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A Game of One/Two Strategic Friendly Jammers

versus a Malicious Strategic Node
Leonardo Badia, Senior Member, IEEE, Francesco Gringoli, Senior Member, IEEE

Abstract—We present a game-theoretic analysis of the in-
teraction between a malicious node, attempting to perform
unauthorized radio transmission, and friendly jammers trying
to disrupt the malicious communications. We investigate the
strategic behavior of the jammers against a rational malicious
node and highlight counterintuitive results for this conflict. We
also analyze the impact of multiple friendly jammers sharing the
same goal but acting without coordination; we find out that this
scenario offers a better payoff for the jammers, which has some
strong implications on how to implement friendly jamming.

Index Terms—Friendly jamming; network security; wireless
LAN; game theory.

I. INTRODUCTION

FREQUENCY jamming, usually performed to disrupt

wireless communications, can also be used for good,

namely to block unauthenticated transmissions, such as injec-

tion attacks; this is often referred to as friendly jamming [1].

We analyze the scenario of a local wireless network, e.g., in a

campus or a public premise, challenged by a malicious node,

whose activity can jeopardize network operation or whose

radio access is forbidden: think of a student communicating to

cheat during exams. To block it, the network dispatches one

or more friendly jammers that reactively look for forbidden

frames and jam their payloads [2]. The effectiveness of the

friendly jammers depends on many aspects, such as their

ability to monitor the channel, frequency hopping patterns,

synchronization issues, and so on [3]. They also have multiple

ways to disrupt unauthorized communications, e.g., jamming

data packets or interfere with the reception of acknowledg-

ments [4]. We abstract from all these elements and just

consider an average success / failure rate of the jamming.

We frame the resulting conflict as an Entry game, a setup

often used in economic scenarios, e.g., the telecommunication

market [5]. Our goal is to infer results for effective security

techniques, and prompt for extensions in practical contexts.

First, we derive the mixed strategy Nash equilibrium of the en-

try game in closed form. One unexpected conclusion involves

the dependences on the transmission cost, assumed identical

for the jammer and the malicious node, and the reward that

the latter gets for a successful attack. The frequency of attacks

is proportional to the transmission cost, while the jamming

probability decreases with it. Conversely, a higher reward
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leads to lower attack and higher jamming probabilities. These

exploits stem from the strategic behavior of the players and

will be discussed and justified. It is also noted that the jammer

obtains a strictly negative average payoff.

Moreover, we consider two friendly jammers with the same

purpose of defeating the attacker but also being strategic and

uncoordinated, i.e., each may prefer to save the transmission

cost and let the unwarranted transmissions be jammed by the

other [6]. We derive the Nash equilibrium in closed form,

with the interesting twist that the transmission cost term is

now replaced by the square root of the transmission cost times

the reward for a successful attack. As a result, the probability

of malicious transmissions is increased, while the jamming

probability is decreased. In addition, while the previous sce-

nario was not strategically sustainable for the jammers due to

a negative payoff, the one with multiple jammers might be, as

long as the transmission cost is limited (as a rule of thumb:

at most 20% of the reward for a successful jamming).

II. RELATED WORK

A long-standing branch of research focuses on friendly

jamming, mostly aimed at its implementation. For instance,

[2] analyzed friendly jamming in wireless LANs, and [3]

demonstrated the ease of implementation of friendly jamming

with off-the-shelf smartphones. A proper signal design may be

used to scramble only malicious transmissions but be harmless

against legitimate ones [7]. In our scenario, jammers interact

with the malicious node only; hence, we assume that they

just increase the noise floor to lower channel capacity [8]. We

do not deal with implementation details, nor we distinguish

between different kinds of jamming, as exhaustively done in

[4]; these are possible extensions for future work.

Other contributions [1], [9], [10] use game theory to study

jamming problems, since they involve multiple players (usu-

ally limited in number) with different objectives and acting

without coordination, and it is relatively easy to quantify the

outcomes [9]. This last paper also offers a detailed discussion

on how to evaluate game theoretic payoffs related to the quality

of service of the network under jamming, so the reader is

referred to it as a complement of our analysis in this sense.

Other studies [1] consider incentives for the jammers to

contribute to network security against eavesdropping, e.g., as

a bargain between the network and volunteering friendly jam-

mers. The network negotiates incentives to support information

secrecy and defeat the eavesdroppers [10]. Thus, jammers

benefit from contributing to security purely based on their own

utility. Yet, in these studies the malicious node is not strategic

and does not react to the strategic jammers.



TABLE I
MAIN SYSTEM PARAMETERS

Parameter Symbol

Transmission cost for all nodes c

Reward for successful malicious transmission r

Failure probability of jamming action f

Benefit for successful jamming action set to 1

Instead, we consider the malicious node as a concerned

third party, i.e., a strategic player that makes decisions as best

responses [8]. Another difference with the literature is that we

also consider multiple uncoordinated jammers. This is akin

to [6], where many agents acting toward a common goal, but

without coordination and driven by strategic interests, were

shown to suffer a limited efficiency loss; yet, this may no

longer hold when their task involves a strategic adversary. All

these differences justify our novel analysis.

III. GAME THEORETIC ANALYSIS, ONE JAMMER

Consider a complete information game between a network

agent N and a malicious node M. The latter wants to perform

unauthorized radio communications, whereas the former mon-

itors the channel looking for unwarranted transmissions, and

tries to prevent M’s from communicating and/or increase the

airtime for the legitimate nodes of an enterprise network. Thus,

N acts as a reactive friendly jammer [3], and it is sensible to

assume complete information, meaning that both players are

mutually aware of each other and their objectives.

We formulate a static (one-shot) game that concentrates

the strategic interplay in one interaction. In a static game,

players separately choose their only move, which avoids

synchronization issues [2]. A static game is generally the first

building block of more advanced formulations, such as multi-

ple interactions studied as repeated games [11]; however, this

requires a discussion on the activity/frequency hopping pattern

of the transmitter, and what does the jammer know about it.

Extensions through Bayesian games [6] would allow for play-

ers being uncertain of each other’s presence, or having multiple

objectives, such as transmitters being in a variable number

and/or performing both legitimate and malicious activity, or

jammers choosing between just disrupting communications or

detecting malicious nodes first [12]. All these studies are left

for future work beyond the present investigation.

The values in Table I, set as generic parameters, are

common knowledge among the players; one can follow [9]

for their exact quantification. We denote as c the cost spent

for transmitting, assumed identical for both players, as their

transmitters likely use a similar circuitry, e.g., a standard WiFi

card, possibly purposely programmed for jamming. We reckon

that N’s jamming may be unsuccessful; we abstract its average

failure rate with probability f . As argued before, f accounts

for all technical aspects related to jamming success or failure.

Also, we set a reward for node M, denoted as r, earned if

its malicious actions succeed. This value reflects the incentive

for M to transmit, despite being aware that it can be jammed,

in which case it will just pay cost c. Similarly, we consider

the returning utility for the friendly jammer, and we assume

that whenever M is successful and gains r, player N suffers

a loss of the same amount [8]. By contrast, the benefit for

TABLE II
NORMAL-FORM (PAYOFF MATRIX) OF GAME J1

Malicious node M

E O

Network agent N
J (1−f)− fr − c, fr − c −c, 0

A −r, r − c 0, 0

stopping the malicious actions of player M is in principle a

different quantity, which can even be the outcome of a game

theoretic bargain between the network administrator and the

friendly jammers [10]. Without loss of generality, and for the

sake of a simpler notation, we set this value to 1; changing it

would be equivalent to rescale all the other values.

The interaction between N and M is set as a static entry game

J1 of complete information [5]. This is a potential foundation

for extensions e.g., to Bayesian or dynamic games [6], [9],

which are left for future work. We assign two available actions

to both players, which allows for a closed form solution. The

malicious node M can enter (action denoted as E), that is, to

perform unwarranted transmission, or stay out (action O), i.e.,

to feign transmission but actually avoid it; this is the correct

action if M believes that the friendly jamming is active. In

practice, node M enacts a probabilistic mixture of these two

actions, which quantify its transmission probability. Similarly,

N can friendly jam (action J) or abstain from it, e.g., to save

energy (action A). The mixing of these actions results in the

jamming probability. This setup is akin to others in the field of

security: it is worth mentioning that the sole presence of the

legitimate player as a watchdog (even not taking any actual

countermeasure) may deter the malicious player from entering.

Players independently choose their strategies, which jointly

determine their payoffs: for strategy pair (n,m), player

X∈{N,M} gets uX(n,m). Table II shows the normal form of

J1. In more detail, whenever M stays out, its payoff is 0. If it

enters, its payoff has a −c term and depends on the jamming

outcome. If N is not jamming, then M gets a reward r. Since

N’s jamming fails with probability f , outcome (J,E) results in

N and M earning (1−f)−fr−c and fr−c, respectively. 1

Table II requires this sensibility condition: fr ≤ c ≤ r. If

either side is violated, M’s action is obvious, as E or O are

dominant strategies, respectively. It must also hold that

f ≤ 1 + r − c

1 + r
(1)

or jamming is too rarely successful and N always plays A.

Under these conditions, J1 has no pure strategy Nash

equilibria, thus it must exist an equilibrium in mixed strategies,

as per the Nash theorem [11], where N plays J with probability

j and A with probability 1−j, while M mediates between E

and O with probabilities ε and 1−ε, respectively.

Theorem 1: To derive j and ǫ in closed form, impose

E[uN(0, ε)]=E[uN(1, ε)] and E[uM(j, 0)]=E[uM(j, 1)].
Proof: This result follows the Indifference Principle [11],

which states that a player reaching a Nash equilibrium with a

mixture of strategies x1 and x2 with respective probabilities

1These outcomes are accessible to both players. Indeed, the network can
eavesdrop to the malicious transmission to see whether it was successful (e.g.,
acknowledgments are sent, or the packets sent progress forward).



ξ and 1−ξ, 0 < ξ < 1, achieves the same expected payoff by

playing x1 (or x2) alone, i.e., ξ = 0 (or ξ = 1), if all other

players do not change their strategies.

Hence, if M chooses transmission probability ε, N must have

the same expected payoff when playing either J or A, thus

(1−f−fr−c)ε−c(1−ε)= −rε ⇒ ε =
c

(1+r)(1−f) . (2)

and similarly
j =

1− c/r

1− f
, with j ≤ 1 due to (1). (3)

These results closely relate with the strategic behavior of the

players. If cost c increases, the malicious node becomes more

active, since it is more expensive for the jammer to counteract

the attacks, and this is common knowledge among the players.

Also, the impact of reward r may seem surprising: the larger r,

the lower the transmission probability ε and instead the higher

the jamming probability j. The explanation is that the mixed

strategy equilibrium sets indifference between the players’

alternatives. Knowing that r is large, N prefers to pay the

transmission cost and jam more often; thus, M’s transmission

probability decreases. Also, E[uM(j, ε)]=0 because of the

indifference with playing O, whereas for the jammer

E[uN(j, ε)]= jε(1+r)(1−f)− εr− jc =
−cr

(1+r)(1−f)
(4)

which is always negative; hence, N may arguably not find

it sustainable to partake in the game with the only incentive

being a benefit of +1 when M is successfully jammed.

IV. GAME THEORETIC ANALYSIS, TWO JAMMERS

The analysis can be extended to multiple friendly jammers.

For tractability, we consider 2 jammers, but most of the

implications can be qualitatively extended to a higher number.

The game, now called J2, involves two friendly jammers N1

and N2, and malicious node M. As before, the available actions

are J and A for the jammers, E and O for the malicious

node. The jammers act with the same purpose of disrupting

transmissions from M, but are also strategic in that they prefer

to be inactive, and avoid paying the transmission cost, if the

other is already successfully jamming. The jammers have the

same transmission cost c, also identical to that of M, and the

same failure rate f . Actually, the latter may be questionable

as success of jamming is strongly dependent, for example, on

the positions of the nodes [2]. However, the value of f , which

is common knowledge, represents an average estimate rather

than the actual failure rate of a specific jamming instance.

Thus, for the problem at hand it is sensible to have the same

f for N1 and N2. Also, we assume they jam independently,

so when both jammers are active the overall failure rate is f2.

The payoffs for J2 can be extrapolated from J1 and the

normal form expands to three dimensions; for visualization

purposes, we split it in two according to the action of N1 and

only show N2’s and M’s payoffs; N1’s payoff is inferred by

symmetry considerations. If N1 plays A, the game falls back

to J1, as there is only one jammer (N2) that can contrast M.

Table III shows payoffs uN2(n1, n2,m) and uM(n1, n2,m).
A mixed strategy Nash equilibrium exists, analogous to J1, but

with more involuted equations involving 3 players. To solve

TABLE III
PAYOFF MATRIX OF GAME J2 , ONLY PLAYERS N2 AND M.

if Network agent N1 plays J: Malicious node M

E O

Network agent N2

J (1−f2)−f2r − c, f2 r − c −c, 0

A (1−f)−fr, fr − c 0, 0

if Network agent N1 plays A:

same payoffs of N2 and M as per game J1 (Table II)

in closed form, we exploit symmetry and assume that both

jammers play J with the same probability j, while M transmits

with probability ε. We set indifference for M in the expected

payoffs E[uM] when playing E and O (the latter is 0), i.e.

j2(f2r−c) + 2j(1−j)(fr−c) + (1−j)2(r−c) = 0 (5)

⇒
(

j(1−f)− 1
)2

− c

r
= 0 ⇒ j =

1−
√

c/r

1− f

The difference from (3) is the square root term, due to the

presence of two uncoordinated jammers. Compare it, e.g., with

[6], where an analogous result was derived for two uncoor-

dinated agents executing a task. Since c/r ≤ 1, replacing it

with
√

c/r implies a decrease in the jamming probability; both

jammers are aware of each other’s presence in the network and

know they may restrain from intervening if the other is active.

However, this reduced jamming rate is almost negligible if c is

high, which apparently contrasts with immediate intuition. The

explanation is again in the strategic behavior, as both jammers

know that for high transmission cost it is less convenient to be

active, which implies that the other jammer may stay inactive.

With analogous computations, ε at the equilibrium can be

derived. The key is to assume N1 jamming with probability

j, and M entering with probability ε. Applying Theorem 1 to

N2, gives E[uN2(j, 0, ε)] = E[uN2(j, 1, ε)] leading to

−c = f2(1+r)εj + f(1+r)ε− 2f(1+r)εj − ε(1−j)(1+r)

⇒ εj(1+r)(1−f)2 − ε(1+r)(1−f) + c = 0

⇒ ε =
c

(1+r)(1−f)(1−j+jf)
⇒ ε =

√
cr

(1+r)(1−f) (6)

after exploiting (5). It is akin to (2) with
√
cr replacing c.

The expected payoff of each jammer E[uN(j, j, ε)] is

ε− jc− c

1−f

(

1− j(1−f)
)2

=
1

1−f

(√
cr

1+r
− c

)

(7)

which, remarkably, is positive if c < r/(1+r)2. This implies

that J2 has a threshold γ for the transmission cost allowing

for a positive expected payoff for the jammers if c < γ. Since

γ = r/(1+r)2, it does not change much for r ∈ [0.5, 2], being

between 2/9 ≈ 0.222 and 0.25. In other words, if transmission

cost c is about 5 times lower than the benefit of successful

jamming, there exists a sustainable profit for the jammers,

over a broad range of values for r. This result is significantly

different from J1; it is also due to the fact that both jammers

get the benefit when M is jammed, even if they are inactive.

Indeed, this “money-for-nothing” gives a better appeal to the

game from the jammer’s standpoint and may hint at desirable



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1. Transmission probability ε vs. cost c.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Fig. 2. Active jamming probability: j in J1, 2j−j2 in J2; vs. cost c.

design criteria for friendly jamming. However, the width of

transmission cost values that are below threshold γ very much

depends on the jamming failure rate f , since fr < c and (1)

must hold; this means that if f is too high, the problem is

sensible only for values of c that are above threshold.

For visual aid, we report in Fig. 1 the transmission prob-

ability ε of the malicious node and in Fig. 2 the probability

of at least one active jammer (equal to j for J1 and 2j−j2

for J2). The transmission probability of M increases with c,
because the jamming probability decreases; thus, M is jammed

less often, but gets a lower profit r−c in these cases. Node

M is also more aggressive in J2 than in J1. On one hand,

in J2 the probability of being jammed is about the same as

in J1, but the failure rate is lower when both jammers are

active (f2 instead of f ); on the other hand, M can count

on the lack of coordination among the jammers. A bigger

reward r leads to a more frequent jamming in both J1 and J2;

while this discourages the malicious node when facing a single

jammer, in game J2 the opposite happens, and M transmits

more often, relying on the lack of coordination of the jammers.

Remarkably, r has little impact on the transmission probability

ε in J2, since its dependence is through
√
r/(1+ r) that does

not vary much in the considered range, as said before.

Finally, Fig. 3 shows the expected payoff of the jammers,

which is always negative and decreasing in c and r for J1,

while for J2 becomes positive in the narrow region with cost

c below γ = r/(1+r)2, and is impacted little by r.

V. CONCLUSIONS AND FUTURE WORK

We formulated a friendly jamming problem in the context of

game theory and we derived closed form solutions for its Nash

equilibrium. We found interesting trends in the transmission

probability of the malicious node as well as the jamming by

the network agents. We further extended the conclusions to

multiple uncoordinated jammers. In this scenario, despite an

increased surveillance, the malicious node tries to transmit

more often, relying on the lack of coordination among the
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Fig. 3. Expected payoff of the friendly jammers vs. cost c.

jammers; however, security is better sustainable since the

expected payoff of the jammers can be positive, as long as

the transmission cost is below a threshold of 0.22–0.25 times

the benefit of successful jamming over a broad range of values.

Some extensions are worth mentioning and currently under

investigation. First, one may evaluate the parameters from a

real application perspective. Moreover, we considered per-

fectly rational strategic players, immediately aware of the

consequences of their actions; yet, within a practical jamming

testbed [3], one may think of experiments to verify whether

human players exhibit (game theoretic) rational behavior.

Finally, the formulation can be expanded. For example,

the illegitimate transmitter may perform channel hopping [2],

discontinued activity, or other sophisticated countermeasures

to avoid being caught [4]. To do so, we can extend the problem

toward dynamic games [9], where the game unfolds over

multiple iterations, or Bayesian games [6], where players have

different types. This goes beyond the scope of the present

analysis, but may be considered in future investigations.
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