81 research outputs found

    Sistemas eficientes de transmissão de energia sem-fios e identificação por radiofrequência

    Get PDF
    Doutoramento em Engenharia EletrotécnicaIn the IoT context, where billions of connected objects are expected to be ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous wireless nodes is undesirable or even impossible. In these scenarios, passive-backscatter radios will certainly play a crucial role due to their low cost, low complexity and battery-free operation. However, as passive-backscatter devices are chiefly limited by the WPT link, its efficiency optimization has been a major research concern over the years, gaining even more emphasis in the IoT context. Wireless power transfer has traditionally been carried out using CW signals, and the efficiency improvement has commonly been achieved through circuit design optimization. This thesis explores a fundamentally different approach, in which the optimization is focused on the powering waveforms, rather than the circuits. It is demonstrated through theoretical analysis, simulations and measurements that, given their greater ability to overcome the built-in voltage of rectifying devices, high PAPR multi-sine (MS) signals are capable of more efficiently exciting energy harvesting circuits when compared to CWs. By using optimal MS signals to excite rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB with respect to CW signals were obtained. In order to show the effectiveness of this approach to improve the communication range of passive-backscatter systems, a MS front-end was integrated in a commercial RFID reader and a significant range extension of 25% was observed. Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C standard and with MS capability, was constructed from scratch. By interrogating passive RFID transponders with MS waveforms, a transponder sensitivity improvement higher than 3 dB was obtained for optimal MS signals. Since the amplification and transmission of high PAPR signals is critical, this work also proposes efficient MS transmitting architectures based on space power combining techniques. This thesis also addresses other not less important issues, namely self-jamming in passive RFID readers, which is the second limiting factor of passive-backscatter systems. A suitable self-jamming suppression scheme was first used for CW signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a MS isolation up 60 dB. Finally, a battery-less remote control system was developed and integrated in a commercial TV device with the purpose of demonstrating a practical application of wireless power transfer and passive-backscatter concepts. This allowed battery-free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-).No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. Nestes cenários, os sistemas radio backscatter passivos terão um papel preponderante dado o seu baixo custo, baixa complexidade e não necessidade de baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema central de investigação, ganhando ainda mais ênfase no contexto IoT. Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW e a maximização da eficiência é conseguida através da otimização dos circuitos recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-se, teoricamente e através de simulações e medidas que, devido à sua maior capacidade em superar a barreira de potencial intrínseca dos dispositivos retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar os circuitos de colheita de energia de forma mais eficiente quando comparados com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC notáveis de até 15 dB relativamente ao sinal CW. A fim de mostrar a eficácia desta abordagem na melhoria da distância de comunicação de sistemas backscatter passivos, integrou-se um front-end MS num leitor RFID comercial e observou-se um aumento significativo de 25% na distância de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas eficientes de transmissão baseadas na combinação de sinais em espaço livre. Esta tese aborda também outros aspetos não menos importantes, como o self-jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo. Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-)

    Modulated Backscatter for Low-Power High-Bandwidth Communication

    Get PDF
    <p>This thesis re-examines the physical layer of a communication link in order to increase the energy efficiency of a remote device or sensor. Backscatter modulation allows a remote device to wirelessly telemeter information without operating a traditional transceiver. Instead, a backscatter device leverages a carrier transmitted by an access point or base station.</p><p>A low-power multi-state vector backscatter modulation technique is presented where quadrature amplitude modulation (QAM) signalling is generated without running a traditional transceiver. Backscatter QAM allows for significant power savings compared to traditional wireless communication schemes. For example, a device presented in this thesis that implements 16-QAM backscatter modulation is capable of streaming data at 96 Mbps with a radio communication efficiency of 15.5 pJ/bit. This is over 100x lower energy per bit than WiFi (IEEE 802.11).</p><p>This work could lead to a new class of high-bandwidth sensors or implantables with power consumption far lower than traditional radios.</p>Dissertatio

    High Data-Rate, Battery-Free, Active Millimeter-Wave Identification Technologies for Future Integrated Sensing, Tracking, and Communication Systems-On-Chip

    Get PDF
    RÉSUMÉ Pour de nombreuses applications allant de la sécurité, le contrôle d'accès, la surveillance et la gestion de la chaîne d'approvisionnement aux applications biomédicales et d'imagerie parmi tant d'autres, l'identification par radiofréquence (RFID) a énormément influencé notre quotidien. Jusqu'à présent, cette technologie émergente a été la plupart du temps conçue et développé dans les basses fréquences (en dessous de 3 GHz). D’une part, pour des applications où de courte distances (quelques centimètres) et à faible taux de communications de données sont suffisantes (même préférables dans certains cas), la technologie RFID à couplage inductif qui fonctionne à basse fréquences (LF) ou à haute fréquences (HF) fonctionne très bien et elle est largement utilisée dans de nombreuses applications commerciales. D'autre part, afin d’augmenter la distance de communication (quelques mètres), le débit de données de communication, et ainsi minimiser la taille du tag, la technologie RFID fonctionnant dans la bande d’ultra-haute fréquence (UHF) et aux fréquences micro-ondes (par exemple, 2.4 GHz) a récemment attiré beaucoup d'attention dans le milieu de la recherche et le développement. Cependant, dans ces bandes de fréquences, une bande passante disponible restreinte avec la taille du tag assez large (principalement dominée par la taille d'antenne et de la batterie dans le cas d'un tag actif) sont les principaux facteurs qui ont toujours limité l'évolution de la technologie RFID actuelle. En effet, propulser la technologie RFID dans la bande de fréquences à ondes millimétriques briserait les barrières actuelles de la technologie RFID. La technologie d’identification aux fréquences à ondes millimétriques (MMID) offre plus de bande passante, et permet également la miniaturisation de la taille du tag, car à ces bandes de fréquences, la longueur d’onde est de l’ordre de quelques millimètres, une taille comparable à la taille d’un circuit intégré. L'antenne peut donc être soit intégré sur la même puce (antenne sur puce) ou soit encapsulé dans le même boitier que le circuit intégré. En dotant le tag la capacité de récolter sans fil son énergie à partir d'un signal aux fréquences à ondes millimétriques provenant du lecteur, lui fournissant ainsi l'autonomie énergétique (ainsi éliminant la nécessité d'une batterie et en même temps permettant la miniaturisation du tag), il devient alors possible d'intégrer entièrement tout le tag MMID sur une seule puce y compris les antennes, ce qui aboutira à la mise au point d’une nouvelle technologie miniature (μRFID) fonctionnant à la bande de fréquences à ondes millimétriques.----------ABSTRACT For countless applications ranging from security, access control, monitoring, and supply chain management to biomedical and imaging applications among many others, radio frequency identification (RFID) technology has tremendously impacted our daily life. So far, this ever-needed and emerging technology has been mostly designed and developed at low RF frequencies (below 3-GHz). For many practical applications where short-range (few centimeters) and low data-rate communications are sufficient and in some cases even preferable, inductively coupled RFID systems that operate over either low-frequency (LF) or high-frequency (HF) bands have performed quite well and have been widely used for practical and commercial applications. On the other hand, in the quest for a longer communication range (few meters), relatively high data-rate and smaller antenna size RFID systems operating over ultra-high frequency (UHF) and microwave frequency bands (e.g., 2.4-GHz) have recently attracted much attention in the research and development community. However, over these RF bands, a restricted available bandwidth together with an undesired tag size (mainly dominated by its off-chip antenna size and battery in the case of active tag) are the main factors that have been limiting the evolution of today’s RFID technology. Indeed, propelling RFID technology into millimeter-wave frequencies opens up new applications that cannot be made possible today.Millimeter-wave identification (MMID) technology is set out to exploit significantly larger bandwidth and smaller antenna size. Over these frequency bands, an effective wavelength is in the order of a few millimeters, hence close to a typical semiconductor (CMOS) die size. The antenna, therefore, may either be integrated on the same chip (antenna-on-chip – AoC) or embedded in the related package (antenna-in-package – AiP). In addition, by equipping the tag with the capability to wirelessly harvest its energy from an incoming millimeter-wave signal, thereby providing energy autonomy without the need of a battery and at the same time allowing miniaturization, it becomes possible to integrate the entire MMID tag circuitry on a single chip. Furthermore, the timely MMID concept is fully compatible with upcoming and future applications of millimeter-wave technology in wireless communications which are being discussed and developed worldwide in research and development communities, such as the internet of things (IoT), 5G, autonomous mobility, μSmart sensors, automotive RADAR technologies, etc

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Interference Helps to Equalize the Read Range and Reduce False Positives of Passive RFID Tags

    Get PDF

    Sistemas de caracterização para aplicações RFID

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesThis dissertation has the collaboration of the Telecommunications Institute with National Instruments, in order to develop solutions for characterization and measurement for RF-DC converters. These characterization solutions are intended to ensure optimization of this type of circuit, which is the basis of Wireless Power Transmission and Electromagnetic Energy Harvesting systems. It is intended to use LabVIEW code and the PXI modules from NI with the goal of extrapolating these measurement systems to read and measure the RFID Tags. Therefore, this dissertation is focused on RFID characterization using the LabVIEW, in other words, RFID reader.Esta dissertação surge no âmbito da colaboração do Instituto de Telecomunicações com a National Instruments (NI), com o intuito de desenvolver soluções de caracterização e medida para conversores RF-DC. Estas soluções de caracterização pretendem garantir uma optimização deste tipo de circuitos, que é a base dos sistemas de Wireless Power Transmission and Electromagnetic Energy Harvesting. Pretende-se assim recorrer a código Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) e aos módulos PCI eXtensions for Instrumentations (PXI) da NI com o objetivo extrapolar estes sistemas de medida para aplicação de leitura e medida de Tags Radio Frequency Identification (RFID). Assim sendo, nesta dissertação pretende-se desenvolver um sistema de caracterização do RFID usando o LabVIEW, ou seja, um leitor de RFID

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22
    • …
    corecore