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ABSTRACT
Numerical generalized randomized Hamiltonian Monte Carlo is introduced, as a robust, easy to use and
computationally fast alternative to conventional Markov chain Monte Carlo methods for continuous target
distributions. A wide class of piecewise deterministic Markov processes generalizing Randomized HMC
(Bou-Rabee and Sanz-Serna) by allowing for state-dependent event rates is defined. Under very mild
restrictions, such processes will have the desired target distribution as an invariant distribution. Second,
the numerical implementation of such processes, based on adaptive numerical integration of second order
ordinary differential equations (ODEs) is considered. The numerical implementation yields an approximate,
yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of
the complete Hamiltonian trajectories (hence, the title). The proposed algorithm may yield large speedups
and improvements in stability relative to relevant benchmarks, while incurring numerical biases that are
negligible relative to the overall Monte Carlo errors. Granted access to a high-quality ODE code, the pro-
posed methodology is both easy to implement and use, even for highly challenging and high-dimensional
target distributions. Supplementary materials for this article are available online.
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1. Introduction

By now, Markov chain Monte Carlo (MCMC) methods and
their widespread application in Bayesian statistics need no fur-
ther introduction (see, e.g., Robert and Casella 2004; Gelman
et al. 2014). In this article, Generalized Randomized Hamil-
tonian Monte Carlo (GRHMC), a wide class of continuous
time Markov processes with a preselected stationary distribu-
tion is constructed. Further, Numerical GRHMC (NGRHMC),
the practical implementation of GRHMC processes is suggested
as a robust and easy to use general purpose class of algorithms
for solving problems otherwise handled using MCMC methods
for continuous state spaces.

The article makes several contributions. GRHMC processes,
a wide class of piecewise deterministic Markov processes
(PDMP) (see, e.g., Davis 1993; Fearnhead et al. 2018; Vanetti
et al. 2018, and references therein) with target distribution-
preserving Hamiltonian deterministic dynamics are defined.
GRHMC processes generalizes Randomized HMC (Bou-Rabee
and Sanz-Serna 2017) by admitting state-dependent event-
rates, while still retaining arbitrary prespecified stationary
distributions. The highly flexible specification of event rates
leaves substantial room to construct processes that are more
optimized toward MCMC applications. A further benefit
of using conserving Hamiltonian deterministic dynamics
is that GRHMC processes are likely to scale well to high-
dimensional problems (see, e.g., Bou-Rabee and Eberle 2020
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where dimension-free convergence bounds are obtained for the
Anderson Thermostat, which generalizes RHMC).

Second, it is proposed to use adaptive numerical methods
for second order ordinary differential equations (ODEs) (see,
e.g., Hairer, Nørsett, and Wanner 1993) to approximate a
selected GRHMC process to arbitrary precision, leading to
NGRHMC. In common implementations of Hamiltonian
Monte Carlo, errors introduced by fixed time step (i.e.,
nonadaptive) symplectic/time-reversible integrators are exactly
corrected using accept/reject steps. Here, biases relative to
the (on target, but generally intractable) GRHMC process
stemming from the numerical integration of ODEs are not
explicitly corrected for, but rather kept under control by
choosing the ODE integrator precision sufficiently high.
Numerical experiments indicate that even for rather lax inte-
grator precision, biases incurred by the numerical integration
of ODEs are imperceivable relative to the overall Monte Carlo
variation stemming from using MCMC-like methods.

By allowing for such small biases, one may leverage high-
quality adaptive ODE integration codes, making the proposed
method both easy to implement and requiring minimal exper-
tise by the user. The system of ODEs may be augmented beyond
Hamilton’s equations so that sampling of event times under non-
trivial event rates (without specifying model-specific bounds on
the event rates (Fearnhead et al. 2018) and computing averages
over continuous time trajectories are done within ODE solver.
This practice of augmenting the ODE system ensures that the

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/10618600.2022.2066679
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2066679&domain=pdf&date_stamp=2022-05-13
http://orcid.org/0000-0001-8469-908X
mailto:tore.kleppe@uis.no
http://www.tandfonline.com/r/JCGS
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

precision of the overall algorithm (including the simulation
of event times and computation of moments) relative to the
underlying GRHMC process is controlled by a single error
control mechanism and only a few easily interpretable tuning
parameters. Automatic tuning methodology of the parameters
in underlying GRHMC process, again leveraging aspects of the
adaptive ODE integration code, is also proposed.

Third, it is demonstrated that certain moments of the target
distribution may be estimated extremely efficiently by exploit-
ing the between events Hamiltonian dynamics (and hence the
name of the article). Such improved efficiency occur when the
temporal averages of the position coordinate of the Hamilto-
nian trajectories (without momentum refreshes) coincide with
the corresponding means under the target distributions. Such
effects occurs for example, when estimating the mean under
Gaussian target distributions, but is by no means restricted to
this situation. Exploitation of any such effects is straight forward
when the theoretical processes are approximated using ODE
solvers as proposed.

Finally, it is demonstrated that even rudimentary versions
of NGRHMC have competitive performance compared to com-
monly used (fixed time step) symplectic/time-reversible meth-
ods for target distributions where the latter methods work well.
Furthermore, it is demonstrated that adaptive nature of the inte-
grators employed here resolves the slow exploration associated
with fixed step size HMC-MCMC chains for target distributions
exhibiting certain types of nonlinearities.

This article, contains only initial steps toward understanding
and exploiting the full potential of GRHMC processes and their
numerical implementation and should be read as an invitation
to further work. On the theoretical side, understanding the
ergodicity of GRHMC processes beyond RHMC, bounding the
biases stemming from numerical integration and understanding
scaling in high dimensions would be natural next steps. Bet-
ter exploiting the possibilities afforded by the highly flexible
state-dependent event rates constitutes another major avenue
for further work. Throughout the text, further suggestions for
continued research in several other regards are also pointed out.

1.1. Relation to Other Work

Continuous time Markov processes involving Hamiltonian
dynamics subject to random updates of velocities at random
times are by no means new. In the molecular simulation litera-
ture, the Anderson Thermostat (AT) (Andersen 1980) involves
Hamiltonian dynamics with updating of the momentum of
randomly chosen particles according to Bolzmann-Gibbs
distribution marginals. RHMC may be seen as a special case
of the AT with only one particle (Bou-Rabee and Eberle 2020).
Uncorrected numerical implementations of the AT, involving
fixed time step reversible integrators may be found in several
molecular simulation packages such as GROMACS (Abraham
et al. 2015).

The theoretical properties of the RHMC (with constant event
rate and exact Hamiltonian dynamics) and AT have been exten-
sively studied: Bou-Rabee and Sanz-Serna (2017) develop geo-
metric ergodicity of RHMC under mild assumptions. Further,
E and Li (2008) and Li (2007) develop ergodicity for both
continuous time AT and its time-discretization under differ-

ent assumptions, and Bou-Rabee and Eberle (2020) consider
the convergence of AT in Wasserstein distance. Lu and Wang
(2020) study RHMC under the hypocoercivity framework. As
described by Bou-Rabee and Sanz-Serna (2017), there is also an
interesting and fundamental connection between RHMC and
second-order Langevin dynamics (see, e.g., Cheng et al. 2018,
and references therein) in that the same stochastic Lyapunov
function may be used to prove geometric ergodicity of both
types of processes.

Recently, PDMPs (see, e.g., Davis 1993; Fearnhead et al.
2018; Vanetti et al. 2018, and references therein) have received
substantial interest as time-irreversible alternatives to con-
ventional MCMC methods. Most proposed PDMP-based
alternatives to MCMC, such as the Bouncy Particle Sampler
(Bouchard-Côté, Vollmer, and Doucet 2018) and the Zig-
Zag process (Bierkens, Fearnhead, and Roberts 2019) rely on
linear deterministic dynamics. Another PDMP-based sampling
algorithm; The Boomerang Sampler (BS) (Bierkens et al. 2020)
uses the explicitly solvable Hamiltonian deterministic dynamics
associated with Gaussian approximation to the target. The
BS was found to outperform the mentioned linear dynamics
PDMPs. AT, RHMC along with GRHMC are also PDMPs based
on Hamiltonian deterministic dynamics, but unlike the BS, the
involved deterministic dynamics preserves exactly the target
distribution, hence, affording GRHMC substantial flexibility
with respect to the selection of event rates. Interestingly,
Deligiannidis et al. (2018) shows that the RHMC process is
a scaling limit of the Bouncy Particle Sampler (Bouchard-
Côté, Vollmer, and Doucet 2018). RHMC processes (i.e., with
exact Hamiltonian dynamics and constant event rates) are also
mentioned in the context of PDMPs by (Vanetti et al. 2018,
footnote 3), but no details are provided on how to implement
such an algorithm are provided.

Inter-event time sampling for PDMPs based on numerical
integration and root-finding (and thereby bypassing the need
for global bounds on the event rate as is also done in this article)
is considered by Cotter, House, and Pagani (2020). However,
their approach is based on the linear Zig-Zag dynamics and
uses other numerical techniques to obtain integrated event rates.
HMC-MCMC based on exact Hamiltonian dynamics is con-
sidered by Pakman and Paninski (2014), but their approach
is restricted to truncated Gaussian distributions where such
dynamics may be found on closed form. Theoretical work for
HMC-MCMC assuming exact target-preserving Hamiltonian
dynamics may be found in for example, Mangoubi and Smith
(2017) and Chen and Vempala (2019). Nishimura and Dunson
(2020) consider recycling the intermediate integrator-steps in
HMC-MCMC in a manner related to the temporal averages
considered here, and also find substantial improvements in
simulation efficiency in numerical experiments.

Unadjusted (and therefore generally biased) numerical
approximations to intractable theoretical processes for simu-
lation purposes have received much attention, with the widely
used stochastic gradient Langevin dynamics (Welling and Teh
2011) being such an example. In particular, both first- and
second order Langevin dynamics, along with their multiple
integration step counterpart, generalized HMC (Horowitz
1991), have been implemented in unadjusted manners (see, e.g.,
Leimkuhler and Matthews 2015, for an overview). In addition,
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several theoretical papers consider unadjusted HMC-MCMC
algorithms, see, for example, Mangoubi and Smith (2019), Bou-
Rabee and Schuh (2020) and Bou-Rabee and Eberle (2021).
In this strand of literature, also so-called collocation methods
(which are closely related to certain Runge Kutta methods
(Hairer, Nørsett, and Wanner 1993) are applied by Lee, Song,
and Vempala (2018) for solving Hamilton’s equations, but their
approach is again based on (discrete time-)HMC-MCMC and
does not appear to leverage modern numerical ODE techniques.
Finally, the present use of adaptive step size techniques has
similarities to Kleppe (2016), but the latter algorithm is based
on Langevin processes and involves a Metropolis–Hastings
adjustment step.

The reminder of this article is laid out as follows: Section 2
provides background and fixes notation. GRHMC processes
are defined and discussed in Section 3. The practical numerical
implementation of such processes is discussed in Section 4.
Numerical experiments and illustrations, along with bench-
marks against Stan are given in Sections 5 and 6. Finally,
Section 7 provides discussion. The complete set of source
code underlying this article is available at https://github.com/
torekleppe/PDPHMCpaperCode.

2. Background

This section provides some background and fixes notation for
subsequent use. Throughout this article, a target distribution
with density π(q), q ∈ � ⊆ R

d with an associated density
kernel π̃(q) which can be evaluated point-wise. The gradi-
ent/Jacobian operator of a function with respect to some vari-
able, say x, is denoted by ∇x. Time-derivatives are denoted using
the conventional dot-notation, that is, ḟ (τ ) = d

dτ
f (τ ), f̈ (τ ) =

d2

dτ 2 f (τ ) for some function f (τ ) evolving over time τ .
In the reminder of this section, Hamiltonian mechanics,

HMC and PDMPs are briefly reviewed in order to fix notation
and provide the required background. The reader is referred
to Goldstein, Poole, and Safko (2002), Leimkuhler and Reich
(2004), Neal (2010), and Bou-Rabee and Sanz-Serna (2018)
for more detailed expositions of Hamiltonian mechanics and
HMC. Davis (1984, 1993) for consider PDMPs in general and
Fearnhead et al. (2018) and Vanetti et al. (2018) give details for
Monte Carlo applications of PDMPs.

2.1. Elements of Hamiltonian Mechanics

Hamiltonian Monte Carlo methods rely on specifying a phys-
ical system and use the dynamics of this system to propose
transitions. The state z = [qT , pT]T ∈ R

2d of the system is
characterized by a position coordinate q ∈ R

d and a momentum
coordinate p ∈ R

d. The system itself is conventionally specified
in terms of the Hamiltonian H(z) = H(q, p) which gives the
total energy of the system for a given state z. Throughout this
work, physical systems with Hamiltonian given as

H(q, p) = − log π̃(q) + 1
2

pTM−1p, (1)

are considered. Here M ∈ R
d×d is a symmetric, positive definite

(SPD) mass matrix which is otherwise specified freely. The

time-evolution of the system is given by Hamilton’s equations
q̇(τ ) = ∇pH(q(τ ), p(τ )), ṗ(τ ) = −∇qH(q(τ ), p(τ )), which
for Hamiltonian (1) reduces to:

ż(τ ) =
[

q̇(τ )

ṗ(τ )

]
=

[
M−1p(τ )

∇q log π̃(q(τ ))

]
. (2)

The flow associated with (2) is denoted by ϕτ (·), and is defined
so that z(τ + s) = ϕs(z(τ )) solves (2) for any scalar time
increment s, initial time τ and initial configuration z(τ ). The
flow can be shown to be

• Energy preserving, that is, ∂
∂τ
H(ϕτ (z)) = 0 for all admissible

z;
• volume preserving, that is, |∇zϕτ (z)| = 1 for each fixed τ

and all admissible z;
• time reversible, which in the present context is most conve-

niently formulated via that Tτ = R ◦ ϕτ is an involution
so that Tτ ◦ Tτ is the identity operator. The momentum flip
operator R = diag(Id, −Id) effectively reverses time.

2.2. Hamiltonian Monte Carlo

In the context of statistical computing, Hamiltonian dynamics
has attracted much attention the last decade. This interest is
rooted in that the flow ϕτ of (2) (and associated involution Tτ )
exactly preserves the Boltzmann-Gibbs (BG) distribution

ρ(z) = ρ(q, p) = π(q)N (p|0d, M) ∝ exp(−H(q, p)), (3)

associated with H. That is, for each fixed time increment τ ,
ϕτ (z) ∼ ρ whenever z ∼ ρ. It is seen that the target dis-
tribution is the q-marginal of the BG distribution. Thus, a
hypothetical MCMC algorithm targeting (3), and producing
samples z(i) = (qT

(i), pT
(i))

T , would involve the BG distribution-
preserving steps:

• Sample p∗ ∼ N(φp(i−1),
√

1 − φ2M) for some φ ∈ (−1, 1)

and set z∗ = (qT
(i−1), pT∗ )T .

• For some suitable time increment s, z(i) = ϕs(z∗).

Subsequently, the momentum samples, p(i), may be discarded
to obtain samples targeting π(q) only. Randomized durations
s may be introduced in order to avoid periodicities or near-
periodicities in the underlying dynamics, and may result in
faster convergence (Mackenze 1989; Cances, Legoll, and Stoltz
2007; Bou-Rabee and Sanz-Serna 2017, 2018). Alternatively,
more sophisticated algorithms can be used to avoid u-turns
(Hoffman and Gelman 2014).

For all but the most analytically tractable target distributions,
the flow associated with Hamilton’s equations is not available
in closed form, and hence it must be integrated numerically for
the practical implementation of the above MCMC sampler. Pro-
vided a time-reversible integrator is employed for this task, the
numerical error incurred in the second step of the above MCMC
algorithm can be exactly corrected using an accept/reject step
(Fang, Sanz-Serna, and Skeel 2014), but the accept probability
may be computationally demanding. If the employed integrator
is also volume preserving (i.e., symplectic) (see, e.g., Leimkuh-
ler and Reich 2004), the accept-probability depends only on
the values of the Hamiltonian before and after the integration.

https://github.com/torekleppe/PDPHMCpaperCode
https://github.com/torekleppe/PDPHMCpaperCode
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Figure 1. Empirical cumulative distribution functions (CDFs) associated with MCMC output for the standard Gaussian q1-marginal under the “funnel”-model q1 ∼ N(0, 1),
q2|q1 ∼ N(0, exp(3q1)). For visual clarity, only the left half of the distributions are presented. Further details on this experiment can be found in Section 5.1. Each case is
based on 5000 samples from each of 10 independent replica. The black solid lines are the empirical CDFs, whereas the red dashed lines are the true CDFs. The shaded gray
region would cover 90% of empirical CDFs based on 50,000 iid N(0, 1) samples point-wise. The four left-most panels are based on Stan output with different values of the
accept rate target δ. In practice, higher values of δ corresponds to smaller integrator step sizes and more integrator steps per produced sample. The right-most panel shows
output for the proposed methodology using constant event rates. For both Stan and the proposed methodology, an identity mass matrix was employed.

This simplification has led to the widespread application of
the symplectic leap-frog (or Størmer-Verlet) integrator in HMC
implementations such as for example, Stan (Stan Development
Team 2017).

Requiring the integrator to be time reversible and symplectic
imposes rather strict restrictions on the integration process. In
particular the application of adaptive (time-)step sizes, which is
an integral part of any modern general purpose numerical ODE
code, is at best difficult to implement (see Leimkuhler and Reich
2004, chap. 9 for discussion of this problem) while maintaining
time-reversible and symplectic properties.

Figure 1 illustrates the effect of using fixed step sizes for the
funnel-type distribution q1 ∼ N(0, 1), q2|q1 ∼ N(0, exp(3q1))
(further details on this experiment can be found in Section 5.1).
In the four left panels, empirical cumulative distribution func-
tions (CDFs) calculated from MCMC output using the fixed step
size integrator in Stan are depicted for various accept rate targets
δ which has a default value of 0.8. In practice, higher values of δ

correspond to higher fidelity integration with smaller integrator
step sizes and more integrator steps per produced sample. It is
seen that even with very small step sizes, Stan fails to properly
represent the left-hand tail of q1 (which imply a very small scale
in the q2). In the δ = 0.999 case, the smallest produced sample
out 50,000 is ≈ −3.026. In an iid N(0, 1) sample of this size, one
would expect around 62 samples smaller than this value.

Also included in Figure 1 are results from a variant of the
proposed methodology (see Section 5.1 for details), which is
based on adaptive numerical integrators. The method shows no
such pathologies, and in particular the number of samples below
the smallest δ = 0.999 Stan sample was 70.

2.3. Piecewise Deterministic Markov Processes

Recently, continuous time piecewise deterministic Markov pro-
cesses (PDMP) (see, e.g., Davis 1984, 1993) have been consid-
ered as alternatives to discrete time Markov chains produced by
conventional MCMC methods. PDMPs may be employed for
simulating dependent samples, or more generally continuous
time trajectories with a given marginal probability distribu-

tion (see Fearnhead et al. 2018, and references therein). As
the name indicates, PDMPs follow a deterministic trajectory
between events occurring at stochastic times. At events, the state
is updated in a stochastic manner.

Following Fearnhead et al. (2018), a PDMP, say Z(t) ∈ R
D,

t ∈ [0, ∞), is specified in terms of three components (
, λ, Q):

• Deterministic dynamics on time intervals where events do not
occur, specified in terms of a set of ODEs: Ż(t) = 
(Z(t)).

• A nonnegative event rate λ(Z(t)), depending only on the
current state of the process, so that the probability of an event
between times t and t + r, r ≥ 0 is λ(Z(t))r + o(r) for small
r.

• Finally, a “transition distribution at events” Q(·|Z(t−)). Sup-
pose an event occurs at time t, and Z(t−) is the state imme-
diately before time t. Then the Z(t) will be drawn randomly
with density Q(·|Z(t−)).

Let �s be the flow associated with 
. In order to simulate from
a PDMP, suppose first that Z(0) has been set to some value, and
that t is initially set to zero. Then the following three steps are
repeated until t > T where T is the desired length of the PDMP
trajectory:

• Simulate a new u ∼ Exp(1) and subsequently compute
the time-increment until next event v, which obtains as the
solution in v to

(v;Z(t)) = u, where (v; z) =
∫ v

0
λ(�s(Z(t)))ds. (4)

• Set Z(t + s) = �s(Z(t)) for all s ∈ [0, v), and Z* =
�v(Z(t)).

• Set t ← t + v and simulate Z(t) ∼ Q(·|Z∗).

An invariant distribution of the process Z(t), say p(z), will
satisfy the time-invariant Fokker-Planck/Kolmogorov forward
equation (Fearnhead et al. 2018)

D∑
i=1

∂

∂zi

[

i(z)p(z)

] =
∫

p(z′)λ(z′)Q(z|z′)dz′ − p(z)λ(z),

(5)
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for all admissible states z. For continuous time Monte Carlo
applications, one therefore, seeks combinations of (
, λ, Q) so
that the desired target distribution is an invariant distribution
p(z).

Provided such a combination has been found, discrete time
Markovian samples

z(i) = Z(�i), for some sample spacing � > 0, (6)

may be used in the same manner as regular MCMC samples for
characterizing the invariant distribution. In addition, by letting
the sample spacing � → 0, moments under the invariant dis-
tribution may also be obtained by using the complete trajectory
of the PDMP, that is,

1
T

∫ T

0
g(Z(t))dt −→

T→∞

∫
g(z)p(z)dz almost surely, (7)

for some function g.
In most current implementations of PDMPs, λ depends on

∇q log π̃(q) and hence (v; z) cannot be evaluated analyti-
cally, complicating the simulation of between event times, v,
according to (4). The between event times are most commonly
resolved using thinning (see, e.g., Fearnhead et al. 2018, sec.
2.1), which in turn necessitates selecting an upper bound on
λ specific to the target distribution in question. The tightness
of the bound substantially influences the computational cost
of the resulting method. Similar to the present work, Cotter,
House, and Pagani (2020) bypasses the need for such bounds by
approximating (v; z) using numerical integration and solve (4)
using numerical root finding, thereby obtaining a PDMP that is
slightly biased relative to the target distribution.

3. Generalized Randomized HMC Processes

In this section, theoretical PDMPs with (appropriately cho-
sen) Hamiltonian dynamics (2) between events are considered.
These processes will be referred to a generalized randomized
HMC processes (GRHMC), and it shown that for a large class
of combinations of (λ, Q), GRHMC processes will have the BG
distribution (3) as a stationary distribution. In practice, the
Hamiltonian flow is implemented using high precision adaptive
numerical methods (to be discussed in Section 4.1 and referred
to as Numerical GRHMC), to obtain a robust and accurate, but
nevertheless approximate versions of these PDMPs.

3.1. GRHMC as PDMPs

The GRHMC process targeting ρ(z) is constructed within the
PDMP framework of Section 2.3 as follows; set D = 2d, z =
[qT , pT]T and,

• The deterministic dynamics are Hamiltonian, namely


(z) =
[

M−1p
∇q log π̃(q)

]
, and hence �τ = ϕτ . (8)

• A general state-dependent event rate λ(z) = λ(q, p) > 0 sub-
ject only to the restriction that C(q) = ∫

λ(q, p)N (p|0d, M)

dp < ∞ (for all admissible q) is assumed.

• The “transition distribution at events” is given in terms of the
density

Q(z|z′) = δ(q − q′)Kq′(p|p′), (9)

where Kq(p|p′) is a Markov kernel density which leaves
vq(p) = λ(q, p)N (p|0d, M) [C(q)]−1 invariant for all fixed
q, where and δ(·) is the Dirac delta function centered in 0.

From now on, Q(t) and P(t) are used for position- and
momentum subvectors of Z(t), respectively, that is, Z(t) =
[Q(t)T ,P(t)T]T , t ∈ [0, T].

3.2. Stationary Distribution

Proposition 1. The above introduced GRHMC processes admit
ρ(z) as a stationary distribution.

Proposition 1 is proved by showing that both sides of the
steady state Fokker-Planck equation (5) with p(z) = ρ(z) are
zero for a GRHMC process. As shown in Appendix A.1, supple-
mentary materials, for BG-preserving Hamiltonian dynamics
(8) between events, the left-hand side of the Fokker-Planck
equation (5) vanishes, that is,

D∑
i=1

∂

∂zi
[
i(z)ρ(z)] = 0. (10)

Further, due to the vq-preserving nature of Kq(p|p′) above, the
right hand side of the Fokker-Planck equation (5) reduces to
(see Appendix A.2, supplementary materials for more detailed
calculations)∫

ρ(z′)λ(q′, p′)δ(q − q′)Kq′(p|p′)dz′ − ρ(z)λ(z),

= π(q)C(q)

∫
Kq(p|p′)vq(p′)dp′ − ρ(z)λ(z) = 0,

and hence, Proposition 1 follows.
Notice that allowing the event rate to depend on the momen-

tum p requires that the momentum refresh distribution must
be modified relative to simply preserving the BG distribution
p-marginal as in regular HMC and RHMC. Similar choices of Q
are discussed by (Fearnhead et al. 2018, sec. 3.2.1) and (Vanetti
et al. 2018, sec. 2.3.3). Further notice that the above results
are easily modified to accommodate a general non-Gaussian
p-marginal (see, e.g., Livingstone, Faulkner, and Roberts
2019) of the (separable) BG distribution (see Appendix A.1,
and A.2, supplementary materials) and a Riemann manifold
variant (Girolami and Calderhead 2011) (see Appendix A.3,
supplementary materials).

3.3. More on Event Specifications

Two special cases of the general event specification character-
ized by λ = λ(q, p) and (9) may be mentioned: for event
rates not depending on p, say λ(z) = ω(q) > 0, implies that
vq(p) = N (p|0d, M) ∀ q and momentums may be updated as
in generalized HMC (Horowitz 1991), namely

Kq(p|p′) = N (p|φp′,
√

1 − φ2M), (11)
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Table 1. The event specifications applied in the reminder of this text.

Event λ Kq(p|p′) Interpretation
specification

1 1
β

N (p|φp′ ,
√

1 − φ2M), φ ∈ (−1, 1) Time between events is Exp(β), autocorrelated
momentum refreshes

2 1
β

√
pT M−1p ∝

√
pT M−1p exp

(
− 1

2 pT M−1p
)

∼
√

r
yT y

√
My, where

y ∼ N(0d , Id), r ∼ χ2(d + 1)

Arc-length of between-events (standardized)
position trajectory is Exp(β), independent
momentum refreshes

NOTE: In all cases β is a tuning parameter, where larger βs on average correspond to less frequent events/longer inter-event trajectories. For specification 2, arc-lengths of
position-trajectories are calculated in the Mahalanobis distance d(q, q′) =

√
(q − q′)T M(q − q′) as M−1 is assumed to be some approximation/reflect the scales of the

covariance matrix of π(q).

for some fixed Horowitz parameter φ ∈ (−1, 1). Second,
assuming further structure on λ = λ(q, p) may lead to tractable
sampling directly from vq(p). Examples include:

• λ allows the representation λ(z) = b(q, pTM−1p) for suit-
ably chosen function b : R

d × R
+ �→ R

+. Then, vq(p)

is an elliptically contoured distribution (see, e.g., Cambanis,
Huang, and Simons 1981) which typically allows efficient
independent sampling.

• log(λ(z)) is a quadratic function in p for each q. Then vq(p)

is Gaussian, which admit straight forward independent or
autocorrelated momentum refreshes.

These cases, and the rather rudimentary specific choices com-
mitted below, are by no means exhausting the possibilities, and
further research taking (9) as vantage point is currently under
way. Avenues actively explored include Metropolized versions of
Kq(p|p′) similar to (11) but for general p-dependent event rates.
Further work is done to obtain processes that have intervals
between events well adapted to the target distribution similarly
to for example, the NUTS algorithm. Finally, it should also
be mentioned that Kq(p|p′) may in principle be selected first
for some desirable purpose (e.g., momentum-refreshes that are
over-dispersed relative to M to allow for jumps between modes),
with the event rate subsequently chosen to so that Kq is invariant
with respect to vq.

Further notice that there is a fundamental difference between
changing the BG-p-marginal (see, e.g., Livingstone, Faulkner,
and Roberts 2019) and selecting a p-dependent event rate so
that the moment-refreshes must preserve a vq(p) different from
N (p|0d, M). The former case changes also the deterministic
dynamics, whereas the latter does not. Hence, there is an addi-
tional degree of freedom in the present setup in that one may fix
the Hamiltonian (and hence dynamics) first, and then modify
the momentum refreshes afterwards by suitable choices of the
event rate.

3.4. Specific Event Specifications

Table 1 provides the specific event specifications used in the
remainder of this text. The former is RHMC with Horowitz
type momentum refreshes (11), whereas specification 2 involves
independent updates according to an elliptically contoured
momentum refresh distribution vq.

Interestingly, the large λ limit of the q-component of the
PDMP, that is, Q(t), for specification 1, is a Brownian motion-
driven preconditioned Langevin process (see, e.g., Roberts and

Rosenthal 1998) (see Appendix A.4, supplementary materials)

dQ(t) = 1
2

M−1∇q log π̃(Q(t)) + M− 1
2 dW(t). (12)

Here W(t) is a standard Brownian motion and M− 1
2 is any

matrix square-root of M−1.
Specification 2 is a first attempt at providing event rates

where the length of the between-event trajectories is chosen
dynamically. Specifically, the event specification is chosen so
that β

∫ v
0 λ(ϕs(z))ds = β(v; z) is exactly the arc-length (in

the Mahalanobis distance d(q, q′) = √
(q − q′)TM(q − q′)

for standardization, see Appendix Section A.5, supplementary
materials for details) of the position coordinate when z was the
state of the process immediately after the last event. For this
specification, vq allows straight forward sampling as it is an
elliptically contoured distribution (see Table 1).

Note that β = O(d1/2) is needed to ensure E(λ) = O(1), but
also result in that var(λ) = O(d−1) under the BG-distribution.
Further, vq converges to N(0d, M) for large d (as var(r/yTy) in
Table 1 is O(d−1)). Hence, for large d one would expect a similar
behavior of specifications 1 and 2.

3.5. Illustrative Examples

Figure 2 shows examples of the trajectories of the q-coordinate
under continuous time HMC process for different event speci-
fications for a bivariate standard Gaussian target. It is seen that
the nature of the trajectories differs, with event specification 1,
φ = 0.7, visiting a somewhat narrower “range” of orbits relative
to that of event specification 1, φ = 0. For event specification 1,
there is quite large variation in the “how much ground” each
between-event trajectory is covering (several of the between-
event trajectories go through multiple identical cycles), whereas
the arc-lengths have less variation under specification 2. Recall
still that arc-lengths are only in expectation equal under event
specification 2 as u appearing in (4) are exponentially dis-
tributed.

The rightmost panel of Figure 2 is included as an illus-
tration of the flexibility afforded by GRHMCs as defined in
Section 3.1. An event-rate favoring events occurring when the
q-coordinate is close to (somewhere on) the subspace defined
by q1 = q2 is considered. This is an example of a process where
(unlike RHMC) the embedded discrete time process obtained
by considering only the configuration at events is clearly off
target, whereas the continuous time GRHMC process still has
the desired stationary distribution. Such processes may be an

https://doi.org/10.1080/10618600.2022.2066679
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Figure 2. Examples of q-coordinate of continuous time HMC trajectories with different event specifications for a bivariate standard Gaussian target distribution π(q). In all
cases, M = I2 and the shown trajectories correspond 100 units of time t. Events are indicated with red circles, and the common initial q-coordinate is indicated with a cross.
In the rightmost panel, an event rate favoring events when the distance between the q-coordinate and its projection onto the subspace spanned by v = (1, 1) (indicated
by a gray line) is small.

avenue for obtaining between events dynamics amounting to
(an integer multiple) of approximately half orbits. However, the
selection of event-favoring subspaces for general non-Gaussian
target distributions requires further research. From now on,
only event specifications 1, φ = 0 and 2 are considered.

3.5.1. Moment Estimation and “Super-convergence”
To gain some initial insight into the behavior of moment esti-
mation based on NGRHMC processes, 10,000 trajectories of
were generated for 4 zero mean, unit variance univariate tar-
gets π(q1). Each trajectory was of (time) length T = 1000π

2
preceded by an equal length of warmup. Event specification 1,
φ = 0, was used in all cases, and experiments were repeated
for different values of the inter-event mean time β (see Table 1).
Further, several different sampling strategies were applied to all
produced trajectories. Root mean squared errors (RMSEs) of the
E(q1)-estimates are presented in Figure 3.

For the standard Gaussian distribution, exactly iid samples
obtains when choosing trajectories of (time) length π/2 in
the hypothetical HMC method (with exact dynamics, see Sec-
tion 2.2). Thus, the (time) lengths of generated Hamiltonian
flow (and thus essentially the computational cost) of NGRHMC
and for 1000 iid-samples-producing hypothetical HMC tran-
sitions are the same. As a reference to the NGRHMC results,
the RMSEs based on 1000 iid samples are indicated as hori-
zontal lines in the plots. For the non-Gaussian targets, the cost
of obtaining RMSEs corresponding to 1000 iid samples using
HMC are likely somewhat higher, and thus the benchmarks
are likely somewhat favoring HMC in a computational cost
perspective in these cases.

In all cases, low values of β (frequent events) result in poor
results, as the continuous time process approaches the Langevin
limit (12). The most striking feature of the plot is that for
continuous (black circles) or high frequency sampling (red ×) of

the trajectories, RMSEs for the symmetric targets (N(0, 1), stan-
dardized t20) decreases monotonically in β , and for the highest
β = 10.0 considered is only around 35% of the benchmark in
the N(0, 1) case. In the univariate Gaussian target case, this
behavior obtains as the between-event Hamiltonian dynamics,
q1(t), averaged over time, that is, 1

t
∫ t

0 q1(s)ds, converges to
the mean of the target as t → ∞, regardless of the initial
configuration z(0) (see below and Appendix B, supplementary
materials). Thus, in the Gaussian case, momentum refreshes are
not necessary for unbiased estimation of E(q1). It appears this is
also the case for the standardized t20-distribution, but this has
not been proved formally so far.

For the nonsymmetric targets, standardized χ2
50 and stan-

dardized χ2
30, such monotonous behavior is not seen as momen-

tum refreshes are certainly necessary to obtain high quality
estimates. Too infrequent refreshes (i.e., high β) result in higher
variance from exploring too few energy level sets. For interme-
diate values of β , the continuous- or high frequency sampling
estimates are still better than or on par with the iid benchmark,
where the edge is lost toward more skewness in the target
distribution.

As mentioned in Section 2.3, the continuous time trajectories
can either be sampled at discrete times (6) or continuously
(in practice integrated numerically within the ODE solver, see
below for details) over time (7), where the former may be
thought of as a crude quadrature approximation to the latter.
From Figure 3, it is evident that there is little difference in the
high frequency (� = π/2) discrete time sampling and continu-
ous sampling. The efficiency deteriorates somewhat with more
infrequent (� = π) discrete sampling (blue �). As will be clear
in the next section, continuous estimates (7) require minimal
additional numerical effort, and it seems advisable always to use
these for moment calculations, whereas rather frequent discrete
samples should be used for other tasks.

https://doi.org/10.1080/10618600.2022.2066679
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Figure 3. RMSE of estimates of E(q1) from NGRHMC processes using event specification 1 for different values of the mean inter-event time parameter β . The panels
correspond to the different univariate target distributions π(q1), which all have zero mean and unit variance. Unit mass matrix M = 1 was used. The estimates of the mean
are based on trajectories of length T = 1000 π

2 , and the RMSE estimates are based on 10,000 independent replica for each value of β . Black circles correspond continuous
sampling (7), red ×-s to 1000 equally spaced samples, blue squares to 500 equally spaced samples and green triangles to samples recorded at events only. The horizontal
lines give the RMSE of 1000 iid samples. The results are obtained using the numerical methods described in Section 4.1 with tola = tolr = 0.001.

The green triangles represent results obtained when sam-
pling the process only at event times using the same amount
of Hamiltonian trajectory. It is seen that this practice, which
does not exploit the “between-events” trajectories, generally
lead to inferior results. The exception is in the random walk-
like domain, where frequent events (and thus sampling) occur,
but in this case the underlying process only slowly explores the
target distribution.

3.6. Choosing Event Intensities

The time average property under the univariate Gaussian, illus-
trated in the left panel of Figure 3 generalizes to multivariate
Gaussian targets π(q) = N (q|μ, �) as well. Namely, it can
be shown (see Appendix B, supplementary materials) that the
between-events dynamics q(τ ) admit unbiased estimation of μ

without momentum refreshes, that is,

1
T

∫ T

0
Cq(τ )dτ −→

T→∞ Cμ, C ∈ R
p×d, (13)

regardless of the initial configuration z(0).
Of course, the Gaussian case is not particularly interesting

per se. However, one would presume that for near Gaussian
target distributions (which is frequently the case in Bayesian
analysis applications due to Bernstein-Von Mises effects), the
left-hand side (13) would have only a small variation in z(0)

for large T. Hence, such situations would benefit from quite low
event intensities/long durations between events and would allow
for very small Monte Carlo variations in moment estimates akin
to those shown in the two leftmost panels of Figure 3 even in
high-dimensional applications.

Still, the fast convergence results above are restricted to cer-
tain moments of certain target distributions. It is instructive

(and sobering) to look at the estimation of the second order
moment of a univariate standard Gaussian target distribution
(with M = 1). In this case,

1
T

∫ T

0
q2

1(τ )dτ −→
T→∞

1
2

(
q2

1(0) + p2
1(0)

)
,

that is, the dependence on the initial configuration z(0) does
not vanish as the time between events grows, and the second
order moment cannot be estimated reliably without momentum
refreshes.

For a fixed budget of Hamiltonian trajectories, a non-
Gaussian target and/or a nonlinear moment, say E(g(q)), and
the event rate tradeoff will have at the endpoints:

• For “large β ,” variation in the GRHMC moment estimate is
mainly due to variation between energy level sets, that is, the
variance of limT→∞

∫ T
0 g(q(t))dt as a function of the initial

configuration z(0).
• For “small β ,” variation in the GRHMC moment estimate

comes mainly from that the underlying process Zt reverts to
a random walk-like behavior (Langevin-dynamics for con-
stant event rate).

The location of the optimum between these extremes (see,
e.g., the two right-most panels in Figure 3) inherently depends
both on the target distribution and the collection of moments,
say E(g1(q)), . . . , E(gm(q)), one is interested in. More auto-
matic choices of event rate specifications will be explored in the
numerical experiments discussed below.

4. Numerical Implementation

The proposed methodology relies on quite accurate simulation
of the Hamiltonian trajectories and associated functionals of the

https://doi.org/10.1080/10618600.2022.2066679
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type (7). This section summarizes numerical implementation of
these quantities based on Runge-Kutta-Nystöm (RKN) methods
(see, e.g., Hairer, Nørsett, and Wanner 1993, chap. II.14). The
reader is referred to Hairer, Nørsett, and Wanner (1993) for
more background on general purpose ODE solvers.

In what follows, τ is used as the time index of the between-
events Hamiltonian dynamics (as opposed to PDMP process
time t), and it is convention that τ is reset to zero immediately
after each event. RKN methods are particularly well suited for
time-homogenous second order ODE systems on the form

ÿ(τ ) = F(y(τ )), y ∈ R
n, F : Rn �→ R

n, (14)

subject to the initial conditions y(0) = y0, ẏ(0) = z0. Notice
that when F does not depend on ẏ(τ ), RKN methods are sub-
stantially more efficient than applying conventional Runge Kutta
methods to an equivalent coupled system of 2n first order equa-
tions, say ẏ(τ ) = w(τ ), ẇ(τ ) = F(y(τ )).

A wide range of numerical methods have been developed
specifically for the dynamics of Hamiltonian systems (see, e.g.,
Sanz-Serna and Calvo 1994; Leimkuhler and Reich 2004). Such
methods typically conserve the symplectic- and time-reversible
properties of the true dynamics, and hence provide reliable long-
term simulations over many (quasi-)orbits. However, for shorter
time spans, typically on the order of up to a few (quasi-)orbits,
such symplectic methods have no edge over conventional meth-
ods for second order ODEs (see, e.g., Sanz-Serna and Calvo
1994, sec. 9.3).

4.1. Numerical Solution of Dynamics and Functionals

In the numerical implementation used in the present work,
the between-events Hamiltonian dynamics are reformulated in
terms of the second order ODE

q̈(τ ) = M−1∇q log(q(τ )), (15)

which is to be solved for (q(τ ), q̇(τ )). The dynamics of (15) are
equivalent to the dynamics of (2) when the initial conditions
(q(0), q̇(0) = M−1p(0)) are applied, and the momentum vari-
able for any τ is recovered via p(τ ) = Mq̇(τ ).

Further, recall that the proposed methodology relies critically
on the ability to calculate between-events Hamiltonian dynam-
ics functionals on the form

rk(τ ) =
∫ τ

0
Mk(q(s))ds, k = 1, . . . , p, (16)

for a suitably chosen monitoring function M : Rd → R
p, for

example, for integrated event intensities  (4) and continuous
sampling (7). To this end, first observe that r(τ ) = Ṙ(τ )

whenever R̈(τ ) = M (q(τ )), with initial conditions R(0) =
0p, Ṙ(0) = 0p. Hence, by augmenting (15) with the monitoring
function, that is,[

q̈(τ )

R̈(τ )

]
=

[
M−1∇q log(q(τ ))

M (q(τ ))

]
, (17)

a system on the form (14) is obtained. When solved numerically,
(17) produces solutions both for the dynamics (2 or 15) and
the dynamics functional (16). Implemented in this manner,
the adaptive step size methodology (discussed in Appendix C)

controls both the numerical error in the Hamiltonian dynamics
and the functionals concurrently (in contrast to Nishimura and
Dunson (2020) where integrator step sizes are kept fixed and
intermediate integrator steps are included in averages based on
an accept/reject mechanism).

In this work, the sixth order explicit embedded pair RKN
method RKN6(4)6FD of (Dormand and Prince 1987, Table
2) was used to solve (17). Each step of RKN6(4)6FD requires
five evaluations of the right-hand side of (17), but possesses
improved stability properties relative to for example, the
leapfrog method, hence, allowing for the use of larger step-
sizes. Since the solution to R(τ ) is not required per se, trivial
modifications of the mentioned RKN method were done so that
it solves only for s(τ ) = (q(τ ), q̇(τ ), r(τ )). Further details, and
a full algorithm may be found in Section C in the Appendix,
supplementary materials. It is also worth noticing that simpler,
but less efficient variants of the above algorithm may be written
in high level languages with access to off-the-shelf ODE solvers.
Section G in the Appendix, supplementary materials gives an
example written in R.

4.2. Do Numerical Errors Influence Results?

To assess how the application of (un-corrected) RKN numerical
integrators for the Hamiltonian dynamics influences overall
Monte Carlo estimation, a small simulation experiment was
performed. Specifically, a N(02, �) target distribution with

� =
[

1 2
2 8

]
, M = I2, λ = 1

10
and Q(p|z′) = N (p|02, M),

(18)
was used. Due to the Gaussian nature of the target distribu-
tion, the Hamiltonian dynamics are available in closed form,
and hence, allow the comparison with the numerically inte-
grated counterparts. RHMC trajectories based both on exact
and numerically integrated dynamics were used to estimate the
mean and raw second order moments of the target using con-
tinuous sampling. The same initial configuration Z(0) and the
same random numbers were used so that errors in the estimators
based on numerical integration are due only to RKN integration.
Figure 4 shows the RMSEs between estimates from numerically
integrated- and exact RHMC trajectory for different values of T
and the absolute (relative) RKN integrator error tolerance tola
(tolr) (see Appendix C, supplementary materials for details). All
results are based on independent 50 replications. Also indicated
in the plots as horizontal lines are the RMSEs associated with
estimating the said moments (across multiple independent tra-
jectories) based on RHMC with exact dynamics.

From Figure 4, it is seen that except for very large values
of tola = tolr , the numerical errors are very small relative
to the exact estimator RMSEs. From the plots, absolute and
relative error tolerances of around 0.001 appear to be more than
sufficient for this case. Interestingly, it is seen that there is no
apparent buildup of numerical errors in the longer trajectories,
suggesting that the incurred errors are not systematically accu-
mulating and biasing the estimation in any direction. Of course,
this limited experiment does not rule out such biasing behavior
in general. However, the overall the finding here indicate that
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Figure 4. Numerical errors incurred by RKN integration on the estimation the first and second order moments of a bivariate Gaussian target distribution. The numerical
errors are relative to a NGRHMC trajectory using the same random numbers but with exact Hamiltonian dynamics. Both exact and numerically integrated results are based
on continuous sampling. The horizontal axis gives the error tolerances (in all cases with tola = tolr ) applied in the numerical integrator, and both horizontal and vertical
axis are logarithmic. Dotted lines indicate the root mean squared errors associated with estimating the indicated moments across many exact NGRHMC trajectories of
different length T.

quite lax error tolerances are sufficient to make the numerical
errors be negligible relative to overall Monte Carlo variation.

More formal characterizations of the incurred biases is
another avenue for further work. Such approaches could involve
either theoretically bounding the biases incurred in Wasserstein
distance, for example, based on the techniques of Rudolf and
Schweizer (2018). More numerically oriented approaches using
Multilevel Monte Carlo methods (see, e.g., Giles 2015), based
on multiple trajectories with different error tolerances but the
same random number seed would be another alternative.

4.3. Automatic Selection of Tuning parameters

A key aim of developing NGRHMC processes is to enable the
implementation of an easy to use and general-purpose code.
For this purpose, automatic selection of tuning parameters is
important. This Section describes the routines for tuning the
mass matrix M and scaling the event intensity used in the
computations described shortly.

4.3.1. Tuning of Mass Matrix
In the present work, only a diagonal mass matrix M =
diag(m1, . . . , md) is considered. Two approaches for choosing
each of m1, . . . , md are considered, both exploiting the ability
to numerically calculate temporal averages by augmenting the
monitoring function M .

In the former approach which will be referred to as VARI
(variance, integrated), m−1

i is simply set equal to the temporal
average estimate of var(qi), that is,∫ t∗

0
Q2

i (s)ds −
[∫ t∗

0
Qi(s)ds

]2

,

at every event time t∗ during the warmup period.

In cases where the marginal variances are less informative
with respect to the local scaling of the target distribution, for
example, in the presence of strong nonlinearities or multimodal-
ity, a second approach referred to as ISG (integrated squared
gradients) may also pursued. Here overarching idea for choos-
ing each of m1, . . . , md is to make the square of each element
of the right-hand side of (15), averaged over each integrator
step, in expectation over all integrator steps, to be equal to
1. This approach is mainly motivated out of numerical effi-
ciency considerations, where regions of the target distribution
requiring many steps (with short step sizes due to strong forces
∇q log π̃(q)) are disproportionally weighted when choosing the
mass matrix.

More explicitly, let the jth integrator step (during the warmup
period) be originating at time τj and have time step size εj.
Then the mass matrix diagonal mi is taken to be an exponential
moving average (over j) of

1
εj

∫ τj+εj

τj

[∇q log π̃(q(s))
]2

i ds.

Notice that the integrated squared gradients are available at
negligible additional cost by augmenting M in the ODE system
(17) with moment functions

[∇q log π̃(q)
]2

i , i = 1, . . . , d.
Further notice that for a N(μ, P−1) target distribution, where
Eπ (

[∇q log π̃(q)
] [∇q log π̃(q)

]T
) = P, this approach may

(modulus variability in integrator step size) be seen as a way to
directly estimate the precision matrix diagonal elements.

4.3.2. Tuning of Event Rates
The methodology for tuning the event rates relies of the follow-
ing representation of a general event rate λ:

λ(q, p) = 1
γβ

λ̄(q, p), γ > 0, β > 0,
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where λ̄ is a “base line” event rate (e.g., λ̄ = 1 for event
specification 1 and 2, and λ̄ = √

pTM−1p for event specification
2). Here γ is a user-given scale factor, say in the range 1–20,
chosen in the higher range if one expects good performance
with infrequent moment refreshes (see Section 3.6). Finally, β is
tuned automatically to reflect each particular target distribution
and event specification.

Suppose ι(z) is the distribution the state immediately after
events (which is equal to ρ(z) for RHMC but may also differ
substantially relative to ρ(z) as seen in the rightmost panel of
Figure 2). The objective of the automatic event rate tuning is
given by

E
z(0)∼ι(z)

β−1ϒ(z(0)) = 1, where

ϒ(z(0)) =
∫ ω(z(0))

0
λ̄(q(τ ), p(τ ))dτ , (19)

and where ω is the “U-turn” time (Hoffman and Gelman 2014)

ω(z(0)) = inf
{
τ > 0 : (q(τ ) − q(0))Tp(τ ) < 0

}
,

of the dynamics (2) initialized at z(0) (See also Wu, Stoehr, and
Robert 2018, for a similar development). The rationale behind
(19) is that (for γ = 1) the expected integrated event rate  (see
Equation 4) evaluated at corresponding U-turn time is equal to
E(u).

In the present implementation, ϒ(z(0)) is computed for each
event during warmup with z(0) being the state immediately
after the events. Subsequently, β−1 is updated (also during the
warmup period only) at each event according to an exponential
moving average over the already computed ϒs. The exponential
moving average is used as the older realizations of ϒ are typically
recorded with a different mass matrix encountered earlier in
the mass matrix adaptation process. Computing ϒ(z(0)) for
each event incurs only modest additional costs, since ϒ is a
scalar integrated quantity computed over Hamiltonian dynam-
ics that are integrated numerically anyway. However, if the next
event occurs before the U-turn time ω, further integration steps
are performed until ω is reached. The additional (post-event)
Hamiltonian dynamics used to locate ω are subsequently dis-
carded.

5. Numerical Experiments

This section considers numerical experiments and benchmark-
ing of the proposed method against the NUTS-HMC implemen-
tation in Stan (rstan version 2.21.2). Like Stan, the proposed
methodology has been implemented as an R package (pdphmc)
with main computational tasks done in C++, and relies, like
rstan, on the Stan Math Library (Carpenter et al. 2017) for
automatic differentiation and probability- and linear-algebra
computations.

All computations in this section were carried out on a 2020
Macbook pro with a 2.6 GHz Intel Core i7 processor, under R
version 4.0.3. In line with the findings in Section 4.2, the default
integrator tolerances tola = tolr = 0.001 are used for pdphmc
unless otherwise noted. The package pdphmc, and code and
data for reproducing the reported results is available at https://
github.com/torekleppe/PDPHMCpaperCode.

In order to compare the performance of the methods, their
effective sample size (ESS) (Geyer 1992) per computing time
(see, e.g., Girolami and Calderhead 2011) is taken as the main
statistic. Consider a sample dependent of dependent random
variables ηi, i = 1, . . . , N, each having the same marginal dis-
tribution. The ESS gives the number of hypothetical iid samples
(with distribution equal to that of η1) required to obtain a mean
estimator with the same variance as N−1 ∑N

i=1 ηi . An ESS-
based approach is taken also here, but in order to obtain ESSes
for moments estimated by for integrated quantities (7), the
following approach was taken: For a given number of samples,
say N, rewrite the left-hand side of (7) as

1
T

∫ T

0
g(Z(t))dt = 1

N

N∑
i=1

ηi, where

ηi = �−1
∫ i�

(i−1)�

g(Z(t))dt, � = T
N

. (20)

Let ÊSSi(ηi) denote an estimator of the ESS of dependent sample
ηi. Then

v̂ari(g(Z(�i)))
v̂ari(ηi)

ÊSSi(ηi) (21)

is taken to be an estimator of ESS represented by moment
estimator T−1 ∫ T

0 g(Z(t))dt, expressed in terms of iid samples
of g(q). Equation (21) takes into account both that v̂ari(ηi) tends
to be smaller than v̂ari(g(Z(�i))) due to the temporal averaging
in (20), but on the other hand ηi tends to exhibit a stronger auto-
correlation than discrete time samples g(Z(�i)). Throughout
this text, the ESS estimation procedure in rstan (see R-function
rstan::monitor(), output “n_eff ”) was used for estimating ESS
from samples. In addition, the largest (over sampled quantities)
Gelman-Rubin R̂ statistics (max R̂) (Gelman et al. 2014) were
computed using the same function. For pdphmc, the reported
max R̂ are computed for the discretely sampled processes.

Comparing the performance of different MCMC methods is
intrinsically hard. Care has been taken so that all code is written
in the same language and compiled with the same compiler on
the same computer and so on. Still, in the present context one
must also consider that rstan is based on an “exact” MCMC
scheme whereas pdphmc will in general be subject to (arbitrarily
small, at the cost of more computing,) biases stemming from the
use of uncorrected numerical integration. On the other hand, as
demonstrated for example, in Figure 1, chains of finite length
generated by rstan may fail to reflect the target distribution in
cases where no visible bias is exhibited by pdphmc due to the
adaptive nature of the applied integrators. The relative weighting
of these features naturally depends on the application at hand,
and therefore preclude strong conclusions regarding the relative
performance of the methods.

In what follows, three numerical experiments are presented.
A further experiment, based on a crossed random effects
model for the Salamander data is described in Section D of
the Appendix, supplementary materials. For the Salamander
data, pdphmc is found to be on par or somewhat more efficient
than rstan.

https://github.com/torekleppe/PDPHMCpaperCode
https://github.com/torekleppe/PDPHMCpaperCode
https://doi.org/10.1080/10618600.2022.2066679
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Table 2. Results for the “smile”-shaped target distribution (22,23).

γ sampling q1 min
k∈{2,11}ESS(qk) max

k∈{2,11}ESS(qk) E(q1) E(q2) CPU time

ESS ESS
CPU time ESS ESS

CPU time ESS ESS
CPU time (exact = 0) (exact = 1) (s)

rstan (max R̂ = 1.247)
19 10 29 15 32 17 −0.15 1.04 1.9

pdphmc, event specification 1, φ = 0 (γ = 2: max R̂ = 1.006, γ = 10: max R̂ = 1.015)
2 D 1323 779 1065 627 1215 716 −0.02 1.03 1.7
2 C 1319 777 1115 657 1150 678 −0.02 1.02
10 D 2213 1304 608 358 634 374 0.01 1.00 1.7
10 C 2233 1316 613 361 630 371 0.01 1.01

pdphmc, event specification 2 (γ = 2: max R̂ = 1.007, γ = 10: max R̂ = 1.009)
2 D 1094 645 1130 666 1183 697 −0.02 0.98 1.7
2 C 1094 645 1153 679 1184 698 −0.02 0.97
10 D 2276 1341 920 542 967 570 0.01 1.03 1.7
10 C 2303 1357 927 546 948 559 0.01 1.03

NOTE: The results are based on 10 independent replica, and ESSes and ESSes per computing time are from the combined results over these replica. For rstan, each replica
consists of the 10,000 transitions, with the former 5000 discarded as warmup. For pdphmc, ISG-type mass matrix, trajectories of length T = 25,000 divided evenly between
warmup and sampling, and 1000 discrete samples were used. The presented CPU times are the total time spent by all chains/trajectories during the post warmup period.
For each configuration of pdphmc, results from both discrete sampling (D) and continuous sampling (C) are presented.

5.1. Funnel Distribution

The Funnel distribution q1 ∼ N(0, 1), q2|q1 ∼ N(0, exp(3q1))
(funnel distributions may be traced back to Neal 2003), con-
stituting the first numerical example, has already been encoun-
tered in Section 2.2 and Figure 1. This very simple example may
be considered as a “model problem” displaying similar behav-
ior as for targets associated with Bayesian hierarchical models
(where q1 plays the role of latent field log-scale parameter, and
q2 plays the role of the latent field it self).

For both rstan and pdphmc, 10 independent chains/trajecto-
ries were run with identity mass matrices. For rstan, each of
these chains had 10,000 transitions with 5000 discarded as
warmup. The number of warmup iterations is larger than the
default 1000 to allow for best possible integrator step size adap-
tation. The remaining tuning parameters of rstan are the default.
Note that rstan outputs a substantial number of warnings related
to diverged transitions for all values of δ.

For pdphmc, the trajectories were of length T = 100,000,
sampled discretely N = 10,000 times and with the former half
of samples discarded as warmup. For such high sampling fre-
quency, continuous samples yield similar results as the discrete
samples, and are not discussed further here. A constant event
rate λ = β−1 was applied, and β was adapted with scale factor
γ = 2 using the methodology described in Section 4.3.2. The
adaptive selection resulted in values of β between 2.1 and 4.7
across the 10 trajectories, which again translates to between 0.21
and 0.48 discrete time samples per (between-events) Hamilto-
nian trajectory.

It has already been confirmed visually from Figure 1 that
the output of rstan does not fully explore the target distribution
as fixed time step size integration is broadly speaking unsuit-
able for this problem. Consequently, ESSes for rstan are not
presented. pdphmc produces around 800 effective samples per
second for the log-scale parameter q1. This is close to double
what one obtains by calculating time-weighted ESS for the (still
defective) δ = 0.999 rstan chains, indicating the proposed
methodology is highly competitive for difficult problems (as
even smaller fixed time steps would be required to obtain proper
convergence). Further, the default integrator tolerances tola =

tolr = 0.001 lead to biases (relative to the theoretical process)
that are not detectable from the right panel of Figure 1.

5.2. Smile-Shaped Distribution

To further explore the performance of pdphmc applied to a
highly nonlinear target distributions; the “smile”-shaped distri-
bution

qk|q1 ∼ N(q2
1, 0.52), k = 2, . . . , 11, (22)

q1 ∼ N(0, 1) (23)

is considered. The results for various settings of pdphmc and
rstan are given in Table 2. From the Table, it is seen that rstan
has substantial convergence problems with the largest Gelman-
Rubin R̂ > 1.05, whereas the various settings of pdphmc reliably
explores the target. Choosing longer trajectories (γ = 10)
results in higher sampling efficiency for the marginally standard
Gaussian q1, whereas for the non-Gaussian components q2:11,
shorter trajectories are more efficient. Comparing the event
specifications 1 and 2, it is seen that none of them produces
uniformly better results.

5.3. Logistic Regression

The next example model is a basic logistic regression model

yi|β ∼ Beroulli(pi), logit(pi) = xT
i,·β , i = 1, . . . , n, (24)

β ∼ N(0p, 100Ip) (25)

applied to the German credit data (see, e.g., Michie, Spiegelhal-
ter, and Taylor 1994) which has n = 1000 examples and p = 25
covariates (including a constant term). This example is included
to measure the performance relative to rstan on an “easy” target
distribution (Chopin and Ridgway 2017).

Results for pdphmc and rstan are provided in Table 3. It
is seen that rstan produces less variation in the ESSes across
the different parameters than pdphmc, which presumably is
related to the mass matrix adaptation. The discrete samples
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Table 3. ESSes and time weighted ESSes for the logistic regression model (24,25) applied to the German credit data.

γ Sampling minj ÊSS(β j) medianj ÊSS(β j) maxj ÊSS(β j) CPU

ESS ESS
CPU time ESS ESS

CPU time ESS ESS
CPU time time

rstan (max R̂ = 1.003)
9676 2125 13450 2953 15812 3472 4.55

pdphmc, event specification 1 (γ = 5: max R̂ = 1.011, γ = 20: max R̂ = 1.020)
5 D 11350 1425 23114 2903 40000 5023 7.96
5 C 18220 2288 32967 4140 71079 8926
20 D 11853 1490 29752 3740 40000 5028 7.96
20 C 20423 2567 36019 4528 69623 8752

pdphmc, event specification 2 (γ = 5 : max R̂ = 1.007, γ = 20 : max R̂ = 1.027)
5 D 11281 1362 23185 2799 40000 4829 8.28
5 C 18317 2211 30771 3715 66928 8080
20 D 12780 1565 32653 3999 40000 4899 8.16
20 C 20902 2560 43303 5304 70584 8645

NOTE: All figures are based on 10 independent chains/trajectories. For rstan, the default 1000 warmup transitions followed by 1000 sampling transitions were used. For
pdphmc, a VARI mass matrix, T = 5000 divided evenly between warmup and sampling and 1000 discrete samples per trajectory were used.

cases of pdphmc have a somewhat slower minimum ESS per-
formance but on par or better median- and maximum ESS per-
formance. For this target distribution, continuous samples for
the first moment of β|y substantially improves the performance
of pdphmc relative to the corresponding discretely sampled
counterparts in all cases.

6. Dynamic Inverted Wishart Model for Realized
Covariances

6.1. Model and Data

As a large scale illustrative application of NGRHMC, the
dynamic inverted Wishart model for realized covariance
matrices (Golosnoy, Gribisch, and Liesenfeld 2012) of Grothe,
Kleppe, and Liesenfeld (2019) is considered. Under this model,
a time series of SPD covariance matrices Yk ∈ R

G×G, k =
1, . . . , n are modeled independently inverted Wishart dis-
tributed conditionally on a latent time-varying SPD scale matrix
�k and a degree of freedom parameter ν > G + 1, that is,

Yk|�k, ν ∼ inv-Wishart(ν, �k) (26)

so that E(Yk|�k, ν) = (ν −G−1)−1�k. The time-varying scale
matrix is in turn specified in terms of

�k = H[diag(exp(x1,k), . . . , exp(xG,k))]HT (27)

where H ∈ R
G×G is a lower triangular matrix with Hg,g =

1, g = 1, . . . , G. The remaining (strictly lower triangular)
elements Hi,j, j = 1, . . . , G − 1, i = j + 1, . . . , G, are unre-
stricted parameters. Finally, the log-scale factors xg,k are a priori
independent (over g) stationary Gaussian AR(1) processes

xg,k = μg + δg(xg,k−1 − μg) + σ gεg,k, εg,k ∼ iid N(0, 1),
k = 2, . . . , n, g = 1, . . . , G, (28)

xg,1 ∼ N
(
μg , σ 2

g/(1 − δ2
g)

)
, g = 1, . . . , G, (29)

where μg , δg ∈ (−1, 1), σ g > 0, g = 1, . . . , Gare parameters.
The joint distribution of parameters θ = (μ, δ, σ , H2:G,1, . . . ,

HG,G−1, ν) and latent variables x is difficult to sample from,
and in order to reduce “funnel” effects, the Laplace-based
transport map reformulation of Osmundsen, Kleppe, and

Liesenfeld (2021) (without Newton iterations) is used here.
For every admissible θ , a smooth bijective mapping, say
x = γθ (z), z ∈ R

Gn, is introduced so that p(z, θ |Y1:n) ∝
|∇zvec(γθ (z))|[p(x, θ |Y1:n)]x=γθ (z) approximates p(θ |Y1:n)N
(z|0Gn, IGn). Subsequently, NGRHMC/HMC targeting p(z, θ |
Y1:n) are performed. The reader is referred Appendix E and
Osmundsen, Kleppe, and Liesenfeld (2021) for more details
on the construction of γθ and Appendix E, supplementary
materials for further details such as priors.

The data considered are n = 2514 daily observations of real-
ized covariance matrices for G = 5 stocks (American Express,
Citigroup, General Electric, Home Depot, IBM) between Jan-
uary 1, 2000 and December 31, 2009. See Golosnoy, Gribisch,
and Liesenfeld (2012) for details on how this dataset was con-
structed from high frequency financial data. For these values of
n and G, the model involves Gn = 12570 latent variables and
3G + G(G − 1)/2 + 1 = 26 parameters.

6.2. Results

ESSes and time-weighted ESSes for the parameters, z1:5,1 and
x1:5,1 are given in Table 4 for two variants of pdphmc and an
rstan benchmark. It is seen that the discretely sampled (D)
pdphmc uniformly provides faster sampling performance than
rstan. The speedup is in particularly significant when taking all
(A) computations into account as rstan uses more than 80%
of the computing time in the warmup phase, whereas there is
relatively little warmup overhead for pdphmc. For continuously
sampled (C) pdphmc the picture is somewhat more mixed
with numbers ranging from being on par with rstan (δ, event
specification 2) to being up to five times faster (H, both event
specifications). Event specification 2 lead to better worst-case
performance than event specification 1 in all cases other than
for H. However, the differences are not very large which may
be explained by the high dimensionality of the model, and that
event specifications 1 and 2 are very similar in this case. Still this
observation suggest that it may be possible to gain even more
efficiency by developing better adaptive event rate specifications.

Posterior means and standard deviations obtained both from
rstan and discretely sampled pdphmc presented in Table 6 in
the Appendix show no noteworthy deviations (see also Grothe,
Kleppe, and Liesenfeld 2019, Table 5). To conclude, pdphmc is

https://doi.org/10.1080/10618600.2022.2066679
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Table 4. Effective sample sizes and computing times for the dynamic inverted Wishart model (26,29).

rstan pdphmc, event spec. 1, γ = 10.0 pdphmc, event spec. 2, γ = 10.0
CPU time (S,A) (14605, 72127) (10629, 25244) (10189, 24960)
max R̂ 1.003 1.032 1.034

sampling D C D C
μ ESS (min, max) (14304, 18487) (12906, 28173) (14467, 28370) (14749, 38387) (14224, 41821)

ESS/S (min, max) (0.98, 1.27) (1.21, 2.65) (1.36, 2.67) (1.45, 3.77) (1.40, 4.10)
ESS/A (min, max) (0.20, 0.26) (0.51, 1.12) (0.57, 1.12) (0.59, 1.54) (0.57, 1.68)

σ ESS (min, max) (14757, 20011) (28447, 38922) (35971, 42891) (30227, 40000) (34283, 44316)
ESS/S (min, max) (1.01, 1.37) (2.68, 3.66) (3.38, 4.04) (2.97, 3.93) (3.36, 4.35)
ESS/A (min, max) (0.20, 0.28) (1.13, 1.54) (1.42, 1.70) (1.21, 1.60) (1.37, 1.78)

δ ESS (min, max) (13624, 16678) (16145, 28401) (18109, 31180) (15749, 25582) (9464, 29271)
ESS/S (min, max) (0.93, 1.14) (1.52, 2.67) (1.70, 2.93) (1.55, 2.51) (0.93, 2.87)
ESS/A (min, max) (0.19, 0.23) (0.64, 1.13) (0.72, 1.24) (0.63, 1.02) (0.38, 1.17)

H ESS (min, max) (12195, 22072) (35292, 40000) (46273, 69861) (33089, 40000) (43658, 70275)
ESS/S (min, max) (0.84, 1.51) (3.32, 3.76) (4.35, 6.57) (3.25, 3.93) (4.28, 6.90)
ESS/A (min, max) (0.17, 0.31) (1.40, 1.58) (1.83, 2.77) (1.33, 1.60) (1.75, 2.82)

ν ESS 17797 40000 53388 40000 56313
ESS/S 1.22 3.76 5.02 3.93 5.53
ESS/A 0.25 1.58 2.11 1.60 2.26

z1,· ESS (min, max) (22130, 24317) (30533, 40000) (37065, 70920) (40000, 40000) (64787, 68952)
ESS/S (min, max) (1.52, 1.67) (2.87, 3.76) (3.49, 6.67) (3.93, 3.93) (6.36, 6.77)
ESS/A (min, max) (0.31, 0.34) (1.21, 1.58) (1.47, 2.81) (1.60, 1.60) (2.60, 2.76)

x1,· ESS (min, max) (22149, 24858) (27525, 40000) (33768, 70763) (40000, 40000) (63230, 68873)
ESS/S (min, max) (1.52, 1.70) (2.59, 3.76) (3.18, 6.66) (3.93, 3.93) (6.21, 6.76)
ESS/A (min, max) (0.31, 0.34) (1.09, 1.58) (1.34, 2.80) (1.60, 1.60) (2.53, 2.76)

NOTE: In all cases, the results are based on 10 independent chains/trajectories and reported computing times are the total computing times over these 10 replica. For rstan,
default sampler parameters with 1000 warmup transitions followed by 1000 sampling transitions were used. For pdphmc, T = 5000 split evenly between warmup and
sampling, 1000 samples and an VARI type diagonal mass matrix were applied. Both computing times for the sampling (S) period and for all (A) computations (warmup
and sampling) are provided, and ESSes are weighted both for S and A.

fast and reliable alternative to HMC that also scale well to high-
dimensional settings.

7. Discussion

This article has introduced numerical generalized randomized
HMC processes as a new, robust and potentially very efficient
alternative to conventional MCMC methods. The presently pro-
posed methodology holds promise to be substantially more
trustworthy for complicated real-life problems. This improve-
ment is related to two factors:

• The NGRHMC process is defined in continuous time and
is time-irreversible. The present article is to the author’s
knowledge the among the first attempts to leverage time-
irreversible processes to produce general purpose and easy
to use MCMC-like samplers that scale to high-dimensional
problems. By now, there is substantial evidence (see, e.g.,
discussion on p. 387 of Fearnhead et al. 2018) that such
irreversible processes are superior to conventional reversible
alternatives.

• The proposed implementation of NGRHMC process lever-
ages the mature, and widely used field of numerical inte-
gration of ordinary differential equations. Common practice
for HMC is choosing a fixed step size low order symplectic
method and hoping that regions where this step size is too
large for numerical stability is not encountered during the
simulation. The proposed methodology, on the other hand,
relies on high quality adaptive integrators, which have no
such stability problems.

Currently, efficient and robust MCMC computations has been a
field dominated by tailor-making to specific applications and a

large degree of craftsmanship. Effectively, the two above points
reduces such MCMC computations into a more routine task
of numerically integrating ordinary differential equations using
adaptive/automatic methods.

There is scope for substantial further work on NGRHMC-
processes beyond the initial developments given here. A, by
no means complete, list of possible further research directions
related to NGRHMC processes is given in Appendix F, supple-
mentary materials.

Supplementary Materials

The supplementary material is a pdf-file containing: A: various detailed
derivations, B: Temporal averages of the Hamiltonian dynamics for Gaus-
sian targets, C: Details related to numerical implementation, D: addi-
tional numerical experiment: Salamander mating data, E: details of the
inverted Wishart model, F: suggestions for further work, G: A simple R
implementation.
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