83 research outputs found

    BER Performance of Alamouti with VBLAST Detection Schemes over MIMO System

    Get PDF
    Multiple-Input Multiple-Output (MIMO) systems as a means to combat fading in wireless channels. MIMO allows higher throughput, diversity gain and interference reduction. In this paper, we analyze the Bit Error Rate (BER) performance of the Alamouti Space Time Block Code with V-BLAST (Vertical Bell Laboratories Layered Space-Time) over MIMO system. Basic idea in this scheme is to improve the BER performance of systems. V-BLAST algorithm offers highly better error performance than conventional linear receivers and still has low complexity. The simulated results are based on different modulations, such as BPSK, 4-QAM and 16-QAM over Rayleigh fading channels. DOI: 10.17762/ijritcc2321-8169.150511

    Code diversity in multiple antenna wireless communication

    Full text link
    The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Likelihood (ML) decoding is considerable. Code diversity is an alternative and complementary approach where a small number of feedback bits are used to select from a family of space-time codes. Different codes lead to different induced channels at the receiver, where Channel State Information (CSI) is used to instruct the transmitter how to choose the code. This method of feedback provides gains associated with beamforming while minimizing the number of feedback bits. It complements the standard approach to code design by taking advantage of different (possibly equivalent) realizations of a particular code design. Feedback can be combined with sub-optimal low complexity decoding of the component codes to match ML decoding performance of any individual code in the family. It can also be combined with ML decoding of the component codes to improve performance beyond ML decoding performance of any individual code. One method of implementing code diversity is the use of feedback to adapt the phase of a transmitted signal as shown for 4 by 4 Quasi-Orthogonal Space-Time Block Code (QOSTBC) and multi-user detection using the Alamouti code. Code diversity implemented by selecting from equivalent variants is used to improve ML decoding performance of the Golden code. This paper introduces a family of full rate circulant codes which can be linearly decoded by fourier decomposition of circulant matrices within the code diversity framework. A 3 by 3 circulant code is shown to outperform the Alamouti code at the same transmission rate.Comment: 9 page

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Channel Estimation Architectures for Mobile Reception in Emerging DVB Standards

    Get PDF
    Throughout this work, channel estimation techniques have been analyzed and proposed for moderate and very high mobility DVB (digital video broadcasting) receivers, focusing on the DVB-T2 (Digital Video Broadcasting - Terrestrial 2) framework and the forthcoming DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) standard. Mobility support is one of the key features of these DVB specifications, which try to deal with the challenge of enabling HDTV (high definition television) delivery at high vehicular speed. In high-mobility scenarios, the channel response varies within an OFDM (orthogonal frequency-division multiplexing) block and the subcarriers are no longer orthogonal, which leads to the so-called ICI (inter-carrier interference), making the system performance drop severely. Therefore, in order to successfully decode the transmitted data, ICI-aware detectors are necessary and accurate CSI (channel state information), including the ICI terms, is required at the receiver. With the aim of reducing the number of parameters required for such channel estimation while ensuring accurate CSI, BEM (basis expansion model) techniques have been analyzed and proposed for the high-mobility DVB-T2 scenario. A suitable clustered pilot structure has been proposed and its performance has been compared to the pilot patterns proposed in the standard. Different reception schemes that effectively cancel ICI in combination with BEM channel estimation have been proposed, including a Turbo scheme that includes a BP (belief propagation) based ICI canceler, a soft-input decision-directed BEM channel estimator and the LDPC (low-density parity check) decoder. Numerical results have been presented for the most common channel models, showing that the proposed receiver schemes allow good reception, even in receivers with extremely high mobility (up to 0.5 of normalized Doppler frequency).Doktoretza tesi honetan, hainbat kanal estimazio teknika ezberdin aztertu eta proposatu dira mugikortasun ertain eta handiko DVB (Digital Video Broadcasting) hartzaileentzat, bigarren belaunaldiko Lurreko Telebista Digitalean DVB-T2 (Digital Video Broadcasting - Terrestrial 2 ) eta hurrengo DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) estandarretan oinarrututa. Mugikortasuna bigarren belaunaldiko telebista estandarrean funtsezko ezaugarri bat da, HDTV (high definition television) zerbitzuak abiadura handiko hartzaileetan ahalbidetzeko erronkari aurre egiteko nahian. Baldintza horietan, kanala OFDM (ortogonalak maiztasun-zatiketa multiplexing ) sinbolo baten barruan aldatzen da, eta subportadorak jada ez dira ortogonalak, ICI-a (inter-carrier interference) sortuz, eta sistemaren errendimendua hondatuz. Beraz, transmititutako datuak behar bezala deskodeatzeko, ICI-a ekiditeko gai diren detektagailuak eta CSI-a (channel state information) zehatza, ICI osagaiak barne, ezinbestekoak egiten dira hartzailean. Kanalaren estimazio horretarako beharrezkoak diren parametro kopurua murrizteko eta aldi berean CSI zehatza bermatzeko, BEM (basis expansion model) teknika aztertu eta proposatu da ICI kanala identifikatzeko mugikortasun handiko DVB-T2 eszenatokitan. Horrez gain, pilotu egitura egokia proposatu da, estandarrean proposatutako pilotu ereduekin alderatuz BEM estimazioan oinarritua. ICI-a baliogabetzen duten hartzaile sistema ezberdin proposatu dira, Turbo sistema barne, non BP (belief propagation) detektagailua, soft BEM estimazioa eta LDPC (low-density parity check ) deskodetzailea uztartzen diren. Ohiko kanal ereduak erabilita, simulazio emaitzak aurkeztu dira, proposatutako hartzaile sistemak mugikortasun handiko kasuetan harrera ona dutela erakutsiz, 0.5 Doppler maiztasun normalizaturaino.Esta tesis doctoral analiza y propone diferentes técnicas de estimación de canal para receptores DVB (Digital Video Broadcasting) con movilidad moderada y alta, centrándose en el estándar de segunda generación DVB-T2 (Digital Video Broadcasting - Terrestrial 2 ) y en el próximó estándar DVB-NGH (Digital Video Broadcasting - Next Generation Handheld ). La movilidad es una de las principales claves de estas especificaciones, que tratan de lidiar con el reto de permitir la recepción de señal HDTV (high definition television) en receptores móviles. En escenarios de alta movilidad, la respuesta del canal varía dentro de un símbolo OFDM (orthogonal frequency-division multiplexing ) y las subportadoras ya no son ortogonales, lo que genera la llamada ICI (inter-carrier interference), deteriorando el rendimiento de los receptores severamente. Por lo tanto, con el fin de decodificar correctamente los datos transmitidos, detectores capaces de suprimir la ICI y una precisa CSI (channel state information), incluyendo los términos de ICI, son necesarios en el receptor. Con el objetivo de reducir el número de parámetros necesarios para dicha estimación de canal, y al mismo tiempo garantizar una CSI precisa, la técnica de estimación BEM (basis expansion model) ha sido analizada y propuesta para identificar el canal con ICI en receptores DVB-T2 de alta movilidad. Además se ha propuesto una estructura de pilotos basada en clústers, comparando su rendimiento con los patrones de pilotos establecidos en el estándar. Se han propuesto diferentes sistemas de recepción que cancelan ICI en combinación con la estimación BEM, incluyendo un esquema Turbo que incluye un detector BP (belief propagation), un estimador BEM soft y un decodificador LDPC (low-density parity check). Se han presentado resultados numéricos para los modelos de canal más comunes, demostrando que los sistemas de recepción propuestos permiten la decodificación correcta de la señal incluso en receptores con movilidad muy alta (hasta 0,5 de frecuencia de Doppler normalizada)

    Transmit and receive techniques for MIMO-OFDM systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore