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Abstract

A hidden Markov model with two hidden layers is considered. The bottom layer is
a Markov chain and given this the variables in the second hidden layer are assumed
conditionally independent and Gaussian distributed. The observation process is
Gaussian with mean values that are linear functions of the second hidden layer.
The forward-backward algorithm is not directly feasible for this model as the re-
cursions result in a mixture of Gaussian densities where the number of terms grows
exponentially with the length of the Markov chain. By dropping the less important
Gaussian terms an approximate forward-backward algorithm is defined. Thereby
one gets a computationally feasible algorithm that generates samples from an ap-
proximation to the conditional distribution of the unobserved layers given the data.
The approximate algorithm is also used as a proposal distribution in a Metropolis—
Hastings setting, and this gives high acceptance rates and good convergence and
mixing properties. The model considered is related to what is known as Switching
linear dynamical systems. The proposed algorithm can in principle also be used
for these models and the potential use of the algorithm is therefore large. In sim-
ulation examples the algorithm is used for the problem of seismic inversion. The
simulations demonstrate the effectiveness and quality of the proposed approximate
algorithm.
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1. Introduction

In a hidden Markov model (HMM) the observations are incomplete and noisy
functions of an underlying unobserved process, where the latent process is assumed
to be Markov. The goal is typically to restore the underlying process from the noisy
observations and possibly also to estimate unknown parameters in both the latent
and observation processes. For some HMM the underlying process consists of two
layers, where Switching linear dynamical systems (SLDS) (Bar-Shalom and Li, 1998)
is a typical example. In SLDS the bottom layer of the underlying unobserved process
is a discrete Markov chain and conditioned on this the second unobserved layer is
a Gaussian Markov process. Given the two unobserved layers the observations are
assumed independent Gaussian. The mean vector and covariance matrix for the
observed value at any time index are functions of the two unobserved states at the
same time index. The goal is to restore the unobserved layers. SLDS have been used
in many applications, e.g. fault detection in planetary rovers (Dearden and Clancy,
2002), speech recognition (Rosti and Gales, 2004), dancing of bees (Oh et al., 2005),
econometrics (Kim, 1994) and machine learning (Lerner et al., 2000; Ghahramani
and Hinton, 1998). Larsen et al. (2006) considers the problem of seismic inversion
and a model similar to SLDS, but allow the observations to be a function of both
past and future values of the hidden Gaussian process. The goal is again to restore
the unobserved layers.

Recursive algorithms for HMM have successfully been used in many areas, see
the discussions and references in MacDonald and Zucchini (1997), Kiinsch (2000),
Scott (2002) and Cappé et al. (2005). Generalizations to hidden semi-Markov mod-
els are discussed in Guédon (2007) and Bulla et al. (2010). When an HMM only
has one unobserved layer modelled as a discrete Markov chain, efficient recursive
computations known as the forward-backward algorithm can be used. If the ob-
servations and the unobserved layer both are Gaussian, then the forward-backward
algorithm corresponds to the famous Kalman filter. Forward-backward algorithms
for HMM with two unobserved layers have been considered by Bar-Shalom and

Li (1998), Barber (2006) and Zoeter and Heskes (2006). The forward-backward



recursions can also be formulated for these models, but are not computationally
feasible as they involve a mixture of Gaussian distributions where the number of
terms grows exponentially with the length of the Markov chain. In the first set of
references given above, approximate forward recursions are defined by substituting
the Gaussian mixture by a single Gaussian term. Larsen et al. (2006) define ap-
proximate recursions by approximating the marginal distribution for the unobserved
continuous process by a product of Gaussian densities.

We consider a model close to the model in Larsen et al. (2006) and separate
from SLDS in that the observations can be a function of both past and future
values. To get a computationally feasible algorithm, we construct an approximate
forward-backward algorithm. In the forward recursions we propose to drop terms
associated with small weights in the Gaussian mixture. Thus, our approximation
is less dramatic than previous suggestions, but with a corresponding higher com-
putational cost. Clearly, the quality of the approximation depends on the number
and importance of the terms that are dropped. Using the approximate forward-
backward algorithm as a proposal distribution in a Metropolis—Hastings algorithm
(Smith and Roberts, 1993; Dellaportas and Roberts, 2003) we correct for the in-
duced approximation. Moreover, we use the Metropolis—Hastings acceptance rate
as a measure for the quality of the approximation. The proposed algorithm can
in principle be used for SLDS and other similar models with the Markov property.
The potential use of the algorithm is therefore large.

An alternative strategy to cope with HMM with two hidden layers are sequential
Monte Carlo algorithms. Chen and Liu (2000) define a sequential Monte Carlo
algorithm for what they call conditional dynamic linear models (CDLM). Our model
defined in Section 2 can be rephrased to a CDLM by redefining the state variables.
However, Chen and Liu (2000) only consider the filtering problem, whereas our
focus is mainly the smoothing problem. Doucet et al. (2000) also use sequential
Monte Carlo for a model similar to the one in Chen and Liu (2000), but the focus
is again on filtering. Godsill et al. (2004) use sequential Monte Carlo to solve the
smoothing problem for a state-space model. To generalize the procedure in Godsill
et al. (2004) to handle a CDLM constitutes an alternative avenue for solving the

problem we discuss.



In Hammer et al. (2010) a slightly modified variant of the simulation algorithm
we present have successfully been used to invert real seismic data from an oilfield
offshore Norway. Ulvmoen and Hammer (2009) also focus on the seismic inversion
problem and use the procedure proposed in the present article to evaluate the
quality of a much faster, but rougher approximation strategy. We also consider
the problem of seismic inversion, but the focus here is to evaluate the efficiency
of our proposed algorithm. In the seismic inversion setting, the Markov chain
represents lithology-fluid classes along a vertical trace through the underground,
the intermediate Gaussian layer represents elastic parameters of the rock along the
same trace, and the observations are seismic data. The focus is to restore the
unobserved Markov chain. Parameter estimation is clearly also of interest, but not
considered here.

The paper is organized as follows. Section 2 introduces necessary notation for our
hidden Markov model. In Section 3 we develop the approximate forward-backward
algorithm. Section 4 gives a brief introduction to the seismic inversion application
and explains how the hidden Markov model is the core part of the resulting model.
We also evaluate the algorithm in simulation examples. Finally, Section 5 provides

conclusions.

2. The switching linear Gaussian model

We represent (multivariate) Gaussian distributions in its canonical form, as this
simplifies the forward-backward recursions. A Gaussian distribution with mean
vector © € R” and covariance matrix ¥ € R"™" is then parameterized by the
precision matrix @ = X~ and the vector ¢ = Qu, and we use N(q, Q) to denote

this distribution. The corresponding density we denote by N(u|g, @), which reads

N(ulg, Q) = (\2/7@ exp {—%qTQ_lq} exp {—% [u" Qu — 2q"u] } : (1)

Consider a three layer hidden Markov model {(x;,y;,2;)}", as visualized in
Figure 1, where z; € {1,..., L}, yi = (yi1,---,%ir)T € R" and 2; = (2i1,...,2is)] €
R® for i = 1,...,n. We call this a switching linear Gaussian model. We require
the number of possible values for z;, L, to be small. In the seismic data example

in Section 4 we have L = 4. We let z1.,, = (21, ... ,xn)T be a stationary, aperiodic



Figure 1: Directed acyclic graph (DAG) representation of the hidden Markov model discussed in

Sections 2 and 3.

and ergodic Markov chain with transition matrix

P = [p(zilzi1)]b, | 4imr- (2)

Thus, the marginal distribution of 1, which we denote by p(z1), equals the limiting
distribution induced by P. Conditioned on zi., we assume the elements of y;., =
(Y1, ---,yn)T to be independent and Gaussian distributed, where the mean vector
and precision matrix of y; are (known) functions of z; and denoted by p(z;) and

Q(x;), respectively. Thus,

Yilzim ~ N(g(z;), Q(x;)) , where q(z;) = Q(z;)p(x;). (3)

Given yi., we assume the elements of z1., = (z1,..., zn)T to be independent and
Gaussian, and the mean vector and precision matrix of z; are al'y;_1+b7 yi+cl yir1

and R;, respectively, i.e.

Zi|ly1m ~ N (AiTyz'—l + BTy 4+ CTyi 44, R;), (4)
where A; = a;R;, B; = b;R; and C; = ¢;R;. Note that we allow the coefficient
matrices a;, b; and ¢; to vary with ¢, and in particular we require a; = ¢,, = 0.

3. The forward-backward algorithm

In this section we define an approximate forward-backward algorithm for the
model described in Section 2. We first derive the exact forward recursions. Starting

with 7(Z1.n,Y1:n|21:n) We integrate out y; and z; for ¢ = 1,...,n in turn to get



the distributions 7(zi.n, Yit1:n|21:m) and 7(Tim, Yin|z1:m) for ¢ = 1,...,n. This is
the basis for the backward simulation part of the algorithm, which sequentially for
i=mn,...,1 generates x; from 7(%;|Tit1:n, Yit1:n, 21:n) X T(Tin, Yit1:n|21:0n) and y;

from ﬂ-(yikri:nv Yit+1:n, Zl:n) X W(xi:na yi:n|zl:n)-

3.1. Forward integration

The conditional distribution of interest is w(x1.n, y1.n|21.n).- However, to avoid
notationally cumbersome special cases for i = n — 1 and n we also introduce z, 41,
Yn+1, Ynt+2 and z, 1. We make these auxiliary variables independent of the variables
of interest by setting p(z,+1]|z,) = 1/L and also adopting (3) for i = n + 1 and
n+2and (4) fori =n+1 with A,y1 = Bpt1 = Cp41 =0and Ryy1 = 1. As a

function of x1., and 1., we then have

n+1

(@ 1m, Y1 21m) < T(@1n 11, Yins 211 [Ynsrint2) < plan) ] plwilzioa)-
- (5)
n n+1
TIN @ila(@:), Q) - [ N (2l AT yir + Bl yi + Clyigr, Ri) -
i=1 i=1

To get a more compact notation in the development of the forward recursions we
define

To(y1:2) = N(z1|B{ y1 + CT a2, Ry) (6)

and

Ti(wi, yiziv2) = N(wilq(zi), Q(@:) )N (zig1 Al yi + Bl wisa + Clyyige, Riga), (7)

fori=1,...,n, so that
n
T(@1ims Y1n|21:0) < p(21)To(y1:2) Hp(ffi+1|$i)Ti(fE¢, Yisit2)- (8)
i=1
Starting with this expression we integrate and sum out y; and x; fori =1,...,nin
turn and define U;(z;, yi:i+1) and Vi(zi, yit1.442) for i = 1,...,n so that the result
becomes
n
T(Ziem Yim|21:m) < Us(@i, yizirn) [ [ (s |2) T3 (25, o) 9)
j=i
and

n
(@i, Yitrm|21m) < Vi(@s, Yirraro)p(@isale) [ p(jiale;)Ti(@s,p5,40). (10)
J=i+1

The following theorem gives the relation between the U; and V; functions.



Theorem 1. Consider the hidden Markov model defined in Section 2 and the no-

tation introduced above. We then have

Ui(z1,y1:2) = p(x1)To(y1:2), (11)
and the recursions
L
Uis1(Tig1, Yit1iip2) = Z Vi(zi, Yit1iiv2)p(Tig1]xs), i =1,...,n—1 (12)
m:l
and
Vi(@i, Yit1:i42) :/Ui(xiayi:iJrl)Ti(xivyi:iJr?)dyia i=1,...,n. (13)

The theorem is proven as follows. By comparing (8) and (9) for i = 1 we get
(11). Next, by summing out x; in (10) and comparing with (9) we get (12). Finally
integrating out y; in (9) and comparing with (10) one gets (13).

In the following we use the notation

I 0 I 0 0 0
Di=|o|,Ds=|0]|,Di2=|0 I |andDy3=|T1 0|, (14
0 I 0 0 0 I

where 0 and I are an r X r matrix with all elements equal to zero and the r-
dimensional identity matrix, respectively. Then the following theorem gives how to

compute the U; and V; functions recursively.

Theorem 2. Consider the hidden Markov model defined in Section 2 and the no-

tation introduced above. We then have

N;
Ui(@i, yisie1) < Y Yig (23) N(yizit119i5, Gij ) (15)
=1
and
N;
Vi(@i, Yit1:i42) < Z ki () N(Yir1iitalkig (i), Kij(2i)) (16)
=1

fori =1,...,n, where N; = L' and ~v;j(z;) € R, gi; € R*™, Gy € R¥*,
wij(x;) € R, kij(z;) € R and Kj(x;) € R** can be computed recursively.

Initial values y11(x1), g11 and G11 are
B4 B1

Y1(z1) =p(@1), g1 = z1, G = Ry [BT of]. (17)
Cl Cl



Fori=1,...,nand j=1,...,N; the r;j(x;), kij(z;) and K;;(x;) can be obtained

from 7ij (i), gij and Gij by

Gij| - |Q(wi
i) = )y | S
R (18)
1 _ _ _
€xp {_5 [giTjGijlgij + q(x:)" Qi) qlai) — haj(a:)" Hij () 1hij(ffi)}}
kij(xi) = Kij(2i) Das Hij (i)~ hij () (19)
and
_ —1
Kij(z;) = (D3gHyj(w:) " Dag) (20)
where
T
hij(x:) = D1q(z:) + D12gij + [AiTH BL, CiTH] Zit1 (21)
and
H;j(x;) =D1Q(x;)D] + D12Gy; D, +8(i > n — 1) D3 D3
(22)

T
-1
+ A?+1 BZH ngi—l:| Ri+1 {AZH BZH CZ}-lj|’

where §(-) is the indicator function, i.e. 0(E) = 1 when E is true and 6(E) = 0

otherwise. Finally, fori=2,....,n,7=1,...,Nj_y andl=1,...,L

Vij+(-1)N; 1 (@) = p(aill) ki1, (1), (23)
9ij+-1Ni_y = kie1,5(0) (24)

and
Gijra-1nN,_, = Ki-1,5(0). (25)

The theorem is proved by induction. Reordering terms in Tp(y1.2) straightfor-
wardly gives (15) for ¢ = 1 and initial values (17). Starting with (13), rearranging
terms and using well known properties of the multivariate Gaussian distribution
gives (16) and (18) through to (22). We represent Gaussian distributions in the
canonical form and not by the mean vector and covariance matrix and this causes
the somewhat unfamiliar expressions in (19) and (20).

The D3D§ term that appears in (22) for ¢ = n—1 and n ensures that the H,_ ;
and H,; matrices are invertible. The Dng term does not influence the variables
of interest, x1.nx and yi.,,, only the auxiliary variables y,+1 and y,12. Finally, (12)

straightforwardly gives (15) and (23) through to (25) by a reordering of the terms.



As the number of terms in (15) and (16) grows exponentially with ¢ the recur-
sive algorithm is computationally feasible only for small values of n. In the next
section we propose to approximate U;(z;, yi.i+1) and V;(x;, ¥i+1.i+2) by ignoring less

important terms.

3.2. Approzimate forward integration algorithm

In this section we propose an approximate, but computationally feasible version
of the recursions developed above. We first compute the (exact) representations
of Uy (z1,y1:2) and Vi(x1,y2:3) as given in Theorem 2. The starting point for find-
ing an approximation for U;(x;,y:i.i+1) and Vi(x;, yitr1.442) is an approximation of
Vic1(%i—1, Yizir1) on the form

Ni—i(zi1)
Vici(@ict,gie) o > Fic(@im )N Wi ki1 (wim1), Kooy g (wi1)),

"~ (26)
where we use tilde to distinguish approximate quantities from exact ones. The
approximate representation is of the same form as (16), except that in (26) the
number of terms may depend on the value of x;_1. Of course, for i = 2 we use
‘Z_l(xi_l,yi;i+1) = Vi—1(xi—1, Yiviv1)- For i > 2 we define ‘Z(xi,yi+1:i+2) from
Vie1(2i—1, Yisie1) in to steps. First we use the recursions in Theorem 2 to find an ap-
proximation U} (x;, Yiit1) t0 Ui(24, Y1) and a first approximation V* (s, Yit1:i+2)
to Vi(2si, Yit1:i42). Thereafter we drop the less important terms in V* (24, ¥it1:i42)

to get a final approximation ‘N/i(xz, Yi+1:i+2). More precisely, we set

U xlvyl 7,~‘r1 Z’yi] yll+1|g:]7G:]) (27)

and

Vi (@, Yigriiva) 0 D k5 (@) N(yigvagel K5 (2:), K5 (x4)), (28)

where N} = Zle Ni_1(l). Corresponding to (23) through to (25), 735 (i), g; and
G7; are defined by

Vst Ko (@) = P@lDR-15(), (29)

9y it Ry = R (30)



and

Glrsist B~ Kima (D), (81)
fori=2,...,n,j = 1,...,.@4(1) and | = 1,..., L. Finally, £7;(x;), k;(2;) and
Kfj(arz) are defined by replacing ri;(x;), kij(x:), Kij(z:), vij(®i), gij, Gij and N;
with corresponding starred quantities in (18) through to (22).

Which terms in (28) that are of less importance is not obvious as the terms
are functions of y;41.,42 which is still unspecified when the decision about what
terms to drop has to be made. Natural strategies are either to maximize over or
to integrate out y;41.,42 before comparing the terms. Maximizing over y;41.,42 is
obtained by evaluating the Gaussian densities in (28) at their mean values. Thus,
for a threshold value ¢ this gives that we should drop terms in (28) that have

K5 ()N (g ()| k3 (), K7 ()
maxg=1,..., Ny (e:) 165 ()N (i (i) | Ky (@), K ()

where 1 (x;) = K}j(x;)~"k};(2z:). With the second strategy, integrating out ;1

< e, (32)

and y; 42, only £7; (z;) remains to compare. Thus, again for a given threshold ¢, we
drop all terms that corresponds to a x7;(;) that have

/‘@fj(xi)

maxg—1,.. N (z;) {Kf (i)}

<e. (33)

In the simulation examples in Section 4 we adopt the first strategy, but we do not
expect the second strategy to behave much differently. One should note that we
decide what terms to drop separately for each possible value of x;, and as a result
the number of remaining terms, N, (z;), becomes a function of x;.

Clearly, alternative term dropping strategies may be defined. First, one may use
the term dropping step for U (x;, yi.i+1) instead, but we do not expect this to make
much difference. Second, instead of choosing a specific threshold value €, one may
fix the number of terms we want to keep and drop the necessary number of small
terms. Thereby the memory requirements for running the algorithm will be known
in advance, but the quality of the approximation may be more variable than with

the strategy we have chosen.

3.3. Backward simulation
When the (exact or approximate) forward integration is done and necessary

quantities stored in memory, backward simulation is straight forward. Here we

10



give the necessary equations for the approximate, computational feasible algorithm.
We initiate auxiliary variables z,+1,Yn+1:n+2 and z,4+1 with arbitrary values and

sequentially for ¢ = n, ..., 1 first simulate x; from

77*(331'|xi+1:n7 Yi+1:n, Zl;n) X Vi*(xi; yi+1:¢+2)p($z‘+1 |$1) (34)
and then y; from

T (YilTicns Yit 1m0, 21:m) o UM (@40, Yirie 1) Ti(T4, Yiig2)- (35)

The first is a discrete distribution and the second a mixture of r-variate Gaussian

densities, so both are easy to sample from. The resulting realization is thereby

simulated from an approximation to the conditional distribution 7(z1:n, Y1:n|21:n),
7~ (xl:nv yl:n|Zl:n) =

n (36)

[71'* ($i|$i+1:n+1, Yi+1:n+2, 21:n+1)7T* (yi|$z';n+1, Yi+1:n+2, 21:n+1)] .
1

K2
One should note that evaluating 7 (1., Y1.n|21.n) is straight forward for a gener-
ated sample (Z1.p,, Y1.n), but to do this correctly one must of course remember to in-

clude the normalizing constants in the two conditional distributions 7* (2;|Ti+1:m+1, Yit1:m+2s Z1:n+1)

and 7 (Yi|Tin+1, Yit 142, Z1int1)-

3.4. Simulation from the hidden Markov model

The error introduced by the approximation discussed above may be corrected for
by adopting 7* (€1.n,, Y1:n|21:) as a proposal distribution in an independent proposal
Metropolis—Hastings scheme. The resulting acceptance rate can then also be used

as a measure for the quality of the approximation.

4. Simulation examples

We study the approximate forward-backward algorithm in a number of simula-
tion exercises. We implement the algorithm in C++, where a list is used to store
the Gaussian mixture. Each element in the list is a term in the Gaussian mixture.
Using a list makes it is easy to remove terms with small weight following Section

3.2.

11



In the simulation examples we focus on the problem of seismic inversion from
the petroleum industry. Our objective here is to demonstrate that our approximate
algorithm is able to solve a problem of significant practical importance. Here we
consider simulated data only, but in Hammer et al. (2010) we also apply it on
real seismic data. Seismic inversion is the discipline of predicting lithology-fluid
characteristics in a reservoir from seismic data. Numerous introductory books to
seismic terminology and inversion exist, see for example Sheriff and Geldart (1995)
and references therein.

Seismic data is created by an explosion which sends sound waves into the ground.
Parts of the waves are reflected, returned upwards and observed by microphones
(geo- or hydrophones). These observations are the basis for the seismic data. A
forward model, describing what we observe for given lithology—fluid characteris-
tics, is known from physics theory. In seismic inversion we are interested in the
corresponding inverse problem.

The simulation example is organized as follows. In Section 4.1 we present the
seismic model and in Section 4.2 we present our choices of parameters in the seismic
model. Further in Section 4.3 we link the seismic model to the switching model
in Section 2 and explain how we simulate efficiently by taking advantage of the
approximate forward-backward algorithm in Section 3. Finally in Sections 4.4 and

4.5 we present simulation results.

4.1. Seismic model

Our forward model is similar to the ones in Buland et al. (2003) and Larsen
et al. (2006). When dealing with seismic data depth is typically not referenced
by distance, but time used by the sound wave from the surface to a location in
the underground and back, called two way travel time. An important problem not
considered here is how to convert travel times to depths. Following Buland et al.
(2003) and Larsen et al. (2006) we discretize the travel time and formulate the
problem in a Bayesian setting. Let i« = 1,...,n denote n two way travel times along
a vertical profile and let x; denote the lithology-fluid class in location i. As prior
for x1., = (z1,...,2,)T we adopt a Markov chain as specified by (2). Assuming an

isotropic and elastic medium, the material properties at a location ¢ are uniquely

12



defined by the P-wave velocity («;), S-wave velocity (6;) and density (p;) at that
location. Let y; = (Inay,InB;,Inp;)T. The distribution of y1., = (Y1, yn)T
given x1., is based on a rock physics model (Avseth et al., 2005) and we assume a
Gaussian distribution as specified by (3).

We consider seismic data for s offset values, or angles, 61, ...,60;. For each depth
location 7 and offset value 0; a reflection coefficient r;; results from ¥;.,. For this

we use what is known as a weak contrast approximation to the Zoeppritz equations

(Aki and Richards, 1980; Buland and Omre, 2003) and get for 7; = (ri1,...,7is)7,

rizf‘wmrizz...,n—l, (37)
where
Ya(01) Ya(f2) - Yal(fs) Ya(0) = % (1 —I—tan2(9)) )
D= |5(01) v9(0:) - (6. » 7(0) = —4B]a sin(6), (38)
W) p(02) o 0| (0) = § (1- 4B/ sin?(0))

and one has assumed the ratio 5;/«a; to have an approximately constant value 6/—04
in the reservoir. The difference in (37) is an approximation to a derivative in the
corresponding continuous model. For i = 1 and n we correspondingly use forward
and backward differences, respectively. Finally, seismic observation d;; is obtained
for each location ¢ and offset 6; through a convolution of the reflection coefficients,

k
dij = Z WyjTi—u,j + Eij, (39)

u=—k
where {w,;}*__, defines a wavelet for each offset 6; and ¢;; is Gaussian observation
noise. Similar to Buland and Omre (2003) we assume the main part of the noise to
have a correlation structure corresponding to the wavelet. The argument for this is
that both the signal and noise parts are the results of sound waves going through
the (same) underground. More precisely, we set

k
1 2
Eij = E , Wyj€q o j T E5j (40)

u=—k

1
ij

1
j

2

where ¢;; and &7; are independent Gaussian white noise with Var(ej;) = of and

Var(e;) = 03.

13



4.2. Parameter values

Our base case parameter values are chosen to be realistic for the seismic inversion
application and are based on the values adopted in Larsen et al. (2006). We have
L = 4 classes for x;, where x; = 1,2 and 3 represent gas-, oil- and brine (water)
saturated sandstone, respectively, and z; = 4 represents shale. Sandstone is porous
and allows flow of gas, oil and water, whereas the shale porosity is negligible and
thereby acts as a barrier to fluid flow. Our choice of transition matrix P is based
on values used in Larsen et al. (2006), but we consider a coarser seismic resolution

than done there. Numbering the nodes from bottom to top, we use

0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284

10.0201  0.0202 0.1006 0.8591 |

The zero elements are important in the seismic application as these represent known
physical properties. Water has a higher density than oil, which again has a higher
density than gas. Thus, water can not be above gas or oil and oil can not be above
gas, unless separated by a non-porous shale layer. The corresponding marginal
probabilities for z; are [0.24,0.16,0.38,0.22].

As discussed in Section 4.1 we use y; € R®, where the three elements represent
logarithms of P- and S-wave velocities and density, respectively. In Larsen et al.
(2006) the distribution of y;|z; is represented as empirical distributions given by
a set of corresponding x; and y; values. We use the same set of (z;,y;) values
to estimate mean vectors and covariance matrices for the four assumed Gaussian
distributions. The resulting mean vectors are u(1) = [8.052,7.492,7.688]T, u(2) =
[8.071,7.472,7.730]T, u(3) = [8.121,7.467,7.746]7 and u(4) = [8.166,7.546, 7.846]7,
and for each value of z;, the diagonal and off-diagonal entries in the following

matrices give corresponding standard deviations and correlations

0.031 0.876 0.322 0.027 0.891 0.384
0.876 0.033 0.271 |, 0.891 0.032 0.295 |- (42)
0.322 0.271 0.012 0.384 0.295 0.009
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Figure 2: Scatter plots of P- and S-wave velocities and density of samples from the distribution
adopted for y;|z; in BC. Red, green, blue and black is used for gas-, oil- and brine-saturated

sandstone and shale, respectively.

0.022 0.912 0.453 0.044 0.982 0.935
0.912 0.032 0.317 | . 0.982 0.068 0.917 |- (43)
0.453 0.315 0.008 0.935 0.917 0.015

Figure 2 shows scatter plots of simulated P- and S-wave velocities and density ac-
cording to the specified distributions. Here and in all the following we use red,
green, blue and black for gas-, oil- and brine-saturated sandstone and shale, re-
spectively. We observe that shale is well separated from the other classes and that
gas-saturated sandstone is reasonably well separated from oil- and brine-saturated
sandstone, whereas there is more overlap between oil- and brine-saturated sand-
stone.

To specify the model for dy.,|y1., We must give what offsets to use, the wavelet
for each offset, and the variances o7 and o3. Still following Larsen et al. (2006)
we use s = 5 offsets § = 0°,10°,20°,30° and 40° and adopt an offset independent

Ricker wavelet,

w(u, §) = {1 ~9 (7rq5u)2} exp {— (quu)z} Cu=—k,... k (44)

with ¢ = 0.11 and & = 10. For the error variances we use o2 = 0.015% and
o3 = 0?/10%, which also corresponds to values used in Larsen et al. (2006).

The above defines our base case parameter set, which we refer to as BC. We
define four more parameter sets, which are small modifications of BC. First the
variances of the noise terms E}j and E?j are scaled to give higher and lower signal-to-

noise ratios, and we denote these by LN and MN, respectively. We use o7 = 0.0085>

and 0.0262 for LN and MN, respectively, still keeping 03 = 02/10%. The next two
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Parameter set BC LN MN RL RM

Signal-to-noise-ratio 1.34 2.22 0.53 1.30 1.36
€ 25-107% 25-107% 1.8-107% 1.7-1073% 1.7-1073
acceptance rate 0.44 0.43 0.37 0.46 0.42

Table 1: Signal-to-noise ratios, value used for the tuning parameter ¢, and the resulting Metropolis—

Hastings acceptance rate for the various parameter sets.

cases are obtained from BC by a scaling of the covariance matrices in the rock
physics model, y;|z;. We define rock physics models with less variance (RL) and
more variance (RM) by multiplying the covariance matrices defined by (42) and (43)
by 1/2 and 2, respectively. We want the signal-to-noise ratios for RL and RM to be
about the same as for BC and obtain this by modifying the noise variance o7, still
keeping 03 = 0?/10*. When defining the signal-to-noise ratio we consider variability
in dj., originating from z., as signal and the remaining variability in d;.,, as noise,
see Hammer (2008) for the precise definition. This gave o7 = 1.65- 1072 and
1.10- 1072 for RL and RM, respectively. Table 1 gives the resulting signal-to-noise

ratios for all five parameter sets.

4.3. Simulating from the seismic model

We want to simulate x1., and yi., conditioned on di., in the seismic model
defined above. A key point in the construction of an effective simulation algorithm is

to take advantage of the approximate forward-backward algorithm defined in Section

3. We achieve this by introducing the additional variable z1., = (z1, ... ,zn)T, where
zi = (zi1,...,zis) T €Rfori=1,...,n,

zi =71 +e; (45)
and 5} = (6%1, e sis)T. The distributions for x1.,, y1., and z1., is then as specified

in Section 2. In (4) we have 4, = —I'R;/2, B, = 0 and C; = T'R;/2 for i =
2,...,n — 1, and using forward and backward difference at the boundaries B; =
-I'Ry,C;y =TRy, A, = -TR, and B, = I'R,,. Finally we have R; = 01_21 for

i =1,...,n, where I is the identity matrix. Combining (39), (40) and (45) we get
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the relation between 21.,, and dj.p,,
k
dijlz ~ N <02_2 Z w(u, 0;) - Zi_u,j,0'2_21> . (46)
u=—Fk

We construct a Metropolis—Hastings algorithm (Smith and Roberts, 1993; Dellapor-
tas and Roberts, 2003) consisting of two updates in each iteration. The first update
is a block Gibbs update for yi., and z1.,. The joint full conditional for these are
Gaussian and therefore easy to sample from. The second update in each iteration
is a joint Metropolis—Hastings update for xy., and y;., by using the approximate

forward-backward algorithm as the proposal distribution.

4.4. BEvaluation of the approzimate forward-backward algorithm

In this section we report the results for one Metropolis—Hastings run for each of
the five parameter sets defined in Section 4.2 with n = 100 and use this to evaluate
the performance of the proposed approximate forward integration algorithm. In
each case we first simulate 1., Y1.n, 21.n and d1.,, according to the model specified in
Sections 2 and 4.1 and thereafter use the algorithm proposed in Section 4.3 to sample
from the resulting posterior distribution 7(21.n, Y1:n, 21:n|d1:n). We evaluate the
quality of the approximate algorithm by the acceptance rates and the convergence
and mixing properties of the simulated Markov chains.

Following the optimal strategies for choice of Metropolis—Hastings tuning pa-
rameters found in Roberts et al. (1997) and Roberts and Rosenthal (1998) we find
a value for our tuning parameter € for each of the five parameter sets by aiming at
a Metropolis—Hastings acceptance rate of about 0.4. It should be noted that our
situation differs from what is discussed in the two references, so it is not clear that
this is an optimal strategy in our situation. However, we found it to be a reasonable
first try and it has worked satisfactory in all our runs. Table 1 reports both the ¢
values used and the resulting acceptance rates.

Figures 3 to 7 present simulation results for each of the five parameter sets. The
upper rows show the simulated “true” values. Note that we use the same realization
of x1., in all cases to make comparison easier. The lower rows consist of three
parts. To the left the “true” x;., is replotted for easier comparison, in the middle

each state of the Metropolis—Hastings run is plotted side by side, and the plots to the
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Figure 3: Simulation results for parameter set BC: The upper row shows, from left to right,
the simulated “true” x1i.n, elastic parameters exp(yi:n), z1:n and di:.,. The lower row contains
posterior simulation results. From left to right, the lower row shows the true zi., (replotted
for easier comparison), each state of the Metropolis—Hastings run plotted side by side, and the

resulting estimated marginal posterior probabilities.

right show the resulting estimated marginal probabilities for each node i. The runs
shown are all initiated by setting all x; = 1 and drawing y;.,, and z1., values from
the corresponding full conditional. In all the runs the initial state is left within very
few iterations and the burn-in phases are not even visible in the figures. We have
also tried starting with all x; = 4 and other initial values, but without experiencing
any burn-in problems. The results clearly show that the approximate forward-
backward algorithm gives a good approximation to the distribution of interest and
produces very good mixing properties when used as a proposal distribution in a
Metropolis—Hastings setting.

For the data shown in Figures 3 to 7 we have also tried the algorithm described
in Section 3.4 for simulating from 7(Z1.n,¥Y1:n|21:m). Again we tuned the value
of ¢ as described above. The results indicated quite good convergence and mixing
properties, but here some stickiness in the runs could be observed. As the algorithm
is an independent proposal procedure, the latter should come as no surprise. Figure

8 shows the total number of Gaussian terms stored for each node i. Comparing the
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Figure 6: Simulation results for parameter set RL: See Figure 3 for an explanation of the different

parts of the figure.
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Figure 7: Simulation results for parameter set RM: See Figure 3 for an explanation of the different
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Figure 8: Simulation results for each of the five parameter sets: Number of terms stored in the
approximate forward integration algorithm, Ezi—l J\N/}(azi_l), as a function of node number ¢ when

simulating z1:n,y1:n|21:n. Note the different horizontal scales.

five models we observe that more terms are required for noisy models. This is also
as one should expect, in the extreme case when the noise level goes to infinity the
importance of the terms are only decided by the prior. Studying the five graphs
separately we observe a growing trend in the number of terms, but it grows much
slower than the exponential increase of all terms. We have also tried runs for n > 100
and the results there supports this conclusion. We also note the large fluctuations
in the number of terms and that many of the abrupt changes happens close to where

the true x; changes value.

4.5. Inversion results

For each of our five parameter sets we repeated the simulation exercise shown in
Figures 3 through to 7 ten times, now also randomizing over the value of the true
Z1:n. For each run we used the MCMC results to estimate a confusion matrix [c;;]
where ¢;; is the average posterior probability for class j in nodes with true class i.
Table 2 shows the resulting confusion matrices. As one would expect we observe
a tendency that higher signal-to-noise ratios gives better predictions. However,
LN and RM have comparable performances, demonstrating that the model noise in
Y1:n|T 1.0 18 informative. We also tried an alternative definition of the signal-to-noise
ratio by considering variability originating from both z1.,, and y1.,, as signal, see the
discussion in Hammer (2008), but this did not produce a better explanation of the

figures in Table 2. Studying the individual confusion matrices we see that shale is
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gas
oil
brine

shale

gas
oil
brine

shale

gas
0.837
0.173
0.000
0.007

gas
0.787
0.156
0.006

0.000

LN
oil
0.163
0.824
0.136
0.003

RL
oil
0.197
0.530
0.059

0.001

gas
oil
brine

shale

brine
0.000
0.002
0.833
0.013

brine
0.016
0.297
0.918

0.035

gas
0.668
0.353
0.005

0.001

shale
0.000
0.001
0.093
0.977

shale
0.001
0.022
0.017

0.964

BC
oil
0.324
0.581
0.064

0.005

brine
0.004
0.063
0.891

0.028

gas
oil
brine

shale

gas
oil
brine

shale

shale
0.004
0.003
0.040

0.967

gas
0.611
0.285
0.047
0.015

gas
0.881
0.104
0.001

0.001

MN
oil
0.279
0.323
0.115
0.014

RM
oil
0.112
0.768
0.033

0.006

brine
0.102
0.367
0.740
0.130

brine
0.005
0.122
0.924

0.063

shale
0.009
0.025
0.098
0.842

shale
0.001
0.006
0.042

0.930

Table 2: Confusion matrices for the various parameter sets. In the tables element (,7) is the

estimated average posterior probability for class j for nodes where the true class is .
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most frequently classified correctly in all five cases. Considering Figure 2 this comes
as no surprise. The misclassification between gas- and oil-saturated sandstone is
significant in all cases. Oil-saturated sandstone is frequently misclassified to brine-
saturated sandstone in MN, RL and RM, whereas such a misclassification is less

frequent in BC and rare in LN.

5. Closing remarks

We have revisited the seismic inversion problem as a hidden Markov model with
both continuous and discrete hidden variables. We split the model into a switching
linear Gaussian model and a Gaussian linear model. To handle the first part com-
putationally we propose an approximate forward-backward algorithm. In a number
of simulation exercises we demonstrate the effectiveness of the approximation and
how this makes inversion of the seismic model computationally feasible. The ap-
proximate algorithm includes a tuning parameter €. To choose a value for € one
must compromise between memory usage and computation time on one side and
approximation accuracy on the other. We have found no automatic way to set the
value of €, but our experience is that it is relatively easy to find a reasonable value
by trial and error. What makes the choice of € non-trivial is that it is used to decide
what terms to drop in the forward recursions when information from the data is
available from one side only. The importance of the various terms becomes available
first when the following backward recursions have been done.

We think the inversion problem in the switching linear Gaussian model for seis-
mic inversion is harder than the problems previously considered for switching linear
dynamical systems (Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998) and switch-
ing state space models (Barber, 2006). Within an interval with the same value for
T1.n, the seismic data does not depend on the mean value of the continuous vari-
ables. By the difference taken in (37) the mean value of the continuous variables
influence the data only when the value of zi., is changing. This induces larger
posterior uncertainty in x;., and it becomes correspondingly more important to
have an approximate forward-backward algorithm that realistically represents this
uncertainty. Thus, we think the importance of including more Gaussian terms in

the forward recursion is larger for the seismic model than for the cases previously
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considered in Zoeter and Heskes (2006), Bar-Shalom and Li (1998) and Barber
(2006).

We define an approximate forward recursion by dropping Gaussian terms with
small weights. In the references mentioned above an approximation is obtained by
taking a single Gaussian density that (approximately) represents the whole Gaussian
mixture. It is clearly also possible to define an approximate forward recursion by
following an intermediate strategy, finding groups of terms in the Gaussian mixture
that have similar mean and covariance and approximate these by a single Gaussian
term. However, the computational cost of finding what terms to merge is quadratic
in the number of terms, whereas the cost of finding what terms to drop grows
linearly with the number of terms. Thus, unless the number of Gaussian terms
necessary to obtain a sufficiently good approximation is dramatically reduced when
using the merging strategy, our simple dropping strategy is preferable. We have
done a little experimentation with the merging strategy for our seismic inversion
model, but without success. However, we think the merging strategy may have a
potential if the continuous variable y; is univariate.

The focus of the simulation examples of this paper is the computational prob-
lem associated with the hidden Markov seismic model. We have not considered
inversion of real seismic data. To answer a real inversion problem one must also
solve the associated parameter estimation problem. Preliminary experimentation
with maximum likelihood estimation from simulated data indicates that it is not
possible to estimate all the model parameters only from seismic data. Either one
must adopt a Bayesian view with informative priors, or information about (at least

some of) the parameters must be obtained from other data sources.

References

Aki, K. and Richards, P. G. (1980). Quantitative seismology: Theory and methods,

W. H. Freeman and Company.

Avseth, P., Mukerji, T. and Mavko, G. (2005). Quantitative seismic interpretation
-Applying rock physics tools to reduce interpretation risk, Cambridge University

Press.

24



Bar-Shalom, Y. and Li, X.-R. (1998). Estimation and Tracking: Principles, Tech-

niques and Software, Artech House, Norwood, MA.

Barber, D. (2006). Expectation correction for smoothed inference in switching linear

dynamical systems, Journal of machine learning research 7: 2515 — 2540.

Buland, A., Kolbjgrnsen, O. and Omre, H. (2003). Rapid spatially coupled AVO

inversion in the Fourier domain, Geophysics 68: 824-836.

Buland, A. and Omre, H. (2003). Bayesian linearized AVO inversion, Geophysics

68: 185-198.

Bulla, J., Bulla, I. and Nenadié¢, O. (2010). hsmm - an R package for analyzing
hidden semi-Markov models, Computational Statistics & Data Analysis 54: 611—

619.

Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models,

Springer.

Chen, R. and Liu, J. S. (2000). Mixture Kalman filters, Journal of the Royal

Statistical Society, Series B 62: 493-508.

Dearden, R. and Clancy, D. (2002). Particle filters for real-time fault detection in
planetary rovers, Proceedings of the 13th International Workshop on Principles

of Diagnosis (DX02), pp. 1-6.

Dellaportas, P. and Roberts, G. O. (2003). An introduction to MCMC, in J. Moller
(ed.), Spatial Statistics and Computational Methods, number 173 in Lecture Notes

in Statistics, Springer, Berlin, pp. 1-41.

Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling

methods for Bayesian filtering, Statistics and Computing 10: 197-208.

Ghahramani, Z. and Hinton, G. E. (1998). Variational learning for switching state-

space models, Neural Computation 12: 963-996.

Godsill, S. J., Doucet, A. and West, M. (2004). Monte Carlo smoothing for nonlinear

time series, Journal of the American Statistical Association 99: 156—168.

25



Guédon, Y. (2007). Exploring the state sequence space for hidden Markov and

semi-Markov chains, Computational Statistics & Data Analysis 51: 2379-2409.

Hammer, H., Kolbjgrnsen, O., Tjelmeland, H. and Buland, A. (2010). Lithology and
fluid prediction from prestack seismic data using a Bayesian model with Markov

process prior, Technical report, Norwegian Computing Center. In preparation.

Hammer, H. L. (2008). Topics in stochastic simulation, with an application to
seismic inversion, PhD thesis, Norwegian University of Science and Technology.

Thesis number 73:2008.

Kim, C. J. (1994). Dynamic linear models with Markovswitching, Journal of Econo-

metrics 60.

Kiinsch, H. (2000). State space models and hidden Markov models, in O. Barndorff-
Nielsen, D. Cox and C. Kliippelberg (eds), Complex Stochastic Systems, num-
ber 87 in Monographs on Statsitics and Applied Probability, Chapman &
Hall/CRC.

Larsen, A. L., Ulvmoen, M., Omre, H. and Buland, A. (2006). Bayesian lithol-
ogy/fluid prediction and simulation on the basis of a Markov-chain prior model,

Geophysics 71 issue 5: R69-R78.

Lerner, U., Parr, R., Koller, D. and Biswas, G. (2000). Bayesian fault detection and

diagnosis in dynamic systems, In Proc. AAAI pp. 531-537.

MacDonald, 1. and Zucchini, W. (1997). Hidden Markov and Other Models for

Discrete-Valued Time Series, Chapman and Hall.

Oh, S. M., Rehg, J. M., Balch, T. and Dallaert, F. (2005). Data-driven mcmc for
learning and inference in switching linear dynamic systems, Proc. 20th National

Conference on Artificial Intelligence (AAAI-2005), Pittsburgh, PA.

Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and opti-
mal scaling of random walk Metropolis algorithms, Annals of Applied Probability

7: 110-120.

26



Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approxi-
mations to Langevin diffusions, Journal of the Royal Statistical Society. Series B

60: 255-268.

Rosti, A.-V. and Gales, M. (2004). Rao-blackwellised Gibbs sampling for switch-
ing linear dynamical systems, In Intl. Conf. Acoust., Speech, and Signal Proc.

(ICASSP) 1: 809-812.

Scott, A. L. (2002). Bayesian methods for hidden Markov models: Recursive
compution in the 21st century, Journal of the American Statistical Association

97: 337-351.

Sheriff, R. E. and Geldart, L. P. (1995). Exzploration Seismology, Cambridge Uni-

versity Press.

Smith, A. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methods (with discussion), Journal of the

Royal Statistical Society, Series B 55: 2—24.

Ulvmoen, M. and Hammer, H. (2009). Bayesian lithology/fluid inversion — compar-

ison of two algorithms, Computational Geosciences 14: 357-367.

Zoeter, O. and Heskes, T. (2006). Deterministic approximate inference techniques
for conditionally Gaussian state space models, Statistics and Computing 16: 279—

292.

27



