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Abstract—Nowadays, wireless access networks are already 

amongst the top power consumers in the ICT (Information and 

Communication Technology) sector. As it expected that these 

networks will further expand in the future due to the extreme 

growth in mobile devices and the high bit rate demand of the 

applications running on these devices, it is important to consider 

power consumption as a key parameter in the network design 

phase. In this paper, two optimization algorithms are proposed: a 

capacity-based heuristic which aims to reduce power consumption 

by responding to the instantaneous bit rate demand by the user 

and an evolutionary opposition-based learning algorithm focusing 

on the joint-optimization of power consumption and geometrical 

coverage. Applying both algorithms on a realistic suburban case 

in Ghent, Belgium, show that both algorithms are able to design 

an LTE-A network consuming only 24% and 29%, respectively, of 

the power consumed by the reference scenario which is 

representative for today’s networks. The evolutionary algorithm 

outperforms the capacity-based algorithm by obtaining a 5% 

lower power consumption, while the capacity-based heuristic has 

a 2 to 3% higher coverage. Future research in joint-optimization 

algorithms of energy and network performance is definitely  

needed. 

Keywords-energy efficiency; LTE-A; network design; 

optimization algorithm; power consumption; wireless access 

networks 

I.  INTRODUCTION 

In the future, power consumption will become a key 
parameter when developing wireless access networks. From 
2007 till 2012, the power consumption of today’s wireless access 
networks has yearly increased with 10% [1]. If we look at the 
expectations for the near future [2], these wireless access 
networks will only need to expand in order not only to serve the 
extreme growth of mobile devices but also to support the higher 
bit rate required by the applications running on these devices. As 
the base station is the large power consumer in the wireless 
access network, in literature, a lot of attention has been given to 
determine and improve its power consumption in different 
circumstances. However, on network level, the work that has 
been done is limited [4], [5], [6], [7].  

In this paper, two algorithms are proposed which aim to design 

the wireless network optimized towards power consumption, 

while preserving QoS (Quality of Service). The first one is a 

capacity-based heuristic, meaning that it will respond to the 

instantaneous bit rate demand of the user in order to develop an 

energy-efficient network. The second one is an evolutionary 

opposition-based learning algorithm focusing on the joint-

optimization of the power consumption and the geometrical 

coverage. Both algorithms are applied on a realistic suburban 

area in Ghent, Belgium for two cases. Based on the obtained 

results, a comparison is made between both the energy and the 

network performance of both algorithms for a 4G (4th 

Generation) LTE-A (LTE Advanced) network. 

This paper is organized as follows. In Section II, both algorithms 

are discussed in detail and the considered scenario is proposed. 

Section III compares the performance of both algorithms for the 

suburban scenario. In Section IV, our final conclusion is given. 

II. METHODOLOGY 

A. Capacity-based heuristic 

As mentioned above, the first algorithm is a capacity-based 
heuristic which will respond to the instantaneous bit rate demand 
of the users in the considered area. 

1) Input:  

Before we can actually start designing the network, some input 

is required: 

 The considered area: the area is identified by a shape 

file, describing the different buildings (location, height, 

etc.) in the environment. 

 A list of possible base locations: this list consists of all 

the existing base station locations in the considered 

area. 

 A list of users with their required bit rate: this list tells 

us the location of all the users active in the considered 

area together with the bit rate they require. The number 

of users depends on the population density of the 

considered area and is obtained from processing 

measurements [3]. The worst case scenario i.e., the 
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time during the day where there are most users active 

is considered (around 5 p.m.). The users are uniform 

distributed over the considered area i.e., each location 

in the area has the same chance to be chosen as user 

location. For the bit rate distribution, two bit rates are 

considered: 64 kbps (voice call) and 1 Mbps (data call). 

The amount of users making a voice call or a data call 

is based on confidential data from an operator. 

2) Algorithm:  

Fig. 1 shows the flow diagram for the different steps of the 

algorithm. Based on the list of users we need to cover, a first 

network consisting only of femtocell base station is developed. 

It will of course not be possible to cover all users by femtocell 

base stations only. Based on the list of users we were not able to 

cover by femtocell base stations only, a second network is 

developed by using macrocell base stations as shown in Fig. 1. 
the algorithm. 

To generate the femtocell and macrocell network, the same 

approach is used (Fig. 1 Step 1 to 9). For each user on the ’to 

cover’ list (Fig. 1 Step 1), we try to find a base station (BS) the 

user could connect to. As it is more energy-efficient to connect 

a user to an already active base station, instead of waking one 

up, we first try to find an already active base station (Fig. 1 Step 

2). To this end, the active base stations are ordered according to 

the path loss (PL) experienced by the user. Next, we go over this 

list and look for the base station from which the user experiences 

the lowest path loss and can still offer the bit rate required by the 

user. The experienced path loss should of course be lower than 

the maximum allowable path loss (PLmax) to which a transmitted 

signal can be subjected while still having a sufficient quality at 

the receiver side. One of the key parameters to determine PLmax 

is the receiver SNR (Signal-to-Noise Ratio) which describes the 

sensitivity of the receiver and depends on the bit rate required by 

the user as discussed in [8]. If such a base station can be found, 

the user is connected to it (Fig. 1 Step 4) and the algorithm can 

continue with the next user. Otherwise, the same procedure is 

repeated for all the sleeping base stations (Fig. 1 Step 5 & 6). In 

case a sleeping base station that match the criteria is found, it is 

turned on and the user is connect to it (Fig. 1 Step 7). 

Furthermore if a sleep base station is switched on, the algorithm 

checks if it is possible to reconnect already covered users to this 

base station in case they experience a lower path loss from this 

’new’ base station (Fig. 1 Step 8). This step is needed in order to 

balance the load over all active base stations in the network. In 

case it is not possible to cover a user by an active nor by a 

sleeping base station, it will not be able to cover the user and the 

user is added to the uncovered users list (Fig. 1 Step 9). 

 

B. Modified Oppositional Biogeography-Based Optimization 

(MOBBO) 

The second algorithm we consider is an evolutionary 
algorithm based on mathematical models that describe how 
species migrate form one island to another, how new species 
arise, and how species become extinct. The version considered 
here is based on semi-opposite points as proposed in [12]. BBO 
solutions share directly their attributes using the migration 
models. The migration operator provides BBO with a good 
exploitation ability. Due to these differences, BBO can 
outperform other algorithms [9], [10], [11]. Note that if other 
algorithms like PSO (Particle Swarm Optimization) and DE 
(Differential Evolution) are constrained to discrete space then 
the next generation will not necessarily be discrete [11]. 
However, this is not true for BBO. If BBO is constrained to a 
discrete space then the next generation will also be discrete. As 
suggested in [11], this indicates that BBO could perform better 
than other EAs on combinatorial optimization problems, which 
makes BBO suitable for application to energy-efficient network 
design.  

The following parameters are used: 

 A control parameter named opposition probability p0 

(∈ [0,1]): this parameter controls if a SIV (Suitable 

Index Variable) variable in a habitat will be replaced 

by its opposite or not. 

 A jumping rate parameter jr (∈ [0,1]): this parameter 

controls in each generation if the opposite population 

is created or not. 

 

Furthermore, two additional parts compared to the original 

algorithm code are required. The first one is the opposition-

based population initialization which is described below 

(Algorithm 1) [12]. lowj and upperj are the lower and the upper 

limit in the j-th dimension respectively. 

The second additional part is the opposition-based generation 

jumping. A description of the algorithm in pseudo-code is given 

below (Algorithm 2) [12]. The minj and maxj are the minimum 

and maximum values of the j-th dimension in the current 

population respectively. 

 

 

 

Figure 1 Flow diagram of the algorithm. 

 



Algorithm 1 Opposition-Based Population 

Initialization 

1: Generate uniform distributed random population P 

2: for i=1 to NP do 

3: Generate  semi-opposite population OPs  

4:  for j=1 to D do 

5:     if  [0,1] ornd p  then 

6:          , ,osi j j j i jx low upper x    

7:               else 

8:              , ,osi j i jx x  

9:      end if 

10: end for 

11:Initial population = the fittest among P and OPs  

 

Algorithm 2 Opposition-Based Generation Jumping 

1: if  [0,1] rrnd j  then 

2: for i=1 to NP do 

3: Generate  semi-opposite population OPs  

4:    for j=1 to D  

5:       if  [0,1] ornd p  then 

6:          , ,min maxosi j j j i jx x    

7:               else 

8:              , ,osi j i jx x  

9:          end if 

10:      end for 

12:    end if 

13:Select the fittest among current population P and 

OPs  

 

The MOBBO code algorithm can then be described as 

follows [12]: 

1. Initialize the MOBBO control parameters po and jr. 

2. Initialize a random population of NP habitats (phase 

vectors) from a uniform distribution. 

3. Set the number of generations G to one. 

4. Initialize the opposite population according to 

Algorithm 1. 

5. Map the HSI value to the number of species S, the 

immigration rate λk, the emigration rate μk for each 

solution (phase vector) of the population. 

6. Apply the migration operator for each non-elite habitat 

based on immigration and emigration rates using the 

following formulas [12]: 

max max

, 1k k

k k
E I

S S
 

   
     

   
              (1)  

with I the maximum possible immigration rate, E the 

maximum possible emigration rate, k is the rank of the 

given candidate solution, and Smax the maximum 

number of species (e.g., population size). The rank of 

the given candidate solution or the number of species 

is obtained by sorting the solutions from most fit to 

least fit according to the HSI value.  

7. Apply the mutation operator.  

8. Evaluate objective function value [12]: 

𝐻𝑆𝐼 = 𝐹(𝑥̃) =  −(𝑓𝑐𝑜𝑣(𝑥̃) + 𝑘 ∙ 𝑓𝑝𝑜𝑤(𝑥̃))         (2) 

with  

𝑓𝑐𝑜𝑣(𝑥̃) = 100 ∙
𝐴𝑡𝑎𝑟𝑔𝑒𝑡∩𝐴(𝑥)

𝐴𝑡𝑎𝑟𝑔𝑒𝑡
                                  (3) 

 𝑓𝑝𝑜𝑤(𝑥̃) = 100 ∙ (1 −
𝑃(𝑥)

𝑃𝑚𝑎𝑥
)         (4) 

            (5)   
 

𝑘 = {

0, 𝑓𝑐𝑜𝑣(𝑥̃) < 90

(𝑓𝑐𝑜𝑣(𝑥̃) − 90)2

5
, 90 ≤ 𝑓𝑐𝑜𝑣(𝑥̃) < 95

5, 𝑒𝑙𝑠𝑒

 

 

9. If rnd[0; 1] < jr calculate the opposite population 

according to Algorithm 2. 

10. Repeat Step 5 until the maximum number of 

generations Gmax or the maximum number of 

objective function evaluations is reached. 

C. Scenario 

For this study, the target area shown in Fig. 2 is considered. 
This is an outdoor suburban area of 6.85 km2 in the city center 
of Ghent, Belgium. The 75 possible locations for the base station 
are indicated by red squares in Fig. 2. These are existing base 
station locations, located on the roofs of buildings. In the 
considered area, 224 users are active (worst case scenario [14]), 
requiring 64 kbps (voice call) or 1 Mbps (data call) according to 
the distribution proposed in [14]. 

 

Furthermore, LTE-A is used as wireless technology. The 

assumed link budget parameters for both the macrocell and the 

femtocell base station are summarized in Table I.  

To calculate the power consumption of the network, the models 

for the power consumption of the macrocell and femtocell base 

station of [13] are used. As reference scenario, we assume that 

all 75 base stations active and are considered as macrocell base 

stations, operating on their highest power consumption i.e., 

1.7 kW [13]. 

 

Figure 2 The considered suburban area of 6.85 km2 in Ghent, Belgium. The 

red squares represents the possible base station locations. 



Finally, the algorithms are compared for two case. In the first 

case, the network consist only of macrocell base stations, while 

in the second case, the network consists of a mixture of 

macrocell and femtocell base stations. 

 
Table 1 Link budget parameters for the LTE-A macrocell and femtocell base 

station. 

Parameter Macrocell BS Femtocell BS 

Frequency 2.6 GHz 2.6 GHz 

Maximum input power 

base station antenna 

43 dBm 33 dBm 

Antenna gain of base 
station 

18 dBi 4 dBi 

Antenna gain of receiver 0 dBi  0 dBi  

Feeder loss base station 2 dB 2 dB 

Feeder loss receiver 0 dB  0 dB  

Fade margin  10 dB 10 dB 

Interference margin 2 dB 2 dB 

Noise figure of receiver  8 dB 8 dB 

Implementation loss of 

receiver 

0 dB 0 dB 

MIMO 1x1 1x1 

Receiver SNR 1/3 QPSK = -1.5 dB 
1/2 QPSK = 3 dB 

2/3 QPSK = 10.5 dB 
1/2 16-QAM = 14 dB 

2/3 16-QAM = 19 dB 

1/2 64-QAM = 23 dB 
2/3 64-QAM = 29.4 dB 

Bandwidth 5 MHz 5 MHz 

Soft handover gain 

receiver 

0 dB 0 dB 

Building penetration loss 0 dB (only outdoor coverage considered) 

Height mobile station 1.5 m 1.5 m 

 

III. COMPARISON OF THE ALGORITHMS 

In this section, the performance of both algorithms is 
compared. The MOBBO algorithm is executed 20 times. The 
population size is set to 100 and the maximum number of 
generations to 1000 iterations. Furthermore, the number of 
objective function evaluations is limited to 100000. For the 
capacity-based algorithm, the algorithm is executed 40 times, 
due to the variation of the user location and user bit rate 
distribution. The mean value is considered over all simulations. 
Table II shows the results obtained with both algorithms. The 
reference scenario has a power consumption of 127.5 kW with a 
geometrical coverage of 100%. To this end, 75 base stations are 
used. Note that the reference scenario for both cases (the 
macrocell only network and the macrocell femtocell network) is 
the same. 

Table 2 Comparison of the capacity-based and the MOBBO algorithm for the 

considered cases. 

Case Algorithm Macro/Femto Power 

consumption 

Geometrical 

Coverage 

Macro 

Only 

Reference 

MOBBO 

Capacity 

75 

20/0 

29/0 

100% 

24.5% 

30.2% 

100% 

95% 

98.4% 

Macro 

+femto 

MOBBO 

Capacity 

20/3 

28/29 

24.4% 

29.3% 

95% 

97.1% 

 

For the macrocell only case the MOBBO algorithm uses 

20 macrocell base stations, resulting in a power consumption of 

24.5% compared to the reference scenario. A geometrical 

coverage of 95% is obtained. The MOBBO performs better than 

the capacity based algorithm which uses 29 macrocell base 

stations resulting in a power consumption of 30.2% compared 

to the reference scenario, but the geometrical coverage is also 

higher than for the MOBBO case (98.4% versus 95%). 

 

Both algorithms have a slightly lower power consumption when 

introducing femtocell base stations. For the MOBBO algorithm, 

a power consumption of 24.4% is obtained compared to 24.5% 

when only macrocell base stations are used. This very small 

difference is due to the fact that it only uses 3 femtocell base 

stations, while still using 20 macrocell base stations. Although 

the same number of macrocell base stations are used, the power 

consumption is slightly lower as it is possible to reduce the 

antenna’s input power of some of the macrocell base stations 

due to the introduction of the femtocell base stations. The 

coverage is for both cases the same i.e., 95%. For the capacity-

based algorithm, the reduction in power consumption is higher, 

from 30.2% when using only macrocell base stations to 29.3% 

when using both femtocell and macrocell base stations. The 

power consumed by this network is still higher than the network 

obtained with the MOBBO algorithm as much more base 

stations are used: 28 femtocell base stations and 29 macrocell 

base stations. The fact that this algorithm uses much more 

femtocell base stations is due to the fact that we first try to cover 

as many users as possible by femtocell base stations. A decrease 

in geometrical coverage is also noticed: from 98.4% to 97.1%. 

 

Note that the power consumption reduction by using femtocell 

base stations is very limited in the considered case. This is 

probably due to the fact that femtocell base stations can only be 

placed on the existing locations of macrocell base stations. 

Future work will consist of allow other locations as well for the 

femtocell base stations. 

 

In general, we can conclude that the MOBBO algorithm 

performs around 5% better in terms of power consumption, 

however, the capacity-based algorithm performs better in terms 

of geometrical coverage (around 2 to 3% higher). 

IV. CONCLUSION 

Power consumption and energy efficiency are becoming 
more and more important in all aspects of our daily life. As 
wireless access networks are amongst the top power consumers 
in ICT (Information and Communication Technology), it will be 
necessary to consider the network’s power consumption as well 
during the network design phase. Especially for the future where 
today’s wireless access networks will need to expand in order to 
cope with the extreme growth of mobile devices and the high bit 
rate demand of the applications running on those devices.  
In this paper, two algorithms are proposed and compared to 
optimize the wireless network towards power consumption. The 
first algorithm is a capacity-based heuristic which tries to save 
energy by responding to the instantaneous bit rate demand of the 
user. The second algorithm is an evolutionary opposition-based 



learning algorithm focusing on the joint-optimization of power 
consumption and geometrical coverage. Both algorithms are 
applied on a realistic suburban area in Ghent, Belgium. Two 
LTE-A cases are considered. In the first case, a network 
consisting only of macrocell base stations is developed. In the 
second case, a mixture of macrocell and femtocell base stations 
is considered. Both algorithms accomplish to use only 24% and 
29% of the power consumed by the reference scenario, where all 
base stations are active i.e., the situation nowadays. Comparing 
the algorithms for both cases shows that the evolutionary 
algorithm performs around 5% better in terms of power 
consumption, while the network designed by the capacity-based 
algorithm has a 2 to 3% higher coverage. Depending on which 
parameter, power consumption or coverage, is the most 
important one, a different algorithm needs to be considered as 
shown by our results. 

These preliminary results show that is interesting to consider and 
compare different optimization algorithms depending on which 
parameter is the key one. Further research will include to 
compare more optimization algorithms for multiple scenarios. 
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