252 research outputs found

    Mathematical modeling and vertical flight control of a tilt-wing UAV

    Get PDF
    This paper presents a mathematical model and vertical flight control algorithms for a new tilt-wing unmanned aerial vehicle (UAV). The vehicle is capable of vertical take-off and landing (VTOL). Due to its tilt-wing structure, it can also fly horizontally. The mathematical model of the vehicle is obtained using Newton-Euler formulation. A gravity compensated PID controller is designed for altitude control, and three PID controllers are designed for attitude stabilization of the vehicle. Performances of these controllers are found to be quite satisfactory as demonstrated by indoor and outdoor flight experiments

    Advanced Feedback Linearization Control for Tiltrotor UAVs: Gait Plan, Controller Design, and Stability Analysis

    Full text link
    Three challenges, however, can hinder the application of Feedback Linearization: over-intensive control signals, singular decoupling matrix, and saturation. Activating any of these three issues can challenge the stability proof. To solve these three challenges, first, this research proposed the drone gait plan. The gait plan was initially used to figure out the control problems in quadruped (four-legged) robots; applying this approach, accompanied by Feedback Linearization, the quality of the control signals was enhanced. Then, we proposed the concept of unacceptable attitude curves, which are not allowed for the tiltrotor to travel to. The Two Color Map Theorem was subsequently established to enlarge the supported attitude for the tiltrotor. These theories were employed in the tiltrotor tracking problem with different references. Notable improvements in the control signals were witnessed in the tiltrotor simulator. Finally, we explored the control theory, the stability proof of the novel mobile robot (tilt vehicle) stabilized by Feedback Linearization with saturation. Instead of adopting the tiltrotor model, which is over-complicated, we designed a conceptual mobile robot (tilt-car) to analyze the stability proof. The stability proof (stable in the sense of Lyapunov) was found for a mobile robot (tilt vehicle) controlled by Feedback Linearization with saturation for the first time. The success tracking result with the promising control signals in the tiltrotor simulator demonstrates the advances of our control method. Also, the Lyapunov candidate and the tracking result in the mobile robot (tilt-car) simulator confirm our deductions of the stability proof. These results reveal that these three challenges in Feedback Linearization are solved, to some extents.Comment: Doctoral Thesis at The University of Toky

    Seguimiento de trayectoria robusta de un cuadricóptero sin mediciones de velocidad utilizando el control super-twisting generalizado

    Get PDF
    This paper presents a nonlinear control strategy to solve the path tracking problem for a quadrotor unmanned aerial vehicle under perturbations. This strategy is based on the Generalized Super-Twisting Algorithm (GSTA); it means the second order sliding mode technique, which is able to ensure robustness with respect to modeling errors and bounded external disturbances due to the added extra linear correction terms. The controller goal is to achieve suitable path tracking of desired absolute positions and yaw angle while keeping the stability of the pitch and roll angle, in spite of the presence of disturbances and the handling of all system nonlinearities. In this work, a scenario in which velocities measurements are not available and are estimated by the Generalized Super-Twisting Observer is considered. Finally, the simulation results are also provided in order to illustrate the performances of the proposed controller.Este artículo presenta una estrategia de control no lineal para resolver el problema de seguimiento de trayectorias para un vehículo aéreo no tripulado bajo perturbaciones. Esta estrategia se basa en el Algoritmo Super-Twisting Generalizado (GSTA); es una técnica de modos deslizantes de segundo orden, la cual es capaz de asegurar robustez con respecto a errores de modelado y perturbaciones externas acotadas debido a los términos de corrección lineales añadidos respecto al algoritmo Super Twisting convencional. El objetivo del controlador es conseguir un seguimiento de trayectoria adecuado de las posiciones absolutas deseadas y del ángulo de guiñada, mientras se mantiene la estabilidad del ángulo de inclinación y de alabeo, a pesar de la presencia de perturbaciones y las no linealidades del sistema. En este trabajo, es considerado un escenario en el que las mediciones de las velocidades no están disponibles y son estimadas por el Observador Super-Twisting Generalizado. Finalmente, también fueron proporcionados los resultados de simulación para ilustrar el desempeño del controlador propuesto

    Multi-mode Flight Sliding Mode Control System for a Quadrotor

    Get PDF
    There is a wide range of applications for unmanned aerial vehicles that requires the capability of having several and robust flight controllers available. This paper presents the main framework of a multimode flight control system for a quadrotor based on the super twisting control algorithm. The design stages for the four flight control modes encompassing manual, altitude, GPS fixed and autonomous mode are presented. The stability proof for each flight mode is carried out by means of Lyapunov functions while the stability analysis for the complete system, when a transition from one mode to another occurs, is demonstrated using the switching nonlinear systems theory. The performance of the proposed framework is demonstrated in a simulation study taking into account external disturbances

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Real-time UAV Complex Missions Leveraging Self-Adaptive Controller with Elastic Structure

    Full text link
    The expectation of unmanned air vehicles (UAVs) pushes the operation environment to narrow spaces, where the systems may fly very close to an object and perform an interaction. This phase brings the variation in UAV dynamics: thrust and drag coefficient of the propellers might change under different proximity. At the same time, UAVs may need to operate under external disturbances to follow time-based trajectories. Under these challenging conditions, a standard controller approach may not handle all missions with a fixed structure, where there may be a need to adjust its parameters for each different case. With these motivations, practical implementation and evaluation of an autonomous controller applied to a quadrotor UAV are proposed in this work. A self-adaptive controller based on a composite control scheme where a combination of sliding mode control (SMC) and evolving neuro-fuzzy control is used. The parameter vector of the neuro-fuzzy controller is updated adaptively based on the sliding surface of the SMC. The autonomous controller possesses a new elastic structure, where the number of fuzzy rules keeps growing or get pruned based on bias and variance balance. The interaction of the UAV is experimentally evaluated in real time considering the ground effect, ceiling effect and flight through a strong fan-generated wind while following time-based trajectories.Comment: 18 page

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Nonlinear control of a quad tilt-wing UAV

    Get PDF
    Unmanned aerial vehicles (UAVs) have become increasingly more popular over the last few decades. Their fascinating capabilities and performance in accomplishing a specific task have made them indispensable for various civilian/commercial and military applications. The remarkable progress in advanced manufacturing techniques and electronic components have rendered development of small, intelligent and low-cost UAVs possible. Consequently, a significant amount of research effort has been devoted to design of UAVs with intelligent navigation and control systems. This thesis work focuses on nonlinear control of a quad tilt-wing unmanned aerial vehicle (SUAVI: Sabanci University Unmanned Aerial Vehicle). The aerial vehicle has the capability of vertical takeoff and landing (VTOL), and flying horizontally due to its tilt-wing mechanism. Nonlinear dynamical models for various flight modes are obtained. A hierarchical control system that includes vertical, transition and horizontal modes flight controllers is developed. In order to design these controllers, the dynamics of the aerial vehicle is divided into position and attitude subsystems. Several nonlinear position control methods are developed for different flight modes. For the vertical flight mode, integral sliding mode and PID based position controllers via dynamic inversion method are designed. Feedback linearization and integral sliding mode attitude controllers are also proposed for the attitude stabilization of the aerial vehicle in vertical, transition and horizontal flight modes. Simulations and several real flight experiments demonstrate success of the developed flight controllers
    corecore