48 research outputs found

    Development of registration methods for cardiovascular anatomy and function using advanced 3T MRI, 320-slice CT and PET imaging

    Get PDF
    Different medical imaging modalities provide complementary anatomical and functional information. One increasingly important use of such information is in the clinical management of cardiovascular disease. Multi-modality data is helping improve diagnosis accuracy, and individualize treatment. The Clinical Research Imaging Centre at the University of Edinburgh, has been involved in a number of cardiovascular clinical trials using longitudinal computed tomography (CT) and multi-parametric magnetic resonance (MR) imaging. The critical image processing technique that combines the information from all these different datasets is known as image registration, which is the topic of this thesis. Image registration, especially multi-modality and multi-parametric registration, remains a challenging field in medical image analysis. The new registration methods described in this work were all developed in response to genuine challenges in on-going clinical studies. These methods have been evaluated using data from these studies. In order to gain an insight into the building blocks of image registration methods, the thesis begins with a comprehensive literature review of state-of-the-art algorithms. This is followed by a description of the first registration method I developed to help track inflammation in aortic abdominal aneurysms. It registers multi-modality and multi-parametric images, with new contrast agents. The registration framework uses a semi-automatically generated region of interest around the aorta. The aorta is aligned based on a combination of the centres of the regions of interest and intensity matching. The method achieved sub-voxel accuracy. The second clinical study involved cardiac data. The first framework failed to register many of these datasets, because the cardiac data suffers from a common artefact of magnetic resonance images, namely intensity inhomogeneity. Thus I developed a new preprocessing technique that is able to correct the artefacts in the functional data using data from the anatomical scans. The registration framework, with this preprocessing step and new particle swarm optimizer, achieved significantly improved registration results on the cardiac data, and was validated quantitatively using neuro images from a clinical study of neonates. Although on average the new framework achieved accurate results, when processing data corrupted by severe artefacts and noise, premature convergence of the optimizer is still a common problem. To overcome this, I invented a new optimization method, that achieves more robust convergence by encoding prior knowledge of registration. The registration results from this new registration-oriented optimizer are more accurate than other general-purpose particle swarm optimization methods commonly applied to registration problems. In summary, this thesis describes a series of novel developments to an image registration framework, aimed to improve accuracy, robustness and speed. The resulting registration framework was applied to, and validated by, different types of images taken from several ongoing clinical trials. In the future, this framework could be extended to include more diverse transformation models, aided by new machine learning techniques. It may also be applied to the registration of other types and modalities of imaging data

    Übersicht über Systemidentifikation mit dem Fokus der Inversen Modellierung

    Get PDF
    The intention behind this literature review is to obtain knowledge about the current status in the field of system identification with special focus put on the inverse modelling step. There the parameters for a model are to be determined by taking data obtained from the true system into account. The application in mind is located in geophysics, especially oil reservoir engineering, so special focus is put on methods which are relevant for system identification problems that arise in that context. Nonetheless the review should be interesting for everybody who works on system identification problems.--- Die Intention des Literaturreviews ist eine Übersicht über den Bereich der Systemidentifikation, im speziellen den Bereich der inversen Modellierung, zu erhalten. In diesem Schritt werden Parameter für ein Modell durch Konditionierung auf gemessene Daten eines realen Systems bestimmt. Das Anwendungsgebiet ist im Bereich der Geophysik, im speziellen Erdöl-Reservoirs, angesiedelt. Daher werden besonders die dort genutzten Methoden betrachtet

    Uncooperative Spacecraft Relative Navigation With LIDAR-Based Unscented Kalman Filter

    Get PDF
    Autonomous relative navigation is a critical functionality which needs to be developed to enable safe maneuvers of a servicing spacecraft (chaser) in close-proximity with respect to an uncooperative space target, in the frame of future On-Orbit Servicing or Active Debris Removal missions. Due to the uncooperative nature of the target, in these scenarios, relative navigation is carried out exploiting active or passive Electro-Optical sensors mounted on board the chaser. The focus here is placed on active systems, e.g., LIDARs. In this paper, an original loosely-coupled relative navigation architecture which integrates pose determination algorithms designed to process raw LIDAR data (i.e., 3D point clouds) within a Kalman filtering scheme is presented. Pose determination algorithms play a twofold role being used to initialize the filter state and covariance as well as in the update phase of the Kalman filter. The proposed filtering scheme is an Unscented Kalman Filter designed to use, as measurements for the update phase, relative position, attitude and angular velocity estimates. Performance assessment is carried out within a simulation environment realistically reproducing the operation of a scanning LIDAR and the relative motion between two spacecraft during a target monitoring maneuver. The numerical simulation campaign demonstrates robustness of the proposed approach even when dealing with challenging conditions (e.g., low range measurement accuracy, low update rate and high point-cloud sparseness) determined by the LIDAR noise level and operational parameters

    Overview of System Identification with Focus on Inverse Modeling: Literature Review

    Get PDF
    The intention behind this literature review is to obtain knowledge about the current status in the field of system identification with special focus put on the inverse modelling step. There the parameters for a model are to be determined by taking data obtained from the true system into account. The application in mind is located in geophysics, especially oil reservoir engineering, so special focus is put on methods which are relevant for system identification problems that arise in that context. Nonetheless the review should be interesting for everybody who works on system identification problems.--- Die Intention des Literaturreviews ist eine Übersicht über den Bereich der Systemidentifikation, im speziellen den Bereich der inversen Modellierung, zu erhalten. In diesem Schritt werden Parameter für ein Modell durch Konditionierung auf gemessene Daten eines realen Systems bestimmt. Das Anwendungsgebiet ist im Bereich der Geophysik, im speziellen Erdöl-Reservoirs, angesiedelt. Daher werden besonders die dort genutzten Methoden betrachtet

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    ESTCube-1 asendi määramine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Uuring viidi läbi Tartu Ülikoolis, Tartu Observatooriumis, Soome Meteoroloogia instituudis ja Eesti tudengisatelliidi programmis. Doktoritöös tutvustatakse satelliidi ESTCube-1 asendi määramise süsteemi, mille otstarve on satelliidi orientatsiooni kindlakstegemine erinevate taustsüsteemide suhtes. ESTCube-1 on ehitatud vastavalt CubeSat standardi nõuetele (≈ 10 cm × 10 cm × 10 cm) ja saadeti orbiidile 2013. aasta mais, kus see tegutses kuni 2015. aasta maini. Selle põhimissiooniks oli katsetada Maa orbiidil elektrilise päikesepurje tehnoloogiaid. Elektriline päikesetuulepuri on uudne Päikesesüsteemis liikumise moodus, mis kasutab tõukejõu saamiseks Päikeselt väljapursatavate elektriliselt laetud osakeste voogu ehk päikesetuult. ESTCube-1 asendi määramise süsteemi põhieesmärgiks on leida satelliidi orientatsioon parema täpsusega kui 2° järgmiste tegevuste jaoks: satelliidi suure kiirusega pöörlema panemisel (sajad kraadid sekundis) tsentrifugaaljõu abil purje väljakerimiseks ja selle protsessi jälgimiseks, päikesepurje elektrilisel laadimisel sünkroonis satelliidi pöörlemisega ning mõõtmaks nurkkiiruse muutumist laetud päikesepurje ja ionosfääri plasma vahelise elektrostaatiline jõu tulemusel. Asendi määramise süsteem koosneb magnetomeetridest, nurkkiiruseanduritest ja Päikese suuna anduritest. Maa magnetvälja ja Päikese asukoha mudeleid kasutati vastavate andurite mõõtmistega võrdlemiseks. Asendi määramiseks kasutati Kalmani filtrit. Süsteem karakteriseeriti laboratooriumis ja simulatsioonidega enne starti. Orbiidil parendati süsteemi oluliselt tarkvara uuenduste ja uuesti karakteriseerimisega. Sõltumatuks valideerimiseks kasutati satellidi poolt tehtud fotodel põhinevat orientatsiooni leidmise meetodit. Süsteemi karakteriseerimise ja valideerimisega näidati, et asendi määramise täpsus on parem kui 1,75° mis täidab eksperimendi poolt seatud nõudeid.This research was carried out at the University of Tartu, Tartu Observatory, the Finnish Meteorological Institute and the Estonian Student Satellite Programme. This thesis presents the ESTCube-1 attitude determination system. The attitude is the satellite's orientation is space. ESTCube-1 is a satellite built according to the one-unit CubeSat standard (≈ 10 cm × 10 cm × 10 cm). The satellite was launched in May 2013 and operated until May 2015. The main scientific mission of ESTCube-1 was to perform the first in-orbit electric solar wind sail demonstration. The electric solar wind sail is a propellantless propulsion technology concept. The sail consists of long, thin, centrifugally stretched and positively charged tethers that deflect charged particles in the solar wind, hence generate spacecraft thrust. The main requirement of the ESTCube-1 attitude determination system is to determine the attitude with an accuracy better than 2° for the following purposes: high rate spin control (hundreds of degrees per second) for centrifugal tether deployment; monitoring of tether deployment; to trigger the charging of the tether in synchronisation with the satellite spin; to measure angular velocity changes caused by the Coulomb drag interaction between the charged tether and the surrounding ionospheric plasma. The attitude determination system has Sun sensors, magnetometers and gyroscopic sensors. A geomagnetic field model and a Sun position model were used to reference the respective sensor measurements. A Kalman filter was used to estimate the attitude. Before the launch, the system was characterised in the laboratory and by simulations. With in-orbit recalibration and validation, the system was significantly improved. For validation, an independent attitude determined from on-board images was used. By characterising and validating the system, it was shown that attitude determination accuracy is better than 1.75°, hence fulfils the requirement set by the electric solar wind sail experiment.

    Active Perception for Autonomous Systems : In a Deep Space Navigation Scenario

    Get PDF
    Autonomous systems typically pursue certain goals for an extended amount of time in a self-sustainable fashion. To this end, they are equipped with a set of sensors and actuators to perceive certain aspects of the world and thereupon manipulate it in accordance with some given goals. This kind of interaction can be thought of as a closed loop in which a perceive-reason-act process takes place. The bi-directional interface between an autonomous system and the outer world is then given by a sequence of imperfect observations of the world and corresponding controls which are as well imperfectly actuated. To be able to reason in such a setting, it is customary for an autonomous system to maintain a probabilistic state estimate. The quality of the estimate -- or its uncertainty -- is, in turn, dependent on the information acquired within the perceive-reason-act loop described above. Hence, this thesis strives to investigate the question of how to actively steer such a process in order to maximize the quality of the state estimate. The question will be approached by introducing different probabilistic state estimation schemes jointly working on a manifold-based encapsuled state representation. On top of the resultant state estimate different active perception approaches are introduced, which determine optimal actions with respect to uncertainty minimization. The informational value of the particular actions is given by the expected impact of measurements on the uncertainty. The latter can be obtained by different direct and indirect measures, which will be introduced and discussed. The active perception schemes for autonomous systems will be investigated with a focus on two specific deep space navigation scenarios deduced from a potential mining mission to the main asteroid belt. In the first scenario, active perception strategies are proposed, which foster the correctional value of the sensor information acquired within a heliocentric navigation approach. Here, the expected impact of measurements is directly estimated, thus omitting counterfactual updates of the state based on hypothetical actions. Numerical evaluations of this scenario show that active perception is beneficial, i.e., the quality of the state estimate is increased. In addition, it is shown that the more uncertain a state estimate is, the more the value of active perception increases. In the second scenario, active autonomous deep space navigation in the vicinity of asteroids is investigated. A trajectory and a map are jointly estimated by a Graph SLAM algorithm based on measurements of a 3D Flash-LiDAR. The active perception strategy seeks to trade-off the exploration of the asteroid against the localization performance. To this end, trajectories are generated as well as evaluated in a novel twofold approach specifically tailored to the scenario. Finally, the position uncertainty can be extracted from the graph structure and subsequently be used to dynamically control the trade-off between localization and exploration. In a numerical evaluation, it is shown that the localization performance of the Graph SLAM approach to navigation in the vicinity of asteroids is generally high. Furthermore, the active perception strategy is able to trade-off between localization performance and the degree of exploration of the asteroid. Finally, when the latter process is dynamically controlled, based on the current localization uncertainty, a joint improvement of localization as well as exploration performance can be achieved. In addition, this thesis comprises an excursion into active sensorimotor object recognition. A sensorimotor feature is derived from biological principles of the human perceptual system. This feature is then employed in different probabilistic classification schemes. Furthermore, it enables the implementation of an active perception strategy, which can be thought of as a feature selection process in a classification scheme. It is shown that those strategies might be driven by top-down factors, i.e., based on previously learned information, or by bottom-up factors, i.e., based on saliency detected in the currently considered data. Evaluations are conducted based on real data acquired by a camera mounted on a robotic arm as well as on datasets. It is shown that the integrated representation of perception and action fosters classification performance and that the application of an active perception strategy accelerates the classification process

    UAV Optimal Cooperative Obstacle Avoidance and Target Tracking in Dynamic Stochastic Environments

    Get PDF
    Cette thèse propose une stratégie de contrôle avancée pour guider une flotte d'aéronefs sans pilote (UAV) dans un environnement à la fois stochastique et dynamique. Pour ce faire, un simulateur de vol 3D a été développé avec MATLAB® pour tester les algorithmes de la stratégie de guidage en fonctions de différents scénarios. L'objectif des missions simulées est de s'assurer que chaque UAV intercepte une cible ellipsoïdale mobile tout en évitant une panoplie d'obstacles ellipsoïdaux mobiles détectés en route. Les UAVs situés à l'intérieur des limites de communication peuvent coopérer afin d'améliorer leurs performances au cours de la mission. Le simulateur a été conçu de façon à ce que les UAV soient dotés de capteurs et d'appareils de communication de portée limitée. De plus, chaque UAV possède un pilote automatique qui stabilise l'aéronef en vol et un planificateur de trajectoires qui génère les commandes à envoyer au pilote automatique. Au coeur du planificateur de trajectoires se trouve un contrôleur prédictif à horizon fuyant qui détermine les commandes à envoyer à l'UAV. Ces commandes optimisent un critère de performance assujetti à des contraintes. Le critère de performance est conçu de sorte que les UAV atteignent les objectifs de la mission, alors que les contraintes assurent que les commandes générées adhèrent aux limites de manoeuvrabilité de l'aéronef. La planification de trajectoires pour UAV opérant dans un environnement dynamique et stochastique dépend fortement des déplacements anticipés des objets (obstacle, cible). Un filtre de Kalman étendu est donc utilisé pour prédire les trajectoires les plus probables des objets à partir de leurs états estimés. Des stratégies de poursuite et d'évitement ont aussi été développées en fonction des trajectoires prédites des objets détectés. Pour des raisons de sécurité, la conception de stratégies d'évitement de collision à la fois efficaces et robustes est primordiale au guidage d'UAV. Une nouvelle stratégie d'évitement d'obstacles par approche probabiliste a donc été développée. La méthode cherche à minimiser la probabilité de collision entre l'UAV et tous ses obstacles détectés sur l'horizon de prédiction, tout en s'assurant que, à chaque pas de prédiction, la probabilité de collision entre l'UAV et chacun de ses obstacles détectés ne surpasse pas un seuil prescrit. Des simulations sont présentées au cours de cette thèse pour démontrer l'efficacité des algorithmes proposés
    corecore