117,327 research outputs found

    On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease – Quantification of bradykinesia using target tracking tasks

    Get PDF
    The potential of computer games peripherals to measure the motor dysfunction in Parkinson’s diseases is assessed. Of particular interest is the quantification of bradykinesia. Previous studies used modified or custom haptic interfaces, here an unmodified force feedback joystick and steering wheel are used with a laptop. During testing an on screen cursor moves in response to movements of the peripheral, the user has to track a continuously moving target (pursuit tracking), or move to a predetermined target (step tracking). All tasks use movement in the horizontal axis, allowing use of joystick or steering wheel. Two pursuit tracking tasks are evaluated, pseudo random movement, and a swept frequency task. Two step tracking tasks are evaluated, movement between two or between two of five fixed targets. Thirteen patients and five controls took part on a weekly basis. Patients were assessed for bradykinesia at each session using standard clinical measures. A range of quantitative measures was developed to allow comparison between and within patients and controls using ANOVA. Both peripherals are capable of discriminating between controls and patients, and between patients with different levels of bradykinesia. Recommendations for test procedures and peripherals are given

    Effects of State of Eye Movements before Saccade on Efficiency of Response to Stimulus - Comparison of Search Efficiency between Fixation and Smooth Pursuit Situations -

    Get PDF
    In this study, how the state of eye movement before saccade affected the response to a stimulus was explored. The state of eye movement before saccade was either smooth pursuit or fixation. The smooth pursuit was carried out both clockwise and counter-clockwise. Using an eye-tracking system, the eye movement during the experimental task was monitored. The response time to a stimulus was measured. On the basis of the eye movement data (coordinate), the eye movement velocity, the eye movement acceleration, and the latency of eye movement were obtained. When smooth pursuit was carried out before saccade, the response to a stimulus which appears as a result of saccade was faster. More concretely, the response time of smooth pursuit condition was faster than that of fixation condition. The latency of the smooth pursuit condition tended to be faster than that of the fixation condition. Some implications for the application of the results to the traffic safety or automotive ergonomics were given

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Analysis and Design Information System Logistics Delivery Service in PT Repex Wahana

    Full text link
    Analysis and Design of Logistic Delivery System in PT Repex Wahana aims to analyze company's need in existing business process of logistic delivery service. This will then be used in the development of an integrated system that can address the problems in the running process of sending and tracking the whereaboutsor status of the delivered goods which are the core business processes in the enterprise. The result then will be used as basis in the development of integrated information system in pursuit of corporate solution for process business automation, delivery process, inventory, and logistic delivery tracking, which is the core of the company business process, and it will be documented using Unified Modeling Language. The information system is meant to simplify the delivery and tracking process in the company, besides will minimize lost and error of data which is often happened because of the manual and unorganized transaction data processing

    Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    Get PDF
    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems

    Event Detection in Eye-Tracking Data for Use in Applications with Dynamic Stimuli

    Get PDF
    This doctoral thesis has signal processing of eye-tracking data as its main theme. An eye-tracker is a tool used for estimation of the point where one is looking. Automatic algorithms for classification of different types of eye movements, so called events, form the basis for relating the eye-tracking data to cognitive processes during, e.g., reading a text or watching a movie. The problems with the algorithms available today are that there are few algorithms that can handle detection of events during dynamic stimuli and that there is no standardized procedure for how to evaluate the algorithms. This thesis comprises an introduction and four papers describing methods for detection of the most common types of eye movements in eye-tracking data and strategies for evaluation of such methods. The most common types of eye movements are fixations, saccades, and smooth pursuit movements. In addition to these eye movements, the event post-saccadic oscillations, (PSO), is considered. The eye-tracking data in this thesis are recorded using both high- and low-speed eye-trackers. The first paper presents a method for detection of saccades and PSO. The saccades are detected using the acceleration signal and three specialized criteria based on directional information. In order to detect PSO, the interval after each saccade is modeled and the parameters of the model are used to determine whether PSO are present or not. The algorithm was evaluated by comparing the detection results to manual annotations and to the detection results of the most recent PSO detection algorithm. The results show that the algorithm is in good agreement with annotations, and has better performance than the compared algorithm. In the second paper, a method for separation of fixations and smooth pursuit movements is proposed. In the intervals between the detected saccades/PSO, the algorithm uses different spatial scales of the position signal in order to separate between the two types of eye movements. The algorithm is evaluated by computing five different performance measures, showing both general and detailed aspects of the discrimination performance. The performance of the algorithm is compared to the performance of a velocity and dispersion based algorithm, (I-VDT), to the performance of an algorithm based on principle component analysis, (I-PCA), and to manual annotations by two experts. The results show that the proposed algorithm performs considerably better than the compared algorithms. In the third paper, a method based on eye-tracking signals from both eyes is proposed for improved separation of fixations and smooth pursuit movements. The method utilizes directional clustering of the eye-tracking signals in combination with binary filters taking both temporal and spatial aspects of the eye-tracking signal into account. The performance of the method is evaluated using a novel evaluation strategy based on automatically detected moving objects in the video stimuli. The results show that the use of binocular information for separation of fixations and smooth pursuit movements is advantageous in static stimuli, without impairing the algorithm's ability to detect smooth pursuit movements in video and moving dot stimuli. The three first papers in this thesis are based on eye-tracking signals recorded using a stationary eye-tracker, while the fourth paper uses eye-tracking signals recorded using a mobile eye-tracker. In mobile eye-tracking, the user is allowed to move the head and the body, which affects the recorded data. In the fourth paper, a method for compensation of head movements using an inertial measurement unit, (IMU), combined with an event detector for lower sampling rate data is proposed. The event detection is performed by combining information from the eye-tracking signals with information about objects extracted from the scene video of the mobile eye-tracker. The results show that by introducing head movement compensation and information about detected objects in the scene video in the event detector, improved classification can be achieved. In summary, this thesis proposes an entire methodological framework for robust event detection which performs better than previous methods when analyzing eye-tracking signals recorded during dynamic stimuli, and also provides a methodology for performance evaluation of event detection algorithms

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Covert Tracking: A Combined ERP and Fixational Eye Movement Study

    Get PDF
    Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking

    Neural Dynamics of Saccadic and Smooth Pursuit Eye Movement Coordination during Visual Tracking of Unpredictably Moving Targets

    Full text link
    How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    • …
    corecore