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ABSTRACT Autonomous relative navigation is a critical functionality which needs to be developed to
enable safe maneuvers of a servicing spacecraft (chaser) in close-proximity with respect to an uncooperative
space target, in the frame of future On-Orbit Servicing or Active Debris Removal missions. Due to
the uncooperative nature of the target, in these scenarios, relative navigation is carried out exploiting
active or passive Electro-Optical sensors mounted on board the chaser. The focus here is placed on active
systems, e.g., LIDARs. In this paper, an original loosely-coupled relative navigation architecture which
integrates pose determination algorithms designed to process raw LIDAR data (i.e., 3D point clouds) within
a Kalman filtering scheme is presented. Pose determination algorithms play a twofold role being used to
initialize the filter state and covariance as well as in the update phase of the Kalman filter. The proposed
filtering scheme is an Unscented Kalman Filter designed to use, as measurements for the update phase,
relative position, attitude and angular velocity estimates. Performance assessment is carried out within
a simulation environment realistically reproducing the operation of a scanning LIDAR and the relative
motion between two spacecraft during a target monitoring maneuver. The numerical simulation campaign
demonstrates robustness of the proposed approach even when dealing with challenging conditions (e.g., low
range measurement accuracy, low update rate and high point-cloud sparseness) determined by the LIDAR
noise level and operational parameters.

INDEX TERMS Active debris removal, LIDAR, on-orbit servicing, pose determination, relative navigation,
target monitoring, uncooperative spacecraft.

I. INTRODUCTION
The space community has recently paid a growing attention
to the sustainability of space activities threatened by the
presence of space debris, especially in the most crowded
orbital regions, such as Low Earth Orbit and Geostationary
Earth Orbit [1], [2]. Consequently, the concept of Active
Debris Removal (ADR) [3], has been introduced as one of
the solutions (together with passive mitigation measures) to
prevent the triggering of the so-called Kessler Syndrome [4].
While ADR aims at actively removing large defunct satellites
from their orbits to eliminate the risk of collisions with other
objects, thus preserving the future of space activities, the idea
of providing services (e.g., refueling, repair, maintenance)
to active spacecraft to extend their operative life, which is
related to the concept of On-Orbit Servicing (OOS) [5], plays
a strategic role for space agencies and industries due to the
potentially associated economic benefits [6].
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To safely conduct future ADR and OOSmissions, the need
to enhance the level of autonomy of spacecraft, especially
regarding their Guidance, Navigation and Control (GNC)
functions, has been widely recognized, as it can be seen,
for instance, looking at the NASA Technology Roadmap [7].
Indeed, ADR and OOS require the servicing spacecraft
(chaser) to perform high-risk maneuvers (such as rendezvous
and docking) in close-proximitywith respect to a space target,
without being able to rely on commands from ground con-
trol stations (due to the associated communications delays).
Also, the target is typically uncooperative, i.e., uncontrolled,
not able to actively communicate with the chaser, and not
equipped with easily recognizable artificial markers, though,
in many cases, it is a known object meaning that at least a
simplified model of its geometry is available.

This paper focuses on the relative navigation task. Indeed,
the development of robust and reliable solutions to estimate
the target-chaser relative state (including position, velocity,
attitude and angular velocity) in real-time and with high
accuracy is not only crucial to meet strict safety criteria [8],
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but it can also allow relaxing control requirements (and,
consequently, mission costs). Due to the uncooperative
nature of the target, relative navigation must be entrusted
to active or passive Electro-Optical (EO) sensors [9]. The
attention is here focused on the possibility to use an active
Light Detection and Ranging system (LIDAR) as main rela-
tive navigation sensor. Indeed, despite the challenges related
to their higher hardware complexity, and required power
and mass allocation, LIDARs can provide direct 3D mea-
surements about the scene in the form of 3D point clouds,
unlike passive monocular cameras, at farther operative range
than passive stereovision system [10]. Also, they are less
sensitive than passive sensors to the high-variability of illu-
mination conditions typical of the space environment [10].
Overall, LIDAR measurements can be processed to extract
6-Degree-of-Freedom (DOF) information about the target-
chaser relative translation and rotational dynamics in a wider
range of operating conditions, which may be a key factor
especially for high-risk ADR missions conceived for the
removal of large debris (such as large dead satellites or rocket
bodies). However, it is worth mentioning that the relative
navigation task in the context of ADR and OOS missions are
expected to be entrusted to redundant sensor configurations
including both LIDARs and cameras, like in the case of
the recent RemoveDebris mission [11] and of the Restore-L
mission foreseen for launch in 2023 [12]. In this frame-
work, this paper proposes an innovative relative navigation
architecture conceived to estimate with high accuracy the
target-chaser relative position, velocity, attitude and angu-
lar velocity by processing raw LIDAR measurements. The
proposed approach combines and integrates state-of-the-art
pose determination algorithms [13] with an original filter-
ing scheme. The performance of the proposed architecture
is evaluated within a numerical simulation environment in
which the target-chaser relative dynamics and the operation
of a scanning LIDAR are realistically reproduced. The goal
of the numerical simulation campaign is to deeply charac-
terize the relative state estimation accuracy, as well as its
robustness against variability of sensor performance (in terms
of noise level, angular resolution and measurement update
rate), target absolute dynamics and target observability
conditions.

The rest of the paper is organized as follows. In section II,
a detailed survey of literature works addressing the rel-
ative navigation task using EO sensors is provided, also
to highlight the innovative contributions of this work.
Section III describes in detail the relative navigation architec-
ture. Section IV presents the simulation environment and sce-
nario including the selected test case, and it collects the results
of the numerical simulations campaign. Finally, Section V
draws some conclusions and it provides indication about
future activities.

II. LITERATURE SURVEY
Most research efforts regarding the challenges of relative
navigation for a chaser maneuvering in close-proximity of

an uncooperative spacecraft have been dedicated to the pose
determination task, which only addresses the estimation of
relative position and attitude parameters [9], [14]. Instead,
an overview of literature works addressing the full relative
state estimation problem is provided in the following. Rather
than focusing on the typology of adopted EO sensor, the lit-
erature works are classified based on how the raw sensor
data (e.g., 2D images and 3D point clouds) are integrated
within the filtering scheme. In this respect, a distinction
can be made between tightly-coupled and loosely-coupled
approaches [15]. In the tightly-coupled case, the raw sensor
data are processed to detect a set of features, i.e., landmarks
associated to the geometric structure of the target, whose
position is included within the state vector of the filter. In the
loosely-coupled case, raw sensor data are processed by a
separate pose determination block to obtain relative position
and attitude estimates which are used as measurements by the
Kalman Filter.

Some examples of tightly-coupled schemes can be found
in [16]–[18]. Pesce et al. proposed a tightly-coupled relative
navigation algorithm exploiting simulated 3D features from
a stereo-vision system as measurements [16]. In this work,
an Extended Kalman Filter (EKF) is compared against an
Iterated EKF (IEKF) in terms of relative state estimation per-
formance. Volpe et al. proposed an Unscented Kalman Filter
(UKF) for relative state estimation and shape reconstruction
of an uncooperative space target exploiting simulated 2D
features from amonocular camera and the target-chaser range
from a distance sensor (e.g., a laser range finder) as measure-
ments [17]. Finally, Wang et al. presented an adaptive UKF
designed to refine the estimate of the moment of inertia ratios
of the target [18], using again simulated 3D features from
a stereo-vision system as measurements. Overall, the use of
tightly-coupled architectures has advantages when dealing
with uncooperative, unknown targets, which can be found
in some ADR scenarios (if the target is seriously damaged,
e.g., due to onboard explosions or hypervelocity impacts)
and in space exploration missions (if the target is a fully
unknown comet or asteroid). Indeed, they allow getting infor-
mation about the target geometry by estimating either the
target shape or inertia properties (e.g., by adding the moment
of inertia ratios to the state vector of the navigation filter,
although the inertia matrix estimation problem is not fully
observable). Main drawbacks of such architectures are the
computational effort (which increases with the number of
detected features), and the need to develop feature detection
and tracking algorithms robust enough to deal with the recur-
sive appearance/disappearance of features without generating
outliers (which is particularly challenging in the case of fast
relative dynamics).

When the target geometry is known, as in most OOS
and ADR scenarios, loosely-coupled architectures are typ-
ically preferred [19]–[23]. One important advantage is the
possibility to run the pose determination block at lower
frequency than the filter prediction, which may allow relax-
ing computational requirements without compromising the
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achieved accuracy. The knowledge of the target geometry
is typically exploited by entrusting the pose determination
task to model-based algorithms [9]. A dual inertial multi-
plicative EKF can be found in [19], where the target-chaser
pose estimates are provided to the filter by processing sim-
ulated LIDAR data with the Oriented, Unique, and Repeat-
able Clustered Viewpoint Feature Histograms (OUR-CVFH)
algorithm. The concept of unit dual quaternion, which pro-
vides a concise and compact representation of the relative
position and attitude parameters, is proposed in [20]. Two
filtering schemes, i.e., a standard EKF and an adaptive fading
factor EKF, are compared, using simulated pose measure-
ments as provided by a vision-based system. A vision-based
pose estimator (including algorithms for pose initialization
and tracking which process simulated 2D corner features) is
integrated with a filtering architecture in [21]. Specifically,
two separate filters, i.e., an H∞ filter and a second-order,
minimum-energy filter on the Lie group, are exploited for the
relative orbital and rotational dynamics, respectively. Finally,
a high-order EKF exploiting simulated pose estimate from a
visual system is proposed in [22].

This analysis shows that very few works have addressed
the relative navigation problem without relying on simulated
pose estimates, i.e., considering also the task of processing
raw data (either 2D images or 3D point clouds). Instead,
the loosely-coupled relative navigation architecture proposed
in this paper addresses all the processing steps required to
estimate the target-chaser relative state starting from raw
LIDAR measurements. State-of-the-art pose determination
algorithms are exploited within the proposed architecture to
play a twofold role. On one side, they are used within a
processing strategy designed to initialize the filter state and
covariance when no prior information is available about the
target-chaser relative state. On the other side, the Iterative
Closest Point (ICP) algorithm is adopted to provide updated
pose measurements to the filter each time a new set of LIDAR
data is acquired [13]. An autonomous failure detection strat-
egy, based on the evaluation of the ICP-based cost function,
is also exploited to avoid providing a wrong initialization to
the filter as well as to avoid the filter to diverge, by command-
ing a new execution of the initialization process. Regarding
the filtering scheme, an original Unscented Kalman Filter
(UKF) is designed which uses as measurement for the update
phase, relative position, attitude and angular velocity esti-
mates. The choice of using an UKF scheme is motivated by
the fact that it provides better performance than other filtering
approaches (such as the Extended Kalman Filter) to deal with
the non-linearities in the quaternion-based relative rotational
dynamics model [23]. Finally, another important contribution
of this work is that the measurement covariance matrix is not
a fixed parameter selected by the user but rather it is updated
after each implementation of the ICP algorithm. This allows
properly weighting the level of trust in the relative position
and attitude estimates.

FIGURE 1. Block diagram summarizing the proposed LIDAR-based
relative navigation architecture. The inputs required by the two main
blocks are listed on the left side of the figure.

III. RELATIVE NAVIGATION ARCHITECTURE
The block diagram describing the proposed relative naviga-
tion architecture is shown in Fig. 1. It is composed of two
main parts. The former, indicated as ‘‘Initialization’’, aims at
providing a reliable estimate of the target-chaser pose param-
eters for starting the filtering process. It requires in input
measured point clouds and a model of the target geometry (no
prior knowledge of the relative state is needed). Details about
the initialization strategy including fundamentals regarding
the adopted model-based pose determination algorithms are
collected in Section III-B. At the end of the initialization,
an UKF scheme is adopted to estimate the entire relative
navigation state. The main theoretical concepts about UKF
are provided in Section III-C, while details of the proposed
implementation are given in Section III-D. Due to the loosely-
coupled nature of the proposed architecture, a pose deter-
mination block, relying on the ICP algorithm, is adopted
within the update step of the UKF to properly correct the rel-
ative navigation state. Before discussing the details about the
above-mentioned parts of the proposed architecture, prelimi-
naries about the adopted coordinate systems and terminology
for the relative state vector are collected in Section III-A.

A. COORDINATE SYSTEMS AND RELATIVE
STATE PARAMETRIZATION
A list of the reference frames required for the mathematical
derivation of the following sub-sections is provided below.
• The Inertial reference frame (IRF) is the classical Earth-
centered inertial frame; the z and x axes point towards
North and the first point of Aries, respectively, while the
y axis completes the right-handed coordinate system.

• The Sensor reference frame (SRF) is the LIDAR coordi-
nate system whose z-axis is directed along the boresight
direction.

• The Chaser-fixed reference frame (CRF) is the body-
reference frame of the chaser; for the sake of the mathe-
matical simplicity, it is assumed that it is coincident and
aligned with the SRF.

• The Target-fixed reference frame (TRF) is the body-
reference frame of the target.
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• The Hill’s reference frame (HRF) has the same origin of
the CRF. The x axis is in the chaser radial direction; the
z axis is parallel to the angular momentum vector of the
chaser and the y axis completes the right-handed triad.

• The Target orbit reference frame (TORF) has the
z axis in the radial direction (toward Earth center),
the x axis along the angular momentum vector, while
the y axis completes the right-handed triad.

The proposed architecture aims to estimate a 13 × 1 state
vector (x) defined as follows,

x = [ρ ρ̇ qωT ] (1)

where ρ and ρ̇ are 3 × 1 vectors representing the relative
position and velocity of the target with respect to the chaser,
both expressed in HRF; q is a 4 × 1 vector representing the
unit quaternion of the SRF attitude with respect to the TRF;
finally, ωT is a 3 × 1 vector representing the target angular
velocity and it is expressed in TRF. It is worth recalling that
the target-chaser relative attitude is alternatively parameter-
ized using the rotation matrix (R) or also a 321 sequence of
Euler angles (i.e. yaw, γ , pitch, β, and roll, α).

B. INITIALIZATION STRATEGY
In order to initialize the filter, an estimate of the target-chaser
pose parameters as well as of the associated covariance must
be provided. This task is entrusted to a combination of state-
of-the-art model-based pose determination algorithms [13].
The initialization procedure is now detailed by also recalling,
for the sake of clarity of the discussion, the main concepts
regarding the adopted pose determination algorithms.

1) INITIAL POSE ACQUISITION AND REFINEMENT
Once the first point cloud is acquired by the LIDAR system
on board the chaser, an initial coarse estimate of the pose
parameters is firstly obtained applying the on-line PCA-based
Template Matching(PCA-TM) algorithm [13]. It consists of
the following phases. First, a tentative solution for the relative
position vector of the chaser with respect to the target (T) is
computed as the centroid of the point cloud. Second, accord-
ing to the Principal Component Analysis [24], the direction
of the target main axis is estimated as the eigenvector corre-
sponding to the maximum eigenvalue associated to the point
cloud covariance matrix. While two rotational DOFs (rep-
resented by the α-β couple of Euler angles) can be directly
derived from this direction, the remaining one (represented
by γ , i.e., the rotation of the target about its main axis with
respect to SRF) is computed applying a TM approach [13].
Since it is not possible to directly establish whether the target
main axis is parallel or antiparallel to the direction estimated
by the PCA, an ambiguity arises in the estimation of α and
β, and, consequently, in the relative attitude quaternion. This
ambiguity in the pose vector p = [T, q] is solved applying
twice the ICP algorithm (whose main concepts are recalled in
the next sub-section) and choosing the solution characterized
by the minimum value of the associated cost function [13].

To further refine the achieved pose solution and, conse-
quently, to initialize the filter with a more accurate pose
estimate, a short time interval (tINIT , which can be set to a
few seconds) is assigned during which the ICP algorithm is
applied to update the pose parameters each time a new point
cloud is acquired.

It is worth outlining that the PCA-TM algorithm is tailored
to targets having a main geometric direction (indeed, most
resident space objects, such as rocket bodies, have an elon-
gated structure). However, if the target does not have such
a principal direction, the initialization scheme can still be
applied by substituting the PCA-TM algorithm with different
state-of-the-art techniques able to provide an estimate of
the pose parameters without relying on a prior knowledge
[19], [26]–[30].

2) ICP FUNDAMENTALS
The ICP algorithm is an iterative technique which aims to
find the best estimate of the rotation and translation neces-
sary to align two datasets [30]. This problem is also called
registration in the robotic research community. The imple-
mentation of the ICP algorithm can be easily customized to
the application of interest considering that each ICP iteration
is composed of multiple phases for which several variants
exist [31]. Among these phases, three are mandatory, namely
the matching step, the selection of the error metric function
and of the minimization technique. In this work, the ICP
algorithm is implemented, as described in [13], to estimate
the pose solution which best aligns the measured point cloud
(expressed in SRF) to a model point cloud (expressed in TRF)
and obtained from the knowledge of the target geometry.
While the details can be found in [13], it is here important to
recall the definition of the ICP cost function (fICP), which is
defined as the mean squared distance between corresponding
model and measured points, as shown in (2),

fICP (T , q) =
1
Np

Np∑
i=1

∣∣∣P iM − R (q)T (P iL + T)∣∣∣2 (2)

where PiM and PiL are the corresponding points in the model
and measured point cloud, respectively, while Np is the size
of the measured point cloud. At each ICP iteration, after the
matching process, the pose parameters are estimated as the
ones that minimize this cost function using a closed-form
solution based on unit quaternions. The iterative process is
ended when the variation of fICP between two consecutive
iterations becomes lower than 10−6 m2, or if the iteration
number exceeds a maximum limit (e.g. 30 iterations).

As anticipated in the previous sub-section, the value of
fICP at the end of the iterative process (fEND) plays a key
role in the initialization procedure as it allows solving the
ambiguity between the two pose solutions arising from the
application of the PCA-TM algorithm. This is possible since
fEND is a quantitative measure of the quality of the registration
process and, consequently, of the accuracy in the estimated
pose parameters [13]. This result is exploited in this work to
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FIGURE 2. Flow diagram summarizing the filter initialization procedure. The ICP-based refinement block is enclosed in a
dashed rectangular box to indicate that this phase is conducted over a time interval (tINIT ). Specifically, a new point cloud
is acquired and the ICP algorithm is applied until the time spent for the starting of the initialization process reaches (t)
reaches the value assigned to tINIT . At each ICP implementation, if the failure detection condition (fEND < τ ) is not
satisfied, a new point cloud is acquired, and the initialization process is restarted.

define an autonomous failure detection strategy based on the
evaluation of fEND. Specifically, each time the ICP algorithm
is applied during the initialization process, fEND is compared
to a threshold (τ ) selected by the user. If fEND is larger than
τ , a new point cloud must be acquired, and the initialization
process is restarted. A flow diagram summarizing the initial-
ization process, including this ICP-based failure detections
strategy is reported in Fig. 2.

Besides the pose parameters, the ICP algorithm must also
provide an estimate of the associated covariance matrix to
the UKF. This task is carried out by adapting the approach
proposed in [32] to the ICP formulation used in this work.
According to [32], the covariance matrix associated to the
ICP-based pose estimate can be estimated as in (3).

cov (p) =
(
∂2fICP
∂p2

)−1 (
∂2fICP
∂s∂p

)
× cov (s) [

(
∂2fICP
∂p2

)−1 (
∂2fICP
∂s∂p

)
]T (3)

where p is the pose estimate vector and cov(s) is the
3Np-by-3Np diagonal matrix which measures the error level
in the acquired point cloud, computed applying an offline
statistical analysis which considers the noise level in the
simulated LIDAR system.

C. UNSCENTED KALMAN FILTER
The Kalman filter is an algorithm able to provide the optimal
estimate of a state vector, given a set of measurements over
time, under a set of assumptions [33]. Specifically, the tem-
poral evolution of the state vector and the relation between
the state vector and the measurements are ruled by linear
models (dynamic process and observation models, respec-
tively), which are affected by random Gaussian white noises
uncorrelated with each other. However, in the most general
case, the dynamic and observation models are ruled by non-
linear functions (f and h), as shown in (4) and (5),

ẋ = f (x)+ w (4)

z = h (x)+ ν (5)

where x and z are the state and measurement vector, respec-
tively, while w and v are the process and measurement

noise, respectively. The process and measurement covariance
matrixes are given by (6) and (7),

Q = E{wwT } (6)

R = E{ννT } (7)

where E{} is the expected value operator. To deal with the
non-linearity in the dynamic and observation models, differ-
ent techniques can be exploited, such as the EKF [33] and
UKF [34]. In this paper, an UKF scheme is implemented
within the proposed relative navigation architecture. The
UKF algorithm is based on the concept of the unscented trans-
form, which allows avoiding the derivation of the Jacobian
matrices required in the Extended Kalman Filter formula-
tion [34]. The main steps of the discrete time formulation
of the UKF algorithm are described in the following. First,
the columns of the state covariance matrix (P) are used to
construct the so-called sigma-points ( χ ), i.e., a set of state
vectors chosen so that their sample mean and sample covari-
ance are equal to the mean and covariance of the current state.
They can be computed as shown in (8),

χ1
k−1 = x̂k−1
χ ik−1 = x̂k−1 +

√
L + λW i, i = 2, . . . .L + 1

χ ik−1 = x̂k−1 −
√
L + λW i, i = L + 2, . . . .2L + 1 (8)

where k is the current discrete time instant,Wi the ith column
vector of the Cholesky decomposition of P, L is the dimen-
sion of the state vector and λ is a scale factor computed as
shown in (9),

λ = α2 (L + c)− L (9)

where α and c are user-defined parameters. The parameter α
defines the spread of the sigma points around the mean of the
statistical distribution, and it is a positive integer lower than 1,
while c is another setting parameter typically set to zero [23].
The sigma points are projected ahead in time by means of

the dynamic model (prediction step). Then, an estimate of the
mean (10) and covariance (11) of the state vector is obtained
assuming that the predicted sigma points sample a Gaussian
distribution.

x̂k =
∑2L

i=1
wimf (χ

i
k−1) (10)

Pxx =
∑2L

i=1
wic
(
χ ik − x̂k

) (
χ ik − x̂k

)T
+ Q (11)
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In the equations above, wiC and wiM are weights defined as
follows.

w1
m =

λ

L + λ

w1
c =

λ

L + λ
+ (3− α2)

wim = wic =
1

2 (L + λ)
(12)

The predicted sigma-points are also projected in the mea-
surement space in order to get an estimate of the mean and
covariance matrix of the state vector in that space (13-15).

γ ik = h(χ ik) (13)

ẑk =
∑2L

i=1
wimγ i (14)

Pzz =
∑2L

i=1
wic
(
γ ik − ẑk

) (
γ ik − ẑk

)T
+ R (15)

In the UKF, the Kalman gain is computed bymeans of (16),

Kk = PxzP−1zz (16)

where the cross-covariance matrix Pxz, is computed as shown
in (17)

Pxz =
∑2L

i=1
wic
(
χ ik − x̂k

) (
γ ik − ẑk

)T
(17)

Finally, the state vector and the covariance matrix are
updated as in (18) and (19)

x̂+k = x̂−k + Kk
(
zk −h

(
x̂−k
))

(18)

Pk = Pk−1 − KkPzzKT
k (19)

D. UKF FOR LOOSELY-COUPLED RELATIVE NAVIGATION
First, the dynamic and observation models adopted in the
proposedUKF implementation are defined. Recalling that the
state vector defined in (1) includes information about target-
chaser relative position, velocity and attitude, as well as about
the absolute angular velocity of the target, different dynamics
models are needed for the different state variables. With
regards to the relative translational dynamics, the relative
motion model presented in [35] is adopted. It is obtained
from the combination of the two-body problem of the target
and chaser without any further assumption on the shape of
the orbit. It comprises a system of non-linear differential
equations expressed in HRF, as shown in (20),

ẍ =
µ

r2c
−

µ (rc + x)

[(rc + x)2 + y2 + z2]
3
2

+ 2ẏωH + yω̇H + xω2
H

ÿ = −
µy

[(rc + x)2 + y2 + z2]
3
2

− 2ẋωH + xω̇H + yω2
H

z̈ = −
µz

[(rc + x)2 + y2 + z2]
3
2

(20)

where µ is the Earth’s gravitational constant, rC is the norm
of the position vector of the chaser spacecraft, ωH and ω̇H
are the angular velocity and acceleration of HRF in IRF,

respectively, while x, y and z are the Cartesian components
of the relative position vector ρ.

The relative attitude model is represented by (21) which
describes the kinematic evolution in time of the relative atti-
tude quaternion [36], while the absolute rotational dynamics
of the target is described by the well-known Euler equation
(22) under the free-body assumption (i.e., disturbance torques
are not included in the model).

q̇ =
1
2
[0ωT/C ]⊗ q (21)

ω̇T = −I
−1
T (ωT × ITωT ) (22)

In (21), ωT/C or two different values e chaser with respect
to the target in TRF and the symbol ⊗ indicates a quaternion
product; in (22), IT is the inertia matrix of the target, assumed
to be known.

It is worth highlighting that a relative rotational dynamic
model can be used instead of considering the absolute rota-
tional dynamics of the target. Both possibilities have been
investigated in the literature (see [16] and [17], respectively).
The latter choice is here preferred since it does not require to
model the control torques acting on the chaser spacecraft.

As regards the observation model, each time a new
LIDAR point cloud is acquired, the ICP algorithm (see
Section III-B) is initialized based on the predicted state vector
thus producing an accurate estimate of the pose parameters
(p = [T, q]) and of the associated covariance. In this case,
the measurement vector (z) is equal to p, the observation
model is represented by the following set of linear equations,
as shown in (23),

z = p =
[
−RSRFHRF 03x3 03x3 03x3
03x3 03x3 I3x3 03x3

]
ρ

ρ̇

q
ωT

 (23)

where RSRFHRF is the rotation matrix from HRF to SRF. It is
worth outlining that the autonomous failure detection strategy
used within the initialization scheme (see Section III-B) is
similarly applied also at this stage of the proposed relative
navigation architecture. Specifically, if fEND is larger than τ ,
the pose measurements are not used to update the state vector
(i.e., only the prediction block of the UKF is adopted). If this
condition occurs Nf consecutive times, the initialization pro-
cess must be restarted.

Due to the unit norm constraint in the attitude quaternion,
a singularity problem arises in the estimation of the covari-
ance matrixes in the filter implementation making it no more
invertible (see (16)). So, while the quaternion parameteriza-
tion is used to represent the attitude state, the attitude error
is represented by a three-parameters attitude metric, namely
the Gibbs vector (g) [37]. This strategy leads to a reduction
in the dimension of the covariance matrixes, thus avoiding
singularity issues. Clearly this is possible since, under the
assumption of small angular errors, the relation between the
quaternion error ( δq) and the corresponding Gibbs vector is
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given by (24) [37].

δq ≈
[
1
g

]
(24)

Due to the weak coupling between the attitude and the
angular velocity of the target in the dynamic model (see
(21) and (22)), the effect of the pose measurements alone
in the update of the angular velocity of the target is limited.
So, in order to improve the related estimation accuracy level,
a measure of the angular velocity of the target (ωT ,EST ) can
be supplied to the filter exploiting a time sequence of attitude
measurements (and, consequently, at a lower frequency than
the LIDAR frame rate).

The procedure to compute ωTEST is now described. Given
the attitude quaternion from the implementation of the ICP
algorithm, and the inertial attitude of the chaser (qC/I , sup-
plied by its onboard navigation system), the inertial attitude
of the target (qT/I ) can be computed.

qT/I = q⊗ qC/I (25)

The above-estimated attitude can be expressed in the
form a 313 sequence of Euler angles, namely ψ , θ , and ϕ
through (26).

ϕ = atan2(2q1q3 − 2q0q2, 2q2q3 + 2q0q1)

θ = cos−1 (q23 − q
2
2 − q

2
1 + q

2
0)

ψ = atan2(2q1q3 + 2q0q2, 2q0q1 − 2q2q3) (26)

Given the estimates of these Euler angles at different time
instants, their first derivative (ϕ̇, θ̇ , ψ̇) can be computed by
exploiting a first-order, finite-difference scheme [38]. Finally,
the 313 kinematics equation (27) are used to get a measure of
the target angular velocity expressed in TRF [39].

ωT,EST

=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 0
0
ϕ̇


+

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 θ̇0
0


+

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


×

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 0
0
ψ̇

 (27)

This angular velocity estimate is provided to the filter
at a lower frame rate (i.e., 0.1 Hz in this work) than the
one characterizing the pose measurements provided by the
ICP algorithm, in order to smooth the error introduced by
the numerical derivative of ψ , θ and ϕ (which is related
to the noise in the relative attitude quaternion estimates).
So, when a measure of the target angular velocity is available,

the observation model is modified, as shown in (28).

z =

−RSRFHRF 03x3 03x3 03x3
03x3 03x3 I3x3 03x3
03x3 03x3 03x3 I3x3



ρ

ρ̇

q
ωT

 (28)

Clearly, the dimension of the measurement vector z is
changed adaptively depending on the availability of the target
angular velocity estimates.

IV. SIMULATION ENVIRONMENT, SCENARIO
AND RESULTS
To fully assess performance of the proposed relative naviga-
tion architecture, a numerical simulation environment, which
can reproduce the operation of a scanning LIDAR, as well as
the target-chaser relative dynamics corresponding to a realis-
tic OOS or ADR scenario, is exploited. Fig. 3 summarizes the
structure of the simulation environment, which is composed
of three modules dedicated to the relative dynamics, LIDAR
measurement and relative navigation process, respectively.
The relative dynamics module (highlighted in blue in Fig. 3)
is conceived to reproduce inspection or monitoring trajec-
tories of a chaser with respect to an uncooperative target.
Indeed, target monitoring is one of the key phases of a close-
range rendezvous manoeuvre [40].

Regarding the translational dynamics, the module requires
in input the mean orbit parameters of the target, and a set
of parameters which characterize the size and shape of the
desired monitoring trajectory. Using the trajectory design
method described in [41], the differences between the target-
chaser mean orbit parameters which characterize the desired
trajectory can be computed (and, consequently, also the mean
orbit parameters of the chaser are derived). At this point, the
absolute orbital dynamics is numerically propagated for both
the chaser and the target by a numerical orbit propagator in
which the main perturbations are included (i.e., aerodynamic
drag, harmonics up to the fourth order and solar radiation
pressure). Clearly, the relative position and velocity informa-
tion can be obtained from the two absolute orbital dynamics.
With regards to the relative rotational dynamics, the absolute
attitude of the target is obtained by integrating the Euler’s
equations considering the gravity gradient torque as only
disturbance. Then, the rotation matrix describing the attitude
between TRF and SRF is obtained by assuming that the
chaser attitude is controlled to point the LIDARboresight axis
toward the target geometric center.

The target-chaser relative attitude and position parameters
are then used as input by the LIDAR measurement module
(orange block in Fig. 3). Once the LIDAR Field of View
(FOV) and angular resolution (δLOS ) are assigned, this mod-
ule is able to generate a set of raw LIDAR data, i.e., a point
cloud, in three steps [27]. First, a purely geometric point
cloud is obtained applying a ray tracing algorithm (no source
of noise considered). Second, the detection process is sim-
ulated by computing for each backscattered laser beam the
probability of detection as a function of the probability of
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FIGURE 3. Flow diagram summarizing the main blocks of the simulation environment. The three main modules are highlighted
with colors: relative dynamics module (blue); LIDAR measurement module (orange); relative navigation module (yellow).

false alarm and the Signal to Noise Ratio [42]. This can
be done by evaluating the signal mean value based on the
LIDAR equation, while the noise is determined considering
the background and the thermal noise contributions [43].
Finally, the detected point cloud is modified considering
the sensor measurement uncertainties, which are simulated
as a gaussian white noise on the measured range (σρ) and
laser beam direction (σLOS ) [27]. The possibility to produce
outliers as a percentage of the detected points (O%) is also
considered. Specifically, they are randomly extracted among
the elements of the measured point cloud and their range
uncertainty is set to four times σρ . The measured point clouds
obtained through this procedure are the main input data for
testing the relative navigation module (yellow block in Fig. 3)
in which the algorithmic approach described in Section III
is applied obtaining a temporal evolution of the estimated
relative state which must be compared to the ground truth for
performance assessment.

A. SIMULATION AND TEST CASE
The target considered in this simulation scenario is
ENVISAT, an eight-tones Earth observation satellite declared
inoperative by ESA in 2012. The LIDAR measurement sim-
ulator described in the previous section, as well as the model-
based pose determination algorithms included in the relative
navigation architecture, require information about the tar-
get geometry (e.g., size, shape, inertia, surface material).
In this work, ENVISAT geometry is modeled as a combina-
tion of cuboid-shaped elements representing the main body,
the solar array and the synthetic aperture radar (SAR) antenna
(these two latter elements are attached to the main body by
two appendixes), as depicted in Fig. 4.

FIGURE 4. Simplified model of ENVISAT geometry. It is represented in the
form of a 3D point cloud which is used as model point cloud within the
ICP algorithm.

A synthesis of the main information, collected from the
literature [44]–[46] adopted to generate this model and used
for the LIDAR point cloud generation process are collected
in Table 1.

A safety ellipse is designed around ENVISAT for the
simulated monitoring scenario. The mean orbital parameters
defining this trajectory are collected in Table 2, and the result-
ing safety ellipse, with a range varying from 25 to 57 meters,
is depicted in Fig. 5.

With regards to the rotational dynamics, the scenario is
generated assuming that, at the initial time, the TRF is aligned
with the orbital reference frame of the target (TORF). The
resulting time variations of the Euler angles representing the
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FIGURE 5. Safety ellipse designed around ENVISAT. (Left) Relative trajectory expressed in the THRF. (Right) Time-history of the target-chaser range.

TABLE 1. ENVISAT model: Geometrical and inertial characteristics.

TABLE 2. Target and chaser mean orbit parameters to get the desired
safety ellipse. The target ones are taken from a set of True Line Elements
relative to a recent measurement. The chaser ones are the output of the
‘‘relative motion model’’ mentioned in Fig. 3 [41].

relative attitude of the target with respect to the chaser are
depicted in Fig. 6.

B. RESULTS
Results from different numerical simulations are now pre-
sented to evaluate performance of the proposed LIDAR-based
relative navigation architecture.

Before entering the details, a set of error metrics must
be properly defined. With regards to the initialization phase,
the error in the estimation of the pose parameters, i.e., the
components of T (Tx, Ty and Tz), and the triplet of 321 Euler

FIGURE 6. Time history of the euler angles (321 sequence) describing the
attitude of SRF with respect to TRF.

angles corresponding to q (α, β and γ ), is evaluated. With
regards to the UKF, the error level is measured as the differ-
ence between the Euclidean norms of the true and estimated
vectors for the relative position (29) and velocity (30) as well
as for the target angular velocity (31).

|ρ|ERR = |ρ|TRUE − |ρ|EST (29)

|ρ̇|ERR = |ρ̇|TRUE − |ρ̇|EST (30)

|ωT |ERR = |ωT |TRUE − |ωT |EST (31)

Similarly, the relative attitude accuracy is expressed in terms
of a single parameter (8ERR), which is the equivalent Euler
angle corresponding to the quaternion error (qERR, (32))
defined as in (33),

qERR = qTRUE ⊗ q−1EST (32)

φERR = 2 cos−1 (qERR) (33)

where qERR is the scalar part of the quaternion error.
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Relative navigation performance achieved by the proposed
architecture is now analysed for the scenario presented in
Section IV-A. To this aim, the setting for the LIDAR oper-
ational and noise parameters is chosen to be consistent with
performance of spaceborne systems [26], [47], [48].

Specifically, the simulated LIDAR is assumed to scan
40◦-by-40◦ FOV, with δLOS equal to 1◦, and update rate (fL)
of 1 Hz, while the noise parameters are selected consider-
ing typical performance of spaceborne, scanning LIDARs
(σLOS = 0.0007◦, σρ = 25 mm) [26]. With regards to the
presence of outliers in the measured point cloud, O% is set
to 5% for the set of detected points backscattered from the
surfaces of the solar array and SAR antenna, while a larger
value (7%) is considered for themeasurements corresponding
to the main body. This is done to better model the fact that
ENVISAT is characterized by the presence of several devices
on the main body surface which may produce outliers or gen-
erate multipath phenomena (and, consequently, larger errors
in the measurements). For the sake of clarity, the setting
parameters are listed in Table 3.

TABLE 3. LIDAR operational and noise parameters.

TABLE 4. Results of the initialization phase of the relative navigation
architecture.

The results of the initialization process (TINIT is set to 10 s)
are collected in Table 4. Specifically, the PCA-TM algorithm
provides a coarse estimate of the pose parameters which
is exploited to initialize the ICP-based refinement process.
In particular, the metric-order error in the relative position
vector is justified by the use of the centroiding approach
(which is not able to identify the position of the TRF origin,
but rather it measures the average distance of the detected
points distributed on the surfaces of the target in the FOV).
Despite the relatively coarse accuracy achieved at the acqui-
sition step the corresponding pose solution falls in the field of
convergence of the ICP algorithm as shown by the accuracy
level achieved at the start of the refinement process. Also, it is

worth highlighting the improved accuracy in the estimation
of α, β, TX and TY (in particular, for these latter two terms,
the error reduces around one order of magnitude) at the end
of the refinement process, while the error level in γ and TZ
remains approximately constant. Besides the pose parame-
ters, the UKF requires also an initialization of the target-
chaser relative velocity and of the target angular velocity.
The former is initialized as a null vector due to the proximity
flight condition, while the latter is computed from the attitude
measurements as already described in Section IIID.

At this point, the temporal variation of the error metrics
selected to assess the UKF accuracy is depicted in Fig. 7 for
the time duration of a single relative orbit. Despite the pres-
ence of a limited number of peaks, the relative navigation
filter ensures an accuracy of 1-centimetre order in the relative
distance (Fig. 7a), few-millimetres/s order in the relative
velocity (Fig. 7b) and sub-degree order in the relative atti-
tude (Fig. 7c). These peaks are associated to the periodic
occurrence of unfavourable observation conditions of the
target in the LIDAR FOV [13], [49]. For instance, they can
be associated to self-occlusion phenomena, i.e., most of the
target appearance is occluded by a single geometrical element
(like the huge solar array in the ENVISAT case).

The presence of these peaks can be predicted on line by
looking at the time variation of the ICP cost function at
convergence, depicted in Fig. 8. Since the threshold value on
fEND (τ ) is set to 10−2 m2 (thus being able to recognize major
errors in the pose determination process), the autonomous
failure detection strategy does not lead to the restart of the
initialization process. Anyway, the worsening in the accuracy
of the pose estimates (associated to the increase in fEND
in Fig. 8) is considered thanks to the on-line computation of
the ICP-based covariance matrix (see Section III-B).

By comparing the results in Fig. 7a with the time varia-
tion of the true target-chaser range (see Fig. 5-right), it is
interesting to highlight that the error in the estimated rel-
ative distance gets slightly larger at increasing range. This
can be explained considering that the average number of
detected points reduces significantly with the range, so,
the point cloud becomes extremely sparse, as shown in Fig. 9,
and, consequently, the pose determination process gets more
challenging.

Finally, with regards to the target angular velocity deter-
mination, the time variation of the Euclidean norm for both
the true and estimated vectors (rather than the corresponding
error, as done for the other output elements of the UKF)
is depicted in Fig. 7d. This choice allows better showing
that, while the mean estimation error is practically zero
(1.6· 10−6 rad/s), the instantaneous error has an oscillatory
behaviour. However, the peaks in this error are extremely low
(i.e., they reach at most 3% of the true value of the target
angular velocity).

In order to statistically characterize the estimation accuracy
achieved by the proposed relative navigation architecture,
a set of 100 simulations is run over the same scenario. Indeed,
at each run, random extractions are done (i) for the detection
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FIGURE 7. Time variation during one relative orbit of the error in the estimated (a) relative
position, (b) relative velocity and (c) relative attitude. (d) Time variation during one relative orbit
of the norm of the true and estimated target angular velocity.

process, (ii) to select the outliers among the elements of the
detected point cloud corresponding to laser shots backscat-
tered from the same target surface (based on the associated
value of O%), (iii) and to evaluate the range and pointing
errors associated to each detected point. So, the selected
error metrics are first averaged at each time step over the
100 simulations. Then, their root mean square (rms) values
can be computed over time. The results of this procedure are
reported in Table 5.

TABLE 5. Statistics of the error metrics defined for performance
assessment of the developed relative navigation architecture computed
over one relative orbits (averaged on 100 simulations). The operational
and noise parameters for the simulated LIDAR are listed in Table 3.

For the sake of completeness, the filter performance can
be compared with the one achievable applying only the pose
determination algorithm. For instance, the corresponding
time variations of the error in the norm of the relative position
is depicted in Fig. 10.

1) ROBUSTNESS ANALYSIS
The goal of this section is to fully characterize the perfor-
mance of the proposed relative navigation architecture by
evaluating its robustness and sensitivity against variations of

FIGURE 8. Time-variation of the ICP cost function at convergence during
one relative orbit.

the operational and noise parameters of the simulated LIDAR
system.

a: LIDAR NOISE
First, the effect on the UKF performance obtained increasing
the level of noise in the LIDAR measurements is analyzed.
To this aim, a set of 100 simulations is carried out considering
three different values of σρ , increased with respect to the ref-
erence case (i.e., 2.5 cm, for which the results are presented in
the previous sub-section). The results of a statistical analysis,
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FIGURE 9. Time variation of the true target-chaser range (blue) and of the
size of the detected point cloud (red) during one relative orbit.

FIGURE 10. Time variation of during one relative orbit of the error in the
estimated relative position given by UKF (red) and pose determination
algorithm (blue).

done adopting the same procedure described in the previous
sub-section, are collected in Table 6.

As expected, the increase in the range measurement noise
produces a reduction in the accuracy level achieved by the
considered performance metrics. However, on the one side,
the order of magnitude in the relative attitude and target
angular velocity estimation error does not change, i.e., it
remains below 0.5◦ and around 2· 10−5 rad/s, respectively.
On the other side, the rms error in the relative position and
velocity estimates becomes one order of magnitude larger
when σρ is increased from 2.5 cm to 10 cm. Anyway, it can be
stated that the proposed UKF-based relative navigation archi-
tecture can provide a satisfying accuracy (cm-level andmm/s-
level accuracy in relative position and velocity, respectively)
despite dealing with an extremely large, conservative value of
the range measurement noise.

The results of the simulations carried out setting σρ to
10 cm also allow highlighting the advantage provided by an

TABLE 6. Statistics of the error metrics defined for performance
assessment of the developed relative navigation architecture computed
over one relative orbits (averaged on 100 simulations). Effect of the
LIDAR range measurement accuracy. δLOS1◦, fL = 1 Hz.

FIGURE 11. Time variation of ϕERR during one relative orbit. (a) ICP-based
failure detection and re-initialization enabled. (b) ICP-based failure
detection and re-initialization disabled. σρ = 10 cm. δLOS = 1◦, fL = 1 H.

autonomous failure detection strategy in the pose determina-
tion process as the one adopted in this paper (see Section III-B
and Section III-D). For instance, if τ is set to 10−2 m2 and
Nf is set to 3, the time variation of 8ERR for a single run is
depicted in Fig. 11 either enabling or disabling the ICP-based
failure detection strategy.
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TABLE 7. Statistics of the error metrics defined for performance
assessment of the developed relative navigation architecture computed
over one relative orbits (averaged on 100 simulations). Effect of the
LIDAR update rate. δLOS = 1◦, σρ = 2.5 cm.

b: LIDAR UPDATE RATE
The effect on performance of changing the rate at which
pose estimates are provided to the UKF is now evaluated.
To this aim, a set of 100 simulations is carried out considering
four different values of fL (i.e., 0.5 Hz, 0.33 Hz, 0.25 Hz
and 0.20 Hz), reduced with respect to the reference case
(i.e., 1 Hz). The results of a statistical analysis, done adopting
the same procedure described in the previous sub-section,
are collected in Table 7, and compared with the reference
case. This analysis shows the robustness of the proposed
relative navigation architecture against a significant reduction
in the LIDAR update rate (down to 1 point cloud acquired
and processed each 5 seconds). Considering that fL can be
interpreted as the rate at which the point clouds (acquired
at higher frequency) are processed, this result is important
since it allows relaxing the requirements regarding the com-
putational efficiency characterizing the implementation of the
pose determination algorithms. Clearly, these requirements
can still be more stringent, i.e., pose measurements may be
required even at higher frame rate when dealing with particu-
larly aggressive relative dynamics, e.g., in the case of rapidly
tumbling target.

c: LIDAR ANGULAR RESOLUTION
Finally, the effect on the achieved accuracy level obtained
reducing the LIDAR angular resolution is analyzed. To this
aim, δLOS is increased from 1◦ to 1.5◦. As a consequence,
the average number of detected points during one relative
orbit reduces from 172 to 76, as also highlighted in Fig. 12.

Given the huge size of ENVISAT (it has amaximum frontal
section of around 21 × 10 m2), the point clouds provided
in input to the pose determination algorithms are extremely
sparse. Like in the previous cases, a set of 100 simulations
is carried out setting δLOS to 1.5◦. The results of a statistical
analysis, done adopting the same procedure described in the
previous sub-section, are collected in Table 8, and compared
with the reference case (δLOS = 1◦).
Despite dealing with a significant sparseness in the raw

LIDAR data processed by the pose determination algorithm,
the level of accuracy achieved by the proposed relative

FIGURE 12. Time variation of the number of points detected by the LIDAR
during one relative orbit for two different values of the LIDAR angular
resolution. δLOS = 1◦ (blue curve). δLOS = 1.5◦ (red curve).

TABLE 8. Statistics of the error metrics defined for performance
assessment of the developed relative navigation architecture computed
over one relative orbits (averaged on 100 simulations). Effect of the
LIDAR angular resolution. fL = 1Hz, σρ = 2.5 cm.

navigation architecture does not change (only a slight wors-
ening in each performance metric can be highlighted).

V. CONCLUSION
In the frame of on-orbit servicing and active debris removal
applications, an original architecture for relative navigation of
a chaser spacecraft operating in close-proximity of uncooper-
ative space targets was proposed. By combining anUnscented
Kalman Filter (UKF) with model-based pose determina-
tion algorithms according to a loosely-coupled configuration,
the architecture was designed to provide accurate estimates
of the target-chaser relative rotational and orbital state using
a LIDAR as relative navigation sensor. In particular, the pose
determination algorithms are used not only for the relative
state initialization phase (no prior information about the
target-chaser relative state), but also to provide measurements
about target-chaser relative position and attitude, as well as
about the target absolute angular velocity (at lower rate than
the one at which LIDAR point clouds are acquired), required
for the update stage of the UKF. For the sake of improving
reliability against unfavorable observation conditions of the
target in the LIDAR Field-of-View, a processing strategy
was also introduced to autonomously detect poorly accurate
pose estimates, during the initialization or filtering phases,
and, if necessary, to command the re-start of the initial-
ization process. To test the robustness and the accuracy of
the proposed approach, an extensive campaign of numerical
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simulations was carried out within a virtual environment,
where the relative dynamics between two spacecraft flying
in close-proximity and the operation of a scanning time-of-
flight LIDAR were realistically reproduced.

The simulated test case was set considering a huge debris
in Low Earth Orbit (i.e., ENVISAT) as target, around which
a safe trajectory for monitoring purposes was designed.

Considering noise and operational parameters relative to
spaceborne LIDARs, results showed capability of the pro-
posed method to achieve satisfying level of accuracy in the
estimate of the relative motion parameters. A sensitivity
analysis was also performed through additional simulations
characterized by increased noise level in the LIDAR range
measurements, reduced update rate of the available pose
estimates, and reduced LIDAR angular resolution. These
additional results demonstrated robustness of the relative nav-
igation architecture in terms of the achieved relative state
accuracy, as the root mean square values associated to the
selected error metrics suffered only a very slight worsening
(without changes in the order of magnitude), despite deal-
ing which highly noisy or sparse point clouds, as well as
low-frequency pose estimates. This latter aspect is particu-
larly important as it may allow relaxing computational time
requirements associated to the implementation of the pose
determination algorithms. Future work will be addressed to
further test proposed approach performance considering dif-
ferent targets and different close-proximity maneuvers (like
the final approach phase of a rendezvous). Another interest-
ing point for future research is relative to the development
of strategies to deal with partially known targets, for which
LIDAR measurements can also be used for shape and/or
inertia parameters reconstruction.
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