33 research outputs found

    PHEN : parkinson helper emergency notification system using Bayesian Belief Network

    Get PDF
    Context-aware systems are used to aid users in their daily lives. In the recent years, researchers are exploring how context aware systems can benefit humanity through assist patients, specifically those who suffer incurable diseases, to cope with their illness. In this paper, we direct our work to help people who suffer from Parkinson disease. We propose PHEN, Parkinson Helper Engine Network System, a context-aware system that aims to support Parkinson disease patients on m any levels. We use ontology is for context representation and modeling. Then the ontology based context model is used to learn with Bayesian Belief network (BBN) which is beneficial in handling the uncertainty aspect of context-aware systems

    Towards a Framework for Evaluating and Comparing Diagnosis Algorithms

    Get PDF
    Diagnostic inference involves the detection of anomalous system behavior and the identification of its cause, possibly down to a failed unit or to a parameter of a failed unit. Traditional approaches to solving this problem include expert/rule-based, model-based, and data-driven methods. Each approach (and various techniques within each approach) use different representations of the knowledge required to perform the diagnosis. The sensor data is expected to be combined with these internal representations to produce the diagnosis result. In spite of the availability of various diagnosis technologies, there have been only minimal efforts to develop a standardized software framework to run, evaluate, and compare different diagnosis technologies on the same system. This paper presents a framework that defines a standardized representation of the system knowledge, the sensor data, and the form of the diagnosis results and provides a run-time architecture that can execute diagnosis algorithms, send sensor data to the algorithms at appropriate time steps from a variety of sources (including the actual physical system), and collect resulting diagnoses. We also define a set of metrics that can be used to evaluate and compare the performance of the algorithms, and provide software to calculate the metrics

    Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Get PDF
    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.

    Approximate forward–backward algorithm for a switching linear Gaussian model

    Get PDF
    A hidden Markov model with two hidden layers is considered. The bottom layer is a Markov chain and given this the variables in the second hidden layer are assumed conditionally independent and Gaussian distributed. The observation process is Gaussian with mean values that are linear functions of the second hidden layer. The forward backward algorithm is not directly feasible for this model as the recursions result in a mixture of Gaussian densities where the number of terms grows exponentially with the length of the Markov chain. By dropping the less important Gaussian terms an approximate forward backward algorithm is defined. Thereby one gets a computationally feasible algorithm that generates samples from an approximation to the conditional distribution of the unobserved layers given the data. The approximate algorithm is also used as a proposal distribution in a Metropolis Hastings setting, and this gives high acceptance rates and good convergence and mixing properties. The model considered is related to what is known as switching linear dynamical systems. The proposed algorithm can in principle also be used for these models and the potential use of the algorithm is therefore large. In simulation examples the algorithm is used for the problem of seismic inversion. The simulations demonstrate the effectiveness and quality of the proposed approximate algorithm

    Construction and comparison of approximations for switching linear gaussian state space models

    Get PDF
    We consider approximate inference in a class of switching linear Gaussian State Space models which includes the switching Kalman Filter and the more general case of switch transitions dependent on the continuous hidden state. The method is a novel form of Gaussian sum smoother consisting of a single forward and backward pass, and compares favourably against a range of competing techniques, including sequential Monte Carlo and Expectation Propagation
    corecore