276 research outputs found

    Improving Geo-casting by Combining Any-cast and Hovering Information

    Get PDF
    Geocasting is a variation on the notion of multicasting in which messages are deliver to the nodes residing in a specific area. This paper proposed a novel geocast protocol based on any-cast and hovering information in order to improve the performance by balancing load between server and local nodes. Thus proposed technique has two phases for geocasting, 1) any-cast from source to geocast region and 2) distribution of messages using hovering information. Our results has shown that using hovering information and creating replicas for geocasting messages we can reduce the overhead of broadcasting messages several time that helps in reducing the bandwidth

    GeoVanet: A Routing Protocol for Query Processing in Vehicular Networks

    Get PDF

    SNAP : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework for Emerging Wireless Application Systems

    Get PDF
    The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and analysis of a substantial amount of data. To fulfill these QoS requirements, the system requires network connectivity, data dissemination, and data analysis methods that can operate well within a system\u27s limitations. Traditional Internet protocols and methods for network connectivity and data dissemination are typically designed for well-engineering cyber systems and do not comprehensively support this new breed of emerging systems. The imminent growth of these CPSs presents an opportunity to develop broadly applicable methods that can meet the stated system requirements for a diverse range of systems and integrate these systems with the Internet. These methods could potentially be standardized to achieve interoperability among various systems of the future. This work presents a solution that can fulfill the communication and data dissemination requirements of a broad class of emergent CPSs. The two main contributions of this work are the Application System (APPSYS) system abstraction, and a complementary communications framework called the Software-Defined NAmed-data enabled Publish-Subscribe (SNAP) communication framework. An APPSYS is a new breed of Internet application representing the mobile and resource-constrained CPSs supporting data-intensive and QoS-sensitive safety-critical tasks, referred to as the APPSYS\u27s mission. The functioning of the APPSYS is closely aligned with the needs of the mission. The standard APPSYS architecture is distributed and partitions the system into multiple clusters where each cluster is a hierarchical sub-network. The SNAP communication framework within the APPSYS utilized principles of Information-Centric Networking (ICN) through the publish-subscribe communication paradigm. It further extends the role of brokers within the publish-subscribe paradigm to create a distributed software-defined control plane. The SNAP framework leverages the APPSYS design characteristics to provide flexible and robust communication and dynamic and distributed control-plane decision-making that successfully allows the APPSYS to meet the communication requirements of data-oriented and QoS-sensitive missions. In this work, we present the design, implementation, and performance evaluation of an APPSYS through an exemplar UAV swarm APPSYS. We evaluate the benefits offered by the APPSYS design and the SNAP communication framework in meeting the dynamically changed requirements of a data-intensive and QoS-sensitive Coordinated Search and Tracking (CSAT) mission operating in a UAV swarm APPSYS on the battlefield. Results from the performance evaluation demonstrate that the UAV swarm APPSYS successfully monitors and mitigates network impairment impacting a mission\u27s QoS to support the mission\u27s QoS requirements

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Aerial Base Station Deployment for Post-Disaster Public Safety Applications

    Get PDF
    Earthquakes and floods are constant threats to most of the countries in the world. After such catastrophes, a rapid response is needed, which includes communications not only for first responders but also for local civilians. Even though there are technologies and specialized personnel for rapid deployment, it is common that external factors will hinder the arrival of help while communication requirements are urgently required. Such communication technologies would aid tasks regarding organization and information dissemination from authorities to the civilians and vice-versa. This necessity is due to protocols and applications to allocate the number of emergency resources per location and to locate missing people. In this thesis, we investigate the deployment problem of Mobile Aerial Base Stations (MABS). Our main objective is to ensure periodic wireless communication for geographically spread User Equipment (UE) based on LTE technology. First, we establish a precedent of emergency situations where MABS would be useful. We also provide an introduction to the study and work conducted in this thesis. Second, we provide a literature review of existing solutions was made to determine the advantages and disadvantages of certain technologies regarding the described necessity. Third, we determine how MABS, such as gliders or light tactical balloons that are assumed to be moving at an average speed of 50 km/h, will be deployed. These MABS would visit different cluster centroids determined by an Affinity Propagation Clustering algorithm. Additionally, a combination of graph theory and Genetic Algorithm (GA) is implemented through mutators and fitness functions to obtain best flyable paths through an evolution pool of 100. Additionally, Poisson, Normal, and Uniform distributions are utilized to determine the amount of Base Stations and UEs. Then, for every distribution combination, a set of simulations is conducted to obtain the best flyable paths. Serviced UE performance indicators of algorithm efficiency are analyzed to determine whether the applied algorithm is effective in providing a solution to the presented problem. Finally, in Chapter 5, we conclude our work by supporting that the proposed model would suffice the needs of mobile users given the proposed emergency scenario. Adviser: Yi Qia

    Connected Vehicle Technology: User and System Performance Characteristics

    Get PDF
    The emerging connected vehicle (CV) technology plays a promising role in providing more operable and safer transportation environments. Yet, many questions remain unanswered as to how various user and system characteristics of CV-enabled networks can shape the successful implementation of the technology to maximize the return on investment. This research attempts to capture the effect of multiple factors such as traffic density, market penetration, and transmission range on the communication stability and overall network performance by developing a new CONnectivity ROBustness (CONROB) model. The model was tested with data collected from microscopic simulation of a 195 sq-mile traffic network and showed a potential to capture the effect of such factors on the communication stability in CV environments. The information exchanged among CVs can also be used to estimate traffic conditions in real time by invoking the probe vehicle feature of CV technology. Since factors affecting the connectivity robustness also have an impact on the performance of traffic condition estimation models, a direct relationship between connectivity robustness and traffic condition estimation performance was established. Simulation results show that the CONROB model can be used as a tool to predict the accuracy of the estimated traffic conditions (e.g. travel times), as well as the reliability of such estimates, given specific system characteristics. The optimal deployment of road-side units (RSUs) is another important factor that affects the communication stability and the traffic conditions estimates and reliability. Thus, an optimization approach was developed to identify the optimal RSUs locations with the objective function of maximizing the connectivity robustness. Simulation results for the developed approach show that CONROB model can help identify the optimal RSUs locations. This shows the importance of CONROB model as a planning tool for CV environments. For the individual user performance characteristics, a preliminary driving simulator test bed for CV technology was developed and tested on thirty licensed drivers. Forward collision warning messages were delivered to drivers when predefined time-to-collision values take place. The findings show improved reaction times of drivers when receiving the warning messages which lend credence to the safety benefits of the CV technology

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    • …
    corecore