162 research outputs found

    Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model

    Full text link
    Unsupervised learning on imbalanced data is challenging because, when given imbalanced data, current model is often dominated by the major category and ignores the categories with small amount of data. We develop a latent variable model that can cope with imbalanced data by dividing the latent space into a shared space and a private space. Based on Gaussian Process Latent Variable Models, we propose a new kernel formulation that enables the separation of latent space and derives an efficient variational inference method. The performance of our model is demonstrated with an imbalanced medical image dataset.Comment: ICLR 2016 Worksho

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    Efficient modeling of latent information in supervised learning using Gaussian processes

    Get PDF
    Often in machine learning, data are collected as a combination of multiple conditions, e.g., the voice recordings of multiple persons, each labeled with an ID. How could we build a model that captures the latent information related to these conditions and generalize to a new one with few data? We present a new model called Latent Variable Multiple Output Gaussian Processes (LVMOGP) that allows to jointly model multiple conditions for regression and generalize to a new condition with a few data points at test time. LVMOGP infers the posteriors of Gaussian processes together with a latent space representing the information about different conditions. We derive an efficient variational inference method for LVMOGP for which the computational complexity is as low as sparse Gaussian processes. We show that LVMOGP significantly outperforms related Gaussian process methods on various tasks with both synthetic and real data
    corecore