12,899 research outputs found

    Towards a deployment tool for wireless access networks with minimal power consumption

    Get PDF
    The power consumption of wireless access networks will become an important issue in the coming years. In this paper, the power consumption of base stations for mobile WiMAX, HSPA, and LTE is modelled. This power consumption is related to the coverage of the base station. The considered technologies are compared according to their energy efficiency for different bit rates at a bandwidth of 5 MHz. For this particular case and based on the assumptions of parameters of the specifications, HSPA is the least energy-efficient technology. Until a bit rate of 11 Mbps LTE is the most energy-efficient while for higher bit rates mobile WiMAX performs the best. Furthermore the influence of MIMO is investigated. A decrease of about 80% for mobile WiMAX and about 74% for HSPA and LTE for the power consumption per covered area is found for a 4*4 MIMO system compared to a SISO system. The introduction of MIMO has thus a positive influence on the energy efficiency of the considered technologies. The power consumption and coverage model for base stations is then used to develop a prediction tool for power consumption in wireless access networks

    Designing energy-efficient wireless access networks: LTE and LTE-advanced

    Get PDF
    As large energy consumers, base stations need energy-efficient wireless access networks. This article compares the design of Long-Term Evolution (LTE) networks to energy-efficient LTE-Advanced networks. LIE-Advanced introduces three new functionalities - carrier aggregation, heterogeneous networks, and extended multiple-input, multiple-output (MIMO) support. The authors develop a power consumption model for LIE and LIE-Advanced macrocell and femtocell base stations, along with an energy efficiency measure. They show that LIE-Advanced's carrier aggregation and MIMO improve networks' energy efficiency up to 400 and 450 percent, respectively

    Feasibility of Simultaneous Information and Energy Transfer in LTE-A Small Cell Networks

    Full text link
    Simultaneous information and energy transfer is attracting much attention as an effective method to provide green energy supply for mobiles. However the very low power level of the harvested energy from RF spectrum limits the application of such technique. Thanks to the improvement of sensitivity and efficiency of RF energy harvesting circuit as well as the dense deployment of small cells base stations, the SIET becomes more practical. In this paper, we propose a unified receiver model for SIET in LTE-A small cell base staion networks, formulate the feasibility problem with Poisson point process model and analysis the feasibility for a special and practical senario. The results shows that it is feasible for mobiles to charge the secondary battery wih harvested energy from BSs, but it is still infeasible to directly charge the primary battery or operate without any battery at all

    Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks

    Full text link
    Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast Multicast System (eMBMS) are the most promising technologies for the delivery of highly bandwidth demanding applications. In this paper we propose a green resource allocation strategy for the delivery of layered video streams to users with different propagation conditions. The goal of the proposed model is to minimize the user energy consumption. That goal is achieved by minimizing the time required by each user to receive the broadcast data via an efficient power transmission allocation model. A key point in our system model is that the reliability of layered video communications is ensured by means of the Random Linear Network Coding (RLNC) approach. Analytical results show that the proposed resource allocation model ensures the desired quality of service constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium - Green Communications Track, to appea

    Fast Power and Energy Efficiency Analysis of FPGA-based Wireless Base-band Processing

    Full text link
    Nowadays, demands for high performance keep on increasing in the wireless communication domain. This leads to a consistent rise of the complexity and designing such systems has become a challenging task. In this context, energy efficiency is considered as a key topic, especially for embedded systems in which design space is often very constrained. In this paper, a fast and accurate power estimation approach for FPGA-based hardware systems is applied to a typical wireless communication system. It aims at providing power estimates of complete systems prior to their implementations. This is made possible by using a dedicated library of high-level models that are representative of hardware IPs. Based on high-level simulations, design space exploration is made a lot faster and easier. The definition of a scenario and the monitoring of IP's time-activities facilitate the comparison of several domain-specific systems. The proposed approach and its benefits are demonstrated through a typical use case in the wireless communication domain.Comment: Presented at HIP3ES, 201
    • …
    corecore