134 research outputs found

    Node design in optical packet switched networks

    Get PDF

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Characterization of wavelength tunable lasers for use in wavelength packet switched networks

    Get PDF
    The telecom industry's greatest challenge, and the optical systems and components vendors' biggest opportunity is enabling providers to expand their data services. The solution lies in making optical networks more responsive to customer needs, i.e., making them more rapidly adaptable. One possible technique to achieve this is to employ wavelength tunable optical transmitters. The importance of tunability grows greater every year, as the average number of channels deployed on DWDM platforms increases. By deploying tunable lasers it is much easier to facilitate forecasting, planning and last minute changes in the network. This technology provides with solution for inventory reduction. It also offers solution for fast switching at packet level. The conducted research activities of the project was divided in two work packages: 1. Full static characterization-the laser used in the experiment was a butterfly-packaged Sampled Grating DBR laser with four electrically tunable sections. LabView programme was developed for distant control of the equipment and the laser itself. The parameters required for creating a look-up table with the exact currents for the four sections of the laser, namely wavelength, side mode suppression ratio and output power, were transferred to tables. Based on those tables the currents were defined for each of the 96 different accessible channels. The channel allocation is based on the 50 GHz spacing grid. A detailed analysis of the tuning mechanisms is provided. 2. Dynamic characterization and BER performance in wavelength packet switched WDM systems-a commercially available module was used supplied with the software package for controlling the wavelength channels and setting the laser to switch between any accessible channel. The laser is DBR laser without SOA integration so the dynamic tunability can be investigated. As the switching in the nanosecond regime is executed in the electrical domain, analysis of the switching parameters concerning the electrical circuit as well as laser structure is provided. The actual switching time was defined. The degradation in system performance due to spurious wavelength signals emitted from the tunable module during the switching event and their interference with other active channels was demonstrated by examining the presence of an error floor in the BER rate against received power measurements

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms
    • …
    corecore