ(p−i) · li(pi,p−i)

)
<

∑
p−i∈P−i

(
σ(p−i) · li(p′i,p−i)

)
= l

i
(p′i,σ−i).

(4.15)

Note that l
i
(pi,σ−i) ≤ ρ

2
for all pi ∈ Pi, for all σ−i ∈ Σ−i, and for all i ∈ [n]

as a result of li(p) ≤ ρ
2

for all p ∈ P and for all i ∈ [n]. Hence, using the

fact that the function −f 2 + ρ · f is increasing for f ≤ ρ
2
, for any σ−i ∈ Σ−i

we have

−
(
l
i
(pi,σ−i)

)2

+ ρ · li(pi,σ−i)

<−
(
l
i
(p′i,σ−i)

)2

+ ρ · li(p′i,σ−i).
(4.16)

On the other hand, using Equation (4.14), we have

E

[(
L
i
(pi,σ−i)

)2
]

=
∑

p−i∈P−i

(
σ(p−i) · E

[(
Li(pi,p−i)

)2
])

<
∑

p−i∈P−i

(
σ(p−i) · E

[(
Li(p′i,p−i)

)2
])

= E

[(
L
i
(p′i,σ−i)

)2
]
.

(4.17)

Finally, Equations (4.16) and (4.17) conclude that Var
(
L
i
(pi,σ−i)

)
+ ρ ·
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l
i
(pi,σ−i) < Var

(
L
i
(p′i,σ−i)

)
+ ρ · li(p′i,σ−i) for all σ−i ∈ Σ−i.

In order to find the mean-variance equilibrium for a stochastic conges-

tion game, we use support enumeration. For example, hypothesize P ′ :=

{P ′1,P ′2, . . . ,P ′n} to be the support of a mean-variance equilibrium, where P ′i
is the set of pure strategies of player i that are played with non-zero prob-

ability and σi(pi) for pi ∈ P ′i indicates the probability mass function on the

support. At equilibrium, player i ∈ [n] should be indifferent between strate-

gies in the set P ′i, has no incentive to deviate to the rest of strategies in the

set Pi \P ′i, and the probability mass function over the support should add to

one. As a result, if there is a mean-variance equilibrium with the mentioned

support, it is the solution of the following set of equations for σ ∈ Σ:

Var
(
L
i
(p′i,σ−i)

)
+ ρ · li(p′i,σ−i)

≤ Var
(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i),∀pi ∈ Pi, p′i ∈ P ′i,∀i ∈ [n],

∑
pi∈P ′i

σi(pi) = 1,∀i ∈ [n],

σi(pi) = 0,∀pi ∈ Pi \ P ′i,∀i ∈ [n].

(4.18)

4.2.4 CVaRα Equilibrium

The conditional value at risk level α (CVaRα) is another framework in statis-

tics to measure risk and to address the risk-averse behavior. Applying this

method to the proposed stochastic congestion game setting, the CVaRα best

response and CVaRα equilibrium are defined below.

Definition 17. Given the mixed strategy profile σ−i of players [n]\ i, the set

of mixed strategy CVaRα best responses of player i is the set of all probability

distributions over the set

arg min
pi∈Pi

CV aRα

(
L
i
(pi,σ−i)

)
= arg min

pi∈Pi
E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]
,

(4.19)

where viα(pi,σ−i) is a constant derived by solving the equality P
(
L
i
(pi,σ−i) ≥

viα(pi,σ−i)
)

= α and the constant 0 < α ≤ 1 is a hyper-parameter depicting
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the risk level. Given the mixed strategy σ−i of players [n] \ i, the CVaRα

best response set of player i’s strategies is denoted by CB(σ−i), which is in

general a set-valued function.

Definition 18. A strategy profile σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
N) is a CVaRα equilib-

rium if and only if σ∗i ∈ CB(σ∗−i) for all i ∈ [n].

The existence of the CVaRα equilibrium is discussed in the following the-

orem.

Theorem 7. For any finite n-player stochastic congestion game, a CVaRα

equilibrium exists.

The proof of Theorem 7 is provided in Appendix C.3.

The pure strategy CVaRα best response of player i to the pure strategy

p−i of players [n] \ i is the set

arg min
pi∈Pi

CV aRα

(
Li(pi,p−i)

)
= arg min

pi∈Pi
E
[
Li(pi,p−i)

∣∣∣Li(pi,p−i) ≥ viα(pi,p−i)
]
,

(4.20)

where viα(pi,p−i) is a constant derived by solving the equality P
(
Li(pi,p−i)

≥ viα(pi,p−i)
)

= α and the constant 0 < α ≤ 1 is the hyper-parameter de-

picting risk level. Given the pure strategy p−i of players [n] \ i, the CVaRα

best response set of player i in Equation (4.20) is denoted by CB(p−i) (over-

loading notation, CB(.) is used for both pure and mixed strategy CVaRα

best responses). As a result, a pure strategy profile p∗ = (p∗1, p
∗
2, . . . , p

∗
n) is a

pure strategy CVaRα equilibrium if and only if p∗i ∈ CB(p∗−i) for all i ∈ [n].

A pure strategy pi ∈ Pi of player i strictly dominates a second pure strategy

p′i ∈ Pi of the player in pure strategy CVaRα equilibrium if

E
[
Li(pi,p−i)

∣∣∣Li(pi,p−i) ≥ viα(pi,p−i)
]

< E
[
Li(p′i,p−i)

∣∣∣Li(p′i,p−i) ≥ viα(p′i,p−i)
]
, ∀p−i ∈ P−i,

(4.21)

where viα(pi,p−i) and viα(p′i,p−i) are constants derived by solving the equa-

tion P
(
Li(pi,p−i) ≥ viα(pi,p−i)

)
= α and P

(
Li(p′i,p−i) ≥ viα(p′i,p−i)

)
= α,

and the constant 0 < α ≤ 1 is the risk level hyper-parameter. However, sim-

ilar to the mean-variance equilibrium, strict dominance may not be derived
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from Equation (4.21) for mixed strategy CVaRα equilibrium as described

below. Using Equation (4.1) that provides the pdf function of the random

variable and P
(
L
i
(pi,σ−i) ≥ viα(pi,σ−i)

)
= α, the distribution of the ran-

dom variable
(
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
)

is

 ∑
p−i∈P−i

(
f i(x|(pi,p−i)) · σ(p−i)

)/
α

 · 1{x ≥ viα(pi,σ−i)
}
. (4.22)

As a result,

E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]

(a)
=

1

α
·
∑

p−i∈P−i

(
σ(p−i) ·

∫ ∞
−∞

(
x · f i(x|(pi,p−i)) · 1

{
x ≥ viα(pi,σ−i)

})
dx

)
(b)
=

1

α
·
∑

p−i∈P−i

(
σ(p−i) · P

(
Li(pi,p−i) ≥ viα(pi,σ−i)

)
×

∫ ∞
viα(pi,σ−i)

(
x ·

f i(x|(pi,p−i))
P
(
Li(pi,p−i) ≥ viα(pi,σ−i)

))dx)

=
1

α
·
∑

p−i∈P−i

(
σ(p−i) · P

(
Li(pi,p−i) ≥ viα(pi,σ−i)

)
×

E
[
Li(pi,p−i)

∣∣∣Li(pi,p−i) ≥ viα(pi,σ−i)
])

,

(4.23)

where (a) is true by using the pdf of the corresponding random variable in

Equation (4.22) and switching the order of summation and integral and (b)

is true by multiplying and dividing by the term P
(
Li(pi,p−i) ≥ viα(pi,σ−i)

)
.

As can be seen in Equation (4.23), it is not clear whether Equation (4.21)

can result in the equation of interest E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]

< E
[
L
i
(p′i,σ−i)

∣∣∣Li(p′i,σ−i) ≥ viα(p′i,σ−i)
]

for all σ−i ∈ Σ−i. As a result, use

of strict dominance in the mixed strategy CVaRα equilibrium is not advised

due to its complication.

In order to find the CVaRα equilibrium for a stochastic congestion game, we

use support enumeration. For example, hypothesize P ′ := {P ′1,P ′2, . . . ,P ′n}
to be the support of a CVaRα equilibrium, where P ′i is the set of pure

strategies of player i that are played with non-zero probability and σi(pi)
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for pi ∈ P ′i indicates the probability mass function on the support. At equi-

librium, player i ∈ [n] should be indifferent between strategies in the set P ′i,
has no incentive to deviate to the rest of strategies in the set Pi \P ′i, and the

probability mass function over the support should add to one. As a result, if

there is a CVaRα equilibrium with the mentioned support, it is the solution

of the following set of equations for σ ∈ Σ:

E
[
L
i
(p′i,σ−i)

∣∣∣Li(p′i,σ−i) ≥ viα(p′i,σ−i)
]

≤ E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]
,∀pi ∈ Pi, p′i ∈ P ′i,∀i ∈ [n],

∑
pi∈P ′i

σi(pi) = 1, ∀i ∈ [n],

σi(pi) = 0, ∀pi ∈ Pi \ P ′i,∀i ∈ [n].

(4.24)

Remark 7. It is noteworthy that the polynomial terms in Equation (4.7) for

the risk-averse equilibrium are of degree n− 1 while the polynomial terms in

Equation (4.18) for the mean-variance equilibrium are of degree 2(n− 1) for

n number of players. On the other hand, it is more complicated to solve for

Equation (4.24) as the top α quantile of distributions should be calculated.

4.3 Numerical Results

The risk-averse, mean-variance, and CVaRα equilibria are numerically ana-

lyzed for Examples 6 and 7 in this section. The price of anarchy for each of

the mentioned equilibria is calculated as well. In the end, extra examples are

presented to shed light on the corner cases of each one of the equilibria and

to provide insight on how to tackle such circumstances.

In order to find any of the three types of pure equilibria for the Pigou

network in Example 6 with n players, hypothesize that m1 players choose

link 1 and m2 = n−m1 players choose link 2 and check whether any players

has any incentive in the corresponding sense of the equilibrium of the interest

to change route, given the pure strategy of the other players. If none of the

players has any incentive to change route given the pure strategy of the rest

of players, (m1, n −m1) is a pure equilibrium, where (m1,m2) denotes that

m1 players select link 1 and m2 players select link 2. By varying m1 from zero
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to n and taking the above procedure, the pure equilibrium is found if any

exists. Given a fixed number of players m1 that choose link 1, it is obvious

that they all have the same incentive to change to link 2 or stay in link 1,

and all of the m2 = n−m1 players have the same incentive to change to link

1 or stay in link 2. As a result, if a specific player out of the m1 players has

no incentive to switch to link 2 given the pure strategy of the other players,

and a specific player out of the m2 players has no incentive to switch to

link 1 given the pure strategy of the other players, (m1,m2 = n −m1) is a

pure equilibrium. In other words, (m1,m2 = n − m1) is a pure risk-averse

equilibrium if 
P
(
L1(m1) ≤ L2(m2 + 1)

)
≥ 0.5,

P
(
L2(m2) ≤ L1(m1 + 1)

)
≥ 0.5,

(4.25)

where the first inequality is true since each player has two options, link 1

and link 2, so P
(
L1(m1) ≤ L2(m2 + 1)

)
≥ P

(
L2(m2 + 1) ≤ L1(m1)

)
, and

since random variables are continuous we have P
(
L1(m1) ≤ L2(m2 + 1)

)
+

P
(
L2(m2 + 1) ≤ L1(m1)

)
= 1, which results in P

(
L1(m1) ≤ L2(m2 + 1)

)
≥

0.5. The second inequality is true due to a similar reasoning. By varying m1

from zero to n, if Equation (4.25) holds for (m1,m2 = n −m1), it is a pure

risk-averse equilibrium.

Similar to the above approach, (m1,m2 = n−m1) is a pure mean-variance

equilibrium if
Var
(
L1(m1)

)
+ ρ · l1(m1) ≤ Var

(
L2(m2 + 1)

)
+ ρ · l2(m2 + 1),

Var
(
L2(m2)

)
+ ρ · l2(m2) ≤ Var

(
L1(m1 + 1)

)
+ ρ · l1(m1 + 1).

(4.26)

Again, by varying m1 from zero to n, if Equation (4.26) holds for (m1,m2 =

n−m1), it is a pure mean-variance equilibrium. Similarly, (m1,m2 = n−m1)

is a pure CVaRα equilibrium if
E
[
L1(m1)

∣∣L1(m1) ≥ v1
α(m1)

]
≤ E

[
L2(m2 + 1)

∣∣L2(m2 + 1) ≥ v2
α(m2 + 1)

]
,

E
[
L2(m2)

∣∣L2(m2) ≥ v2
α(m2)

]
≤ E

[
L1(m1 + 1)

∣∣L1(m1 + 1) ≥ v1
α(m1 + 1)

]
,

(4.27)

where P
(
L1(m1) ≥ v1

α(m1)
)

= P
(
L2(m2 + 1) ≥ v2

α(m2 + 1)
)

= P
(
L2(m2) ≥
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Figure 4.3: The pure risk-averse, mean-variance (ρ = 1), CVaRα (α = 0.1),
and Nash equilibria of the Pigou network in Example 6 are denoted for
different numbers of players.

v2
α(m2)

)
= P

(
L1(m1 + 1) ≥ v1

α(m1 + 1)
)

= α. By varying m1 from zero

to n, if Equation (4.27) holds for (m1,m2 = n − m1), it is a pure CVaRα

equilibrium.

Note that the equilibrium in the Pigou network in Example 6 is char-

acterized by m1, since m2 can be derived given m1. The pure risk-averse,

mean-variance (ρ = 1), and CVaRα (α = 0.1) equilibria are found for the

mentioned Pigou network and the proportion of players who select link 1; i.e.,
m1

n
, is depicted in Figure 4.3 for different values of n. Under the Nash equi-

librium, no matter what the probability distributions of latency over links

look like, all players select link 1 as it has less or equal latency in expectation.

Hence, (n, 0) is the Nash equilibrium for all n, which corresponds to m1

n
= 1

as depicted in Figure 4.3.

The social delay/latency defined as the expected average delay/latency

incurred by the n players in the Pigou network in Example 6 under the pure

strategy (m1,m2) is D(m1) = 1
n

(
m1 · m1

n
+ (n−m1)

)
=
(
m1

n

)2 − m1

n
+ 1,

which is minimized when m1 = n
2

for an even n, and m1 = bn
2
c and m1 = dn

2
e

for an odd n. As a result, it is socially optimal that about half of the

players take the top link and the rest take the bottom link to travel from

source to destination in the Pigou network, which results in a social latency
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Figure 4.4: The prices of anarchy for the risk-averse, mean-variance (ρ = 1),
CVaRα (α = 0.1), and Nash equilibria of the Pigou network in Example 6
are plotted for different numbers of players.

close to 3
4

for n � 1. If players are risk-neutral and seek to minimize their

expected latency given the strategy of the rest of players, which is how the

Nash equilibrium models games, the social latency in the mentioned Pigou

network equals to one for the Nash equilibrium (n, 0). In contrast, if players

are risk-averse in the different senses discussed in this chapter, the social

latency decreases compared to when players are risk-neutral; as a result, the

price of anarchy decreases as depicted in Figure 4.4. In this example, it is

to the benefit of the society if players are risk-averse, which is the case as

numerous studies in prospect theory discuss the fact that players in the real

world often behave in a risk-averse manner.

Considering the Pigou network in a non-atomic setting, which corresponds

to the case with infinite number of players, the socially optimal strategy is

(0.5, 0.5) with social latency of 3
4
, where (u1, u2) corresponds to u1 fraction

of players traveling along link 1 and u2 = 1− u1 fraction of players traveling

along link 2. We numerically calculate that the risk-averse equilibrium is

(0.7303, 0.2697) with PoA = 1.0707, the mean-variance equilibrium with

ρ = 1 is (0.7750, 0.2250) with PoA = 1.1008, the CVaRα equilibrium with

α = 0.1 is (0.6822, 0.3178) with PoA = 1.0442, and the Nash equilibrium is

(1, 0) with PoA = 4
3
.
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In the Braess network in Example 7, there are three paths from source

to destination, p1 = (1, 2), p2 = (1, 5, 4), p3 = (3, 4), where links SA, AD,

SB, BD, and AB are denoted with 1, 2, 3, 4, and 5, respectively. In order to

find the three types of pure equilibria for the Braess network with n players,

hypothesize that m1 players select path p1, m2 players select path p2, and

n − m1 − m2 players select path p3, then check whether any players has

any incentive in the corresponding sense of the equilibrium of the interest

to change route, given the pure strategy of the other players. If none of

the players has any incentive to change route given the pure strategy of the

rest of players, (m1,m2, n − m1 − m2) is a pure equilibrium. As a result,

(m1,m2, n−m1 −m2) is a pure risk-averse equilibrium if

P
(
L1 ≤ {L2, L3}

)
≥
{
P
(
L2 ≤ {L1, L3}

)
, P
(
L3 ≤ {L1, L2}

)}
, where

L1 = L1(m1 +m2) + L2(m1), L2 = L1(m1 +m2) + L4(n−m1 + 1), and

L3 = L3(n−m1 −m2 + 1) + L4(n−m1 + 1),

P
(
L2 ≤ {L1, L3}

)
≥
{
P
(
L1 ≤ {L2, L3}

)
, P
(
L3 ≤ {L1, L2}

)}
, where

L1 = L1(m1 +m2) + L2(m1 + 1), L2 = L1(m1 +m2) + L4(n−m1), and

L3 = L3(n−m1 −m2 + 1) + L4(n−m1),

P
(
L3 ≤ {L1, L2}

)
≥
{
P
(
L1 ≤ {L2, L3}

)
, P
(
L2 ≤ {L1, L3}

)}
, where

L1 =L1(m1 +m2 + 1) + L2(m1 + 1), L2 =L1(m1 +m2 + 1) + L4(n−m1),

and L3 = L3(n−m1 −m2) + L4(n−m1).

(4.28)

By varying m1 from zero to n and m2 from 0 to n −m1, if Equation (4.28)

holds for (m1,m2,m3 = n−m1 −m2), it is a pure risk-averse equilibrium.

Similar to the above approach, (m1,m2, n − m1 − m2) is a pure mean-
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variance equilibrium if

Var(L1) + ρ · E(L1) ≤
{

Var(L2) + ρ · E(L2),Var(L3) + ρ · E(L3)
}
, where

L1 = L1(m1 +m2) + L2(m1), L2 = L1(m1 +m2) + L4(n−m1 + 1), and

L3 = L3(n−m1 −m2 + 1) + L4(n−m1 + 1),

Var(L2) + ρ · E(L2) ≤
{

Var(L1) + ρ · E(L1),Var(L3) + ρ · E(L3)
}
, where

L1 = L1(m1 +m2) + L2(m1 + 1), L2 = L1(m1 +m2) + L4(n−m1), and

L3 = L3(n−m1 −m2 + 1) + L4(n−m1),

Var(L3) + ρ · E(L3) ≤
{

Var(L1) + ρ · E(L1),Var(L2) + ρ · E(L2)
}
, where

L1 = L1(m1 +m2 + 1) +L2(m1 + 1), L2 = L1(m1 +m2 + 1) + L4(n−m1),

and L3 = L3(n−m1 −m2) + L4(n−m1).

(4.29)

By varying m1 from zero to n and m2 from 0 to n −m1, if Equation (4.29)

holds for (m1,m2,m3 = n−m1 −m2), it is a pure risk-averse equilibrium.

Similar to the above approach, (m1,m2, n − m1 − m2) is a pure CVaRα

equilibrium if

E
[
L1
∣∣L1 ≥ v1

α

]
≤
{

E
[
L2
∣∣L2 ≥ v2

α

]
,E
[
L3
∣∣L3 ≥ v3

α

]}
, where

L1 = L1(m1 +m2) + L2(m1), L2 = L1(m1 +m2) + L4(n−m1 + 1),

L3 = L3(n−m1 −m2 + 1) + L4(n−m1 + 1), and

P
(
L1 ≥ v1

α

)
= P

(
L2 ≥ v2

α

)
= P

(
L3 ≥ v3

α

)
= α

E
[
L2
∣∣L2 ≥ v2

α

]
≤
{

E
[
L1
∣∣L1 ≥ v1

α

]
,E
[
L3
∣∣L3 ≥ v3

α

]}
, where

L1 = L1(m1 +m2) + L2(m1 + 1), L2 = L1(m1 +m2) + L4(n−m1),

L3 = L3(n−m1 −m2 + 1) + L4(n−m1), and

P
(
L1 ≥ v1

α

)
= P

(
L2 ≥ v2

α

)
= P

(
L3 ≥ v3

α

)
= α

E
[
L3
∣∣L3 ≥ v3

α

]
≤
{

E
[
L1
∣∣L1 ≥ v1

α

]
,E
[
L2
∣∣L2 ≥ v2

α

]}
, where

L1 = L1(m1 +m2 + 1) +L2(m1 + 1), L2 = L1(m1 +m2 + 1) +L4(n−m1),

L3 = L3(n−m1 −m2) + L4(n−m1), and

P
(
L1 ≥ v1

α

)
= P

(
L2 ≥ v2

α

)
= P

(
L3 ≥ v3

α

)
= α.

(4.30)

By varying m1 from zero to n and m2 from 0 to n −m1, if Equation (4.30)

holds for (m1,m2,m3 = n−m1 −m2), it is a pure CVaRα equilibrium.
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Figure 4.5: The pure risk-averse, mean-variance (ρ = 1), CVaRα (α = 0.1),
and Nash equilibria of the Braess network in Example 7 are denoted for
different numbers of players.

Note that the equilibrium in the Braess network in Example 7 is char-

acterized by m1 and m2, since m3 can be derived given m1 and m2. The

pure risk-averse, mean-variance (ρ = 1), and CVaRα (α = 0.1) equilibria are

found for the mentioned Braess network and the proportions of players who

select paths 1 and 2, i.e., m1

n
and m2

n
, are depicted in Figure 4.5 for different

values of n. Under the Nash equilibrium, no matter what the probability

distributions of latency over links look like, all players select path 2 as it has

less or equal latency in expectation. Hence, (0, n, 0) is the Nash equilibrium

for all n, which corresponds to m2

n
= 1 and m1

n
= m3

n
= 0 as depicted in

Figure 4.5.

The social delay/latency defined as the expected average delay/latency

incurred by the n players in the Braess network in Example 7 under the pure
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Figure 4.6: The prices of anarchy for the risk-averse, mean-variance (ρ = 1),
CVaRα (α = 0.1), and Nash equilibria of the Braess network in Example 7
are plotted for different numbers of players.

strategy (m1,m2,m3 = n−m1 −m2) is

D(m1,m2) =
1

n
·
(

(m1 +m2) · (m1 +m2)

n
+m1 + (n−m1 −m2)

+ (n−m1) · (n−m1)

n

)
=

1

n2
·
(

2
(
m1
)2

+
(
m2
)2

+ 2m1m2 − 2nm1 − nm2 + 2n2
)
,

which is minimized when
(
m1 = bn

2
c,m2 = 0,m3 = n−m1

)
or
(
m1 = dn

2
e,

m2 = 0,m3 = n − m1
)
. As a result, it is socially optimal that about half

of players take path p1 and the rest take path p3 to travel from source to

destination in the Braess network, which results in a social latency close to
3
2

for n� 1. If players are risk-neutral and seek to minimize their expected

latency given the strategy of the rest of the players, which is how the Nash

equilibrium models games, the social latency in the mentioned Braess net-

work equals two for the Nash equilibrium (0, n, 0). In contrast, if players are

risk-averse in the different senses discussed in this chapter, the social latency

decreases compared to when players are risk-neutral; as a result, the price of

anarchy decreases as depicted in Figure 4.6. In this example, it is again to

the benefit of the society if players are risk-averse.
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Considering the Braess network in a non-atomic setting, which corre-

sponds to the case with infinite number of players, the socially optimal

strategy is (0.5, 0, 0.5) with social latency of 3
2
, where (u1, u2, u3) corre-

sponds to u1 fraction of players travel along path p1, u2 fraction of play-

ers travel along path p2, and u3 = 1 − u1 − u2 fraction of players travel

along path p3. We numerically calculate that the risk-averse equilibrium is

(0.2655, 0.4690, 0.2655) with PoA = 1.0733, the mean-variance equilibrium

with ρ = 1 is (0.1716, 0.6568, 0.1716) with PoA = 1.1438, the CVaRα equi-

librium with α = 0.1 is (0.3045, 0.3910, 0.3045) with PoA = 1.0509, and the

Nash equilibrium is (0, 1, 0) with PoA = 4
3
.

Although it is more prevalent to use pure equilibrium for congestion games,

we analyze the mixed equilibrium of the Pigou network in Example 6 for two

players. The underlying stochastic congestion game with the probability

distributions of players’ delays, the pure and mixed Nash, risk-averse, mean-

variance, and CVaR equilibria are depicted in Figure 4.7. Recall that the

(pure) price of anarchy of a congestion game is the maximum ratio D(p)/

D(o) over all equilibria p of the game, where o is the socially optimal strategy.

As mentioned earlier, the optimal strategy for the Pigou network with two

players is that one of the players travels along the top link and the other

player travels along the bottom link which corresponds to the social delay of
3
4
. As a result, the (pure) price of anarchy for the Nash equilibria is 4

3
. On the

other hand, the pure price of anarchy for the risk-averse, mean-variance, and

CVaR equilibria is equal to one. Furthermore, the price of anarchy among

both pure and mixed equilibria for the risk-averse, mean-variance, and CVaR

equilibria is 1.2405, 1.1689, and 1.2897, respectively.

In the following, we present extra examples with the purpose of shed-

ding light on drawbacks of the different equilibria in different scenarios and

motivating more work to be done on a unified risk-averse framework. Fur-

thermore, the following examples suggest that careful consideration should

be given to the choice of the equilibrium that best fits the application of the

interest.
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Figure 4.7: The pure and mixed risk-averse, mean-variance (ρ = 1), CVaRα

(α = 0.1), and Nash equilibria of the Pigou network in Example 6 for two
players.

4.3.1 Notes for Practitioners

The intention of this subsection is to direct the attention of practitioners plan-

ning to implement risk-averse in-vehicle navigation to cases in which each of

the proposed risk-averse equilibria may provide travelers with counterintu-

itive guidance. To this end, three examples are discussed in the following to

shed light on the implications of the three classes of risk-averse equilibria.

The examples are meant to be simple to convey the idea in a straightforward

manner.

Example 8. Consider a Pigou network with two parallel links, 1 and 2,

between source and destination. The travel times on links 1 and 2 are respec-

tively independent random variables L1 and L2 with pdfs

f1(x) = α

(
exp

(
−100 (x− 14)2) · 1 {13 ≤ x ≤ 15}

+ exp
(
−100 (x− 19)2) · 1 {18 ≤ x ≤ 20}

)
,

f2(x) = β exp
(
−100 (x− 20)2) · 1 {19 ≤ x ≤ 21} ,

where α and β are constants for which each of the two distributions integrate

to one.
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In Example 8, the means and variances of travel times along links 1 and

2 are l1 = 16.5, Var(L1) = 6.255, l2 = 20.0, Var(L2) = 0.005, respectively,

and P (L1 ≤ L2) = 1.0. As a result, although link 1 has a higher variance

than link 2, not only is link 1 shorter than link 2 in expectation, but link 1 is

shorter than link 2 almost certainly. Hence, a rational traveler intends to take

link 1 for commute although its variance is higher than the variance of link

2. However, the mean-variance framework intends to keep a balance between

lower expected travel time and lower uncertainty in travel time assuming that

higher variance is against the spirit of risk-averse travelers. In Example 8, the

mean-variance framework guides travelers to travel along link 2 if ρ < 1.7857,

which is not optimal from the perspective of a risk-averse traveler. Note that

both risk-averse equilibrium and CVaRα equilibrium for any α ∈ [0, 1] guide

travelers to traverse along link 1 in this example.

Example 9. Consider a Pigou network with two parallel links, 1 and 2,

between source and destination. The travel times on links 1 and 2 are respec-

tively independent random variables L1 and L2 with pdfs

f1(x) = α

(
4 exp

(
−100 (x− 5)2) · 1 {4 ≤ x ≤ 6}

+ exp
(
−100 (x− 10)2) · 1 {9 ≤ x ≤ 11}

)
,

f2(x) = β

(
4 exp

(
−100 (x− 8)2) · 1 {7 ≤ x ≤ 9}

+ exp
(
−100 (x− 10)2) · 1 {9 ≤ x ≤ 11}

)
,

where α and β are constants for which each of the two distributions integrate

to one.

In Example 9, the means and variances of travel times along links 1 and

2 are l1 = 6.0, Var(L1) = 4.005, l2 = 8.4, Var(L2) = 0.645, respectively,

and P (L1 ≤ L2) = 0.82. Note that both distributions are the same over the

interval [9, 11]; however, the traveler has a better opportunity of experienc-

ing shorter travel time on the lower 0.8 quantile of the distribution of link 1

compared to that of link 2. Hence, a rational traveler intends to take link 1

for commute although its variance is higher than the variance of link 2. Fur-

thermore, E [L1|L1 ≥ α] = E [L2|L2 ≥ α] for α ∈ [0, 0.2]; hence, the CVaRα

framework is indifferent between the two links when α ∈ [0, 0.2], which can
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result in a counterintuitive route selection in Example 9. The mean-variance

framework also guides travelers to traverse along link 2 if ρ < 1.4, which is

not optimal from the perspective of a risk-averse traveler. Note that the risk-

averse equilibrium guides travelers to traverse along link 1 in this example

as P (L1 ≤ L2) = 0.82.

Example 10. Consider a Pigou network with two parallel links, 1 and 2,

between source and destination. The travel times on links 1 and 2 are respec-

tively independent random variables L1 and L2 with pdfs

f1(x) = β exp
(
−100 (x− 7)2) · 1 {6 ≤ x ≤ 8} ,

f2(x) = α

(
7 exp

(
−100 (x− 5)2) · 1 {4 ≤ x ≤ 6}

+ 3 exp
(
−100 (x− 10)2) · 1 {9 ≤ x ≤ 11}

)
,

where α and β are constants for which each of the two distributions integrate

to one.

In Example 10, the means and variances of travel times along links 1 and

2 are l1 = 7.0, Var(L1) = 0.005, l2 = 6.5, Var(L2) = 5.255, respectively,

and P (L2 ≤ L1) = 0.7. Although the expected travel time along link 2 is

less than that along link 1 and it is more likely that the travel time along

link 2 is shorter than travel time along link 1, the travel time along link

2 is concentrated around 10 with probability 0.3 which is somewhat larger

than the concentration of travel time around 7 when traveling along link 1.

Hence, a risk-averse traveler may prefer to take link 1 for commute although

its expected travel time is higher than the expected travel time of link 2 to

avoid a long travel time. However, the risk-averse equilibrium guides travelers

to traverse along link 2, which may not be optimal from the perspective of

a risk-averse traveler. Note that the CVaRα equilibrium for α < 0.748 and

mean-variance equilibrium for ρ < 10.5 guide travelers to traverse along link

1 in this example.
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Chapter 5

BLIND GB-PANDAS: A BLIND
THROUGHPUT-OPTIMAL LOAD
BALANCING ALGORITHM FOR

AFFINITY SCHEDULING
Affinity load balancing refers to allocation of computing tasks on computing

nodes in an efficient way to minimize a cost function, for example the mean

task completion time [199]. Due to the fact that different task types can have

different processing (service) rates on different computing nodes (servers), a

dilemma between throughput and delay optimality emerges which makes the

optimal affinity load balancing an open problem for more than three decades

if the task arrival rates are unknown. If the task arrival rates and the service

rates of different task types on different servers are known, the fluid model

planning algorithm by Harrison and Lopez [120,121], and Bell and Williams

[122, 123], is a delay optimal load balancing algorithm that solves a linear

programming optimization problem to determine task assignment on servers.

The same number of queues as the number of task types is needed for the fluid

model planning algorithm, so the queueing structure is fixed to the number of

task types and does not capture the complexity of the system model, which is

how heterogeneous the service rates of task types on different servers are. As

an example given in [134] and [201], for data centers with a rack structure that

use Hadoop for MapReduce data placement with three replicas of data chunks

on the M severs, the fluid model planning algorithm requires
(
M
3

)
queues,

while Xie et al. [134] propose a delay optimal algorithm that uses 3M queues.

As another extreme example, if the service rates of NT number of task types

on all servers are the same, the fluid model planning algorithm still considers

NT number of queues, while the First-Come-First-Served (FCFS) algorithm

uses a single queue and is both throughput and delay optimal. It is true that

in the last example all task types can be considered the same type, but this

is just an example to illuminate the reasoning behind the queueing structure

Portions of this chapter were previously published in Yekkehkhany and Nagi [131]
and are used here with permission. Furthermore, portions of this chapter were previously
published in Yekkehkhany et al. [200] and are used here with permission.
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for GB-PANDAS (Generalized Balanced Priority Algorithm for Near Data

Scheduling) presented in Subsection 5.4.1.

In the absence of knowledge on task arrival rates, Max-Weight [127] and

c-µ-rule [124] algorithms can stabilize the system by just knowing the service

rates of task types on different servers. None of these two algorithms are

delay optimal though. The c-µ-rule is actually cost optimal, where it assumes

convex delay costs associated with each task type, and minimizes the total

cost incurred by the system. Since the cost functions have to be strictly

convex, and so cannot be linear, c-µ-rule does not minimize the mean task

completion time. Since these two algorithms do not use the task arrival rates

and still stabilize the system, they are robust to any changes in task arrival

rate as long as it is in the capacity region of the system. Both Max-Weight

and c-µ-rule algorithms have the same issue as the fluid model planning

algorithm on considering one queue per task type which can make the system

model complicated as discussed in [134]. Note that Wang et al. [132] and

Xie et al. [134] study the load balancing problem for special cases of two and

three levels of data locality, respectively. In the former, delay optimality is

analyzed for a special traffic scenario and in the latter delay optimality is

analyzed for a general traffic scenario. In both cases there is no issue with

the number of queues, but as mentioned, these two algorithms are for special

cases of two and three levels of data locality. Hence, a unified algorithm that

captures the trade-off between the complexity of the queueing structure and

the complexity of the system model is lacking in the literature. Yekkehkhany

et al. [200] implicitly mention this trade-off in data center applications, but

the generalization is not crystal clear and needs more consideration of the

affinity setup, which is summarized in this work as a complementary note on

the Balanced-PANDAS algorithm.

The affinity scheduling problem appears in different applications from

data centers and modern processing networks that consist of heterogeneous

servers, where data-intensive analytics like MapReduce, Hadoop, and Dryad

are performed, to supermarket models, or even patient assignment to sur-

geons in big and busy hospitals and many more. Lack of dependable esti-

mates of system parameters, including task arrival rates and specially service

rates of task types on different servers, is a major challenge in constructing

an optimal load balancing algorithm for such networks [202]. All the algo-

rithms mentioned above at least require the knowledge of service rates of task
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types on different servers. In the absence of prior knowledge on service rates,

such algorithms can be fragile and perform poorly, resulting in huge waste

of resources. To address this issue, we propose a robust policy called Blind

GB-PANDAS that is totally blind to all system parameters, but is robust to

task arrival rate changes and learns the service rates of task types on different

servers, so it is robust to any service rate parameter changes as well. It is

natural that due to traffic load changes in data centers, the service rates of

tasks on remote servers change over time. In such cases, Blind GB-PANDAS

is capable of updating system parameters and taking action correspondingly.

Blind GB-PANDAS uses an exploration-exploitation approach to make the

system stable without any knowledge about the task arrival rates and the pro-

cessing rates. More specifically, it uses an exploration-exploitation method,

where in the exploration phase it takes action in a way to make the sys-

tem parameter estimations more accurate, and in the exploitation phase it

uses the estimated parameters to do an optimal load balancing based on

the estimates. Note that only the processing rates of task types on different

servers are the parameters that are estimated, and the task arrival rates are

not estimated. The reason is that task arrival rates change frequently, so

there is no point estimating them, whereas the service rates do not change

rapidly. Since Blind GB-PANDAS uses an estimate of the processing rates,

an incoming task is not necessarily routed to the server with the minimum

weighted-workload in the exploitation phase, which raises the complexity in

the throughput optimality proof of Blind GB-PANDAS using the Lyapunov-

based method. The throughput optimality result is proved under arbitrary

and unknown service time distributions with bounded means and bounded

supports that do not necessarily require the memoryless property.

As discussed in Subsection 5.4.1, the queueing structure used for Blind

GB-PANDAS shows the trade-off between the heterogeneity of the underly-

ing system model for processing rates and the complexity of the Blind GB-

PANDAS queueing structure. Blind GB-PANDAS can also use a one-queue-

per-server queueing structure, where the workload on servers is of interest

instead of the queue lengths, but for an easier explanation of the Blind GB-

PANDAS algorithm we use multiple symbolic sub-queues for each server. The

Blind GB-PANDAS algorithm is compared to FCFS, Max-Weight, and c-µ-

rule algorithms in terms of average task completion time through simulations,

where the same exploration-exploitation approach as Blind GB-PANDAS is
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used for Max-Weight and c-µ-rule. Our extensive simulations show that the

Blind GB-PANDAS algorithm outperforms the two other algorithms at high

loads by an obviously large difference.

The rest of the chapter is structured as follows. Section 5.1 describes

the system model for data centers with a nested rack structure, Section

5.2 presents the GB-PANDAS algorithm for such a system, and Section 5.3

provides the throughput optimality proof for the GB-PANDAS algorithm.

Section 5.4 describes the system model, GB-PANDAS, and the queueing

structure of GB-PANDAS, in addition to deriving the capacity region of the

system. Section 5.5 presents the Blind GB-PANDAS algorithm and queueing

dynamics for this algorithm. Section 5.6 starts with some preliminary results

and lemmas and ends up with the throughput optimality proof for Blind

GB-PANDAS. Section 5.7 evaluates the performance of Blind GB-PANDAS

versus Max-Weight, c-µ-rule, and FCFS algorithms in terms of mean task

completion time. For the conclusion of this chapter and a discussion of op-

portunities for future work, refer to Chapter 6.

5.1 Data Centers with a Nested Rack Structure

In this section, we propose the Generalized-Balanced-Priority-Algorithm-for-

Near-Data-Scheduling (Generalized-Balanced-Pandas or GB-PANDAS) with

a new queueing structure for a data center with a nested rack structure as de-

scribed later. The GB-PANDAS algorithm does not require the arrival rates

of task types and is for a case with multiple levels of data localities. We estab-

lish the capacity region of the system with a nested rack structure and prove

the throughput optimality of the proposed algorithm. The service times

are assumed to be non-preemptive and they can have an arbitrary distri-

bution, not necessarily geometric distribution which is the main assumption

in [133, 134], so we have to use a different Lyapunov function than the ordi-

nary sum of cubic of the queue lengths to prove the throughput optimality

of the GB-PANDAS algorithm. We take the map task scheduling problem,

which is described in Subsection 1.2.5, as a platform to test the performance

of the proposed algorithm versus the state-of-the-art algorithms that are ei-

ther widely used in the industry or have theoretical guarantees for optimality

in some senses. The extensive simulation results show that the GB-PANDAS
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Figure 5.1: A typical data center architecture with four levels of data
locality.

algorithm performs better than other algorithms at heavy-traffic loads.

5.1.1 The System Model for a Data Center with a Nested
Rack Structure

A discrete time model for the system is studied, where time is indexed

by t ∈ N. The system consists of M servers indexed by 1, 2, · · · ,M . Let

M = {1, 2, · · · ,M} be the set of servers. In today’s typical data center ar-

chitecture, these servers are connected to each other through different levels

of switches or routers. A typical data center architecture is shown in Figure

5.1, which consists of servers, racks, super racks, top of the rack switches,

top of the super rack switches, and core switches.

Remark 8. Note that our theoretical analysis does not care about the rack

structure in data centers, so the result of throughput optimality of the GB-

PANDAS algorithm is proved for an arbitrary system with N levels of data

locality (as an example, recall the affinity scheduling problem). The rack

structure is only proposed as an incentive for this theoretical work, but the

result is more general.

Considering the MapReduce framework for processing large data-sets, the

data-set is split into small data chunks (typically of size 128 MB), and the

data chunks are replicated on d servers where the default for Hadoop is d = 3

servers. The bottleneck in MapReduce is the Map tasks, not the Reduce task,

so we only consider Map tasks in this chapter.

Task Type: In the Map stage, each task is associated with the processing

of a data chunk, and by convention we denote the type of the task by the
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label of the three servers where the data chunk is stored [106, 134]. As an

example, the task associated with processing data chunk A shown in Figure

5.1 has type L̄ = (1, 3, 5) since data chunk A is stored in these three servers.

The set of all task types L̄ is denoted by L defined as follows:

L̄ ∈ L = {(m1,m2,m3) ∈M3 : m1 < m2 < m3},

where m1,m2, and m3 are the three local servers.1 A task of type L̄ =

(m1,m2,m3) receives faster average service from its local servers than from

servers that do not have the data chunk. The reason is that the server without

the data chunk has to fetch data associated to a task of type L̄ from any of

its local servers. According to the distance between the two servers, this

fetching of the data can cause different amounts of delay. This fact brings

the different levels of data locality into account. Obviously, the closer the

two servers, the shorter the delay. Hence, the communication cost through

the network and switches between two servers in the same rack is less than

that between two servers in the same super rack (but different racks), and

the cost for both is on average less than that between two servers in different

super racks. Generally speaking, we propose the N levels of data locality as

follows:

Service Process: The non-preemptive service (processing) time of a task of

type L̄ = (m1,m2,m3) ∈ L is a random variable with cumulative distribution

function (CDF)

• F1 with mean 1
α1

if the task receives service from any server in the set

L̄ = {m1,m2,m3}, and we say that the task is 1-local to these servers.

• Fn with mean 1
αn

if the task receives service from any server in the set

L̄n, defined in the following, and we say that the task is n-local to these

servers, for n ∈ {2, 3, · · · , N},

where α1 > α2 > · · · > αN .

In the data center structure example in Figure 5.1, the set L̄2 is the set of all

servers that do not have the data saved on their own disk, but data is stored

in another server in the same rack; and the set L̄3 is the set of all servers that

1The analysis is not sensitive to the number of local servers. The default number of
local servers in Hadoop is three, so we choose three local servers, but this assumption can
be ignored without any change in the analysis.
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do not have the data saved on their own disk, but data is stored in another

server in another rack, but in the same super rack, and so on.

Remark 9. Note that the service time is not necessarily assumed to be geo-

metrically distributed and can be arbitrary as long as it satisfies the decreasing

property of the means mentioned above.

Arrival Process: The number of arriving tasks of type L̄ at the beginning

of time slot t is denoted by AL̄(t), which are assumed to be temporarily i.i.d.

with mean λL̄. The total number of arriving tasks at each time slot is assumed

to be bounded by a constant CA and is assumed to be zero with a positive

probability. The set of all arrival rates for different types of tasks is denoted

by the vector λ = (λL̄ : L̄ ∈ L).

5.1.2 An Outer Bound of the Capacity Region for a Data
Center with a Nested Rack Structure

The arrival rate of type L̄ tasks can be decomposed to (λL̄,m,m ∈M), where

λL̄,m denotes the arrival rate of type L̄ tasks that are processed by server m.

Obviously,
∑

m∈M λL̄,m = λL̄. A necessary condition for an arrival rate vector

λ to be supportable is that the total 1-local, 2-local, · · · , N -local load on

each server be strictly less than one for all servers as the following inequality

suggests:

∑
L̄:m∈L̄

λL̄,m
α1

+
∑

L̄:m∈L̄2

λL̄,m
α2

+ · · ·+
∑

L̄:m∈L̄N

λL̄,m
αN

< 1, ∀m ∈M. (5.1)

Given this necessary condition, an outer bound of the capacity region is given

by the set of all arrival rate vectors λ with a decomposition satisfying (5.1)

as follows.

Λ =
{
λ = (λL̄ : L̄ ∈ L)

∣∣ ∃λL̄,m ≥ 0,∀L̄ ∈ L,∀m ∈M, s.t.

λL̄ =
M∑
m=1

λL̄,m, ∀L̄ ∈ L,∑
L̄:m∈L̄

λL̄,m
α1

+
∑

L̄:m∈L̄2

λL̄,m
α2

+ · · ·+
∑

L̄:m∈L̄N

λL̄,m
αN

< 1, ∀m
}
.

(5.2)
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Figure 5.2: The queueing structure when the GB-PANDAS algorithm is
used.

It is clear that to find Λ, we should solve a linear programming optimization

problem. We will show in Section 5.3 that GB-PANDAS stabilizes the system

as long as the arrival rate vector λ is inside Λ, which means that this outer

bound of the capacity region is the capacity region itself. In the following,

Lemma 1 proposes a set which is equivalent to that in (5.2) which will be

used in the throughput optimality proof of GB-PANDAS.

Lemma 1. The following set Λ̄ is equivalent to Λ defined in equation (5.2):

Λ̄ =

{
λ = (λL̄ : L̄ ∈ L)

∣∣∣∃λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M, s.t.

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m, ∀L̄ ∈ L,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α1

+
∑

L̄:m∈L̄2

∑
n:n∈L̄

λL̄,n,m
α2

+

· · ·+
∑

L̄:m∈L̄N

∑
n:n∈L̄

λL̄,n,m
αN

< 1,∀m

}
,

(5.3)

where λL̄,n,m denotes the arrival rate of type L̄ tasks that are 1-local to server

n and is processed by server m. {λL̄,n,m : L̄ ∈ L, n ∈ L̄, and m ∈ M} is a

decomposition of the set of arrival rates {λL̄,m : L̄ ∈ L and m ∈ M}, where

λL̄,m =
∑

n∈M λL̄,n,m.

The proof of Lemma 1 is provided in Appendix D.1.
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5.2 The GB-PANDAS Algorithm for a Data Center

with a Nested Rack Structure

The central scheduler keeps N queues per server as shown in Figure 5.2. The

N queues of the m-th server are denoted by Q1
m, Q

2
m, · · · , QN

m. Tasks that

are routed to server m and are n-local to this server are queued at queue

Qn
m. The length of this queue, defined as the number of tasks queued in this

queue, at time slot t, is shown by Qn
m(t). The central scheduler maintains

the length of all queues at all time slots, which is denoted by vector Q(t) =(
Q1

1(t), Q2
1(t), · · · , QN

1 (t), · · · , Q1
M(t), Q2

M(t), · · · , QN
M(t)

)
. In the following,

the workload on a server is defined which will be used in the statement of

the GB-PANDAS algorithm.

Workload of Server m: Under the GB-PANDAS algorithm, server m

only processes tasks that are queued in itsN queues, that isQ1
m, Q

2
m, · · · , QN

m.

As the processing time of an n-local task follows a distribution with CDF

Fn and mean 1
αn

, the expected time needed for server m to process all tasks

queued in its queues at time slot t is given as follows:

Wm(t) =
Q1
m(t)

α1

+
Q2
m(t)

α2

+ · · ·+ QN
m(t)

αN
.

We name Wm(t) the workload on the m-th server.

A load balancing algorithm consists of two parts, routing and scheduling.

The routing policy determines the queue at which a new incoming task is

queued until it receives service from a server. When a server becomes idle

and so is ready to process another task, the scheduling policy determines

the task receiving service from the idle server. The routing and scheduling

policies of the GB-PANDAS algorithm are as follows:

• GB-PANDAS Routing (Weighted-Workload Routing): The in-

coming task of type L̄ is routed to the corresponding sub-queue of server

m∗ with the minimum weighted workload as defined in the following (ties

are broken randomly):

m∗ = arg min
m∈M

{
Wm(t)

α1

I{m∈L̄} +
Wm(t)

α2

I{m∈L̄2} + · · ·+ Wm(t)

αN
I{m∈L̄N}

}
.

If this task of type L̄ is 1-local, 2-local, · · · , N -local to server m∗, it is

queued at Q1
m∗ , Q

2
m∗ , · · · , QN

m∗ , respectively.
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• GB-PANDAS Scheduling (Prioritized Scheduling): The idle server

m is only scheduled to process a task from its own queues, Q1
m, Q2

m, · · · ,
QN
m. A task that is n-local to server m has a higher priority than a task

that is (n+1)-local to server m (for 1 ≤ n ≤ N−1). Hence, the idle server

m keeps processing a task from Q1
m until there are no more tasks available

at this queue, then continues processing tasks queued at Q2
m, and so on.

5.2.1 The Queueing Dynamics for a Data Center with a
Nested Rack Structure

Denote the number of arriving tasks at Qn
m at time slot t by Anm(t), where

these tasks are n-local to server m. Recall the notation AL̄,m(t) for the

number of tasks of type L̄ that are scheduled to server m. Then, we have

the following relation between Anm(t) and AL̄,m(t):

A1
m(t) =

∑
L̄:m∈L̄

AL̄,m(t),

Anm(t) =
∑

L̄:m∈L̄n

AL̄,m(t), for 2 ≤ n ≤ N,
(5.4)

where L̄ is the set of 1-local servers and L̄n for 2 ≤ n ≤ N is the set of

n-local servers to a task of type L̄. The number of tasks that receive service

from server m at time slot t and are n-local to the server is denoted by Snm(t)

which is the number of departures from Qn
m (as a reminder, the service time

of a task that is n-local to a server has CDF Fn). Then, the queue dynamics

for any m ∈M are as follows:

Qn
m(t+ 1) = Qn

m(t) + Anm(t)− Snm(t), for 1 ≤ n ≤ N − 1,

QN
m(t+ 1) = QN

m(t) + ANm(t)− SNm(t) + Um(t),
(5.5)

where Um(t) = max
{

0, SNm(t)−ANm(t)−QN
m(t)

}
is the unused service of server

m.

Note that the set of queue lengths {Q(t), t ≥ 0} do not form a Markov

chain since not having the information about how long a server has been

processing a task and what type that task is, leads to Q(t + 1)|Q(t) 6⊥
Q(t − 1)|Q(t). Note that the processing time of a task has a general CDF,

not necessarily geometric distribution with memoryless property, so we do
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need to consider two parameters about the status of servers in the system as

follows to be able to define a Markov chain.

• Let Ψm(t) be the number of time slots at the beginning of time slot t that

server m has spent on the currently in-service task. Note that Ψm(t) is set

to zero when server m is done processing a task. Then the first working

status vector, Ψ (t), is defined as follows:

Ψ (t) =
(
Ψ1(t), Ψ2(t), · · · , ΨM(t)

)
.

• The second working status vector is f(t) =
(
f1(t), f2(t), · · · , fM(t)

)
, where

fm(t)=



−1, if server m is idle,

1, if server m processes a 1-local task from Q1
m,

2, if server m processes a 2-local task from Q2
m,

...

N, if server m processes an N-local task from QN
m.

Define ηm(t) as the scheduling decision for server m at time slot t. If server

m finishes the processing of an in-service task at time slot t, we have fm(t−) =

−1 and the central scheduler makes the scheduling decision ηm(t) for the idle

server m. Note that ηm(t) = fm(t) as long as server m is processing a task.

Then, we define the following vector:

η(t) =
(
η1(t), η2(t), · · · , ηM(t)

)
.

As mentioned, since the service times have a general distribution with

arbitrary CDF but not necessarily geometrically distributed, the queueing

process — or even both the queueing and η(t) processes — do not form

a Markov chain (one reason is that the service time does not have the

memoryless property). Therefore, we consider the Markov chain
{
Z(t) =(

Q(t),η(t),Ψ (t)
)
, t ≥ 0

}
and show that it is irreducible and aperiodic. The

state space of this Markov chain is S = NNM×{1, 2, · · · , N}M×NM . Assume

the initial state of the Markov chain to be Z(0) =
{

0NM×1, NM×1, 0M×1

}
.

Irreducible: Since the CDF of the service times, Fn for 1 ≤ n ≤ N , are in-

creasing, there exists a positive integer τ such that Fn(τ) > 0 for 1 ≤ n ≤ N .
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Moreover, the probability of zero arrival tasks is positive. Hence, for any

state of the system, Z =
(
Q,η,Ψ

)
, the probability of the event that each

job gets processed in τ time slots and no tasks arrive at the system in

τ
∑M

m=1

∑N
n=1Q

n
m time slots is positive. As a result, the initial state is reach-

able from any state in the state space and
{
Z(t)

}
is irreducible.

Aperiodic: Since the probability of zero arriving tasks is positive, there is a

positive probability of transition from the initial state to itself. Then, given

that
{
Z(t)

}
is irreducible, it is also aperiodic.

5.3 Throughput Optimality of the GB-PANDAS

Algorithm for a Data Center with a Nested Rack

Structure

Theorem 8. The GB-PANDAS algorithm stabilizes a system with N levels

of data locality as long as the arrival rate is strictly inside the capacity region,

which means that the Generalized Balanced-Pandas algorithm is throughput

optimal.

Proof. The throughput optimality proof of the GB-PANDAS algorithm for a

system with N levels of data locality and a general service time distribution

follows an extension of the Foster-Lyapunov theorem as stated below.

Extended Version of the Foster-Lyapunov Theorem (Theorem 3.3.8

in [203]): Consider an irreducible Markov chain {Z(t)}, where t ∈ N, with

a state space S. If there exists a function V : S → R+, a positive integer

T ≥ 1, and a finite set P ⊆ S satisfying the following condition:

E [V (Z(t0 + T ))− V (Z(t0))|Z(t0) = z]

≤− θI{z∈Pc} + CI{z∈P},
(5.6)

for some θ > 0 and C < ∞, then the irreducible Markov chain {Z(t)} is

positive recurrent.

Consider the Markov chain
{
Z(t) =

(
Q(t),η(t),Ψ (t)

)
, t ≥ 0

}
. As long

as the arrival rate vector is strictly inside the outer bound of the capacity

region, λ ∈ Λ, and using the GB-PANDAS algorithm, if we can prove that

this Markov chain is positive recurrent, the distribution of Z(t) converges to

its stationary distribution when t→∞, which results in the stability of the
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system, so the throughput optimality of the GB-PANDAS algorithm will be

proved.

As shown before, the Markov chain Z(t) is irreducible and aperiodic for

any arrival rate vector strictly inside the outer bound of the capacity region,

λ ∈ Λ. Hence, if we can find a Lyapunov function V (.) satisfying the drift

condition in the extended version of the Foster-Lyapunov theorem when using

the GB-PANDAS algorithm, the stability of the system under this algorithm

is proved. Lemmas 2, 3, and 4 followed by our choice of the Lyapunov

function presented afterwards complete the proof.

Since Λ is an open set, for any λ ∈ Λ there exists δ > 0 such that λ′ = (1+

δ)λ ∈ Λ which means that λ′ satisfies the conditions in (5.2) and specifically

the inequality (5.1). Then we have the following for any m ∈M:

∑
L̄:m∈L̄

λL̄,m
α1

+
∑

L̄:m∈L̄2

λL̄,m
α2

+ · · ·+
∑

L̄:m∈L̄N

λL̄,m
αN

<
1

1 + δ
. (5.7)

The load decomposition {λL̄,m} can be interpreted as one possibility of as-

signing the arrival rates to the M servers so that the system becomes stable.

We then define the ideal workload on each server m under the load decom-

position {λL̄,m} as

wm =
∑
L̄:m∈L̄

λL̄,m
α1

+
∑

L̄:m∈L̄2

λL̄,m
α2

+ · · ·+
∑

L̄:m∈L̄N

λL̄,m
αN

, ∀m ∈M. (5.8)

Let w = (w1, w2, · · · , wM), where Lemmas 3 and 4 use this ideal workload

on servers as an intermediary to later prove the throughput optimality of the

GB-PANDAS algorithm.

The dynamic of the workload on server m, Wm(.), is as follows:
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Wm(t+ 1) =
Q1
m(t+ 1)

α1

+
Q2
m(t+ 1)

α2

+ · · ·+ QN
m(t+ 1)

αN
(a)
=
Q1
m(t) + A1

m(t)− S1
m(t)

α1

+
Q2
m(t) + A2

m(t)− S2
m(t)

α2

+

· · ·+ QN
m(t) + ANm(t)− SNm(t) + Um(t)

αN

= Wm(t) +

(
A1
m(t)

α1

+
A2
m(t)

α2

+ · · ·+ ANm(t)

αN

)
−
(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

)
+
Um(t)

αN
(b)
= Wm(t) + Am(t)− Sm(t) + Ũm(t),

where (a) follows from the queue dynamic in (5.5) and (b) is true by the

following definitions:

Am(t) =
A1
m(t)

α1

+
A2
m(t)

α2

+ · · ·+ ANm(t)

αN
, ∀m ∈M,

Sm(t) =
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN
, ∀m ∈M,

Ũm(t) =
Um(t)

αN
, ∀m ∈M.

(5.9)

A = (A1, A2, · · · , AM), S = (S1, S2, · · · , SM), and Ũ = (Ũ1, Ũ2, · · · , ŨM)

are the pseudo task arrival, service and unused service processes, respectively.

The workload on servers, which is denoted by W = (W1,W2, · · · ,WM),

has the following dynamic

W (t+ 1) = W (t) +A(t)− S(t) + Ũ(t). (5.10)

Lemmas 2, 3, 4, and 5 are proposed in the following. In this chapter, the

inner product between two vectors a and b is denoted by 〈a, b〉.

Lemma 2.

〈W (t), Ũ(t)〉 = 0, ∀t.

The proof of Lemma 2 is provided in Appendix D.2.

Lemma 3. Under the GB-PANDAS routing policy, for any arrival rate vec-

tor strictly inside the outer bound of the capacity region, λ ∈ Λ, and the
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corresponding workload vector of servers w defined in (5.8), we have the

following for any t0:

E
[
〈W (t),A(t)〉 − 〈W (t),w〉

∣∣∣Z(t0)
]
≤ 0, ∀t ≥ 0.

The proof of Lemma 3 is provided in Appendix D.3.

Lemma 4. Under the GB-PANDAS routing policy, for any arrival rate vec-

tor strictly inside the outer bound of the capacity region, λ ∈ Λ, and the cor-

responding workload vector of servers w defined in (5.8) there exists T0 > 0

such that for any T ≥ T0 we have the following:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
≤− θ0T ||Q(t0)||1 + c0, ∀t0 ≥ 0,

where the constants θ0, c0 > 0 are independent of Z(t0).

The proof of Lemma 4 is provided in Appendix D.4.

Lemma 5. Under the GB-PANDAS routing policy, for any arrival rate vec-

tor strictly inside the outer bound of the capacity region, λ ∈ Λ, and any

θ1 ∈ (0, 1), there exists T1 > 0 such that the following is true for any T ≥ T1

and for any t0 ≥ 0:

E
[
||Ψ (t0 + T )||1 − ||Ψ (t0)||1

∣∣∣Z(t0)
]

≤− θ1||Ψ (t0)||1 +MT,

where ||.||1 is L1-norm.

The proof of Lemma 5 is provided in Appendix D.6.

We choose the following Lyapunov function, V : P → R+:

V (Z(t)) = ||W (t)||2 + ||Ψ (t)||1,
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where ||.|| and ||.||1 are the L2 and L1-norm, respectively. Then,

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

= E
[
||W (t0 + T )||2 − ||W (t0)||2

∣∣∣Z(t0)
]

+ E
[
||Ψ (t0 + T )||1 − ||Ψ (t0)||1

∣∣∣Z(t0)
]

(a)
= E

[
t0+T−1∑
t=t0

(
||W (t+ 1)||2 − ||W (t)||2

)∣∣∣Z(t0)

]
+ E

[
||Ψ (t0 + T )||1 − ||Ψ (t)||1

∣∣∣Z(t0)
]

(b)
= E

[
t0+T−1∑
t=t0

(
||A(t)− S(t) + Ũ(t)||2

+ 2〈W (t),A(t)− S(t)〉+ 2〈W (t), Ũ(t)〉
)∣∣∣Z(t0)

]
+ E

[
||Ψ (t0 + T )||1 − ||Ψ (t)||1

∣∣∣Z(t0)
]

(c)

≤ 2E

[
t0+T−1∑
t=t0

(
〈W (t),A(t)− S(t)〉

)∣∣∣Z(t0)

]
+ E

[
||Ψ (t0 + T )||1 − ||Ψ (t)||1

∣∣∣Z(t0)
]

+ c1

(d)
= 2E

[
t0+T−1∑
t=t0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
+ E

[
||Ψ (t0 + T )||1 − ||Ψ (t)||1

∣∣∣Z(t0)
]

+ c1,

(5.11)

where (a) is true by the telescoping property, (b) follows by the dynamic of

W (.) derived in (5.10), (c) follows by Lemma 2 and the fact that the task

arrival is assumed to be bounded and the service and unused service are also

bounded as the number of servers are finite, so the pseudo arrival, service,

and unused service are also bounded, and therefore there exists a constant

c1 such that ||A(t) − S(t) + Ũ(t)||2 ≤ c1
T

, and (d) follows by adding and

subtracting the intermediary term 〈W (t),w〉.
By choosing T ≥ max{T0, T1,

θ1
2θ0
} and using Lemmas 3, 4, and 5, the drift

102



of the Lyapunov function in (5.11) is the following:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

≤− θ1

(
||Q(t0)||1 + ||Ψ (t0)||1

)
+ c2, ∀t0,

where c2 = 2c0 + c1 +MT .

By choosing any positive constant θ2 > 0 let P =
{
Z =

(
Q,η,Ψ

)
∈ S :

||Q||1+||Ψ ||1 ≤ θ2+c
θ1

}
, where P is a finite set of the state space. By this choice

of P , the condition (5.6) in the extended version of the Foster-Lyapunov

theorem holds by choices of θ = θ1 and C = c2, so the positive recurrence

proof of the Markov chain and the throughput optimality proof of the GB-

PANDAS algorithm are completed. Note that a corollary of this result is

that Λ is the capacity region of the system.

Note that in the proof of throughput optimality, we do not rely on the fact

of using prioritized scheduling. Therefore, for the purpose of throughput

optimality, an idle server can serve any task in its N sub-queues as 1-local,

2-local, · · · , and N -local tasks decrease the expected workload at the same

rate. The prioritized scheduling is to minimize the mean task completion time

experienced by tasks, which will be of interest in heavy-traffic optimality. If

fairness among jobs is of interest, we can assume sub-queues associated to

jobs in each server and schedule an idle server to serve a task of the job which

has the highest priority in terms of fairness. This does not affect the stability

of the system.

5.4 The Affinity System Model

Consider M unit-rate multi-skilled servers and NT number of task types as

depicted in Figure 5.3. The set of servers and task types are denoted by

M = {1, 2, · · · ,M} and L = {1, 2, · · · , NT}, respectively. Each task can be

processed by any of the M servers, but with possibly different rates. The

service times are assumed to be non-preemptive and discrete valued with an

unknown distribution. Non-preemptive service means that the central load

balancing algorithm cannot interrupt an in-service task, i.e. no other task

is scheduled to a server until the server completely processes the task that

is currently receiving service. The extension of the analysis for continuous
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Figure 5.3: Affinity scheduling setup with multi-type tasks and
multi-skilled servers.

service time, using approximation methods of continuous distributions with

discrete ones, is an interesting future work. In this discrete time model, time

is indexed by t ∈ N. In the following, service time distributions and task

arrivals are discussed, which are both unknown to the central scheduler.

Service time distribution: The service time offered by server m ∈ M
to task type i ∈ L is a discrete-type random variable with cumulative dis-

tribution function (CDF) Fi,m with mean 1
µi,m

or correspondingly with rate

µi,m > 0. The service time distribution does not require the memoryless

property. We further assume that the support of the service time is bounded,

which is a realistic assumption and reduces the unnecessary complexity of

the proofs specially in Lemma 9. The extension of the analysis for service

times with unbounded supports is an interesting future work. Note that

the completion time for a task is the waiting time for that task until it is

scheduled to a server plus the service time of the task on the server. Waiting

time depends on the servers’ status, the queue lengths or more specifically

other tasks that are in the system or may arrive later, and the load balancing

algorithm that is used, while service time has the mentioned distribution.

Task arrival: The number of incoming tasks of type i ∈ L at the begin-

ning of time slot t is a random variable on non-negative integer numbers

that is denoted by Ai(t), which are temporarily identically distributed and

independent from each other. Denote the arrival rate of task type i by λi,

i.e. E[Ai(t)] = λi. In the stability proof of Blind GB-PANDAS we need λi

to be strictly positive, so without loss of generality we exclude task types
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with zero arrival rate from L. Furthermore, we assume that the number of

each incoming task type at a time slot is bounded by constant CA and is zero

with positive probability, i.e. P (Ai(t) < CA) = 1 and P (Ai(t) = 0) > 0 for

any i ∈ L. The set of arrival rates for all task types is denoted by vector

λ = (λi : i ∈ L).

Affinity scheduling problem refers to load balancing for such a system

described above. The fluid model planning algorithm [121], MaxWeight [127],

and cµ-rule [124] are the baseline algorithms for affinity scheduling. All these

algorithms in addition to GB-PANDAS use the rate of service times instead

of the CDF functions. Hence, the system model can be summarized as an

NT ×M matrix, where element (i,m) is the processing rate of task type i on

server m, µi,m, as follows:

Bµ =


µ1,1 µ1,2 µ1,3 . . . µ1,M

µ2,1 µ2,2 µ2,3 . . . µ2,M

...
...

...
. . .

...

µNT ,1 µNT ,2 µNT ,3 . . . µNT ,M


NT ,M

. (5.12)

If both the set of arrival rates λ = (λi : i ∈ L) and the service rate matrix Bµ

are known, the fluid model planning algorithm [121] derives the delay optimal

load balancing by solving a linear programming. However, if the arrival

rates of task types are not known, the delay optimal algorithm becomes an

open problem which has not been solved for more than three decades. Max-

Weight [127] and cµ-rule [124] can be used for different objectives when we

do not know the arrival rates, but none have delay optimality. In this work,

we are assuming that we lack knowledge of not only the arrival rates λ,

but also the service rate matrix Bµ. We take an exploration and exploitation

approach to make our estimation of the underlying model, which is the service

rate matrix, more accurate, and to keep the system stable.

5.4.1 The Queueing Structure of the GB-PANDAS Algorithm
in the Affinity Problem

Every algorithm has its own specific queueing structure. For example, there

is only a single central queue for the First-Come-First-Served (FCFS) algo-

rithm, but there are NT number of queues when using fluid model planning,
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Max-Weight, or cµ-rule. In the following, we present the queueing structure

used for GB-PANDAS that captures the trade-off between the complexity of

the system model and the complexity of the queueing structure very well.

What we mean by the complexity of the system model is the heterogeneity

of the service rate matrix, e.g. if all the elements of this matrix are the same

number, the system is less complex than the case where each element of the

matrix is different from other elements of the matrix.

The heterogeneity of the system from the perspective of server m is cap-

tured in the mth column of the service rate matrix. Consider the mth column

of the matrix has Nm distinct values, where Nm can be any number from 1 to

NT . It is obvious that any of the task types with the same service (processing)

rate on server m look the same from the perspective of this server. Denote

the Nm distinct values of the mth column of Bµ by {α1
m, α

2
m, · · · , αN

m

m } and

without loss of generality assume that α1
m > α2

m > · · · > αN
m

m . We call all the

task types with a processing rate of αnm on the mth server, the n-local tasks

to that server, and denote them by Lnm = {i ∈ L : µi,m = αnm}. For ease of

notation, we use both µi,m and αnm throughout the chapter interchangeably;

however, they are in fact capturing the same phenomenon, but with differ-

ent interpretations. Note that the n-local tasks to server m can be called

(n,m)-local tasks in order to place more emphasis on the pair n and m, so

the n-local tasks to server m are not necessarily the same as the n-local tasks

to server m′. We allocate Nm queues for server m, where the nth queue of

server m holds all task types that are routed to this server and are n-local

to it. As depicted in Figure 5.4, different servers can have different num-

bers of queues since the heterogeneity of the system model can be different

from the perspective of different servers. We may interchangeably use queue

or sub-queue to refer to the nth queue (sub-queue) of the mth server. The

Nm sub-queues of the mth server are denoted by Q1
m, Q

2
m, · · · , QNm

m and the

queue lengths of these sub-queues, defined as the number of tasks in these

sub-queues, at time slot t are denoted by Q1
m(t), Q2

m(t), · · · , QNm

m (t).

In the next subsection, the GB-PANDAS algorithm is proposed when the

service rate matrix Bµ is known. Balanced-PANDAS for a data center with

three levels of data locality is proposed by [134], and here we are proposing the

Generalized Balanced-PANDAS algorithm from another perspective which is

of its own interest.
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Figure 5.4: The queueing structure for the GB-PANDAS algorithm.

5.4.2 The GB-PANDAS Algorithm with Known Service Rate
Matrix Bµ for the Affinity Problem

Before getting into the GB-PANDAS algorithm, we need to define the work-

load on server m.

Definition 19. The average time needed for server m to process all tasks

queued in its Nm sub-queues at time slot t is defined as the workload on the

server:

Wm(t) =
Q1
m(t)

α1
m

+
Q2
m(t)

α2
m

+ · · ·+ QNm

m (t)

αNm

m

. (5.13)

A load balancing algorithm consists of two parts, routing and scheduling.

The routing policy determines the queue at which an incoming task is stored

until it is assigned to a server for service. When a server becomes idle, the

scheduling policy determines the next task that receives service on the idle

server. The routing and scheduling policies of the GB-PANDAS algorithm

are as follows:

GB-PANDAS Routing Policy: An incoming task of type i is routed

to the corresponding sub-queue of the server with the minimum weighted

workload, where ties are broken arbitrarily to the favor of the fastest server.

The server m∗ with the minimum weighted workload is defined as

m∗ = arg min
m∈M

Wm(t)

µi,m
.

The corresponding sub-queue of server m∗ for a task of type i is n if µi,m =

αnm.

GB-PANDAS Scheduling Policy: An idle server m at time slot t is

scheduled to process a task of sub-queue Q1
m if there is any. If Q1

m(t) = 0, a
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task of sub-queue Q2
m is scheduled to the server, and so on. It is a common

assumption that servers do not have the option of processing the tasks queued

in front of other servers, so a server remains idle if all its sub-queues are

empty. Note that the routing policy is doing a sort of weighted water-filling

for workloads, so the probability that a server becomes idle goes to zero as

the load increases at heavy traffic regime. Remember that the tasks in sub-

queue Q1
m are the fastest types of tasks for server m, the tasks in sub-queue

Q2
m are the second fastest, and so on. Using this priority scheduling, the

faster tasks in the Nm sub-queues of server m are processed first. Given the

minimum weighted workload routing policy, the priority scheduling is optimal

as it minimizes the mean task completion time of all tasks in the Nm sub-

queues of server m. In the following, Max-Weight and cµ-rule algorithms are

discussed for the sake of completeness.

Remark 10. Prioritized scheduling has no effect in the throughput-optimality

proof of the GB-PANDAS algorithm and a work-conserving scheduling of a

server to its sub-queues suffices for the purpose of system’s stability. As a

result, the GB-PANDAS policy can be implemented by considering a single

queue per server at the expense of losing priority scheduling. In a single queue

per server structure, instead of maintaining a server’s sub-queue lengths, the

workload of the server defined in (5.13) is maintained. At the arrival of an

n-local task to server m, the server’s workload is increased by 1
αnm

, instead of

increasing the corresponding sub-queue’s length by one, and the workload is

decreased at the departure of a task by its corresponding load.

5.4.3 The Max-Weight and c-µ-Rule Algorithms with Known
Service Rate Matrix Bµ

The queueing structure used for Max-Weight and c-µ-rule is as depicted in

Figure 5.3, where there is a separate queue for each type of task. Denote

the NT queues by Q1, Q2, · · · , QNT , and their corresponding queue lengths

at time slot t by Q1(t), Q2(t), · · · , QNT (t). Note that the GB-PANDAS algo-

rithm requires M × NT number of queues in the worst case scenario, but it

can use the symmetry of specific real-world structures to decrease the num-

ber of queues dramatically. As an example, for servers with rack structures,

where Hadoop is used for MapReduce data placement with three replicas
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of data chunks on severs, Max-Weight and c-µ-rule require
(
M
3

)
= O(M3)

number of queues, while GB-PANDAS requires 3M queues. A task is routed

to a server at the time of its arrival under the GB-PANDAS algorithm, while

a task waits in its queue under both Max-Weight and c-µ-rule algorithms,

waiting to be scheduled for service, which is discussed below.

Max-Weight Scheduling Policy: An idle server m at time slot t is sched-

uled to process a task of type j from Qj, if there is any, such that

j ∈ arg max
i∈L

{µi,m ·Qi(t)}.

The Max-Weight algorithm is throughput-optimal, but it is not heavy-traffic

or delay optimal.

C-µ-rule Scheduling Policy: Consider that queue Qi incurs a cost of

Ci
(
Qi(t)

)
at time slot t, where Ci(.) is increasing and strictly convex. The

c-µ-rule algorithm maximizes the rate of decrease of the instantaneous cost

at all time slots by the following scheduling policy. An idle server m at time

slot t is scheduled to process a task of type j from Qj, if there is any, such

that

j ∈ arg max
i∈L

{
µi,m · C ′i

(
Qi(t)

)}
,

where C ′(.) is the first derivative of the cost function. The c-µ-rule algorithm

minimizes both instantaneous and cumulative queueing costs, asymptotically.

The mean task completion time corresponds to linear cost functions for all

task types, so c-µ-rule cannot minimize the mean task completion time, and

as the result, is not heavy-traffic optimal.

5.4.4 Capacity Region of the Affinity Problem

We propose a decomposition of the arrival rate vector λ = (λi : i ∈ L) as

follows. For any task type i ∈ L, λi is decomposed into (λi,m,m ∈M),

where λi,m is assumed to be the arrival rate of type i tasks for server m.

Hence, λi =
∑M

m=1 λi,m. By using the fluid model planning algorithm, the

affinity queueing system can be stabilized under a given arrival rate vector λ

as long as the necessary condition of total 1-local, 2-local, ..., and Nm local
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load on server m being strictly less than one for any server m is satisfied:

∑
i∈L

λi,m
µi,m

< 1, ∀m ∈M. (5.14)

Hence, the capacity region of the affinity problem is the set of all arrival rate

vectors λ that has a decomposition (λi,m, i ∈ L,m ∈M) satisfying (5.14):

Λ =
{
λ = (λi : i ∈ L)

∣∣ ∃λi,m ≥ 0,∀i ∈ L,∀m ∈M, s.t.

λi =
M∑
m=1

λi,m, ∀i ∈ L,
∑
i∈L

λi,m
µi,m

< 1,∀m ∈M
}
.

(5.15)

A linear programming optimization problem can be solved to find the ca-

pacity region Λ. The GB-PANDAS algorithm stabilizes the system for any

arrival rate vector inside the capacity region by knowing the service rate ma-

trix. It is proved in Section 5.6 that the Blind GB-PANDAS algorithm is

throughput-optimal without the knowledge of the service rate matrix, Bµ.

5.5 The Blind GB-PANDAS Algorithm for the Affinity

Problem

The GB-PANDAS and Max-Weight algorithms need to know the precise

value of the service rate matrix, but this requirement is not realistic for real

applications. Furthermore, the service rate matrix can change over time,

which confuses the load balancing algorithm if it uses a fixed given service

rate matrix. In the Blind version of GB-PANDAS, the service rate matrix is

initiated randomly and is updated as the system is running. More specifically,

an exploration-exploitation framework is combined with GB-PANDAS. In the

exploration phase, the routing and scheduling are performed so as to allow

room for making the estimations of the system parameters more precise, and

in the exploitation phase the routing and scheduling are done based on the

available estimation of the service rate matrix so as to stabilize the system.

Here we assume that Nm is known as well as the locality level of a task

on servers that can be inferred from prior knowledge on the structure of

the system. This is not a necessary assumption for throughput-optimality
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proof, but it makes the intuition behind Blind GB-PANDAS more clear. As

mentioned before, a single queue per server can be used when using Blind

GB-PANDAS, in which case, there is no need to know Nm as well as the

ordering of service rates offered by servers for different task types.

We first propose the updating method used for the service rate matrix

before getting into the routing and scheduling policies of the Blind GB-

PANDAS algorithm. The estimated service rate matrix at time slot t is

denoted as

B̃µ(t) =


µ̃1,1(t) µ̃1,2(t) µ̃1,3(t) . . . µ̃1,M(t)

µ̃2,1(t) µ̃2,2(t) µ̃2,3(t) . . . µ̃2,M(t)
...

...
...

. . .
...

µ̃NT ,1(t) µ̃NT ,2(t) µ̃NT ,3(t) . . . µ̃NT ,M(t)

 . (5.16)

Note that α̃1
m(t), α̃2

m(t), · · · , α̃Nm

m (t), ∀m ∈ M, which are the estimates of

α1
m(t), α2

m(t), · · · , αNm

m (t), ∀m ∈ M at time slot t, are nothing but the dis-

tinct values of the elements of the service rate matrix. More specifically,

those are the α̃nm, ∀m ∈ M, ∀n ∈ {1, 2, · · · , Nm} that are getting updated

and then mapped into their corresponding elements in the service rate matrix

to form B̃µ in (5.16) as mentioned in Subsection 5.4.1. Consider a random

initialization of α̃nm(0) > 0, ∀m ∈ M, ∀n ∈ {1, 2, · · · , Nm} at time slot

t = 0. If server m has processed ñ − 1 tasks that are n-local to this server

by time t1, the estimate of αnm at this time slot is α̃nm(t1), and a new observa-

tion of service time for n-local task to server m is made at time slot t2 > t1

as T nm(t2), we have α̃nm(t) = α̃nm(t1) for t1 ≤ t < t2 and the update of this

parameter at time slot t2 is

α̃nm(t2) =
ñ− 1

ñ
· α̃nm(t1) +

1

ñ · T nm(t2)
. (5.17)

Note that α̃nm is the service rate, not the service time mean, that is why
1

Tnm(t2)
is used above in the update of the service rate. In the following,

the routing and scheduling policies of Blind GB-PANDAS are presented,

where the exploration rate is chosen in such a way that infinitely many n-

local tasks are scheduled for service on server m for any m ∈ M and any

n ∈ {1, 2, · · · , Nm} so that by using the strong law of large numbers, the

parameter estimations in (5.17) converge to their real values almost surely.
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Blind GB-PANDAS Routing Policy: The estimated workload on server

m at time slot t is defined based on parameter estimations in (5.17) as

W̃m(t) =
Q1
m(t)

α̃1
m(t)

+
Q2
m(t)

α̃2
m(t)

+ · · ·+ QNm

m (t)

α̃Nm

m (t)
. (5.18)

The routing of an incoming task is based on the following exploitation policy

with probability pe = max(1 − p(t), 0), and is based on the exploration

policy otherwise, where p(t) → 0 as t → ∞ and
∑∞

t=0 p(t) = ∞, e.g. the

exploitation probability can be chosen as pe = 1− 1
tc

for 0 < c ≤ 1.

• Exploitation phase: An incoming task of type i is routed to the

corresponding sub-queue of the server with the minimum estimated

weighted workload, where ties are broken arbitrarily. The server m̃∗

with the minimum weighted workload for task of type i is defined as

m̃∗ = arg min
m∈M

W̃m(t)

µ̃i,m(t)
.

The corresponding sub-queue of server m̃∗ for a task of type i is n if

µ̃i,m̃∗ = α̃nm̃∗ .

• Exploration phase: An incoming task of type i is routed to the

corresponding sub-queue of a server chosen uniformly at random among

{1, 2, · · · ,M}.

Blind GB-PANDAS Scheduling Policy: The scheduling of an idle server

is based on the following exploitation policy with probability pe, and is based

on the exploration policy otherwise.

• Exploitation phase: Priority scheduling is performed for an idle

server as discussed in Subsection 5.4.2. We emphasize that given the

routing policy, priority scheduling is the optimal scheduling policy in

terms of minimizing the average completion time of tasks.

• Exploration phase: An idle server is scheduled to one of its non-

empty sub-queues uniformly at random, and stays idle if all its sub-

queues are empty.

Since the arrival rate of any task type is strictly positive, infinitely many

of each task type arrives to system, and given the fact that the probabil-

ity of exploration in both routing and scheduling policies decays such that
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∑∞
t=0 p(t) = ∞, using the second Borel-Cantelli lemma (zero-one law), it is

obvious that n-local tasks to server m are scheduled to this server for in-

finitely many times for any locality level and any server, so B̃µ(t)→ Bµ as

t→∞ using the updates in (5.17).

Remark 11. There has been a debate in the queueing community whether

the exploration phase in a load balancing algorithm is required to stabilize a

queueing system with unknown processing rates or the processing rates are

learned through a natural learning phenomenon and, as a result, no explo-

ration is needed. We provide an example in Figure 5.5 that shows no explo-

ration can not only increase the mean task completion time, but it can also

make the system unstable when the arrival rates are inside the capacity re-

gion of the queueing system. Consider a queueing system as depicted on the

left-hand side of Figure 5.5, where the processing times of any tasks on any

servers are deterministic with the given rates and the arrival process of tasks

is deterministic as well with the rates shown in the figure. It is obvious that

the optimal load balancing is to process task type 1 on server 1 and task type

2 on server 2. However, if the processing rates are initialized as in the middle

queueing system of Figure 5.5, for any λ1 ≤ 0.5 and λ2 ≤ 0.5, task type 1

is processed by server 2 and task type 2 is processed by server 1 under the

GB-PANDAS and MaxWeight algorithms, resulting in a mean task comple-

tion time that is twice the optimal value. On the other hand, if the processing

rates are initialized as in the right-hand-side queueing system of Figure 5.5,

for any 0.5 < λ1 ≤ 1 and 0.5 < λ2 ≤ 1, the system is unstable under the

GB-PANDAS and MaxWeight algorithms, while such processing rates are in-

side the capacity region of the queueing system. As a result, exploration is

required in the load balancing algorithm in general for a queueing system with

unknown processing rates. Using the intuition of the given example, it is a

promising future work to find conditions for which exploration is not required

for the purpose of delay optimality and/or stability.

5.5.1 Queueing Dynamics under the Blind GB-PANDAS
Algorithm for the Affinity Problem

Denote the queue length vector at time slot t by Q(t) =
(
Q1

1(t), Q2
1(t), · · · ,

QN1

1 (t), · · · , QNM

M (t)
)
. Let the number of incoming tasks of type i that are
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Figure 5.5: This example shows that a queueing system with unknown
processing rates can even be unstable for some initialization of processing
rates if there is no exploration in the load balancing algorithm.

routed to their corresponding sub-queue of server m at the beginning of time

slot t be denoted as Ai,m(t). Then, by denoting the number of incoming

n-local tasks to server m that are routed to Qn
m at the beginning of time slot

t by Anm(t), we have:

Anm(t) =
∑
i∈Lnm

Ai,m(t), ∀m ∈M, 1 ≤ n ≤ Nm. (5.19)

Denote the set of working status of servers by vector f(t) =
(
f1(t), f2(t),

· · · , fM(t)
)
, where

fm(t) =



−1, if server m is idle,

1, if server m processes a 1-local task from Q1
m,

2, if server m processes a 2-local task from Q2
m,

...

Nm, if server m processes an Nm-local task from QNm

m .

If server m finishes processing a task at the end of time slot t−1, i.e. fm(t−) =

−1, a scheduling decision is taken for time t based on Q(t) and f(t). Denote

the scheduling decision for server m at time slot t by ηm(t) that is defined

as follows. For all busy servers, ηm(t) = fm(t), and when fm(t−) = −1, i.e.

server m is idle, ηm(t) is determined by the scheduler according to the Blind

GB-PANDAS algorithm. Let η(t) =
(
η1(t), η2(t), · · · , ηM(t)

)
.
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Let Snm(t) denote the n-local service provided by server m, where such a

service has the rate of αnm if ηm(t) = n for 1 ≤ n ≤ Nm, and the rate is zero

otherwise. Then, the queue dynamics for any m ∈M is as follows:

Qn
m(t+ 1) = Qn

m(t) + Anm(t)− Snm(t), for 1 ≤ n ≤ Nm − 1,

QNm

m (t+ 1) = QNm

m (t) + AN
m

m (t)− SNm

m (t) + Um(t),
(5.20)

where Um(t) = max
{

0, SN
m

m (t) − AN
m

m (t) − QNm

m (t)
}

is the unused service

offered by server m at time slot t.

Note that
{
Q(t), t ≥ 0

}
does not necessarily form a Markov chain, i.e.

Q(t + 1)|Q(t) 6⊥ Q(t − 1), since nothing can be said about locality of

an in-service task at a server by just knowing the queue lengths. Even{
(Q(t),η(t)) , t ≥ 0

}
is not a Markov chain since the service time distri-

butions do not necessarily have the memoryless property. In order to use

Foster-Lyapunov theorem for proving the positive recurrence of a Markov

chain, we need to consider another measurement of the status of servers as

follows.

• Let Ψm(t) denote the number of time slots at the beginning of time

slot t that server m has been allocated on the current in-service task

on server m. This parameter is set to zero when server m finishes

processing a task. Let Ψ (t) =
(
Ψ1(t), Ψ2(t), · · · , ΨM(t)

)
.

Lemma 6.
{
Z(t) =

(
Q(t),η(t),Ψ (t)

)
, t ≥ 0

}
forms an irreducible and

aperiodic Markov chain. The state space of the Markov chain {Z(t)} is

S =
(∏

m∈MNNm)× (∏m∈M{1, 2, · · · , Nm}
)
× NM .

The proof of Lemma 6 is provided in Appendix D.7.

5.6 Throughput Optimality of the Blind GB-PANDAS

Algorithm for the Affinity Problem

Subsection 5.6.1 provides preliminaries on the workload dynamic of servers,

the ideal workload on servers, some lemmas, and an extended version of

the Foster-Lyapunov. The throughput-optimality theorem of the Blind GB-

PANDAS algorithm and its proof are presented in Subsection 5.6.2, where
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the proof is followed by using Lemmas 7, 8, 9, 10, and 11. Refer to Appendix

D for the proofs of all lemmas.

5.6.1 Preliminary Materials and Lemmas

The workload on server m evolves as follows:

Wm(t+ 1) =
Q1
m(t+ 1)

α1
m

+
Q2
m(t+ 1)

α2
m

+ · · ·+ QNm

m (t+ 1)

αNm

m

(a)
=
Q1
m(t) + A1

m(t)− S1
m(t)

α1
m

+
Q2
m(t) + A2

m(t)− S2
m(t)

α2
m

+ · · ·+ QNm

m (t) + AN
m

m (t)− SNm

m (t) + Um(t)

αNm

m

= Wm(t) +

(
A1
m(t)

α1
m

+
A2
m(t)

α2
m

+ · · ·+ AN
m

m (t)

αNm

m

)
−
(
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

)
+
Um(t)

αNm

m

(b)
= Wm(t) + Am(t)− Sm(t) + Ũm(t),

where (a) is true by using the queue dynamics in (5.20) and (b) follows from

defining the pseudo task arrival, service, and unused services of server m as

Am(t) =
A1
m(t)

α1
m

+
A2
m(t)

α2
m

+ · · ·+ AN
m

m (t)

αNm

m

, ∀m ∈M,

Sm(t) =
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

, ∀m ∈M,

Ũm(t) =
Um(t)

αNm

m

, ∀m ∈M.

(5.21)

By defining the pseudo task arrival, service, and unused service processes

as A(t) =
(
A1(t), A2(t), · · · , AM(t)

)
, S(t) =

(
S1(t), S2(t), · · · , SM(t)

)
, and

Ũ(t) =
(
Ũ1(t), Ũ2(t), · · · , ŨM(t)

)
, respectively, the vector of servers’ work-

loads defined by W = (W1,W2, · · · ,WM) evolves as

W (t+ 1) = W (t) +A(t)− S(t) + Ũ(t). (5.22)

Lemma 7. For any arrival rate vector inside the capacity region, λ ∈ Λ,
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there exists a load decomposition {λi,m} and δ > 0 such that

∑
i∈L

λi,m
µi,m

<
1

1 + δ
, ∀m ∈M. (5.23)

The fluid model planning algorithm solves a linear programming to find the

load decomposition {λi,m} that is used in its load balancing on the M servers.

In other words, this load decomposition is a possibility of task assignment on

servers to stabilize the system.

The proof of Lemma 7 is provided in Appendix D.8. Lemma 7 is used in

the proof of Lemma 10.

Definition 20. The ideal workload on server m corresponding to the load

decomposition {λi,m} of Lemma 7 is defined as

wm =
∑
i∈L

λi,m
µi,m

, ∀m ∈M. (5.24)

Let w = (w1, w2, · · · , wM). The vector of servers’ ideal workload is used as

an intermediary term in Lemmas 9 and 10 which are later used for throughput

optimality proof of the Blind GB-PANDAS algorithm.

Lemma 8.

〈W (t), Ũ(t)〉 = 0, ∀t.

The proof of Lemma 8 is provided in Appendix D.9.

The following lemma states that the sum over a time period of the inner

product of the workload and the pseudo arrival rate is dominated in an

expectation sense by the inner product of the workload and the ideal workload

plus constants depending on the initial state of the system.

Lemma 9. Under the exploration-exploitation routing policy of the Blind

GB-PANDAS algorithm, for any arrival rate vector inside the capacity region,

λ ∈ Λ, and the corresponding ideal workload vector w defined in (5.24), and

for any arbitrary small θ0 > 0, there exists T0 > t0 such that for any t0 ≥ 0

and T > T0:

E
[ t0+T−1∑

t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)
]
≤ θ0T‖Q(t0)‖1 + c0,
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where the constants θ0, c0 > 0 are independent of Z(t0).

The proof of Lemma 9 is provided in Appendix D.10. We emphasize that

θ0 in Lemma 9 can be made arbitrarily small, as can be seen in the proof,

which is used in the throughput optimality proof of Blind GB-PANDAS,

Theorem 9. Throughout the chapter, ‖.‖ and ‖.‖1 are the L2-norm and

L1-norm, respectively.

The following lemma is the counterpart of Lemma 9 for the pseudo service

process.

Lemma 10. Under the exploration-exploitation scheduling policy of the Blind

GB-PANDAS algorithm, for any arrival rate vector inside the capacity region,

λ ∈ Λ, and the corresponding ideal workload vector w in (5.24), there exists

T1 > 0 such that for any T > T1, we have:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
≤− θ1T‖Q(t0)‖1 + c1, ∀t0 ≥ 0,

(5.25)

where the constants θ1, c1 > 0 are independent of Z(t0).

The proof of Lemma 10 is provided in Appendix D.11.

Lemma 11. Under the exploration-exploitation load balancing of the Blind

GB-PANDAS algorithm, for any arrival rate vector inside the capacity region,

λ ∈ Λ, and for any θ2 > 0, there exists T2 > 0 such that for any T > T2 and

for any t0 ≥ 0, we have:

E
[
‖Ψ (t0 + T )‖1 − ‖Ψ (t0)‖1

∣∣∣Z(t0)
]
≤ −θ2‖Ψ (t0)‖1 +MT.

The proof of Lemma 11 is provided in Appendix D.12.

Theorem 3.3.8 in [203], an extended version of the Foster-Lyapunov theo-

rem: Consider an irreducible Markov chain {Z(t)}, where t ∈ N, with a state

space S. If there exists a function V : S → R+, a positive integer T ≥ 1,

and a finite set P ⊆ S satisfying the following condition:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣Z(t0) = z
]

≤− θ · I{z∈Pc} + C · I{z∈P},
(5.26)
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for some θ > 0 and C < ∞, then the irreducible Markov chain {Z(t)} is

positive recurrent.

5.6.2 Throughput Optimality Theorem and Proof

Theorem 9. The Blind GB-PANDAS algorithm is throughput-optimal for a

system with affinity setup discussed in Section 5.4, with general service time

distributions with finite means and supports, without prior knowledge on the

service rate matrix Bµ and the arrival rate vector λ.

Proof. We use the Foster-Lyapunov theorem for proving that the irreducible

and aperiodic Markov chain
{
Z(t) =

(
Q(t),η(t),Ψ (t)

)
, t ≥ 0

}
(Lemma 6)

is positive recurrent under the Blind GB-PANDAS algorithm, as far as the

arrival rate vector is inside the capacity region, λ ∈ Λ. This means that as

time goes to infinity, the distribution of Z(t) converges to its stationary dis-

tribution, which implies that the system is stable and Blind GB-PANDAS is

throughput-optimal. To this end, we choose the following Lyapunov function

V : S → R+ and use Lemmas 7, 8, 9, 10, and 11 to derive its drift afterward:

V (Z(t)) = ‖W (t)‖2 + ‖Ψ (t)‖1. (5.27)

By choosing θ0 in Lemma 9 less than θ1 in Lemma 10, θ0 < θ1, we get T0

from Lemma 9, which is used in the drift of the Lyapunov function in Lemma

12.

Lemma 12. For any t0 ≤ T0 < T , specifically T0 from Lemma 9 that is

dictated by choosing θ0 < θ1, we have the following for the drift of the Lya-

punov function in (5.27), where T0 is used in the first summation after the

inequality:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

≤ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

+ c2‖Q(t0)‖1 + c3.

(5.28)
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The proof of Lemma 12 is provided in Appendix D.13. By choosing

T > max{T0, T1, T2,
θ2+c2

2(θ1−θ0)
}, where θ2 > 0 is the one in Lemma 11, and

substituting the terms on the right-hand side of the Lyapunov function drift

(D.35) in Lemma 12 from the corresponding inequalities in Lemmas 9, 10,

and 11, we have:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

≤− θ2

(
‖Q(t0)‖1 + ‖Ψ (t0)‖1

)
+ c, ∀t0,

where c = 2c0 + 2c1 + c3 +MT .

Let P =
{
Z =

(
Q,η,Ψ

)
∈ S : ‖Q‖1 + ‖Ψ‖1 ≤ c̄+c

θ2

}
for any positive

constant c̄ > 0, where P is a finite set of the state space S. By this choice

of P for the Lyapunov function V (.) defined in (5.27), all the conditions of

the Foster-Lyapunov theorem are satisfied, which completes the throughput

optimality proof for the Blind GB-PANDAS algorithm.

Note that the priority scheduling in the exploitation phase of the Blind GB-

PANDAS algorithm is not used for the throughput optimality proof since the

expected workload of a server is decreased in the same rate no matter what

locality level is receiving service from the server. As long as an idle server

gives service to one of the tasks in its sub-queues continuously, the system

is stable. Given the routing policy, the priority scheduling is used in the

exploitation phase to minimize the mean task completion time.

5.7 Simulation Results

In this section, we first compare the simulated performance of the proposed

GB-PANDAS algorithm against those of Hadoop’s default FCFS scheduler,

Join-the-Shortest-Queue-Priority (JSQ-Priority), and JSQ-MaxWeight algo-

rithms. Consider a computing cluster with 5000 servers where each rack

consists of 50 servers and each super rack includes 10 of the racks (so four

levels of locality exist). We considered geometric and log-normal distribu-

tions for processing times and under both assumptions our algorithm out-

performs others. Due to the similarity of the results in the two cases we

only present the results for log-normal distribution. We assumed the i-local
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Figure 5.6: Capacity region comparison of the algorithms.

service time follows log-normal distribution with both mean and standard de-

viation equal to µi for 1 ≤ i ≤ 4, where µ1 = 1, µ2 = 10
9
, µ3 = 5

3
, and µ4 = 4

(remote service is on average slower than local service by a factor of two to

six times in data centers [108], and we have chosen four times slowdown in

our simulations). Figure 5.6 shows the throughput performance of the four

algorithms, where the y-axis shows the mean task completion time and the

x-axis shows the mean arrival rate, i.e.
∑
L̄ λL̄
M

. The GB-PANDAS and JSQ-

MaxWeight algorithms are throughput optimal while FCFS and JSQ-Priority

algorithms are not (note that JSQ-Priority is proven to be delay optimal for

two locality levels, but it is not even throughput optimal for more locality

levels). Figure 5.7 compares the performance of the GB-PANDAS and JSQ-

MaxWeight at high loads, where the first algorithm outperforms the latter

by twofold. This significant improvement over JSQ-MaxWeight algorithm

shows that JSQ-MaxWeight is not delay optimal and supports the possibil-

ity that the GB-PANDAS algorithm is delay optimal in a larger region than

the JSQ-MaxWeight algorithm.

By the intuition we got from the delay optimality proof of the JSQ-

MaxWeight algorithm for two locality levels in [132], [134], [201], and [204],

we simulated the system under a load for which we believe JSQ-MaxWeight

is delay optimal. Figure 5.8 shows the result for this specific load and we

see that both the GB-PANDAS and JSQ-MaxWeight algorithms have the

same performance at high loads, which again supports our guess on delay
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Figure 5.7: Heavy-traffic performance.

optimality of our proposed algorithm. Note that Wang et al. [132] showed

that the JSQ-MaxWeight algorithm outperforms the Hadoop Fair Scheduler

(HFS). Since our proposed algorithm outperforms JSQ-MaxWeight, we did

not bring the HFS algorithm into our simulations.

In the following, the simulated performance of the Blind GB-PANDAS

algorithm is compared with FCFS, Max-Weight, and c-µ-rule algorithms.

FCFS does not use system parameters for load balancing, but Max-Weight

and c-µ-rule use the same exploration-exploitation approach as Blind GB-

PANDAS. Convex cost functions Ci(Qi) = Q1.01
i for i ∈ {1, 2, 3} are used

for the c-µ-rule algorithm. Since the objective is to minimize the mean

task completion time, the convexities of the cost functions are chosen so

as to be close to a line for small values of Qi. Three types of tasks and

a computing cluster of three servers are considered with processing rates

depicted in Figure 5.9, which are not known from the perspective of the

load balancing algorithms. The task arrivals are Poisson processes with the

unknown rates determined in Figure 5.9 and the processing times are log-

normal that are heavy-tailed and do not have the memoryless property. Note

that this affinity structure does not have the rack structure mentioned in [134]

since from the processing rates of task type 2 on the three servers, servers 1

and 2 are in the same rack as server 3, but from the processing rates of task

type 3 on the three servers, the second server is in the same rack as the third

server, but not the first server. Hence, this affinity setup is more complicated
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Figure 5.8: Mean task completion time under a specific load.
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Figure 5.9: The affinity structure used for simulation with three types of
tasks and three multi-skilled servers.

than the one with a rack structure.

Inspired by the fluid model planning algorithm, the following linear pro-

gramming optimization should be solved to find the capacity region of the
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Figure 5.10: Capacity region comparison of the Blind GB-PANDAS,
Max-Weight, c-µ-rule, and FCFS algorithms.

simulated system.

maximize
λi,m

λ =
3∑
i=1

3∑
m=1

λi,m

subject to:

λ1,1 + 2λ2,1 + 4λ3,1 < 1, λ1,1 + λ1,2 + λ1,3 = 0.4λ,

λ1,2 + 2λ2,2 + 2λ3,2 < 1, λ2,1 + λ2,2 + λ2,3 = 0.2λ,

λ1,3 + λ2,3 + λ3,3 < 1, λ3,1 + λ3,2 + λ3,3 = 0.4λ,

λi,m ≥ 0, ∀i,m ∈ {1, 2, 3}.

The capacity region in terms of λ is found to be λ ∈ [0, 2.5). Figure 5.10

compares the throughput performance of the four algorithms, where the

mean task completion time versus the total task arrival rate, λ =
∑3

i=1 λi,

is plotted. The Blind GB-PANDAS, Max-Weight, and c-µ-rule algorithms

are throughput-optimal by stabilizing the system for λ < 2.5. Taking a

closer look at the performance of these algorithms at high loads, Blind GB-

PANDAS has a much lower mean task completion time compared to Max-

Weight and c-µ-rule algorithms as depicted in Figure 5.11.
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Figure 5.11: Heavy-traffic performance comparison.
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Chapter 6

CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH

In this dissertation, risk-averse algorithms for multi-armed bandits, stochas-

tic games, and stochastic congestion games are studied. The classical ap-

proaches for multi-armed bandits and games only take the expected re-

wards/payoffs into account. Instead, we introduce probability statements

that use the reward/payoff distributions and propose a new definition of risk-

averse optimality for explore-then-commit finite bandit problems and new

risk-averse equilibria for stochastic games. We further used an exploration-

exploitation scheme for load balancing in an affinity problem with no knowl-

edge on task processing rates on servers and task arrival rates. The four chap-

ters of this dissertation on explore-then-commit finite bandits, risk-averse

stochastic games, stochastic congestion games, and blind load balancing are

concluded in more details in the following and directions for future research

are presented.

• The focus of Chapter 2 is on application domains, such as personal-

ized health-care and one-time investment, where an experimentation

phase of pure arm exploration is followed by a given finite number of

exploitations of the best identified arm. We show through an exam-

ple that the arm with maximum expected reward does not necessarily

maximize the probability of receiving the maximum reward. We study

the risk-averse explore-then-commit finite-exploitation bandits with or

without considering exploration costs. In the case in which the ex-

ploration cost is not considered, we propose the OTE-MAB and FTE-

MAB algorithms whose goals are to select the arm that maximizes the

probability of receiving the maximum reward. We define a new no-

tion of regret for our problem setup and find an upper bound on the

minimum number of experiments that should be done to guarantee an

upper bound on regret of our proposed algorithms. In the other case

that the exploration cost is considered, we propose the c-OTE-MAB

126



algorithm for a two-armed bandit problem to determine an estimation

of the optimal number of explorations. The promising future works are

to introduce dynamic scores for a case where dynamic exploration is

utilized in the FTE/OTE-MAB algorithms and to extend the results

of the case with exploration costs to explore-then-commit multi-armed

bandits with finite-time exploitations.

• We have proposed a new equilibrium for stochastic games which is risk-

averse (the RAE) as a method for examining one-shot or limited-run

games with stochastic payoffs in Chapter 3. In such a setting, it makes

sense to consider players who want to maximize not the expected pay-

off but rather the likelihood of receiving the largest payoff. In doing

so, we draw parallels to prospect theory in economic decisions, where

consumers prefer an option with lower variance at the cost of lower

expected utility, rather than an option with higher expected utility at

the cost of higher variance when facing significant decisions. We then

propose the risk-averse equilibrium to address one-shot games in such

a situation and show it to exist in any N -player finite stochastic game.

We prove the existence of the risk-averse equilibrium independent of

Nash equilibrium along with familiar concepts such as strategy domi-

nance. We also define a probability tensor and show that the risk-averse

equilibria of a game are equivalent to the Nash equilibria of this tensor.

We next considered the risk-averse equilibrium in limited-run games by

examining M -time commit games, where players commit to a strategy

for the M rounds of the stochastic game.

Looking forward, the risk-averse equilibrium allows competition to be

incorporated into many traditional risk-averse settings. Election mod-

eling is one such example with a limited-run of interactions between

candidates, and each candidate wants to maximize not the expected

votes they receive, but rather their probability of winning. This is

one of the drawbacks to the widely used Hotelling-Downs model [205],

which assumes candidates merely want to maximize their expected

voter share. By instead maximizing their probability of making the

best response to other candidates, the risk-averse equilibrium will be

able to address this shortcoming while offering similar interpretability

and insight.
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• A stochastic atomic congestion game with incomplete information on

travel times along arcs of a traffic/telecommunication network is stud-

ied in Chapter 4 from a risk-averse perspective. Risk-averse travelers

intend to make decisions based on probability statements regarding

their travel options rather than simply taking the average travel time

into account. In order to put this into perspective, we propose three

classes of equilibria, i.e., risk-averse equilibrium (RAE), mean-variance

equilibrium (MVE), and CVaRα equilibrium (CVaRαE). The MV and

CVaRα equilibria are studied in the literature for networks with sim-

plifying assumptions such as that the probability distributions of link

delays are load independent or link delays are independent, which are

not the case in this work. The notions of best responses in risk-averse,

mean-variance, and CVaRα equilibria are based on maximizing the

probability of traveling along the shortest path, minimizing a linear

combination of mean and variance of path delay, and minimizing the

expected delay at a specified risky quantile of the delay distributions,

respectively. We prove that the risk-averse, mean-variance, and CVaRα

equilibria exist for any finite stochastic atomic congestion game. Al-

though proving bounds on the price of anarchy (PoA) is not the focus

of this work, we numerically study the impact of risk-averse equilibria

on PoA and observe that the Braess paradox may not occur to the ex-

tent presented originally and the PoA may improve upon using any of

the proposed equilibria in both Braess and Pigou networks. Promising

future directions are to study non-atomic, instead of atomic, stochastic

congestion games in the proposed three classes of equilibria in their

general case where the arc delay distributions are load dependent and

not necessarily independent of each other, to find bounds on the price

of anarchy for the proposed three classes of equilibria, and to find a uni-

fied class of equilibrium that captures risk-aversion for a broader class

of travel time distributions in traffic/telecommunication networks.

• The Blind GB-PANDAS algorithm is proposed in Chapter 5 for the

affinity load balancing problem where no knowledge of the task ar-

rival rates and the service rate matrix is available. An exploration-

exploitation approach is proposed for load balancing which consists of

exploration and exploitation phases. The system is proven to be stable
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under Blind GB-PANDAS and is shown empirically through simula-

tions to have a better delay performance than Max-Weight, c-µ-rule,

and FCFS algorithms. Investigating the subspace of the capacity re-

gion in which GB-PANDAS is delay optimal is a promising direction

for future work. In order to start with a simpler case, one can check

whether the GB-PANDAS algorithm is heavy-traffic optimal in the

same region that the JSQ-MaxWeight algorithm proposed by Wang et

al. [132] is heavy-traffic optimal in a system with a nested rack struc-

ture as proposed in Chapter 5.1. Note that both GB-PANDAS and

Max-Weight algorithms have high routing and scheduling computa-

tion complexity which can be alleviated using power-of-d-choices [206]

or join-idle-queue [207] algorithms which are interesting directions to

study as well. Another interesting future work is to consider a case

where there are precedence relations between several tasks of a job, i.e.

a departing task may join another queue.
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Appendix A

THEOREM AND COROLLARY PROOFS
OF THE OTE/FTE-MAB AND

C-OTE-MAB ALGORITHMS FOR
CHAPTER 2

A.1 Proof of Theorem 1

Theorem 1. For any 0 < εr, ∆p < 1, if all of the K arms are experimented

jointly for N ≥ 2 ln( 2K
εr

)
∆p2 times in the experimentation phase, the one-time

exploitation regret is bounded by εr, i.e. r(∆p) ≤ εr.

Proof. Consider the Bernoulli random variables Bk = 1{Rk ≥ R−k} and

their unknown means pk = E[Bk] = P(Rk ≥ R−k) for k ∈ K. Possessing N

independent observations from the joint rewards of the K arms in the pure

exploration phase, the confidence interval derived from Hoeffding’s inequality

for estimating pk based on Equation (2.4) with confidence level 1−2e−
a2

2 has

the property that

P
(
pk ∈

(
p̂k −

a

2
√
N
, p̂k +

a

2
√
N

))
≥1− 2e−

a2

2 , ∀k ∈ K.
(A.1)

In order to find a bound on regret, defined in Equation (2.5) as r(∆p) =

P (pk∗ − pk̂ ≥ ∆p), note that

{pk∗ − pk̂ ≥ ∆p}

⊆
{
∃k ∈ K such that pk /∈

(
p̂k −

∆p

2
, p̂k +

∆p

2

)}
(a)

⊆
{
∃k ∈ K such that pk /∈

(
p̂k −

a

2
√
N
, p̂k +

a

2
√
N

)}
,

(A.2)

where (a) is true if a
2
√
N
≤ ∆p

2
. By using union bound and Equation (A.1),

Portions of this appendix were previously published in Yekkehkhany et al. [176] and
are used here with permission.
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the probability of the right-hand side of the above equation can be bounded

as follows, which results in the following bound on regret:

r(∆p) = P (pk∗ − pk̂ ≥ ∆p) ≤ 2Ke−
a2

2 = εr. (A.3)

The above upper bound on regret is derived under the condition that
a

2
√
N
≤ ∆p

2
, which by using a2 = 2 ln

(
2K
εr

)
and simple algebraic calculations

results in N ≥ 2 ln( 2K
εr

)
∆p2 .

A.2 Proof of Theorem 2

Theorem 2. For any 0 < εr, ∆p < 1, if all of the K arms are explored

jointly for N times in the experimentation phase such that bN
M
c ≥ 2 ln( 2K

εr
)

∆p2 ,

the finite-time exploitation regret is bounded by εr, i.e. rM(∆p) ≤ εr.

Proof. Consider the Bernoulli random variables BM
k = 1{RM

k ≥ RM
−k} and

their unknown means pMk = E[BM
k ] = P(RM

k ≥ RM
−k) for k ∈ K. Possessing

N independent observations from the joint rewards of the K arms in pure

exploration, there are exactly bN
M
c independent samples for estimation of

pMk . Due to the same reasoning in the proof of Theorem 1, the confidence

interval for estimating pMk based on Equation (2.9) or (2.12) with confidence

level 1− 2e−
a2

2 has the property that

P

pMk ∈
p̂Mk − a

2
√
bN
M
c
, p̂Mk +

a

2
√
bN
M
c

≥ 1− 2e−
a2

2 , (A.4)

for all k ∈ K.

In order to find a bound on regret, defined in Definition 1 as rM(∆p) =

P
(
pMk∗ − pMk̂ ≥ ∆p

)
, note that

{
pMk∗ − pMk̂ ≥ ∆p

}
⊆
{
∃k ∈ K s.t. pMk /∈

(
p̂Mk −

∆p

2
, p̂Mk +

∆p

2

)}
(a)

⊆

∃k ∈ K s.t. pMk /∈

̂pMk − a

2
√
bN
M
c
, p̂Mk +

a

2
√
bN
M
c

 ,

(A.5)
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where (a) is true if a

2
√
b N
M
c
≤ ∆p

2
. By using union bound and Equation (A.4),

the probability of the right-hand side of the above equation can be bounded

as follows, which results in the following bound on regret:

rM(∆p) = P
(
pMk∗ − pMk̂ ≥ ∆p

)
≤ 2Ke−

a2

2 = εr. (A.6)

The above upper bound on regret is derived under the condition that
a

2
√
b N
M
c
≤ ∆p

2
, which by using a2 = 2 ln

(
2K
εr

)
and simple algebraic calculations

results in bN
M
c ≥ 2 ln( 2K

εr
)

∆p2 .

A.3 Proof of Theorem 3

Theorem 3. Possessing ne number of joint experiments for the two arms and

assuming that pk∗ ∈ [0.5 + εp, 1] when εp ∈ (0, 0.5] is an unknown parameter,

we have

Cr
(
N̂∗(ne), pk∗

)
− Cr (N∗, pk∗)

≤ Dp

2
√
ne

+∆Cr(N̂∗(ne), ne)
ne→∞−−−−→ 0

(A.7)

and

max
n∈I(ne)

(
Cr(n, pk∗)− Cr(N∗, pk∗)

)
≤ Dp√

ne
(A.8)

with confidence level 1− 2e−
a2

2 , where N̂∗(ne), N
∗, and I(ne) are defined in

Equations (2.15), (2.13), and (2.17), respectively, Dp is a constant as Dp =

a·α·2(4δp+1− 1
2 ln 2)√

2δp ln 2
, where δp = 1

2
(−2− log2(0.5 + εp)− log2(0.5− εp)) > 0, and

∆Cr(n, ne) = a·α·
√
n+2·2−δp·(n−2)
√
ne

≤ Dp
2
√
ne

for any n ∈ {1, 2, 3, . . . }.

Proof. The maximum deviation that Crl(n, ne) and Cru(n, ne) can have from

Cr(n, pk∗) is investigated with an associated confidence level. To this end, the

maximum deviation of r∗(n, p̂∗l (ne)) and r∗(n, p̂∗u(ne)) from r∗(n, pk∗) is found

with the confidence level. First, the maximum deviation of p̂∗l (ne) and p̂∗u(ne)

from pk∗ with the associated confidence level is derived below. Equation
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(2.16) suggests that the following holds with confidence level 1− 2e−
a2

2 :

pk∗ − p̂∗l (ne) = pk∗ −max
{
p̂∗(ne)−

a

2
√
ne
, 0.5

}
≤ pk∗ − p̂∗(ne) +

a

2
√
ne
≤ a

2
√
ne

+
a

2
√
ne

=
a
√
ne
.

(A.9)

On the other hand,

pk∗ − p̂∗l (ne) =pk∗ − p̂∗(ne) + p̂∗(ne)−max
{
p̂∗(ne)−

a

2
√
ne
, 0.5

}
≥max

{ −a
2
√
ne
, 0.5− p̂∗(ne)

}
+ min

{ a

2
√
ne
, p̂∗(ne)−0.5

}
= 0.

(A.10)

The above two equations imply that 0 ≤ pk∗ − p̂∗l (ne) ≤ a√
ne

with confidence

level 1− 2e−
a2

2 . Similarly, it can be proved that 0 ≤ p̂∗u(ne)− pk∗ ≤ a√
ne

with

the mentioned confidence level.

In the following, Lipschitz constant of function r∗(n, p) with respect to p is

calculated by differentiating the regret function presented in Equation (2.14)

with respect to p as

∂r∗(n, p)

∂p
=

n∑
i=bn

2
c+1

(
n

i

)
· (1− p)i · pn−i ·

(
n− i
p
− i

1− p

)

+
1

2
·
(
n
n
2

)
· (1− p)

n
2 · p

n
2 · n

2
·
(1

p
− 1

1− p

)
· 1{n is even}.

(A.11)

Since 0.5 ≤ p ≤ 1, it is easy to verify that ∂r∗(n,p)
∂p

≤ 0, so r∗(n, p) is decreasing

in terms of p. The derivative of r∗(n, p) with respect to p calculated above

can be written as follows by algebraic manipulations:

∂r∗(n, p)

∂p
=

−n
(
n−1
n−1

2

)
p
n−1

2 (1− p)n−1
2 , if n is odd,

−(n− 1)
(
n−2
n−2

2

)
p
n−2

2 (1− p)n−2
2 , if n is even.

(A.12)

Note that ∂r∗(n,p)
∂p

= ∂r∗(n+1,p)
∂p

when n is an odd number and p ∈ [0.5, 1]. On

the other hand, it is obvious that r∗(n, 1) = r∗(n+ 1, 1), so

r∗(n, p) = r∗(n+ 1, p), if n is odd. (A.13)

As a result, in terms of regret, it is not worth it to perform even number of
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experiments since the last experiment does not improve regret.

It is easy to verify that ∂r∗(n,p)
∂p

∣∣
p=0.5

can get arbitrarily large by increasing

n. Hence, it is assumed that pk∗ ∈ [0.5 + εp, 1], where εp can be any small

number in the interval (0, 0.5]. In the following, the logarithm in base two of∣∣∣∂r∗(n,p)∂p

∣∣∣ is taken when n is an odd number, and as mentioned earlier, when

n is even, the answer is the same as for n− 1 which is an odd number.

log2

∣∣∣∣∂r∗(n, p)∂p

∣∣∣∣ = log2 n+ log2

(n− 1)!((
n−1

2

)
!
)2 +

n− 1

2

(
log2 p+ log2(1− p)

)
(a)

≤ log2 n+
[
(n− 1

2
) log2(n− 1)− (n− 1) log2 e+ log2 e

− 2
(n

2
log2

n− 1

2
− n− 1

2
log2 e+

1

2
log2 2π

)]
− (n− 1)(1 + δp) ≤

1

2
log2(n+ 2)− δp(n− 1),

(A.14)

where (a) follows by Stirling’s approximation, (n − 1)! ≤ (n − 1)n−
1
2 e−n+2

and
(
n−1

2

)
! ≥
√

2π
(
n−1

2

)n
2 e−(n−1

2
), and defining δp as follows:

δp =
1

2
(−2− log2(0.5 + εp)− log2(0.5− εp)) > 0.

As a result, ∣∣∣∣∂r∗(n, p)∂p

∣∣∣∣ ≤ √n+ 2 · 2−δp(n−1),

lim
n→∞

∣∣∣∣∂r∗(n, p)∂p

∣∣∣∣ = 0.

(A.15)

Also note that
∣∣∣∂r∗(n,p)∂p

∣∣∣ given by Equation (A.12) is finite for any given n,

so Equation (A.15) suggests that
∣∣∣∂r∗(n,p)∂p

∣∣∣ is finite for any n ∈ {1, 2, 3, . . . }
and any p ∈ [0.5 + εp, 1].

Equations (A.9), (A.10), (A.15), and the fact that r∗(n, p) is decreasing

in terms of p result in the following equation for any n ∈ {1, 2, 3, . . . } with

confidence level 1− 2e−
a2

2 :

0 ≤ Cr (n, pk∗)− Crl (n, ne)

= α ·
[
r∗ (n, pk∗)− r∗ (n, p̂∗u(ne))

]
≤ a · α ·

√
n+ 2 · 2−δp·(n−1)

√
ne

.

(A.16)
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The above equation is true when n is odd, but recall that r∗(n, p) = r∗(n +

1, p) for an odd number n. In order to come up with a unified formula for

Cr (n, pk∗)− Crl (n, ne) for even and odd numbers n, define ∆Cr(n, ne) as

∆Cr(n, ne) ,
a · α ·

√
n+ 2 · 2−δp·(n−2)

√
ne

, (A.17)

where lim
ne→∞

∆Cr(n, ne) = 0, ∀n ∈ {1, 2, 3, · · · }. The same bounds can be

found for Cru(n, ne)− Cr(n, pk∗), so

0 ≤ Cr(n, pk∗)− Crl(n, ne) ≤ ∆Cr(n, ne),

0 ≤ Cru(n, ne)− Cr(n, pk∗) ≤ ∆Cr(n, ne).
(A.18)

Alternatively, the Gaussian approximation with continuity correction can

be used for r∗(n, p) to find an approximation for ∆Cr(n, ne) as

r∗(n, p)≈

P
(
r̃ ≥ n

2

)
, if n is odd

1
2

[
P
(
r̃ ≥ n+1

2

)
+ P

(
r̃ ≥ n−1

2

)]
, if n is even

, (A.19)

where r̃ ∼ N (n(1− p), np(1− p)). Then,

r∗(n, p) ≈



Q

(√
n(p−0.5)√
p(1−p)

)
, if n is odd,

1
2

[
Q

(√
n(p−0.5)√
p(1−p)

+ 1

2
√
np(1−p)

)
+

Q

(√
n(p−0.5)√
p(1−p)

− 1

2
√
np(1−p)

)]
, if n is even.

(A.20)

The following approximation is followed for n that is odd:

∂r∗(n, p)

∂p
≈ −

√
n

4
√

2πp3(1− p)3
· exp

(
−n(p− 0.5)2

2p(1− p)

)
. (A.21)

It is easy to verify that the above approximation of ∂r∗(n,p)
∂p

for p ∈ [0.5+εp, 1]

approaches to zero as n goes to infinity and it is maximized at n = b p(1−p)
(p−0.5)2 c

or n = d p(1−p)
(p−0.5)2 e. Hence, the approximation of the partial derivative of

r∗(n, p) is finite for any n ∈ {1, 2, 3, . . . }. As a result, ∆Cr(n, ne) can be
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estimated by a·α·
√
n

4
√

2πp3
k∗ (1−pk∗ )3·ne

· exp
(
−n(pk∗−0.5)2

2pk∗ (1−pk∗ )

)
, where pk∗ ∈ [0.5 + εp, 1].

This result is consistent with the one in Equation (A.15).

The upper bound in Equation (2.18) with confidence level 1 − 2e−
a2

2 is

proved as follows. Equation (A.18) results in the following for any n ∈
{1, 2, 3, . . . }:

Cr (n, p̂∗(ne))−∆Cr(n, ne) ≤ Cr (n, pk∗) ≤ Cr (n, p̂∗(ne)) +∆Cr(n, ne).

(A.22)

Taking minimum from all sides of the above inequality results in

Cr
(
N̂∗(ne), p̂

∗(ne)
)
−max

n
{∆Cr(n, ne)}

≤ Cr (N∗, pk∗) ≤ Cr
(
N̂∗(ne), p̂

∗(ne)
)

+ max
n
{∆Cr(n, ne)} .

(A.23)

Using Equations (A.22) and (A.23) concludes as

Cr
(
N̂∗(ne), pk∗

)
− Cr (N∗, pk∗)

≤max
n
{∆Cr(n, ne)}+∆Cr(N̂∗(ne), ne)

≤ Dp

2
√
ne

+∆Cr(N̂∗(ne), ne),

(A.24)

where Dp = a·α·2(4δp+1− 1
2 ln 2)√

2δp ln 2
is a constant that is derived as follows. For

a given ne, the function ∆Cr(n, ne) is increasing in terms of n when n <
1

2δp ln 2
− 2 and is decreasing when n > 1

2δp ln 2
− 2. Hence, max

n
∆Cr(n, ne) ≤

∆Cr( 1
2δp ln 2

− 2, ne) = a·α·2(4δp− 1
2 ln 2)√

2δpne ln 2
.

In the following, the upper bound in Equation (2.19) with confidence level
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1− 2e−
a2

2 is derived as

max
n∈I(ne)

(
Cr(n, pk∗)− Cr(N∗, pk∗)

)
(a)

≤ max
n∈I(ne)

(
Crl(n, ne)− Cr(N∗, pk∗) +∆Cr(n, ne)

)
(b)
= max

n∈I(ne)

(
Crl(n, ne)− Cru(N∗u , ne)︸ ︷︷ ︸

it is non-positive due to Equation (2.17)

+ Cru(N
∗
u , ne)− Cr(N∗, pk∗) +∆Cr(n, ne)

)
(c)

≤ max
n∈I(ne)

(
Cru(N

∗, ne)− Cr(N∗, pk∗) +∆Cr(n, ne)
)

(d)

≤ max
n∈I(ne)

2∆Cr(n, ne) ≤ max
n

2∆Cr(n, ne) ≤
Dp√
ne
,

(A.25)

where (a) follows by Equation (A.18), (b) is true by subtracting and adding

the term Cru(N
∗
u , ne), (c) uses the fact that N∗u = arg min

n
Cru(n, ne), so

Cru(N
∗
u , ne) ≤ Cru(N

∗, ne), and (d) again follows by Equation (A.18).

A.4 Proof of Corollary 3

Corollary 3.

lim
ne→∞

E
[
N̂∗(ne)

]
= N∗. (A.26)

Proof. Equation (2.20) follows by the Lebesgue’s Dominated Convergence

Theorem since p̂∗(ne) converges almost surely to pk∗ and r∗(n, .) is positive

and dominated by one half almost surely for any ne, so N̂∗(ne) is uniformly

bounded by min
{
n : C(m) ≥ C(1) + α

2
,∀m ≥ n

}
that always exists and is

bounded due to the fact that limn→∞ =∞, then

lim
ne→∞

E
[
N̂∗(ne)

]
= E

[
lim
ne→∞

N̂∗(ne)

]
= E [N∗] = N∗. (A.27)
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A.5 Proof of Corollary 4

Corollary 4. The set of optimal stopping points N∗ defined in Equation

(2.13) is a subset of the set I(ne) defined in Equation (2.17) with the as-

sociated confidence level, i.e. N∗ ⊆ I(ne) with confidence level 1 − 2e−
a2

2 .

Furthermore, I(ne) = N∗ with the mentioned confidence level for ne >
D2
p(

Cr(N∗,pk∗ )− min
n/∈N∗

Cr(n,pk∗ )

)2 .

Proof. The first part of the corollary is proved by contradiction. Assume by

contradiction that N∗ 6⊆ I(ne) with the associated confidence level, which

means that

Crl (N
∗, ne) > Cru (N∗u , ne) . (A.28)

Furthermore,

Cr(N∗, pk∗) ≥ Crl(N
∗, ne),

Cr(N∗u , pk∗) ≥ Cr(N∗, pk∗),
(A.29)

where the first inequality is true by Equation (A.18) and the second one is

true due to the fact that N∗ minimizes the function Cr(n, pk∗). Equations

(A.28) and (A.29) result in

Cr(N∗u , pk∗) > Cru (N∗u , ne) , (A.30)

which is a contradiction to Equation (A.18), which means that N∗ ⊆ I(ne)

with the associated confidence level.

The second part of the corollary follows by Equation (2.19) and the fact

that N∗ ⊆ I(ne) with the associated confidence level. If Dp√
ne
< Cr(N∗, pk∗)−

min
n/∈N∗

Cr(n, pk∗), no n ∈ {1, 2, 3, . . . }\N∗ can satisfy Equation (2.19), but any

n ∈ N∗ satisfies Equation (2.19) and N∗ ⊆ I(ne) which prove the second

part of the corollary.
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Appendix B

THEOREM PROOF OF THE
RISK-AVERSE EQUILIBRIUM FOR

CHAPTER 3

B.1 Proof of Theorem 4

Theorem 4. For any finite N -player game, a risk-averse equilibrium exists.

Proof. Consider the risk-averse best response function RB : Σ → Σ defined

as RB(σ) =
(
RB(σ−1), RB(σ−2), . . . , RB(σ−N)

)
. The existence of a risk-

averse equilibrium is equivalent to the existence of a fixed point σ∗ ∈ Σ such

that σ∗ ∈ RB(σ∗). Kakutani’s Fixed Point Theorem is used to prove the

existence of a fixed point forRB(σ). In order to use Kakutani’s theorem, the

four conditions listed below should be satisfied, which are proven as follows.

1. Σ is a nonempty subset of a finite dimensional Euclidean space, compact,

and convex: Σ is nonempty and convex since it is the Cartesian product of

nonempty simplices as each player has at least one feasible pure strategy.

Σ is bounded since each of its elements is between zero and one, and is

closed since it is the Cartesian product of simplices, so Σ contains all its

limit points.

2. RB(σ) is nonempty for all σ ∈ Σ: RB(σ−i) is the set of all probability

distributions over the set specified in Equation (3.2), where the mentioned

set is nonempty since maximum always exists for finite number of values.

3. RB(σ) is a convex set for all σ ∈ Σ: It suffices to prove that RB(σ−i) is

a convex set for all σ−i ∈ Σ−i. Consider σ′i, σ
′′
i ∈ RB(σ−i) and λ ∈ [0, 1].

Define the supports of σ′i and σ′′i as supp(σ′i) = {si ∈ Si : σ′i(si) > 0} and

supp(σ′′i ) = {si ∈ Si : σ′′i (si) > 0}, respectively. From the definition of

risk-averse best response in Definition 2,

supp(σ′i), supp(σ
′′
i ) ⊆ arg max

si∈Si
P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
.
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As a result,

supp(σ′i) ∪ supp(σ′′i ) ⊆ arg max
si∈Si

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
,

and again due to definition of risk-averse best response, any probability

distribution over the set supp(σ′i) ∪ supp(σ′′i ) is also a best response to

σ−i. The mixed strategy λσ′i + (1− λ)σ′′i is obviously a valid probability

distribution over the set supp(σ′i)∪supp(σ′′i ), so λσ′i+(1−λ)σ′′i ∈ RB(σ−i)

that completes the proof for convexity of the set RB(σ−i).

4. RB(σ) has a closed graph: RB(σ) has a closed graph if for any se-

quence {σn, σ̂n} → {σ, σ̂} with σ̂n ∈ RB(σn) for all n ∈ N, we have

σ̂ ∈ RB(σ). The fact that RB(σ) has a closed graph is proved by con-

tradiction. Consider that RB(σ) does not have a closed graph. Then,

there exists a sequence {σn, σ̂n} → {σ, σ̂} with σ̂n ∈ RB(σn) for all

n ∈ N, but σ̂ /∈ RB(σ). This means there exists some i ∈ [N ] such

that σ̂i /∈ RB(σ−i). As a result, due to the definition of risk-averse best

response in Definition 2, there exists ŝi ∈ supp(σ̂i), s′i ∈ Si, where s′i can

be any of the strategies in the set supp(RB(σ−i)), and some ε > 0 such

that
P
(
U i (s

′
i,σ−i) ≥ U i (Si \ s′i,σ−i)

)
>P
(
U i (ŝi,σ−i) ≥ U i (Si \ ŝi,σ−i)

)
+ 3ε.

(B.1)

Given that payoffs are continuous random variables and σn−i → σ−i, for

a sufficiently large n we have

P
(
U i

(
s′i,σ

n
−i
)
≥ U i

(
Si \ s′i,σn−i

) )
>P
(
U i (s

′
i,σ−i) ≥ U i (Si \ s′i,σ−i)

)
− ε.

(B.2)

By combining Equations (B.1) and (B.2), for a sufficiently large n we have

P
(
U i

(
s′i,σ

n
−i
)
≥ U i

(
Si \ s′i,σn−i

) )
>P
(
U i (ŝi,σ−i) ≥ U i (Si \ ŝi,σ−i)

)
+ 2ε.

(B.3)

Due to the same reasoning as for Equation (B.2), for a sufficiently large
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n we have
P
(
U i

(
ŝni ,σ

n
−i
)
≥ U i

(
Si \ ŝni ,σn−i

) )
<P
(
U i (ŝi,σ−i) ≥ U i (Si \ ŝi,σ−i)

)
+ ε,

(B.4)

where ŝni ∈ supp(RB(σn−i)). Combining Equations (B.3) and (B.4), for a

sufficiently large n we have

P
(
U i

(
s′i,σ

n
−i
)
≥ U i

(
Si \ s′i,σn−i

) )
>P
(
U i

(
ŝni ,σ

n
−i
)
≥ U i

(
Si \ ŝni ,σn−i

) )
+ ε.

(B.5)

However, Equation (B.5) contradicts the fact that ŝni ∈ supp(RB(σn−i)).

The above four properties of the risk-averse best response function RB(σ)

fulfil the conditions for Kakutani’s Fixed Point Theorem. This means that for

a finite N -player game, there always exists σ∗ ∈ Σ such that σ∗ ∈ RB(σ∗),

where by definition σ∗ is a mixed strategy risk-averse equilibrium.

B.2 Extra Notes on the Risk-Averse Equilibrium

The risk-averse best response of player i to the strategy profile σ−i is pre-

sented in Definition 2 as the set of all probability distributions over the set

arg max
si∈Si

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
. (B.6)

The same randomness on the action of players [N ] \ i is considered in the

random variable U i(si,σ−i) for all si ∈ Si in this work. That is why for si 6=
s′i ∈ Si, the random variables U i(si,σ−i) and U i(s

′
i,σ−i) are not independent

of each other in a single play of the game. On the other hand, independent

randomness on the action of players [N ] \ i can be considered in U i(si,σ−i)

for all si ∈ Si. In that case, U i(si,σ−i) is independent from U i(s
′
i,σ−i) for
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all si 6= s′i ∈ Si, so

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
(a)
=

∫
· · ·
∫
xsi≥xSi\si

∏
s′i∈Si

f̄i(xs′i |(s
′
i,σ−i))dxs′i


(b)
=

∫
· · ·
∫
xsi≥xSi\si

∏
s′i∈Si

∑
s−i∈S−i

(
fi(xs′i |(s

′
i, s−i)) · σ(s−i)

)
dxs′i


(c)
=

∑
s
1:|Si|
−i ∈S|Si|−i

 |Si|∏
k=1

σ(sk−i)

 · P(Ui(si, s1
−i) ≥ U i(Si \ si, s2:|Si|

−i )
) ,

(B.7)

where (a) follows by the fact that all payoff distributions are independent of

each other, so the pdf functions can be multiplied together to get the joint

distribution of U i(si,σ−i) for all si ∈ Si, (b) follows by Equation (3.1), (c) is

true by expanding the product and reformulating the product of the sum as

the sum of products. If Equation (B.7) is used in Equation (3.6) to find the

equilibrium of the game, we come up with a different equilibrium than that

presented in Chapter 3. Let the equilibrium derived from Equations (3.6) and

(B.7) be called RAE2, where following the same proof of Theorem 4, RAE2

exists for any finite N -player game. Finding a strictly dominated strategy in

the framework of RAE2 is not as straightforward as for the Nash and RAE

equilibria. In the following definition, the strict dominance is described for

RAE2.

Definition 21. A pure strategy si ∈ Si of player i strictly dominates a second

pure strategy s′i ∈ Si of the player if

P
(
Ui
(
si, s

1
−i
)
≥ U i

(
Si \ si, s2:|Si|

−i

))
>P
(
Ui
(
s′i, s

1
−i
)
≥ U i

(
Si \ s′i, s

2:|Si|
−i

))
,∀s1:|Si|

−i ∈ S|Si|−i ,
(B.8)

where what we mean by Ui
(
si, s

1
−i
)

being greater than or equal to U i

(
Si \

si, s
2:|Si|
−i

)
is that Ui

(
si, s

1
−i
)

is greater than or equal to Ui
(
ŝi, s

k
−i
)

for all

ŝi ∈ Si \ si, where each ŝi ∈ Si \ si is associated with a possibly different

pure strategy of other players sk−i ∈ S−i for all 2 ≤ k ≤ |Si|. Note that the

associations of ŝi ∈ Si and sk−i ∈ S−i on both sides of Equation (B.8) remain
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the same except for si and s′i for which the associations are switched with

each other.

Note that the strictly dominated strategies of a player cannot be found

from the risk-averse probably matrix, but finding a strictly dominated strat-

egy needs more sophisticated calculations described in Definition 21. A

strictly dominated strategy cannot be the risk-averse best response to any

mixed strategy profile of other players due to the following reason. Consider

that s′i ∈ Si is strictly dominated by si ∈ Si for player i as is stated in

Definition 21. Then, for any σ−i ∈ Σ−i, we have

P
(
U i (si,σ−i) ≥ U i (Si \ si,σ−i)

)
(a)
=

∑
s
1:|Si|
−i ∈S|Si|−i

 |Si|∏
k=1

σ(sk−i)

 · P(Ui(si, s1
−i) ≥ U i(Si \ si, s2:|Si|

−i )
)

(b)
>

∑
s
1:|Si|
−i ∈S|Si|−i

 |Si|∏
k=1

σ(sk−i)

 · P(Ui(s′i, s1
−i) ≥ U i(Si \ s′i, s

2:|Si|
−i )

)
(c)
=P
(
U i (s

′
i,σ−i) ≥ U i (Si \ s′i,σ−i)

)
,

(B.9)

where (a) is true by Equation (B.7), (b) is true by the assumption that

the pure strategy s′i is strictly dominated by the pure strategy si and using

Equation (B.8) in Definition 21 on strict dominance, and (c) follows the

backward direction of steps (a), (b), and (c) for pure strategy s′i in Equation

(B.7). By Equation (B.9) and Equation (3.2) in Definition 2 on the best

response to a mixed strategy profile of other players, a strictly dominated

pure strategy can never be a best response to any mixed strategy profile

of other players. As a result, a strictly dominated pure strategy can be

removed from the set of strategies of a player, and iterated elimination of

strictly dominated strategies can be applied to a game under the framework

of RAE2 as well.

In order to get more insight into the new framework, the mixed strategy

RAE2 is worked out for Example 4. Consider that the first player selects U

with probability σU and selects D otherwise. Given the first player’s mixed

strategy (σU , 1 − σU), with a little misuse of notation, denote the random

variables denoting the second player’s payoffs by selecting L or R with L and

R, respectively. As a result, for two independent games, where in both of
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them the first player independently plays according to the mixed strategy

(σU , 1 − σU) and the second player selects L and R in the first and second

games, respectively, using the law of total probability,

L ∼ fL(u) = σU · f4(u) + (1− σU) · f3(u),

R ∼ fR(v) = σU · f3(v) + (1− σU) · f1(v).
(B.10)

The second player is indifferent between selecting L and R if P (L ≥ R) =

P (R ≥ L). Since payoffs are continuous random variables, P (R ≥ L) =

1 − P (L ≥ R); as a result, the second player is indifferent between the

strategies in two independent games if P (L ≥ R) = 0.5. By Equation (B.10)

and the fact that payoffs are independent from each other, P (L ≥ R) can be

computed as

P (L ≥ R) =

∫ ∞
∞

∫ ∞
v

fL(u) · fR(v) dudv

=

∫ ∞
∞

∫ ∞
v

(
σU · f4(u) + (1− σU) · f3(u)

)
×(

σU · f3(v) + (1− σU) · f1(v)
)
dudv

= σ2
U

∫ ∞
∞

∫ ∞
v

f4(u) · f3(v) dudv + σU(1− σU)

∫ ∞
∞

∫ ∞
v

f4(u) · f1(v) dudv

+ σU(1− σU)

∫ ∞
∞

∫ ∞
v

f3(u) · f3(v) dudv

+ (1− σU)2

∫ ∞
∞

∫ ∞
v

f3(u) · f1(v) dudv

= σ2
UP
(
U2(U,L) ≥ U2(U,R)

)
+ σU(1− σU)P

(
U2(U,L) ≥ U2(D,R)

)
+

σU(1− σU)P
(
U2(D,L) ≥ U2(U,R)

)
+ (1− σU)2P

(
U2(D,L) ≥ U2(D,R)

)
=

2

5
σ2
U + σU(1− σU) +

1

2
σU(1− σU) + (1− σU)2 = − 1

10
σ2
U −

1

2
σU + 1.

(B.11)

Letting P (L ≥ R) = 0.5, then − 1
10
σ2
U − 1

2
σU + 1

2
= 0 whose solution

is the mixed strategy RAE2. It can be computed that σU = −5+
√

45
2

≈
0.854. As a result, due to symmetry,

(
σ1(U), σ1(D)

)
= (0.854, 0.146) and(

σ2(L), σ2(R)
)

= (0.854, 0.146) form the mixed strategy RAE2 of the game

in Example 4.

The risk-averse best response under the RAE2 framework is compared

against the risk-averse best response under the RAE framework by simulation

for Example 5. The mixed strategy RAE and RAE2 exist no matter what
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Figure B.1: The mixed strategy RAE and RAE2 are determined by the
value of σ1(U) in Example 5. The mixed strategies depend on the value of
the constant a, where σ1(U) is plotted above as a function of the constant a.

the value of the positive constant a is in this example, but these equilibria

depend on the value of the constant a. As described in Section 3.7, the mixed

strategy RAE and RAE2 are characterized by σ1(U) that is plotted in Figure

B.1.

A game according to Example 5 is simulated for 106 rounds for a fixed

constant a. In each realization of the game, the first player selects a strategy

according to the mixed strategy RAE, then the payoffs of the second player

for the two strategies are compared to see which is larger. After the 106

games, the proportion of the games in which playing strategy L outperforms

playing strategy R by having a larger payoff is computed and plotted in

Figure B.2 as a function of the constant a. The same procedure is performed

for the mixed strategy RAE2 and the result is plotted in the same figure. As

shown in the figure, under the RAE framework, the likelihood that playing

strategy L has a larger payoff than playing strategy R is the same as that

of observing heads on the flip of a fair coin, which makes the second player

indifferent between the two strategies. However, if the first player selects

the strategy according to the mixed strategy RAE2, it is more likely for

the second player to get a larger payoff by selecting L or R except for two

specific values of the constant a as shown in the figure. As a result, the risk-
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Figure B.2: The likelihood that playing strategy L outperforms playing
strategy R by having a larger payoff in a single play of the game.

averse equilibrium presented in Chapter 3 makes the second player indifferent

between the two strategies since the chances of receiving a larger payoff from

either strategy are the same in a single play of the game.
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Appendix C

THEOREM PROOFS OF THE
RISK-AVERSE EQUILIBRIUM FOR

CHAPTER 4

C.1 Proof of Theorem 5

Theorem 5. For any finite n-player stochastic congestion game, a risk-averse

equilibrium exists.

Proof. Let RB : Σ → Σ be the risk-averse best response function where

RB(σ) =
(
RB(σ−1), RB(σ−2), . . . , RB(σ−N)

)
. It is easy to see that the

existence of a fixed point σ∗ ∈ Σ for the risk-averse best response function,

i.e., σ∗ ∈ RB(σ∗), proves the existence of a risk-averse equilibrium. The

following four conditions of the Kakutani’s Fixed Point Theorem are shown

to be satisfied for the function RB(σ) to prove the existence of a fixed point

for the function.

1. The domain of function RB(.) is a non-empty, compact, and convex sub-

set of a finite dimensional Euclidean space: Σ is the Cartesian product

of non-empty simplices as each player has at least one strategy to play;

furthermore, each of the elements of Σ is between zero and one, so Σ is

non-empty, convex, bounded, and closed containing all its limit points.

2. RB(σ) 6= ∅, ∀σ ∈ Σ: The set in Equation (4.3) is non-empty as max-

imum exists over a finite number of values. As a result, RB(σ−i) is

non-empty for all i ∈ [n] since it is the set of all probability distributions

over the corresponding mentioned non-empty set.

3. The co-domain of function RB(.) is a convex set for all σ ∈ Σ: It

suffices to prove that RB(σ−i) is a convex set for all σ−i ∈ Σ−i and

for all i ∈ [n]. For any i ∈ [n], if σi, σ
′
i ∈ RB(σ−i), we need to prove

that λσi + (1 − λ)σ′i ∈ RB(σ−i) for any λ ∈ [0, 1] and for any σ−i ∈
Σ−i. Let the supports of σi and σ′i be defined as supp(σi) = {pi ∈ Pi :
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σi(pi) > 0} and supp(σ′i) = {pi ∈ Pi : σ′i(pi) > 0}, respectively. It is

concluded from the definition of the risk-averse best response in Definition

11 that supp(σi), supp(σ
′
i) ⊆ arg max

pi∈Pi
P
(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
,

which results in

supp(σi) ∪ supp(σ′i) ⊆ arg max
pi∈Pi

P
(
L
i
(pi,σ−i) ≤ L

i
(Pi \ pi,σ−i)

)
.

As a result, using the definition of risk-averse best response, any prob-

ability distribution over the set supp(σi) ∪ supp(σ′i) is a risk-averse best

response to σ−i. It is trivial that the mixed strategy λσi + (1 − λ)σ′i is

a valid probability distribution over the set supp(σi) ∪ supp(σ′i) for any

λ ∈ [0, 1], so λσi + (1 − λ)σ′i ∈ RB(σ−i) for any λ ∈ [0, 1] and for any

σ−i ∈ Σ−i that completes the convexity proof of the set RB(σ−i).

4. RB(σ) has a closed graph: RB(σ) has a closed graph if for any se-

quence {σm, σ̂m} → {σ, σ̂} with σ̂m ∈ RB(σm) for all m ∈ N, we

have σ̂ ∈ RB(σ). Proof by contradiction is used to show that RB(σ)

has a closed graph. Consider by contradiction that RB(σ) does not

have a closed graph, so there exists a sequence {σm, σ̂m} → {σ, σ̂} with

σ̂m ∈ RB(σm) for all m ∈ N, but σ̂ /∈ RB(σ). As a result, there

exists some i ∈ [n] such that σ̂i /∈ RB(σ−i). Using the definition of risk-

averse best response in Definition 11, there exists p′i ∈ supp(RB(σ−i)),

p̂i ∈ supp(σ̂i), and some ε > 0 such that

P
(
L
i
(p′i,σ−i) ≤ L

i
(Pi \ p′i,σ−i)

)
>P

(
L
i
(p̂i,σ−i) ≤ L

i
(Pi \ p̂i,σ−i)

)
+ 3ε.

(C.1)

Since the latencies over edges are continuous random variables and σm−i →
σ−i, for any ε > 0, there exists a sufficiently large m1 such that we have

the following for m ≥ m1:

P
(
L
i
(p′i,σ

m
−i) ≤ L

i
(Pi \ p′i,σm−i)

)
>P

(
L
i
(p′i,σ−i) ≤ L

i
(Pi \ p′i,σ−i)

)
− ε.

(C.2)

By adding inequalities with the same direction in Equations (C.1) and
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(C.2), for m ≥ m1 we have

P
(
L
i
(p′i,σ

m
−i) ≤ L

i
(Pi \ p′i,σm−i)

)
>P

(
L
i
(p̂i,σ−i) ≤ L

i
(Pi \ p̂i,σ−i)

)
+ 2ε.

(C.3)

For the same reason as of Equation (C.2), for any ε > 0, there exists a

sufficiently large m2 such that we have the following for m ≥ m2:

P
(
L
i
(p̂i,σ−i) ≤ L

i
(Pi \ p̂i,σ−i)

)
>P

(
L
i
(p̂mi ,σ

m
−i) ≤ L

i
(Pi \ p̂mi ,σm−i)

)
− ε,

(C.4)

where p̂mi ∈ supp(RB(σm−i)). By adding the inequalities with the same

direction in Equations (C.3) and (C.4), for m ≥ max{m1,m2} we have

P
(
L
i
(p′i,σ

m
−i) ≤ L

i
(Pi \ p′i,σm−i)

)
>P

(
L
i
(p̂mi ,σ

m
−i) ≤ L

i
(Pi \ p̂mi ,σm−i)

)
+ ε.

(C.5)

Equation (C.5) contradicts the fact that p̂mi ∈ supp(RB(σm−i)), which

completes the proof that RB(σ) has a closed graph.

As listed above, the risk-averse best response function RB(σ) satisfies the

four conditions of Kakutani’s Fixed Point Theorem. As a direct result, for

any finite n-player stochastic congestion game, there exists σ∗ ∈ Σ such

that σ∗ ∈ RB(σ∗), which completes the existence proof of a risk-averse

equilibrium for such games.

C.2 Proof of Theorem 6

Theorem 6. For any finite n-player stochastic congestion game, a mean-

variance equilibrium exists.

Proof. Let MB : Σ → Σ be the mean-variance best response function

where MB(σ) =
(
MB(σ−1),MB(σ−2), . . . ,MB(σ−N)

)
. It is easy to see

that the existence of a fixed point σ∗ ∈ Σ for the mean-variance best re-

sponse function, i.e., σ∗ ∈MB(σ∗), proves the existence of a mean-variance

equilibrium. The following four conditions of the Kakutani’s Fixed Point
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Theorem are shown to be satisfied for the function MB(σ) to prove the

existence of a fixed point for the function.

1. The domain of function MB(.) is a non-empty, compact, and convex

subset of a finite dimensional Euclidean space: Σ is the Cartesian product

of non-empty simplices as each player has at least one strategy to play;

furthermore, each of the elements of Σ is between zero and one, so Σ is

non-empty, convex, bounded, and closed containing all its limit points.

2. MB(σ) 6= ∅, ∀σ ∈ Σ: The set in Equation (4.9) is non-empty as

minimum exists over a finite number of values. As a result, MB(σ−i) is

non-empty for all i ∈ [n] since it is the set of all probability distributions

over the corresponding mentioned non-empty set.

3. The co-domain of function MB(.) is a convex set for all σ ∈ Σ: It

suffices to prove that MB(σ−i) is a convex set for all σ−i ∈ Σ−i and for

all i ∈ [n]. For any i ∈ [n], if σi, σ
′
i ∈ MB(σ−i), we need to prove that

λσi + (1− λ)σ′i ∈MB(σ−i) for any λ ∈ [0, 1] and for any σ−i ∈ Σ−i. Let

the supports of σi and σ′i be defined as supp(σi) = {pi ∈ Pi : σi(pi) > 0}
and supp(σ′i) = {pi ∈ Pi : σ′i(pi) > 0}, respectively. It is concluded

from the definition of the mean-variance best response in Definition 14

that supp(σi), supp(σ
′
i) ⊆ arg min

pi∈Pi
Var

(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i), which

results in

supp(σi) ∪ supp(σ′i) ⊆ arg min
pi∈Pi

Var
(
L
i
(pi,σ−i)

)
+ ρ · li(pi,σ−i).

As a result, using the definition of mean-variance best response, any prob-

ability distribution over the set supp(σi)∪supp(σ′i) is a mean-variance best

response to σ−i. The mixed strategy λσi + (1− λ)σ′i is obviously a valid

probability distribution over the set supp(σi)∪ supp(σ′i) for any λ ∈ [0, 1],

so λσi + (1 − λ)σ′i ∈ MB(σ−i) for any λ ∈ [0, 1] and for any σ−i ∈ Σ−i
that completes the convexity proof of the set MB(σ−i).

4. MB(σ) has a closed graph: MB(σ) has a closed graph if for any se-

quence {σm, σ̂m} → {σ, σ̂} with σ̂m ∈ MB(σm) for all m ∈ N, we

have σ̂ ∈MB(σ). Proof by contradiction is used to show that MB(σ)

has a closed graph. Consider by contradiction that MB(σ) does not

have a closed graph, so there exists a sequence {σm, σ̂m} → {σ, σ̂} with
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σ̂m ∈MB(σm) for all m ∈ N, but σ̂ /∈MB(σ). As a result, there exists

some i ∈ [n] such that σ̂i /∈ MB(σ−i). Using the definition of mean-

variance best response in Definition 14, there exists p′i ∈ supp(MB(σ−i)),

p̂i ∈ supp(σ̂i), and some ε > 0 such that

Var
(
L
i
(p′i,σ−i)

)
+ ρ · li(p′i,σ−i)

<Var
(
L
i
(p̂i,σ−i)

)
+ ρ · li(p̂i,σ−i)− 3ε.

(C.6)

Since the latencies over edges are continuous random variables and σm−i →
σ−i, for any ε > 0, there exists a sufficiently large m3 such that we have

the following for m ≥ m3:

Var
(
L
i
(p′i,σ

m
−i)
)

+ ρ · li(p′i,σm−i)

<Var
(
L
i
(p′i,σ−i)

)
+ ρ · li(p′i,σ−i) + ε.

(C.7)

By adding inequalities with the same direction in Equations (C.6) and

(C.7), for m ≥ m3 we have

Var
(
L
i
(p′i,σ

m
−i)
)

+ ρ · li(p′i,σm−i)

<Var
(
L
i
(p̂i,σ−i)

)
+ ρ · li(p̂i,σ−i)− 2ε.

(C.8)

For the same reason as of Equation (C.7), for any ε > 0, there exists a

sufficiently large m4 such that we have the following for m ≥ m4:

Var
(
L
i
(p̂i,σ−i)

)
+ ρ · li(p̂i,σ−i)

<Var
(
L
i
(p̂mi ,σ

m
−i)
)

+ ρ · li(p̂mi ,σm−i) + ε,
(C.9)

where p̂mi ∈ supp(MB(σm−i)). By adding the inequalities with the same

direction in Equations (C.8) and (C.9), for m ≥ max{m3,m4} we have

Var
(
L
i
(p′i,σ

m
−i)
)

+ ρ · li(p′i,σm−i)

<Var
(
L
i
(p̂mi ,σ

m
−i)
)

+ ρ · li(p̂mi ,σm−i)− ε.
(C.10)

Equation (C.10) contradicts the fact that p̂mi ∈ supp(MB(σm−i)), which

completes the proof that MB(σ) has a closed graph.
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As listed above, the mean-variance best response function MB(σ) satisfies

the four conditions of Kakutani’s Fixed Point Theorem. As a direct result,

for any finite n-player stochastic congestion game, there exists σ∗ ∈ Σ such

that σ∗ ∈MB(σ∗), which completes the existence proof of a mean-variance

equilibrium for such games.

C.3 Proof of Theorem 7

Theorem 7. For any finite n-player stochastic congestion game, a CVaRα

equilibrium exists.

Proof. Let CB : Σ → Σ be the CVaRα best response function where

CB(σ) =
(
CB(σ−1), CB(σ−2), . . . , CB(σ−N)

)
. It is easy to see that the

existence of a fixed point σ∗ ∈ Σ for the CVaRα best response function, i.e.,

σ∗ ∈ CB(σ∗), proves the existence of a CVaRα equilibrium. The following

four conditions of the Kakutani’s Fixed Point Theorem are shown to be sat-

isfied for the function CB(σ) to prove the existence of a fixed point for the

function.

1. The domain of function CB(.) is a non-empty, compact, and convex sub-

set of a finite dimensional Euclidean space: Σ is the Cartesian product

of non-empty simplices as each player has at least one strategy to play;

furthermore, each of the elements of Σ is between zero and one, so Σ is

non-empty, convex, bounded, and closed containing all its limit points.

2. CB(σ) 6= ∅, ∀σ ∈ Σ: The set in Equation (4.19) is non-empty as

minimum exists over a finite number of values. As a result, CB(σ−i) is

non-empty for all i ∈ [n] since it is the set of all probability distributions

over the corresponding mentioned non-empty set.

3. The co-domain of function CB(.) is a convex set for all σ ∈ Σ: It suffices

to prove that CB(σ−i) is a convex set for all σ−i ∈ Σ−i and for all i ∈ [n].

For any i ∈ [n], if σi, σ
′
i ∈ CB(σ−i), we need to prove that λσi+(1−λ)σ′i ∈

CB(σ−i) for any λ ∈ [0, 1] and for any σ−i ∈ Σ−i. Let the supports of

σi and σ′i be defined as supp(σi) = {pi ∈ Pi : σi(pi) > 0} and supp(σ′i) =

{pi ∈ Pi : σ′i(pi) > 0}, respectively. It is concluded from the definition
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of the CVaRα best response in Definition 17 that supp(σi), supp(σ
′
i) ⊆

arg min
pi∈Pi

E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]
, which results in

supp(σi) ∪ supp(σ′i) ⊆ arg min
pi∈Pi

E
[
L
i
(pi,σ−i)

∣∣∣Li(pi,σ−i) ≥ viα(pi,σ−i)
]
.

As a result, using the definition of CVaRα best response, any probability

distribution over the set supp(σi)∪ supp(σ′i) is a CVaRα best response to

σ−i. The mixed strategy λσi + (1 − λ)σ′i is obviously a valid probability

distribution over the set supp(σi)∪supp(σ′i) for any λ ∈ [0, 1], so λσi+(1−
λ)σ′i ∈ CB(σ−i) for any λ ∈ [0, 1] and for any σ−i ∈ Σ−i that completes

the convexity proof of the set CB(σ−i).

4. CB(σ) has a closed graph: CB(σ) has a closed graph if for any se-

quence {σm, σ̂m} → {σ, σ̂} with σ̂m ∈ CB(σm) for all m ∈ N, we

have σ̂ ∈ CB(σ). Proof by contradiction is used to show that CB(σ)

has a closed graph. Consider by contradiction that CB(σ) does not

have a closed graph, so there exists a sequence {σm, σ̂m} → {σ, σ̂} with

σ̂m ∈ CB(σm) for all m ∈ N, but σ̂ /∈ CB(σ). As a result, there exists

some i ∈ [n] such that σ̂i /∈ CB(σ−i). Using the definition of CVaRα best

response in Definition 17, there exists p′i ∈ supp(CB(σ−i)), p̂i ∈ supp(σ̂i),
and some ε > 0 such that

E
[
L
i
(p′i,σ−i)

∣∣∣Li(p′i,σ−i) ≥ viα(p′i,σ−i)
]

<E
[
L
i
(p̂i,σ−i)

∣∣∣Li(p̂i,σ−i) ≥ viα(p̂i,σ−i)
]
− 3ε.

(C.11)

Since the latencies over edges are continuous random variables and σm−i →
σ−i, for any ε > 0, there exists a sufficiently large m5 such that we have

the following for m ≥ m5:

E
[
L
i
(p′i,σ

m
−i)
∣∣∣Li(p′i,σm−i) ≥ viα(p′i,σ

m
−i)
]

<E
[
L
i
(p′i,σ−i)

∣∣∣Li(p′i,σ−i) ≥ viα(p′i,σ−i)
]

+ ε.
(C.12)

By adding inequalities with the same direction in Equations (C.11) and
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(C.12), for m ≥ m5 we have

E
[
L
i
(p′i,σ

m
−i)
∣∣∣Li(p′i,σm−i) ≥ viα(p′i,σ

m
−i)
]

<E
[
L
i
(p̂i,σ−i)

∣∣∣Li(p̂i,σ−i) ≥ viα(p̂i,σ−i)
]
− 2ε.

(C.13)

For the same reason as of Equation (C.12), for any ε > 0, there exists a

sufficiently large m6 such that we have the following for m ≥ m6:

E
[
L
i
(p̂i,σ−i)

∣∣∣Li(p̂i,σ−i) ≥ viα(p̂i,σ−i)
]

<E
[
L
i
(p̂mi ,σ

m
−i)
∣∣∣Li(p̂mi ,σm−i) ≥ viα(p̂mi ,σ

m
−i)
]

+ ε,
(C.14)

where p̂mi ∈ supp(CB(σm−i)). By adding the inequalities with the same

direction in Equations (C.13) and (C.14), for m ≥ max{m5,m6} we have

E
[
L
i
(p′i,σ

m
−i)
∣∣∣Li(p′i,σm−i) ≥ viα(p′i,σ

m
−i)
]

<E
[
L
i
(p̂mi ,σ

m
−i)
∣∣∣Li(p̂mi ,σm−i) ≥ viα(p̂mi ,σ

m
−i)
]
− ε.

(C.15)

Equation (C.15) contradicts the fact that p̂mi ∈ supp(CB(σm−i)), which

completes the proof that CB(σ) has a closed graph.

As listed above, the CVaRα best response function CB(σ) satisfies the four

conditions of Kakutani’s Fixed Point Theorem. As a direct result, for any

finite n-player stochastic congestion game, there exists σ∗ ∈ Σ such that

σ∗ ∈ CB(σ∗), which completes the existence proof of a CVaRα equilibrium

for such games.
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Appendix D

LEMMA PROOFS OF THE BLIND
GB-PANDAS ALGORITHM FOR

CHAPTER 5

D.1 Proof of Lemma 1

Lemma 1. The following set Λ̄ is equivalent to Λ defined in equation (5.2):

Λ̄ =

{
λ = (λL̄ : L̄ ∈ L)

∣∣∣∃λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M, s.t.

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m, ∀L̄ ∈ L,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α1

+
∑

L̄:m∈L̄2

∑
n:n∈L̄

λL̄,n,m
α2

+

· · ·+
∑

L̄:m∈L̄N

∑
n:n∈L̄

λL̄,n,m
αN

< 1,∀m

}
,

(D.1)

where λL̄,n,m denotes the arrival rate of type L̄ tasks that are 1-local to server

n and is processed by server m. {λL̄,n,m : L̄ ∈ L, n ∈ L̄, and m ∈ M} is a

decomposition of the set of arrival rates {λL̄,m : L̄ ∈ L and m ∈ M}, where

λL̄,m =
∑

n∈M λL̄,n,m.

Proof. We show that Λ̄ ⊂ Λ and Λ ⊂ Λ̄, which results in the equality of

these two sets.

• Λ̄ ⊂ Λ: If λ ∈ Λ̄, there exists a decomposition {λL̄,n,m : L̄ ∈ L, n ∈
L̄, and m ∈ M} such that the load on each server is less than one under

this decomposition. Defining λL̄,m ≡
∑

n:n∈L̄ λL̄,n,m, the arrival rate de-

composition {λL̄,m : L̄ ∈ L and m ∈M} obviously satisfies the conditions

in the definition of the set Λ, so λ ∈ Λ which means that Λ̄ ⊂ Λ.

Portions of this appendix were previously published in Yekkehkhany and Nagi [131]
and are used here with permission. Furthermore, portions of this appendix were previously
published in Yekkehkhany et al. [200] and are used here with permission.
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• Λ ⊂ Λ̄: If λ ∈ Λ, there exists a decomposition {λL̄,m : L̄ ∈ L and m ∈M}
such that the load on each server is less than one under this decomposition.

Defining λL̄,n,m ≡
λL̄,m
|L̄| , the arrival rate decomposition {λL̄,n,m : L̄ ∈ L, n ∈

L̄, and m ∈ M} obviously satisfies the conditions in the definition of the

set Λ̄, so λ ∈ Λ̄ which means that Λ ⊂ Λ̄.

D.2 Proof of Lemma 2

Lemma 2.

〈W (t), Ũ(t)〉 = 0, ∀t.

Proof. The expression simplifies as follows:

〈W (t), Ũ(t)〉 =
∑
m

(
Q1
m(t)

α1

+
Q2
m(t)

α2

+ · · ·+ QN
m(t)

αN

)
Um(t)

αN
.

Note that for any server m, Um(t) is either zero or positive. For the first case

it is obvious that
(
Q1
m(t)
α1

+ Q2
m(t)
α2

+ · · · + QNm(t)
αN

)
Um(t)
αN

= 0. In the latter case

where Um(t) > 0, all sub-queues of server m are empty which again results

in
(Q1

m(t)
α1

+ Q2
m(t)
α2

+ · · ·+ QNm(t)
αN

)Um(t)
αN

= 0. Therefore, 〈W (t), Ũ(t)〉 = 0 for all

time slots.

D.3 Proof of Lemma 3

Lemma 3. Under the GB-PANDAS routing policy, for any arrival rate

vector strictly inside the outer bound of the capacity region, λ ∈ Λ, and

the corresponding workload vector of servers w defined in (5.8), we have the

following for any t0:

E
[
〈W (t),A(t)〉 − 〈W (t),w〉

∣∣∣Z(t0)
]
≤ 0, ∀t ≥ 0.

Proof. The minimum weighted workload for type L̄ task, where L̄ ∈ L, at

time slot t is defined as follows:

W ∗
L̄(t) = min

m∈M

{
Wm(t)

α1

I{m∈L̄},
Wm(t)

α2

I{m∈L̄2}, · · · ,
Wm(t)

αN
I{m∈L̄N}

}
.
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According to the routing policy of the GB-PANDAS algorithm, an incoming

task of type L̄ at the beginning of time slot t is routed to the corresponding

sub-queue of server m∗ with the minimum weighted workload W ∗
L̄
. Therefore,

for any type L̄ task we have the following:

Wm(t)

α1

≥ W ∗
L̄(t), ∀m ∈ L̄,

Wm(t)

αn
≥ W ∗

L̄(t), ∀m ∈ L̄n, for 2 ≤ n ≤ N.

(D.2)

In other words, a type L̄ task does not join a server with a weighted work-

load greater than W ∗
L̄
. Using the fact that W (t) and A(t) are conditionally

independent of Z(t0) given Z(t), and also following the definitions of pseudo

task arrival process A(t) in (5.9) and the arrival of an n-local type task to

the m-th server Anm(t) in (5.4), we have the following:

E
[
〈W (t),A(t)〉|Z(t0)

]
= E

[
E
[
〈W (t),A(t)〉|Z(t)

]∣∣∣Z(t0)
]

= E
[
E
[∑

m

Wm(t)
(A1

m(t)

α1

+
A2
m(t)

α2

+ · · ·+ ANm(t)

αN

)∣∣∣∣Z(t)

]∣∣∣∣Z(t0)

]
= E

[
E
[∑

m

Wm(t)

(
1

α1

∑
L̄:m∈L̄

AL̄,m(t) +
1

α2

∑
L̄:m∈L̄2

AL̄,m(t)

+ · · ·+ 1

αN

∑
L̄:m∈L̄N

AL̄,m(t)

)∣∣∣∣Z(t)

]∣∣∣∣Z(t0)

]
(a)
= E

[
E
[∑
L̄∈L

( ∑
m:m∈L̄

Wm(t)

α1

AL̄,m(t) +
∑

m:m∈L̄2

Wm(t)

α2

AL̄,m(t)+

· · ·+
∑

m:m∈L̄N

Wm(t)

αN
AL̄,m(t)

)∣∣∣∣Z(t)

]∣∣∣∣Z(t0)

]
(b)
= E

[
E

[∑
L̄∈L

W ∗
L̄(t)AL̄(t)

∣∣∣Z(t)

] ∣∣∣∣Z(t0)

]
=
∑
L̄∈L

W ∗
L̄(t)λL̄,

(D.3)

where (a) is true by changing the order of the summations, and (b) follows by

the GB-PANDAS routing policy which routes type L̄ task to the server with

the minimum weighted workload, W ∗
L̄
. Furthermore, using the definition of
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the ideal workload on a server in (5.8) we have the following:

E
[
〈W (t),w〉|Z(t)

]
=

M∑
m=1

Wm(t)wm

=
∑
m

Wm(t)

( ∑
L̄:m∈L̄

λL̄,m
α1

+
∑

L̄:m∈L̄2

λL̄,m
α2

+ · · ·+
∑

L̄:m∈L̄N

λL̄,m
αN

)
(a)
=
∑
L̄∈L

( ∑
m:m∈L̄

Wm(t)

α1

λL̄,m +
∑

m:m∈L̄2

Wm(t)

α2

λL̄,m+

· · ·+
∑

m:m∈L̄N

Wm(t)

αN
λL̄,m

)
(b)

≥
∑
L̄∈L

∑
m∈M

W ∗
L̄(t)λL̄,m

=
∑
L̄∈L

W ∗
L̄(t)λL̄,

(D.4)

where (a) is true by changing the order of summations, and (b) follows from

(D.2). Lemma 3 is concluded from equations (D.3) and (D.4).

D.4 Proof of Lemma 4

Lemma 4. Under the GB-PANDAS routing policy, for any arrival rate

vector strictly inside the outer bound of the capacity region, λ ∈ Λ, and

the corresponding workload vector of servers w defined in (5.8) there exists

T0 > 0 such that for any T ≥ T0 we have the following:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
≤− θ0T ||Q(t0)||1 + c0, ∀t0 ≥ 0,

where the constants θ0, c0 > 0 are independent of Z(t0).

Proof. By our assumption on boundedness of arrival and service processes,

there exists a constant CA such that for any t0, t, and T with t0 ≤ t ≤ t0 +T ,
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we have the following:

Wm(t0)− T

αN
≤ Wm(t) ≤ Wm(t0) +

TCA
αN

, ∀m ∈M. (D.5)

On the other hand, by (5.7) the ideal workload on a server defined in (5.8)

can be bounded as follows:

wm ≤
1

1 + δ
, ∀m ∈M. (D.6)

Hence,

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉

)∣∣∣Z(t0)

]

= E

[
t0+T−1∑
t=t0

(
M∑
m=1

Wm(t)wm

)∣∣∣∣Z(t0)

]
(a)

≤ T
M∑
m=1

(
Wm(t0)wm

)
+
MT 2CA
αN

(b)

≤ T

1 + δ

∑
m

Wm(t0) +
MT 2CA
αN

,

(D.7)

where (a) is true by bringing the inner summation onm out of the expectation

and using the boundedness property of the workload in equation (D.5), and

(b) is true by Equation (D.6).

Before investigating the second term, E
[ ∑t0+T−1

t=t0

(
〈W (t),S(t)〉

) ∣∣∣Z(t0)
]
,

we propose the following lemma which will be used in lower bounding this

second term.

Lemma 13. For any server m ∈M and any t0, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

= 1.

The proof of Lemma 13 is provided in Appendix D.5. We then have the

following:

E

[
t0+T−1∑
t=t0

(
〈W (t),S(t)〉

)∣∣∣Z(t0)

]
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= E

[
t0+T−1∑
t=t0

M∑
m=1

(
Wm(t)

(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

))∣∣∣∣Z(t0)

]
(a)

≥
M∑
m=1

(
Wm(t0)E

[
t0+T−1∑
t=t0

(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

)∣∣∣∣Z(t0)

])

− T

αN

M∑
m=1

E
[ t0+T−1∑

t=t0

(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

)∣∣∣∣Z(t0)

]
,

(D.8)

where (a) follows by bringing the inner summation on m out of the expecta-

tion and using the boundedness property of the workload in equation (D.5).

Using Lemma 13, for any 0 < ε0 <
δ

1+δ
, there exists T0 such that for any

T ≥ T0, we have the following for any server m ∈M:

1− ε0 ≤
E
[∑t0+T−1

t=t0

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

≤ 1 + ε0.

Then continuing on equation (D.8) we have the following:

E

[
t0+T−1∑
t=t0

(
〈W (t),S(t)〉

)∣∣∣Z(t0)

]

≥ T (1− ε0)
M∑
m=1

Wm(t0)− MT 2(1 + ε0)

αN
.

(D.9)

Then, Lemma 4 is concluded as follows by using equations (D.7) and (D.9)

and picking c0 = MT 2

αN
(CA+1+ε0) and θ0 = 1

α1

(
δ

1+δ
− ε0

)
, where by our choice

of ε0 we have θ0 > 0:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]

≤− T
(

δ

1 + δ
− ε0

) M∑
m=1

Wm(t0) +
MT 2

αN
(CA + 1 + ε0)

(a)

≤ − T

α1

(
δ

1 + δ
− ε0

) M∑
m=1

(
Q1
m(t0) +Q2

m(t0) + · · ·+QN
m(t0)

)
+ c0

≤− θ0T ||Q(t0)||1 + c0, ∀t0 ≥ 0,

where (a) is true as Wm(t0) ≥ Q1
m(t0)+Q2

m(t0)+···+QNm(t0)
α1

.
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D.5 Proof of Lemma 13

Lemma 13. For any server m ∈M and any t0, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

= 1.

Proof. Let t∗m be the first time slot after or at time slot t0 at which server m

becomes idle, and so is available to serve another task; that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (D.10)

where, as a reminder, Ψm(τ) is the number of time slots that the m-th server

has spent on the task that is receiving service from this server at time slot

τ . Note that the CDF of the service time distributions are given by Fn, n ∈
{1, 2, · · · , N} where they all have finite means αn < ∞; therefore, t∗m < ∞.

We then have the following by considering the bounded service:

E

t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

)∣∣∣∣Z(t0)

− t∗m − t0
αN

+
1

α1

/T

≤
E
[∑t0+T−1

t=t0

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

≤E

t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1

+
S2
m(t)

α2

+ · · ·+ SNm(t)

αN

)∣∣∣∣Z(t0)

+
1

αN

/T,

(D.11)

where by boundedness of t∗m, α1, and αN , it is obvious that limT→∞
− t
∗
m−t0
αN

+ 1
α1

T

= 0 and limT→∞

1
αN

T
= 0. Hence, by taking the limit of the terms in equation

(D.11) as T goes to infinity, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

= lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

.

(D.12)
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Considering the service process as a renewal process, given the scheduling

decisions at the end of the renewal intervals in [t∗m, t
∗
m + T − 1], all holding

times for server m to give service to tasks in its queues are independent. We

elaborate on this in the following.

We define renewal processes, Nn
m(t), n ∈ {1, 2, · · · , N}, as follows, where

t is an integer valued number: Let Hn
m(l) be the holding time (service time)

of the l-th task that is n-local to server m after time slot t∗m receiving service

from serve m, and call {Hn
m(l), l ≥ 1} the holding process of n-local type

task (n ∈ {1, 2, · · · , N}). Then define Jnm(l) =
∑l

i=1 H
n
m(l) for l ≥ 1, and

let Jnm(0) = 0. In the renewal process, Jnm(l) is the l-th jumping time, or the

time at which the l-th occurrence happens, and it has the following relation

with the renewal process, Nn
m(t):

Nn
m(t) =

∞∑
l=1

I{Jnm(l)≤t} = sup{l : Jnm(l) ≤ t}.

Another way to define Nn
m(t) is as below:

1: Set τ = t∗m, cntr = 0, Nn
m(t) = 0

2: while cntr < t do
3: if ηm(τ) = n then
4: cntr + +
5: Nn

m(t) + = Snm(τ)
6: end if
7: τ + +
8: end while

By convention, Nn
m(0) = 0.

In the following, we define another renewal process, Nm(t):

Nm(t) =

t∗m+t−1∑
u=t∗m

(
I{S1

m(u)=1} + I{S2
m(u)=1} + · · ·+ I{SNm(u)=1}

)
.

Similarly, let Hm(l) be the holding time (service time) of the l-th task

after time slot t∗m receiving service from serve m, and call {Hm(l), l ≥ 1}
the holding process. Then define Jm(l) =

∑l
i=1Hm(l) for l ≥ 1, and let

Jm(0) = 0. In the renewal process, Jm(l) is the l-th jumping time, or the

time at which the l-th occurrence happens, and it has the following relation
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with the renewal process, Nm(t):

Nm(t) =
∞∑
l=1

I{Jm(l)≤t} = sup{l : Jm(l) ≤ t}.

Note that the central scheduler makes scheduling decisions for server m

at time slots {t∗m + Jm(l), l ≥ 1}. We denote these scheduling decisions by

Dm(t∗m) =
(
ηm(t∗m + Jm(l)) : l ≥ 1

)
.

Consider the time interval [t∗m, t
∗
m + T − 1] when T goes to infinity. Define

ρnm as the fraction of time that server m is busy giving service to tasks that

are n-local to this server, in the mentioned interval. Obviously,
∑N

n=1 ρ
n
m = 1.

Then equation (D.12) is followed by the following:

lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

= lim
T→∞

{
E

[
E

[
t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1

+
S2
m(t)

α2

+

· · ·+ SNm(t)

αN

)∣∣∣∣Dm(t∗m), Z(t0)

]∣∣∣∣∣Z(t0)

]}/
T

=
N∑
n=1

lim
T→∞

(
E

[
1

αn
E

[
t∗m+T−1∑
t=t∗m

(
Snm(t)

)∣∣∣∣Dm(t∗m), Z(t0)

]∣∣∣∣∣Z(t0)

])/
T

=
N∑
n=1

E

[
1

αn
lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣∣Dm(t∗m), Z(t0)
]

T

∣∣∣∣∣Z(t0)

]
.

(D.13)

Note that given {Dm(t∗m), Z(t0)}, the holding times {Hn
m(l), l ≥ 1} are in-

dependent and identically distributed with CDF Fn. If ρnm = 0, then we

do not have to worry about those tasks that are n-local to server m since

they receive service from this server for only a finite number of times in time

interval [t∗m, t
∗
m + T − 1] as T →∞, so

lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣Dm(t∗m), Z(t0)
]

T
= 0.

But if ρnm > 0, we can use the strong law of large numbers for renewal process
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Nn
m to conclude the following:

lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣Dm(t∗m), Z(t0)
]

T
= ρnm ·

1

E[Hn
m(1)]

, (D.14)

where the holding time (service time) Hn
m(1) has CDF Fn with expectation

1
αn

. Combining equations (D.15) and (D.14), Lemma 13 is concluded as

follows:

lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1

+ S2
m(t)
α2

+ · · ·+ SNm(t)
αN

)∣∣∣∣Z(t0)

]
T

=
N∑
n=1

E
[

1

αn
· ρnm · αn

∣∣∣∣Z(t0)

]
=

N∑
n=1

ρnm = 1.

(D.15)

D.6 Proof of Lemma 5

Lemma 5. Under the GB-PANDAS routing policy, for any arrival rate

vector strictly inside the outer bound of the capacity region, λ ∈ Λ, and any

θ1 ∈ (0, 1), there exists T1 > 0 such that the following is true for any T ≥ T1

and for any t0 ≥ 0:

E
[
||Ψ (t0 + T )||1 − ||Ψ (t0)||1

∣∣∣Z(t0)
]

≤− θ1||Ψ (t0)||1 +MT,

where ||.||1 is L1-norm.

Proof. For any server m ∈ M, let t∗m be the first time slot after or at time

slot t0 at which the server is available (t∗m is also defined in (D.10)); that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (D.16)

where it is obvious that Ψm(t∗m) = 0.

Note that for any t, we have Ψm(t + 1) ≤ Ψm(t) + 1, that is true by the

definition of Ψ(t), which is the number of time slots that serverm has spent on
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the currently in-service task. From time slot t to t+1, if a new task comes in

service, then Ψm(t+1) = 0 which results in Ψm(t+1) ≤ Ψm(t)+1; otherwise, if

server m continues giving service to the same task, then Ψm(t+1) = Ψm(t)+1.

Thus, if t∗m ≤ t0 +T , it is easy to find out that Ψm(t0 +T ) ≤ t0 +T − t∗m ≤ T .

In the following we use t∗m to find a bound on E[Ψm(t0 + T )− Ψm(t0)|Z(t0)]:

E
[
||Ψ (t0 + T )||1 − ||Ψ (t0)||1

∣∣∣Z(t0)
]

=
M∑
m=1

E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0)

]

=
M∑
m=1

{
E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0), t∗m ≤ t0 + T

]
× P

(
t∗m ≤ t0 + T

∣∣Z(t0)
)

+ E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0), t∗m > t0 + T

]
× P

(
t∗m > t0 + T

∣∣Z(t0)
)}

(a)

≤
M∑
m=1

{(
T − Ψm(t0)

)
× P

(
t∗m > t0 + T

∣∣Z(t0)
)

+ T × P
(
t∗m > t0 + T

∣∣Z(t0)
)}

=−
M∑
m=1

(
Ψm(t0) · P

(
t∗m > t0 + T

∣∣Z(t0)
))

+MT,

(D.17)

where (a) is true as given that t∗m ≤ t0 + T we found that Ψm(t0 + T ) ≤ T ,

so Ψm(t0 + T ) − Ψm(t0) ≤ T − Ψm(t0), and given that t∗m > t0 + T , it is

concluded that server m is giving service to the same task over the whole

interval [t0, t0 + T ], which results in Ψm(t0 + T )− Ψm(t0) = T .

Since service time of an n-local task has CDF Fn with finite mean, we have

the following:

lim
T→∞

P
(
t∗m ≤ t0 + T

∣∣∣Z(t0)
)

= 1, ∀m ∈M.

Therefore, for any θ1 ∈ (0, 1) there exists T1 such that for any T ≥ T1, we

have P
(
t∗m ≤ t0 + T

∣∣∣Z(t0)
)
≥ θ1, for any m ∈M, so equation (D.17) follows

as below which completes the proof:
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E
[
||Ψ (t0 + T )||1 − ||Ψ (t0)||1

∣∣∣Z(t0)
]

≤− θ1

M∑
m=1

Ψm(t0) +MT

=− θ1||Ψ (t0)||1 +MT.

(D.18)

D.7 Proof of Lemma 6

Lemma 6.
{
Z(t) =

(
Q(t),η(t),Ψ (t)

)
, t ≥ 0

}
forms an irreducible and

aperiodic Markov chain. The state space of this Markov chain is S =(∏
m∈MNNm)× (∏m∈M{1, 2, · · · , Nm}

)
× NM .

Proof. Consider Z(0) =
{

0(
∑
m∈MNm)×1,

∏
m∈MNm, 0M×1

}
as the initial

state of the Markov chain Z(t).

Irreducible: Since Fi,m is increasing for any task-server pair, we can find an

integer τ > 0 such that Fi,m(τ) > 0 for any 1 ≤ i ≤ Nm and m ∈ M.

Furthermore, probability of zero task arrival is positive in each time slot.

Hence, for any state Z = (Q,η,Ψ ), there is a positive probability that each

task receives service in τ time slots and no new task arrives at the system

in τ
∑

m∈M
∑Nm

n=1Q
n
m time slots. Accordingly, the initial state of the Markov

chain is reachable from any states of the system. Conversely, using the same

approach, it is easy to see that any states of the system is reachable from the

initial state, Z(0). Consequently, the Markov chain Z(t) is irreducible.

Aperiodic: Since Markov chain Z(t) is irreducible, in order to show that it

is also aperiodic, it suffices to show that there is a positive probability for

transition from a state to itself. Due to the fact that there is a positive

probability that zero task arrives to the system, the Markov chain stays at

the initial state with a positive probability. Hence, the Markov chain Z(t) is

aperiodic.

166



D.8 Proof of Lemma 7

Lemma 7. For any arrival rate vector inside the capacity region, λ ∈ Λ,

there exists a load decomposition {λi,m} and δ > 0 such that

∑
i∈L

λi,m
µi,m

<
1

1 + δ
, ∀m ∈M. (D.19)

The fluid model planning algorithm solves a linear programming to find the

load decomposition {λi,m} that is used in its load balancing on the M servers.

In other words, this load decomposition is a possibility of task assignment

on servers to stabilize the system.

Proof. The capacity region Λ is an open set, so for any λ ∈ Λ, there exists

δ > 0 such that (1 + δ)λ = λ′ ∈ Λ. On that account, (5.15) follows by∑
i∈L

λ′i,m
µi,m

=
∑

i∈L
(1+δ)λi,m
µi,m

< 1,∀m ∈M, which completes the proof:

∑
i∈L

λi,m
µi,m

<
1

1 + δ
,∀m ∈M.

D.9 Proof of Lemma 8

Lemma 8.

〈W (t), Ũ(t)〉 = 0, ∀t.

Proof.

〈W (t), Ũ (t)〉 =
∑
m∈M

(
Q1
m(t)

α1
m

+
Q2
m(t)

α2
m

+ · · ·+ QN
m(t)

αNm

m

)
Um(t)

αNm

m

.

If the unused service for server m is zero, Um(t) = 0, the corresponding

term for server m is zero in the above summation. Alternatively, the unused

service of server m is positive if and only if all Nm sub-queues of the server

are empty, which again makes the corresponding term for server m in the

above summation equal to zero.
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D.10 Proof of Lemma 9

Lemma 9. Under the exploration-exploitation routing policy of the Blind

GB-PANDAS algorithm, for any arrival rate vector inside the capacity region,

λ ∈ Λ, and the corresponding ideal workload vector w defined in (5.24), and

for any arbitrary small θ0 > 0, there exists T0 > t0 such that for any t0 ≥ 0

and T > T0:

E
[ t0+T−1∑

t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)
]

≤θ0T‖Q(t0)‖1 + c0,

where the constants θ0, c0 > 0 are independent of Z(t0).

Proof. By the choice of exploration rate for Blind GB-PANDAS, which is

independent of the system state, and the fact that exploration exists in both

routing and scheduling, any task that is n-local to server m is scheduled

on this server for infinitely many times in the interval [t0,∞) only due to

exploration, regardless of the initial system state. Processing time of an n-

local task on server m has a finite mean. Hence, due to strong law of large

numbers, using the update rule (5.17) for the elements of the service rate

matrix, we have:

∀ 0 < ε <
1

2
×min

{
min
n6=n′,m

∣∣αnm − αn′m∣∣,min
m,n

αnm, 0.5
}

and ∀δ′ > 0,∃T ′0 > t0, such that for any Z(t0)

P

(∣∣α̃nm(t)− αnm
∣∣<ε, 1−ε< αnm

α̃nm(t)
< 1+ε

∣∣∣∣Z(t0)

)
> 1− δ′,

∀t > T ′0, ∀m ∈M, ∀n ∈ {1, 2, · · · , Nm}.

(D.20)

By the above choice of ε, for t > T ′0, the different locality levels are distinct

from each other with at least 1 − δ′ probability. Let E be the event that∣∣α̃nm(t)− αnm
∣∣ < ε and 1− ε < αnm

α̃nm(t)
< 1 + ε for t ≥ T ′0.

For an incoming task of type i ∈ L at time slot t, define the exact (but
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not known) and estimated minimum weighted workloads as

W
∗
i (t) = min

m∈M

Wm(t)

µi,m
,

W̃
∗

i (t) = min
m∈M

W̃m(t)

µ̃i,m(t)
,

(D.21)

where Wm(t) and W̃m(t) are defined in (5.13) and (5.18), respectively. Wm(t)

and W̃m(t) are related to each other as follows:

W̃m(t) =
Q1
m(t)

α̃1
m(t)

+
Q2
m(t)

α̃2
m(t)

+ · · ·+ QNm

m (t)

α̃Nm

m (t)

=
α1
m

α̃1
m(t)

· Q
1
m(t)

α1
m

+ · · ·+ αN
m

m

α̃Nm

m (t)
· Q

Nm

m (t)

αNm

m

.

Hence, using (D.20), for any t > T ′0 and any m ∈M, we have

P

(
(1− ε)Wm(t) < W̃m(t) < (1 + ε)Wm(t)

∣∣∣∣Z(t0), E

)
= 1, (D.22)

and using (D.21) and (D.22), we have

P

(
Wm(t)

µi,m
≥ W

∗
i (t) >

1

(1 + ε)2
W̃
∗

i (t)

∣∣∣∣Z(t0), E

)
= 1. (D.23)

Using the conditional independence of W̃ (t) and A(t) from Z(t0) given

Z(t), for any T > T ′0 − t0, we have the following for T ′0 ≤ t ≤ t0 + T − 1:

E
[
〈W (t),A(t)〉|Z(t0)

]
(a)
= E

[ ∑
m∈M

Wm(t)
(A1

m(t)

α1
m

+
A2
m(t)

α2
m

+ · · ·+ AN
m

m (t)

αNm

m

)∣∣∣∣Z(t0)

]
(b)
= E

[∑
m

Wm(t)

(
1

α1
m

∑
i∈L1

m

Ai,m(t) +
1

α2
m

∑
i∈L2

m

Ai,m(t)

+ · · ·+ 1

αNm

m

∑
i∈LNmm

Ai,m(t)

)∣∣∣∣Z(t0)

]
(c)
= E

[∑
i∈L

∑
m∈M

(
Wm(t)

µi,m
Ai,m(t)

)∣∣∣∣Z(t0)

]
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(d)

≤ E
[∑
i∈L

∑
m∈M

(
1

(1− ε)2
· W̃m(t)

µ̃i,m
Ai,m(t)

)∣∣∣∣Z(t0), E

]
+ δ′·E

[∑
i∈L

∑
m∈M

(
Q1
m(t)+ · · ·+QNm

m (t)

min
i,m
{µi,m}·min

i
{µi,m}

Ai,m(t)

)∣∣∣∣Z(t0), Ec

]
(e)
< E

[
E
[∑
i∈L

(
pe ·

1

(1− ε)2
· W̃

∗

i (t)Ai(t) +
1− pe

(1− ε)2

×
∑
m

∑Nm

n=1 Q
n
m(t0) +NT (T − t0)CA

min
i,m
{µ̃i,m(t)} ·min

i
{µ̃i,m(t)}

·CA
)∣∣∣∣Z(t)

]∣∣∣∣Z(t0)E

]

+ δ′ · E
[∑
i∈L

(∑
m

∑Nm

n=1 Q
n
m(t0) +NT (T − t0)CA

mini,m{µi,m} ·mini{µi,m}
· CA

)∣∣∣∣Z(t0), Ec

]
(f)
<

1

(1−ε)2

∑
i∈L

E
[
W̃
∗

i(t)

∣∣∣∣Z(t0), E

]
λi+

(
1

tδ′′
+δ′
)
c′′0‖Q(t0)‖1+c

′
0,

(D.24)

where (a) and (b) are simply followed by the definitions of pseudo task arrival

process in (5.21) and Anm(t) in (5.19), respectively. The order of summations

is changed in (c). By the law of total probability, (D.20), and (D.22), (d) is

true, and (e) follows by the routing policy of Blind GB-PANDAS, where an

incoming task at the beginning of time slot t is routed to the corresponding

sub-queue of the server with the minimum estimated weighted workload with

probability pe = max(1 − p(t), 0) and is routed to the corresponding sub-

queue of a server chosen uniformly at random with probability 1− pe. Also

note that the number of arriving tasks at a time slot is assumed to be upper

bounded by CA. The last step, (f), is true by using (D.20), upper bounding

the exploration probability 1− pe by 1
tδ′′

given that δ′′ > 0 is a constant, and

doing simple calculations, where c′′0 and c′0 are constants independent ofZ(t0).

Note that minimum value of the estimated service rates, mini,m{µ̃i,m(t)}, is

lower bounded for any t ≥ t0 by a constant which is the minimum of the

initialization of service rates and the inverse of the maximum support of

CDF functions Fi,m. We also have

E
[
〈W (t),w〉|Z(t0)

]
= E

[∑
m∈M

Wm(t)wm

∣∣∣∣Z(t0)

]
(a)
= E

[∑
m∈M

(
Wm(t)

∑
i∈L

λi,m
µi,m

)∣∣∣∣Z(t0)

]

170



(b)
= E

[∑
i∈L
m∈M

Wm(t)

µi,m
λi,m

∣∣∣∣Z(t0)

]
(c)

≥
∑
i∈L
m∈M

1− δ′

(1 + ε)2
E
[
W̃
∗

i (t)

∣∣∣∣Z(t0), E

]
λi,m

=
1− δ′

(1 + ε)2

∑
i∈L

E
[
W̃
∗

i (t)

∣∣∣∣Z(t0), E

]
λi,

(D.25)

where (a) is true by the definition of the ideal workload on a server in (5.24),

note that the ideal workload is not state dependent but Wm(t) is, the order

of summations is changed in (b), and (c) is followed by the law of total

probability, ignoring the second term, and Equation (D.23).

Putting (D.24) and (D.25) together, for T > T0 > T ′0, we have

E
[ t0+T−1∑

t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)
]

<

t0+T−1∑
t=T0

((
1

(1− ε)2
− 1− δ′

(1 + ε)2

)∑
i∈L

E
[
W̃
∗

i (t)

∣∣∣∣Z(t0), E

]
λi

+

(
1

tδ′′
+ δ′

)
c′′0‖Q(t0)‖1 + c′0

)
(a)
<

16

9
(4ε+ δ′) ·

(
t0+T−1∑
t=T0

∑
i∈L

E
[
W̃
∗

i (t)

∣∣∣∣Z(t0), E

]
λi

)

+ T

(
1

T δ
′′

0

+ δ′
)
c′′0‖Q(t0)‖1 + Tc′0

(b)
<

16

9
(4ε+ δ′)TNT max

i
{λi}

×

(
E
[∑

m

∑Nm

n=1 Q
1
m(t0) +NT (T − t0)CA

mini,m{µ̃i,m(t)} ·mini{µ̃i,m(t)}

∣∣∣∣Z(t0), E

])

+ T

(
1

T δ
′′

0

+ δ′
)
c′′0‖Q(t0)‖1 + Tc′0

(c)
<

(
ε+ δ′ +

1

T δ
′′

0

)
Tc1‖Q(t0)‖1 + c0 = θ0T‖Q(t0)‖1 + c0,

where (a) follows by upper bounding 1 − ε, 1
(1−ε)2(1+ε)2 , and 1

tδ′′
by 1, 16

9
,

and 1

T δ
′′

0

, respectively, and (b) is true by the fact that the number of arriving

tasks is bounded by CA, the number of task types is NT , and the maximum
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arrival rate of task types, maxi{λi}, is bounded by the number of servers.

Inequality (c) is true by doing simple calculations and using the fact that

mini,m{µ̃i,m(t)} is lower bounded by a constant for any t ≥ t0 as discussed in

(f) of (D.24).

Remark 12. θ0 can be made arbitrary small by choosing ε and δ′ small and

T0 large enough.

D.11 Proof of Lemma 10

Lemma 10. Under the exploration-exploitation scheduling policy of the

Blind GB-PANDAS algorithm, for any arrival rate vector inside the capacity

region, λ ∈ Λ, and the corresponding ideal workload vectorw in (5.24), there

exists T1 > 0 such that for any T > T1, we have:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
≤− θ1T‖Q(t0)‖1 + c1, ∀t0 ≥ 0,

(D.26)

where the constants θ1, c1 > 0 are independent of Z(t0).

Proof. The proof is similar to the proof of Lemma 4 and is presented for

the sake of completeness. By the assumption on boundedness of arrival and

service processes, there exists a constant CA such that for any t0, t, and T

with t0 ≤ t ≤ t0 + T , we have the following for all m ∈M:

Wm(t0)− T

minn{αnm}
≤ Wm(t) ≤ Wm(t0) +

TCA
minn{αnm}

. (D.27)

On the other hand, by Lemma 7, the ideal workload on a server defined in

(5.24) can be bounded as follows:

wm ≤
1

1 + δ
, ∀m ∈M. (D.28)
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Hence,

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉

)∣∣∣Z(t0)

]

= E

[
t0+T−1∑
t=t0

(
M∑
m=1

Wm(t)wm

)∣∣∣∣Z(t0)

]
(a)

≤ T

M∑
m=1

(
Wm(t0)wm +

MT 2CA
minn{αnm}

)
(b)

≤ T

1 + δ

∑
m

Wm(t0) +
MT 2CA

minm,n{αnm}
,

(D.29)

where (a) is true by bringing the inner summation onm out of the expectation

and using the boundedness property of the workload in Equation (D.27), and

(b) is true by Equation (D.28).

Before investigating the second term on the left-hand side of Equation

(D.26), E
[ ∑t0+T−1

t=t0

(
〈W (t),S(t)〉

) ∣∣∣Z(t0)
]
, we propose the following lemma

which will be used in lower bounding this second term.

Lemma 14. For any server m ∈M and any t0, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

= 1.

The proof of Lemma 14 is provided in Appendix D.14. We then have the

following:

E

[
t0+T−1∑
t=t0

(
〈W (t),S(t)〉

)∣∣∣Z(t0)

]

= E

[
t0+T−1∑
t=t0

M∑
m=1

(
Wm(t)

(
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

))∣∣∣∣Z(t0)

]
(a)

≥
M∑
m=1

(
Wm(t0)E

[
t0+T−1∑
t=t0

(
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

)∣∣∣∣Z(t0)

])

−
M∑
m=1

(
T

minn{αnm}
E
[ t0+T−1∑

t=t0

(
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

)∣∣∣∣Z(t0)

])
,

(D.30)
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where (a) follows by bringing the inner summation on m out of the expecta-

tion and using the boundedness property of the workload in Equation (D.27).

Using Lemma 14, for any 0 < ε0 <
δ

1+δ
, there exists T1 such that for any

T ≥ T1, we have the following for any server m ∈M:

1− ε0 ≤
E
[∑t0+T−1

t=t0

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

≤ 1 + ε0.

Then continuing on Equation (D.30), we have the following:

E

[
t0+T−1∑
t=t0

(
〈W (t),S(t)〉

)∣∣∣Z(t0)

]

≥ T (1− ε0)
M∑
m=1

Wm(t0)− MT 2(1 + ε0)

minm,n{αnm}
.

(D.31)

Then Lemma 10 is concluded as follows by using equations (D.29) and

(D.31) and picking c1 = MT 2

minm,n{αnm}
(CA+1+ε0) and θ1 = 1

maxm,n{αnm}

(
δ

1+δ
− ε0

)
,

where by our choice of ε0 we have θ1 > 0:

E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]

≤− T
(

δ

1 + δ
− ε0

) M∑
m=1

Wm(t0) +
MT 2

minm,n{αnm}
(CA + 1 + ε0)

(a)

≤ − T

maxm,n{αnm}

(
δ

1 + δ
− ε0

) M∑
m=1

(
Q1
m(t0) +Q2

m(t0)

+ · · ·+QNm

m (t0)
)

+ c1

≤− θ1T‖Q(t0)‖1 + c1, ∀T ≥ T0,

where (a) is true as Wm(t0) ≥ Q1
m(t0)+Q2

m(t0)+···+QNmm (t0)
maxm,n{αnm}

.

D.12 Proof of Lemma 11

Lemma 11. Under the exploration-exploitation load balancing of the Blind

GB-PANDAS algorithm, for any arrival rate vector inside the capacity region,

λ ∈ Λ, and for any θ2 > 0, there exists T2 > 0 such that for any T > T2 and
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for any t0 ≥ 0, we have:

E
[
‖Ψ (t0 + T )‖1 − ‖Ψ (t0)‖1

∣∣∣Z(t0)
]

≤− θ2‖Ψ (t0)‖1 +MT.

Proof. For any server m ∈ M, let t∗m be the first time slot after or at time

slot t0 at which the server is available; that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (D.32)

where it is obvious that Ψm(t∗m) = 0. Note that for any t ≥ t0, we have

Ψm(t + 1) ≤ Ψm(t) + 1, which is true by the definition of Ψ(t) that is the

number of time slots that server m has spent on the currently in-service task.

From time slot t to t+ 1, if a new task comes in service, then Ψm(t+ 1) = 0

which results in Ψm(t+1) ≤ Ψm(t)+1; otherwise, if server m continues giving

service to the same task, then Ψm(t + 1) = Ψm(t) + 1. Thus, if t∗m ≤ t0 + T ,

it is easy to find out that Ψm(t0 + T ) ≤ t0 + T − t∗m ≤ T . In the following,

we use t∗m to find a bound on E[Ψm(t0 + T )− Ψm(t0)|Z(t0)]:

E
[
‖Ψ (t0 + T )‖1 − ‖Ψ (t0)‖1

∣∣∣Z(t0)
]

=
M∑
m=1

E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0)

]

=
M∑
m=1

{
E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0), t∗m ≤ t0 + T

]
× P

(
t∗m ≤ t0 + T

∣∣Z(t0)
)

+ E
[(
Ψm(t0 + T )− Ψm(t0)

)∣∣∣∣Z(t0), t∗m > t0 + T

]
× P

(
t∗m > t0 + T

∣∣Z(t0)
)}

(a)

≤
M∑
m=1

{(
T − Ψm(t0)

)
× P

(
t∗m > t0 + T

∣∣Z(t0)
)

+ T × P
(
t∗m > t0 + T

∣∣Z(t0)
)}

= −
M∑
m=1

(
Ψm(t0) · P

(
t∗m > t0 + T

∣∣Z(t0)
))

+MT,

(D.33)
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where (a) is true as given that t∗m ≤ t0 + T we found that Ψm(t0 + T ) ≤ T ,

so Ψm(t0 + T ) − Ψm(t0) ≤ T − Ψm(t0), and given that t∗m > t0 + T , it is

concluded that server m is giving service to the same task over the whole

interval [t0, t0 + T ], which results in Ψm(t0 + T )− Ψm(t0) = T .

Since the CDF of service time of an n-local task on server m has finite

mean, we have the following:

lim
T→∞

P
(
t∗m ≤ t0 + T

∣∣∣Z(t0)
)

= 1, ∀m ∈M.

Therefore, for any θ2 ∈ (0, 1) there exists T2 such that for any T ≥ T2,

we have P
(
t∗m ≤ t0 + T

∣∣∣Z(t0)
)
≥ θ2, for any m ∈ M, so Equation (D.33)

follows as below which completes the proof:

E
[
‖Ψ (t0 + T )‖1 − ‖Ψ (t0)‖1

∣∣∣Z(t0)
]

≤− θ2

M∑
m=1

Ψm(t0) +MT = −θ2‖Ψ (t0)‖1 +MT.
(D.34)

D.13 Proof of Lemma 12

Lemma 12. For any t0 ≤ T0 < T , specifically T0 from Lemma 9 that

is dictated by choosing θ0 < θ1, we have the following for the drift of the

Lyapunov function in (5.27), where T0 is used in the first summation after

the inequality:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

≤ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

+ c2‖Q(t0)‖1 + c3.

(D.35)
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Proof.

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

= E
[
‖W (t0 + T )‖2 − ‖W (t0)‖2

∣∣∣Z(t0)
]

+ E
[
‖Ψ (t0 + T )‖1 − ‖Ψ (t0)‖1

∣∣∣Z(t0)
]

(a)
= E

[
t0+T−1∑
t=t0

(
‖W (t+ 1)‖2 − ‖W (t)‖2

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

(b)
= E

[
t0+T−1∑
t=t0

(
‖A(t)− S(t) + Ũ (t)‖2

+ 2〈W (t),A(t)− S(t)〉+ 2〈W (t), Ũ(t)〉
)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

(c)

≤ 2E

[
t0+T−1∑
t=t0

(
〈W (t),A(t)− S(t)〉

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

+ c′3

(d)
= 2E

[
t0+T−1∑
t=t0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

+ c′3,

(D.36)

where (a) is true by the telescoping series, (b) follows by using (5.22) to

substitute W (t + 1), (c) follows by Lemma 8 and the fact that the task

arrival is assumed to be bounded and the service and unused service are also

bounded as the number of servers are finite, so the pseudo arrival, service,

and unused service are also bounded, and therefore there exists a constant

c1 such that ‖A(t) − S(t) + Ũ(t)‖2 ≤ c′3
T

, and (d) follows by adding and
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subtracting the intermediary term 〈W (t),w〉. On the other hand,

2E

[
t0+T−1∑
t=t0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣∣Z(t0)

]

≤ 2E

[
T0−1∑
t=t0

〈W (t),A(t)〉
∣∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣∣Z(t0)

]
(a)

≤ 2E

[
(T0 − t0) · CA

(minm,n{αnm})
2

∑
m∈M

(
Q1
m(t0) + · · ·+QNm

m (t0)

+Nm · CA · (T0 − t0)
)∣∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣∣Z(t0)

]

≤ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣∣Z(t0)

]
+ c2‖Q(t0)‖1 + c′′3,

(D.37)

where (a) is true by the fact that at most CA tasks arrive at system in each

time slot, and by using the definition of pseudo task arrival in (5.21). Putting

(D.36) and (D.37) together, Lemma 12 is proved as follows:

E
[
V (Z(t0 + T ))− V (Z(t0))

∣∣∣Z(t0)
]

≤ 2E

[
t0+T−1∑
t=T0

(
〈W (t),A(t)〉 − 〈W (t),w〉

)∣∣∣∣Z(t0)

]

+ 2E

[
t0+T−1∑
t=t0

(
〈W (t),w〉 − 〈W (t),S(t)〉

)∣∣∣Z(t0)

]
+ E

[
‖Ψ (t0 + T )‖1 − ‖Ψ (t)‖1

∣∣∣Z(t0)
]

+ c2‖Q(t0)‖1 + c3,

where c3 = c′3 + c′′3.

178



D.14 Proof of Lemma 14

Lemma 14. For any server m ∈M and any t0, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

= 1.

Proof. The proof is similar to the proof of Lemma 13 and is presented for

the sake of completeness. Let t∗m be the first time slot after or at time slot

t0 at which server m becomes idle, and so is available to serve another task

(t∗m is also defined in (D.32)); that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (D.38)

where, as a reminder, Ψm(τ) is the number of time slots that the m-th server

has spent on the task that is receiving service from this server at time slot τ .

Denote the CDF of service time of an n-local task on server m by F n
m that

has finite mean αnm <∞; therefore, t∗m <∞. We then have the following by

considering the bounded service:E

t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1
m

+ · · ·+ SN
m

m (t)

αNm

m

)∣∣∣∣Z(t0)

− t∗m − t0
αNm

m

+
1

α1
m

/T

≤
E
[∑t0+T−1

t=t0

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

≤

E

t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1
m

+ · · ·+ SN
m

m (t)

αNm

m

)∣∣∣∣Z(t0)

+
1

αNm

m

/T,

(D.39)

where by boundedness of t∗m, α
1
m, and αN

m

m , it is obvious that

lim
T→∞

− t∗m−t0
αNmm

+ 1
α1
m

T
= 0 and lim

T→∞

1
αNmm

T
= 0.

Hence, by taking the limit of the terms in Equation (D.39) as T goes to
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infinity, we have the following:

lim
T→∞

E
[∑t0+T−1

t=t0

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

= lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

.

(D.40)

Considering the service process as a renewal process, given the scheduling

decisions at the end of the renewal intervals in [t∗m, t
∗
m+T−1], all holding times

for server m to give service to tasks in its sub-queues are independent. We

elaborate on this in the following. We define renewal processes, Nn
m(t), n ∈

{1, 2, · · · , Nm}, as follows, where t is an integer valued number:

Let Hn
m(l) be the holding time (service time) of the l-th task that is n-

local to server m after time slot t∗m receiving service from server m, and call

{Hn
m(l), l ≥ 1} the holding process of n-local task type, n ∈ {1, 2, · · · , Nm}.

Then define Jnm(l) =
∑l

i=1H
n
m(l) for l ≥ 1, and let Jnm(0) = 0. In the

renewal process, Jnm(l) is the l-th jumping time, or the time at which the

l-th occurrence happens, and it has the following relation with the renewal

process, Nn
m(t):

Nn
m(t) =

∞∑
l=1

I{Jnm(l)≤t} = sup{l : Jnm(l) ≤ t}.

Another way to define Nn
m(t) is as shown in the following algorithm, where

by convention, Nn
m(0) = 0.

1: Set τ = t∗m, cntr = 0, Nn
m(t) = 0

2: while cntr < t do
3: if ηm(τ) = n then
4: cntr + +
5: Nn

m(t) + = Snm(τ)
6: end if
7: τ + +
8: end while
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Another renewal process, Nm(t), is defined as

Nm(t) =

t∗m+t−1∑
u=t∗m

(
I{S1

m(u)=1} + I{S2
m(u)=1} + · · ·+ I{SNmm (u)=1}

)
.

Similarly, let Hm(l) be the holding time (service time) of the l-th task after

time slot t∗m receiving service from server m, and call {Hm(l), l ≥ 1} the

holding process. Then define Jm(l) =
∑l

i=1Hm(l) for l ≥ 1, and let Jm(0) =

0. In the renewal process, Jm(l) is the l-th jumping time, or the time at

which the l-th occurrence happens, and it has the following relation with the

renewal process, Nm(t):

Nm(t) =
∞∑
l=1

I{Jm(l)≤t} = sup{l : Jm(l) ≤ t}.

Note that the central scheduler makes scheduling decisions for server m

at time slots {t∗m + Jm(l), l ≥ 1}. We denote these scheduling decisions by

Dm(t∗m) =
(
ηm(t∗m+Jm(l)) : l ≥ 1

)
. Consider the time interval [t∗m, t

∗
m+T−1]

when T goes to infinity. Define ρnm as the fraction of time that server m is

busy giving service to tasks that are n-local to this server, in the mentioned

interval. Obviously,
∑Nm

n=1 ρ
n
m = 1. Then Equation (D.40) is followed by

lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

= lim
T→∞

{
E

[
E

[
t∗m+T−1∑
t=t∗m

(
S1
m(t)

α1
m

+
S2
m(t)

α2
m

+ · · ·+ SN
m

m (t)

αNm

m

)∣∣∣∣Dm(t∗m),Z(t0)

]∣∣∣∣∣Z(t0)

]}/
T

=
Nm∑
n=1

lim
T→∞

(
E

[
1

αnm
E

[
t∗m+T−1∑
t=t∗m

(
Snm(t)

)∣∣∣∣Dm(t∗m),Z(t0)

]∣∣∣∣∣Z(t0)

])/
T

=
Nm∑
n=1

E

[
1

αnm
lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣∣Dm(t∗m),Z(t0)
]

T

∣∣∣∣∣Z(t0)

]
.

(D.41)

Note that given {Dm(t∗m),Z(t0)}, the holding times {Hn
m(l), l ≥ 1} are in-

dependent and identically distributed with CDF F n
m. If ρnm = 0, then we
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do not have to worry about those tasks that are n-local to server m since

they receive service from this server for only a finite number of times in time

interval [t∗m, t
∗
m + T − 1] as T →∞, so

lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣Dm(t∗m),Z(t0)
]

T
= 0.

But if ρnm > 0, we can use the strong law of large numbers for renewal process

Nn
m to conclude the following:

lim
T→∞

E
[
Nn
m

(
ρnmT

)∣∣Dm(t∗m),Z(t0)
]

T
= ρnm ·

1

E[Hn
m(1)]

, (D.42)

where the holding time (service time) Hn
m(1) has CDF F n

m with expectation
1
αnm

. Combining equations (D.41) and (D.42), Lemma 14 is concluded as

follows:

lim
T→∞

E
[∑t∗m+T−1

t=t∗m

(
S1
m(t)
α1
m

+ S2
m(t)
α2
m

+ · · ·+ SN
m

m (t)

αNmm

)∣∣∣∣Z(t0)

]
T

=
Nm∑
n=1

E
[

1

αnm
· ρnm · αnm

∣∣∣∣Z(t0)

]
=

Nm∑
n=1

ρnm = 1.

(D.43)
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