51,870 research outputs found

    Split Sampling: Expectations, Normalisation and Rare Events

    Full text link
    In this paper we develop a methodology that we call split sampling methods to estimate high dimensional expectations and rare event probabilities. Split sampling uses an auxiliary variable MCMC simulation and expresses the expectation of interest as an integrated set of rare event probabilities. We derive our estimator from a Rao-Blackwellised estimate of a marginal auxiliary variable distribution. We illustrate our method with two applications. First, we compute a shortest network path rare event probability and compare our method to estimation to a cross entropy approach. Then, we compute a normalisation constant of a high dimensional mixture of Gaussians and compare our estimate to one based on nested sampling. We discuss the relationship between our method and other alternatives such as the product of conditional probability estimator and importance sampling. The methods developed here are available in the R package: SplitSampling

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Semiconductor manufacturing simulation design and analysis with limited data

    Full text link
    This paper discusses simulation design and analysis for Silicon Carbide (SiC) manufacturing operations management at New York Power Electronics Manufacturing Consortium (PEMC) facility. Prior work has addressed the development of manufacturing system simulation as the decision support to solve the strategic equipment portfolio selection problem for the SiC fab design [1]. As we move into the phase of collecting data from the equipment purchased for the PEMC facility, we discuss how to redesign our manufacturing simulations and analyze their outputs to overcome the challenges that naturally arise in the presence of limited fab data. We conclude with insights on how an approach aimed to reflect learning from data can enable our discrete-event stochastic simulation to accurately estimate the performance measures for SiC manufacturing at the PEMC facility

    Connecting the Dots: Towards Continuous Time Hamiltonian Monte Carlo

    Get PDF
    Continuous time Hamiltonian Monte Carlo is introduced, as a powerful alternative to Markov chain Monte Carlo methods for continuous target distributions. The method is constructed in two steps: First Hamiltonian dynamics are chosen as the deterministic dynamics in a continuous time piecewise deterministic Markov process. Under very mild restrictions, such a process will have the desired target distribution as an invariant distribution. Secondly, the numerical implementation of such processes, based on adaptive numerical integration of second order ordinary differential equations is considered. The numerical implementation yields an approximate, yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of the complete Hamiltonian trajectories (hence the title). The proposed algorithm may yield large speedups and improvements in stability relative to relevant benchmarks, while incurring numerical errors that are negligible relative to the overall Monte Carlo errors

    Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art

    Full text link
    Stochasticity is a key characteristic of intracellular processes such as gene regulation and chemical signalling. Therefore, characterising stochastic effects in biochemical systems is essential to understand the complex dynamics of living things. Mathematical idealisations of biochemically reacting systems must be able to capture stochastic phenomena. While robust theory exists to describe such stochastic models, the computational challenges in exploring these models can be a significant burden in practice since realistic models are analytically intractable. Determining the expected behaviour and variability of a stochastic biochemical reaction network requires many probabilistic simulations of its evolution. Using a biochemical reaction network model to assist in the interpretation of time course data from a biological experiment is an even greater challenge due to the intractability of the likelihood function for determining observation probabilities. These computational challenges have been subjects of active research for over four decades. In this review, we present an accessible discussion of the major historical developments and state-of-the-art computational techniques relevant to simulation and inference problems for stochastic biochemical reaction network models. Detailed algorithms for particularly important methods are described and complemented with MATLAB implementations. As a result, this review provides a practical and accessible introduction to computational methods for stochastic models within the life sciences community

    Efficient data augmentation for fitting stochastic epidemic models to prevalence data

    Full text link
    Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a population. Typically, only a fraction of cases are observed at a set of discrete times. The absence of complete information about the time evolution of an epidemic gives rise to a complicated latent variable problem in which the state space size of the epidemic grows large as the population size increases. This makes analytically integrating over the missing data infeasible for populations of even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) framework for Bayesian estimation of stochastic epidemic model parameters, in which measurements are augmented with subject-level disease histories. In our MCMC algorithm, we propose each new subject-level path, conditional on the data, using a time-inhomogeneous continuous-time Markov process with rates determined by the infection histories of other individuals. The method is general, and may be applied, with minimal modifications, to a broad class of stochastic epidemic models. We present our algorithm in the context of multiple stochastic epidemic models in which the data are binomially sampled prevalence counts, and apply our method to data from an outbreak of influenza in a British boarding school
    • …
    corecore