16,258 research outputs found

    Barriers to IoT Business Model Innovation

    Get PDF
    The vision of an Internet of Things (IoT), in which virtually all physical things become connected to the internet, promises enormous economic potential. The IoT might disrupt entire industries and it forces companies to rethink their current business activities. In light of these challenges, research on business model innovation (BMI) can offer promising insights. This research paper aims to contribute to the emerging BMI literature by identifying innovation barriers in an IoT context. 16 barriers are identified on the basis of ten expert interviews that were conducted with employees from five multinational companies. The contributions of our study might lay a fruitful ground for future research, e.g. in respect to prescriptive IoT BMI processes or quantitative investigations of IoT success

    Linking circular economy and digitalisation technologies : A systematic literature review of past achievements and future promises

    Get PDF
    The circular economy (CE) has the potential to capitalise upon emerging digital technologies, such as big data, artificial intelligence (AI), blockchain and the Internet of things (IoT), amongst others. These digital technologies combined with business model innovation are deemed to provide solutions to myriad problems in the world, including those related to circular economy transformation. Given the societal and practical importance of CE and digitalisation, last decade has witnessed a significant increase in academic publication on these topics. Therefore, this study aims to capture the essence of the scholarly work at the intersection of the CE and digital technologies. A detailed analysis of the literature based on emerging themes was conducted with a focus on illuminating the path of CE implementation. The results reveal that IoT and AI play a key role in the transition towards the CE. A multitude of studies focus on barriers to digitalisation-led CE transition and highlight policy-related issues, the lack of predictability, psychological issues and information vulnerability as some important barriers. In addition, product-service system (PSS) has been acknowledged as an important business model innovation for achieving the digitalisation enabled CE. Through a detailed assessment of the existing literature, a viable systems-based framework for digitalisation enabled CE has been developed which show the literature linkages amongst the emerging research streams and provide novel insights regarding the realisation of CE benefits.© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Exploring Internet of Things Adoption Challenges in Manufacturing Firms: A Fuzzy Analytical Hierarchy Process Approach

    Full text link
    Innovation is crucial for sustainable success in today's fiercely competitive global manufacturing landscape. Bangladesh's manufacturing sector must embrace transformative technologies like the Internet of Things (IoT) to thrive in this environment. This article addresses the vital task of identifying and evaluating barriers to IoT adoption in Bangladesh's manufacturing industry. Through synthesizing expert insights and carefully reviewing contemporary literature, we explore the intricate landscape of IoT adoption challenges. Our methodology combines the Delphi and Fuzzy Analytical Hierarchy Process, systematically analyzing and prioritizing these challenges. This approach harnesses expert knowledge and uses fuzzy logic to handle uncertainties. Our findings highlight key obstacles, with "Lack of top management commitment to new technology" (B10), "High initial implementation costs" (B9), and "Risks in adopting a new business model" (B7) standing out as significant challenges that demand immediate attention. These insights extend beyond academia, offering practical guidance to industry leaders. With the knowledge gained from this study, managers can develop tailored strategies, set informed priorities, and embark on a transformative journey toward leveraging IoT's potential in Bangladesh's industrial sector. This article provides a comprehensive understanding of IoT adoption challenges and equips industry leaders to navigate them effectively. This strategic navigation, in turn, enhances the competitiveness and sustainability of Bangladesh's manufacturing sector in the IoT era

    Cross-disciplinary lessons for the future internet

    Get PDF
    There are many societal concerns that emerge as a consequence of Future Internet (FI) research and development. A survey identified six key social and economic issues deemed most relevant to European FI projects. During a SESERV-organized workshop, experts in Future Internet technology engaged with social scientists (including economists), policy experts and other stakeholders in analyzing the socio-economic barriers and challenges that affect the Future Internet, and conversely, how the Future Internet will affect society, government, and business. The workshop aimed to bridge the gap between those who study and those who build the Internet. This chapter describes the socio-economic barriers seen by the community itself related to the Future Internet and suggests their resolution, as well as investigating how relevant the EU Digital Agenda is to Future Internet technologists

    Sensing as a Service Model for Smart Cities Supported by Internet of Things

    Full text link
    The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.Comment: Transactions on Emerging Telecommunications Technologies 2014 (Accepted for Publication

    Enabling IoT ecosystems through platform interoperability

    Get PDF
    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broadly accepted IoT ecosystems. The BIG IoT (Bridging the Interoperability Gap of the IoT) project aims to ignite an IoT ecosystem as part of the European Platforms Initiative. As part of the project, researchers have devised an IoT ecosystem architecture. It employs five interoperability patterns that enable cross-platform interoperability and can help establish successful IoT ecosystems.Peer ReviewedPostprint (author's final draft

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area
    • …
    corecore