240 research outputs found

    High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices

    Get PDF
    Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products’ mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in Geräten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese Fähigkeiten nutzen, ist allerdings problematisch. Hierfür sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter Interaktivität und Kompatibilität mit vielfältigen Materialien erforderlich. Zudem sollten solche Technologien zugänglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als Schlüsseltechnologie, um diese Probleme zu adressieren. Sie trägt vier neue Design- und Fabrikationsansätze für das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugängliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfältigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der Fähigkeit ihre Form und Materialeigenschaften zu ändern. Insgesamt trägt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des größeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    Get PDF
    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ∼400 cm 2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them

    Temperature Dependence and Touch Sensitivity of Electrical Transport in Novel Nanocomposite Printable Inks

    Get PDF
    Printed electronics is an established industry allowing the production of electronic components such as resistors, and more complex structures such as solar cells, from functional inks. Composites, a mixture of two or more materials with different physical and/or chemical properties that combine to create a new material with properties differing from its constituent parts, have been important in areas such as the textile and automotive industries, and are significant in printed electronics as inks for printed circuit components, touch and vapour sensors. Here, the functional performance and physical behaviour of two screen printable multi-component nanocomposite inks, formulated for touch-pressure sensing applications, are investigated. They each comprise a proprietary mixture of electrically conducting and insulating nanoparticles dispersed in an insulating polymer binder, where one is opaque and the other transparent. The opaque ink has a complex surface structure consisting of a homogeneous dispersion of nanoparticles. The transparent inks structure is characterised by large aggregates of nanoparticles distributed through the printed layer. Temperature dependent electrical transport measurements under a range of compressive loadings reveal similar non-linear behaviour in both inks, with some hysteresis observed, and this behaviour is linked to the inks structures. A physical model comprising a combination of linear and non-linear conduction contributions, with the linear term attributed to direct connections between conductive particles and the non-linear term attributed to field-assisted quantum tunnelling, has been developed and used successfully to describe the underpinning physical processes behind the unique electrical functionality of the opaque ink and, to a lesser extent, the transparent ink

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    Liquid Metal Printing with Scanning Probe Lithography for Printed Electronics

    Get PDF
    In den letzten Jahren hat das „Internet der Dinge“ (Englisch Internet of Things, abgekürzt IoT), das auch als Internet of Everything (Deutsch frei „Internet von Allem“) bezeichnet wird, mit dem Aufkommen der „Industrie 4.0“ einen Strom innovativer und intelligenter sensorgestützter Elektronik der neuen Generation in den Alltag gebracht. Dies erfordert auch die Herstellung einer riesigen Anzahl von elektronischen Bauteilen, einschließlich Sensoren, Aktoren und anderen Komponenten. Gleichzeitig ist die herkömmliche Elektronikfertigung zu einem hochkomplexen und investitionsintensiven Prozess geworden. In dem Maße, wie die Zahl der elektronischen Bauteile und die Nachfrage nach neuen, fortschrittlicheren elektronischen Bauteilen zunimmt, steigt auch die Notwendigkeit, effizientere und nachhaltigere Wege zur Herstellung dieser Bauteile zu finden. Die gedruckte Elektronik ist ein wachsender Markt, der diese Nachfrage befriedigen und die Zukunft der Herstellung von elektronischen Geräten neu gestalten könnte. Sie erlaubt eine einfache und kostengünstige Produktion und ermöglicht die Herstellung von Geräten auf Papier- oder Kunststoffsubstraten. Für die Herstellung gibt es dabei eine Vielzahl von Methoden. Techniken auf der Grundlage der Rastersondenlithografie waren dabei schon immer Teil der gedruckten Elektronik und haben zu Innovationen in diesem Bereich geführt. Obwohl die Technologie noch jung ist und der derzeitige Stand der gedruckten Elektronik im industriellen Maßstab, wie z. B. die Herstellung kompletter integrierter Schaltkreise, stark limitiert ist, sind die potenziellen Anwendungen enorm. Im Mittelpunkt der Entwicklung gedruckter elektronischer Schaltungen steht der Druck leitfähiger und anderer funktionaler Materialien. Die meisten der derzeit verfügbaren Arbeiten haben sich dabei auf die Verwendung von Tinten auf Nanopartikelbasis konzentriert. Die Herstellungsschritte auf der Grundlage von Tinten auf Nanopartikelbasis sind komplizierte Prozesse, da sie das Ausglühen (Englisch Annealing) und weitere Nachbearbeitungsschritte umfassen, um die gedruckten Muster leitfähig zu machen. Die Verwendung von Gallium-basierten, bei/nahe Raumtemperatur flüssigen Metallen und deren direktes Schreiben für vollständig gedruckte Elektronik ist immer noch ungewöhnlich, da die Kombination aus dem Vorhandensein einer Oxidschicht, hohen Oberflächenspannungen und Viskosität ihre Handhabung erschwert. Zu diesem Zweck zielt diese Arbeit darauf ab, Methoden zum Drucken von Materialien, einschließlich Flüssigmetallen, zu entwickeln, die mit den verfügbaren Druckmethoden nicht oder nur schwer gedruckt werden können und diese Methoden zur Herstellung vollständig gedruckter elektronischer Bauteile zu verwenden. Weiter werden Lösungen für Probleme während des Druckprozesses untersucht, wie z. B. die Haftung der Tinte auf dem Substrat und andere abscheidungsrelevante Aspekte. Es wird auch versucht, wissenschaftliche Fragen zur Stabilität von gedruckten elektronischen Bauelementen auf Flüssigmetallbasis zu beantworten. Im Rahmen der vorliegenden Arbeit wurde eine auf Glaskapillaren basierenden Direktschreibmethode für das Drucken von Flüssigmetallen, hier Galinstan, entwickelt. Die Methode wurde auf zwei unterschiedlichen Wegen implementiert: Einmal in einer „Hochleistungsversion“, basierend auf einem angepassten Nanolithographiegerät, aber ebenfalls in einer hochflexiblen, auf Mikromanipulatoren basierenden Version. Dieser Aufbau erlaubt einen on-the-fly („im Fluge“) kapillarbasierten Druck auf einer breiten Palette von Geometrien, wie am Beispiel von vertikalen, vertieften Oberflächen sowie gestapelten 3D-Gerüsten als schwer zugängliche Oberflächen gezeigt wird. Die Arbeit erkundet den potenziellen Einsatz dieser Methode für die Herstellung von vollständig gedruckten durch Flüssigmetall ermöglichten Bauteilen, einschließlich Widerständen, Mikroheizer, p-n-Dioden und Feldeffekttransistoren. Alle diese elektronischen Bauelemente werden ausführlich charakterisiert. Die hergestellten Mikroheizerstrukturen werden für temperaturgeschaltete Mikroventile eingesetzt, um den Flüssigkeitsstrom in einem Mikrokanal zu kontrollieren. Diese Demonstration und die einfache Herstellung zeigt, dass das Konzept auch auf andere Anwendungen, wie z.B. die bedarfsgerechte Herstellung von Mikroheizern für in-situ Rasterelektronenmikroskop-Experimente, ausgeweitet werden kann. Darüber hinaus zeigt diese Arbeit, wie PMMA-Verkapselung als effektive Barriere gegen Sauerstoff und Feuchtigkeit fungiert und zusätzlich als brauchbarer mechanischer Schutz der auf Flüssigmetall basierenden gedruckten elektronischen Bauteile wirken kann. Insgesamt zeigen der alleinstehende, integrierte Herstellungsablauf und die Funktionalität der Geräte, dass das Potenzial des Flüssigmetall-Drucks in der gedruckten Elektronik viel größer ist als einzig die Verwendung zur Verbindung konventioneller elektronischer Bauteile. Neben der Entwicklung von Druckverfahren und der Herstellung elektronischer Bauteile befasst sich die Arbeit auch mit der Korrosion und der zusätzlichen Legierung von konventionellen Metallelektroden in Kontakt mit Flüssigmetallen, welche die Stabilität der Bauteil beinträchtigen könnten. Zu diesem Zweck wurde eine korrelierte Materialinteraktionsstudie von gedruckten Galinstan- und Goldelektroden durchgeführt. Durch die kombinierte Anwendung von optischer Mikroskopie, vertikaler Rasterinterferometrie, Rasterelektronenmikroskopie, Röntgenphotonenspektroskopie und Rasterkraftmikroskopie konnte der Ausbreitungsprozess von Flüssigmetalllinien auf Goldfilmen eingehend charakterisiert werden. Diese Studie zeigt eine unterschiedliche Ausbreitung der verschiedenen Komponenten des Flüssigmetalls sowie die Bildung von intermetallischen Nanostrukturen auf der umgebenden Goldfilmoberfläche. Auf der Grundlage der erhaltenen zeitabhängigen, korrelierten Charakterisierungsergebnisse wird ein Modell für den Ausbreitungsprozess vorgeschlagen, das auf dem Eindringen des Flüssigmetalls in den Goldfilm basiert. Um eine ergänzende Perspektive auf die interne Nanostruktur zu erhalten, wurde die Röntgen-Nanotomographie eingesetzt, um die Verteilung von Gold, Galinstan und intermetallischen Phasen in einem in das Flüssigmetall getauchten Golddraht zu untersuchen. Schlussendlich werden Langzeitmessungen des Widerstands an Flüssigmetallleitungen, die Goldelektroden verbinden, durchgeführt, was dazu beiträgt, die Auswirkungen von Materialwechselwirkungen auf elektronische Anwendungen zu bewerten

    Structure and Functionality of Novel Nanocomposite Granules for a Pressure-Sensitive Ink with Applications in Touchscreen Technologies

    Get PDF
    Tactile sensors are now ubiquitous within human-computer interactions, where mouse and keyboard functionality can be replaced with a trackpad or touchscreen sensor. In most technologies the sensor can detect the touch location only, with no information given on the force of the touch. In this thesis, functional components of a novel nanocomposite ink are developed, which when printed, form a pressure-sensitive interface which can detect both touch location and touch force. The physical basis of the force-sensitive response is investigated for the touchscreen sensor as a whole, as well as the intrinsic force-sensitivity of the ink components. In an earlier form the nanocomposite ink, that was the starting point of this study, contained agglomerates of conductive nanoparticles which were formed during blending of the ink, and provided the electrical functionality of the sensor. Here, novel nanocomposite granules were pre-fabricated prior to inclusion in the ink. The granules were designed such that they exhibited well-defined size, structure and strength. Control of these parameters was achieved through selection of the granule constituents, as well as the energy and duration of the granulation process. When incorporated into the ink and screen-printed to form a pressure-sensitive layer in a touchscreen test device, the functional performance could be assessed. Sensors containing pre-formed granules showed improved optical transmission, compared to sensors containing the same mass loading of nanoparticles forming spontaneous agglomerates. Agglomerates tend to create a larger number of small scattering centres which scatter light to larger angles. The spatial variation in the force-resistance response, as well as the sensitivity of this response, was also linked to the distribution of the granules within the pressure-sensitive layer. The physical basis of the force-resistance response is two-fold. Firstly, mathematical simulations showed that deflection of the upper electrode increased the number of granules contacted with increasing applied force and therefore decreased the resistance through the sensor. Secondly, a force-sensitive resistance of the granules themselves was also observed at high forces. Analysis of the non-linear current-voltage characteristics suggested the presence of non-linear conduction pathways within the granules. Using a random resistor network model, the non-linear current contribution decreased after approximately 0.7 N force. To understand this effect, a model based on the physical basis of quantum tunnelling mechanisms was also applied, however this provided a poor fit to the data and no further understanding could be gained
    corecore