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ABSTRACT 
This paper presents a nonlinear control strategy to solve the path tracking problem for a quadrotor unmanned 
aerial vehicle under perturbations. This strategy is based on the Generalized Super-Twisting Algorithm 
(GSTA); it means the second order sliding mode technique, which is able to ensure robustness with respect 
to modeling errors and bounded external disturbances due to the added extra linear correction terms. The 
controller goal is to achieve suitable path tracking of desired absolute positions and yaw angle while keeping 
the stability of the pitch and roll angle, in spite of the presence of disturbances and the handling of all system 
nonlinearities. In this work, a scenario in which velocities measurements are not available and are estimated 
by the Generalized Super-Twisting Observer is considered. Finally, the simulation results are also provided in 
order to illustrate the performances of the proposed controller. 
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RESUMEN 
Este artículo presenta una estrategia de control no lineal para resolver el problema de seguimiento de 
trayectorias para un vehículo aéreo no tripulado bajo perturbaciones. Esta estrategia se basa en el Algoritmo 
Super-Twisting Generalizado (GSTA); es una técnica de modos deslizantes de segundo orden, la cual es 
capaz de asegurar robustez con respecto a errores de modelado y perturbaciones externas acotadas debido 
a los términos de corrección lineales añadidos respecto al algoritmo Super Twisting convencional. El objetivo 
del controlador es conseguir un seguimiento de trayectoria adecuado de las posiciones absolutas deseadas 
y del ángulo de guiñada, mientras se mantiene la estabilidad del ángulo de inclinación y de alabeo, a pesar 
de la presencia de perturbaciones y las no linealidades del sistema. En este trabajo, es considerado un 
escenario en el que las mediciones de las velocidades no están disponibles y son estimadas por el 
Observador Super-Twisting Generalizado. Finalmente, también fueron proporcionados los resultados de 
simulación para ilustrar el desempeño del controlador propuesto. 
Palabras clave: Cuadricóptero; Super-Twisting Generalizado; control por modo deslizante; Observador; 
control no lineal. 
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tracking without velocity measurements using the generalized super-twisting control,” Revista Politécnica, vol. 
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1. INTRODUCTION 
 
Unmanned Aerial Vehicles (UAVs) constitute a field 
that has motivated the control community during the 
last years. UAVs are used in many applications 
such as, search, rescue, surveillance, aerial 
cinemato-graphy, inspection, and mapping. This 
paper deals with a four-rotor helicopter known as 
quadrotor, shown in Figure 1. The used quadrotor 
helicopter has some advantages over conventional 
helicopters on inspection task. They can take off 
and land in limited spaces and hover. The control of 
this machine is a great challenge, therefore, it is 
suited for the development and testing of new 
control strategies due to its high nonlinearity of its 
dynamic model [1]. Moreover, this system is under-
actuated because it has six degrees of freedom 
while it has only four inputs (four rotors). It is not 
possible to control all of the states at the same time. 
On the other side, several controllers have been 
developed to stabilize the attitude of quadrotors, 
such as, the feedback linearization method [2] or 
nonlinear control techniques like backstepping [1], 
[3],[4],[5] and [6], sliding-mode techniques [1], [3], 
𝐻∞controller [7], sliding mode control driven by 
sliding mode disturbance observer [8], adaptive 
trajectory track-ing control algorithm [9], controller 
parameterized [10], super twisting control algorithm 
for trajectory tracking [11], [12], nonlinear adaptive 
state feed-back controller [13]. This paper deals 
with the design of a nonlinear control algorithm for 
the position and attitude tracking of the quadrotor 
taking into account nonholonomic constraints. 
Added to this, it is consi-dered the case in which 
velocity measurements are not available, then an 
observer is designed to estimate these variables 
based in GSTA. The GSTA is able to ensure 
robustness with respect to bounded external 
disturbances while reducing the chattering 
phenomenon caused by all first order sliding mode 
based controllers. This technique differs from 
conventional Super-Twisting Algorithm due to the 
introduction of extras linear terms, that provide 
more robustness and convergence velocity [14]. 
 
The paper is outlined as follows. In section II, the 
dynamic model of the quadrotor UAV is developed. 
Based on this nonlinear model, we design in section 
III, Super-Twisting Algorithm controller. In section IV 
an observer to estimate the velocities of the quad-
rotor is designed. Some simulation results are 
carried out, allowing the analysis of the stability, 
robustness of the proposed controller in the 
presence of perturbations are presented in section 

V. Finally, section VI is a conclusion. The main 
contributions of this article are described as follows: 
Design of an attitude and position controller based 
on the Generalized Super-Twisting Controller. 
Design of a state observer based on GSTA for 
robust velocity estimation. Alternative stability proof 
for the GSTA. 
 
2. QUADROTOR MODEL 
 
The dynamic model helicopter has been described 
in several articles as seen in [1], [15] [16], [17], [18] 
and [19]. The absolute position and the attitude of 
the quadrotor are described respectively by 𝑋 =
[𝑥, 𝑦, 𝑧]𝑇 and the Euler angles 𝛩 = [𝜓, 𝜃, 𝜑]𝑇, 
corresponding to an aeronaut-tical convention. The 
equation of the dynamics of rotation of the 
quadrotor will be: 

�̈� =
1

𝑚
𝑅(Θ)[𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈)] + 𝑔𝑒3 

 
( 1) 

Θ̈ = (𝐽𝑀(Θ))
−1

[𝑇𝑝𝑟𝑜𝑝 − 𝐽𝑁(Θ, Θ̇) − 𝐴𝑇(𝑈) 

−(𝑀(Θ)Θ̇) × (𝐽𝑀(Θ)Θ̇)] 

 

( 2) 

 
Fig. 1. Quadrotor schematic taken from [11]. 
 

Where 𝑀(Ѳ) and 𝑁(Ѳ, Ѳ̇) are given by: 
 

𝑀(Θ) = [

𝑆𝜃 0 1
𝐶𝜃𝑆𝜙 𝐶𝜙 0

𝐶𝜃𝐶𝜙 −𝑆𝜙 0
]                         

 

𝑁(Θ, Θ̇) = [

−𝐶𝜃�̇��̇�

−𝑆𝜙�̇��̇� + 𝐶𝜙𝐶𝜃�̇��̇� − 𝑆𝜙𝑆𝜃�̇��̇�

−𝐶𝜙�̇��̇� − 𝑆𝜙𝐶𝜃�̇��̇� − 𝐶𝜙𝑆𝜃�̇��̇�

] 
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The orthogonal rotation matrix 𝑅(Θ)  is defined as 
follows: 

𝑅(Θ) = [

𝐶𝜓𝐶𝜃 𝐶𝜓𝑆𝜃𝑆𝜙 − 𝑆𝜓𝐶𝜙 𝐶𝜓𝑆𝜃𝐶𝜙 + 𝑆𝜓𝑆𝜙

𝑆𝜓𝐶𝜃 𝑆𝜓𝑆𝜃𝑆𝜙 − 𝐶𝜓𝐶𝜙 𝑆𝜓𝑆𝜃𝐶𝜙 − 𝐶𝜓𝑆𝜙

−𝑆𝜃 𝐶𝜃𝑆𝜙 𝐶𝜓𝐶𝜃

] 

 
Where cos(∗) = 𝐶∗ and sin(∗) = 𝑆∗. The inertia 

matrix of the quadrotor is represented as 𝐽 =
𝑑𝑖𝑎𝑔[𝐼𝑥, 𝐼𝑦, 𝐼𝑧]. g is the gravity; the vector 𝑒3 =
  [0;  0;  1]𝑇; m is the mass of the vehicle; 𝑈 is the 
velocity of the quadrotor with respect to the air; 
𝐴𝐹(𝑈) and 𝐴𝑇(𝑈) are respectively two complex non-
linear functions vectors which represent aerody-
namic forces and torques in the propeller system. 
Finally, 𝐹𝑝𝑟𝑜𝑝 and 𝑇𝑝𝑟𝑜𝑝 are the force and torque 

vectors in the system given by: 

𝐹𝑝𝑟𝑜𝑝 = ∑𝐹𝑖𝑒3

4

𝑖=1

                           

 

𝑇𝑝𝑟𝑜𝑝 = [

𝑑(𝐹2 − 𝐹4)

𝑑(𝐹1 − 𝐹3)

𝑐(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4)
] 

 
Where 𝑐 > 0 is the drag factor. 
 
3. CONTROLLER DESIGN 
 
In this section, we design the controllers for the 
position and attitude of quadrotor using the Super-
Twisting Algorithm. 
 
3.1 Attitude controller design 
From (2), we define the following state variables: 

�̇�1 = Θ     �̇�2 = Θ̇ 
 
Then the state-space form of this model is given by: 

�̇�1 = 𝑞2                                     
�̇�2 = 𝑓(𝑞) + 𝑝(𝑞)𝑢 + 𝑤(𝑡) 

( 3) 

 
Where 𝑤(𝑡)  =  [𝑤1;  𝑤2;  𝑤3]𝑇 is the vector of 
disturbance; 𝑇𝑝𝑟𝑜𝑝 =  𝑢 =  [𝑢;  𝑢;  𝑢]𝑇 is the vector 
of attitude control. The vectors 𝑓(𝑞) and 𝑝(𝑞) are 
defined as follows: 

𝑓(𝑞) = −(𝐽𝑀(Θ))
−1

[𝐽𝑁(Θ, Θ̇) + (𝑀(Θ)Θ̇) 

× (𝐽𝑀(Θ)Θ̇)] 
( 4) 

𝑝(𝑞) = (𝐽𝑀(Θ))
−1

                                             ( 5) 

 
For the design of control, the following assumptions 
are needed [1]:  
 

Assumption 1. 𝑋, Ѳ, Ѳ̇ can be measured or 

estimated by on-board sensors. 

Assumption 2. The quantity ∑  4
𝑖=1 represents the 

total thrust on the body in the z axis and is strictly 
positive to overcome the gravity. 
Assumption 3. The pitch, roll and yaw angles are 

limited to −
𝜋

2
< 𝜃 <

𝜋

2
 and −

𝜋

2
< 𝜙 <

𝜋

2
 and −𝜋 <

𝜓 < 𝜋.  
Assumption 4. The desired trajectories and their 
first and second time derivatives are bounded. 

Assumption 5. The velocity 𝑈 and �̇� the 
acceleration of the quadrotor with respect to the air 
are bounded.  
According to these assumptions, the matrix (5) is 
non-singular and the following inequalities are 
satisfied: 

𝑤𝑖(𝑡) ≤ 𝛿𝑖,          𝑖 = 1,2,3. 
 

The controller is designed to enforce sliding mode 
[11] on the manifold: 

𝜎 = �̇� + Γ𝑒 ( 6) 

 

Where 𝑒 = 𝑞1
𝑑 − 𝑞1

 , �̇� = �̇�1
𝑑 − 𝑞2 with 𝑞1

𝑑(𝑡) =
[𝜑𝑑(𝑡), 𝜃𝑑(𝑡), 𝜓𝑑(𝑡)]𝑇 and 𝛤 ∈ ℝ3×3 is a diagonal 
positive definite matrix 
 
The proposed control law is in the form: 

𝑢 = −𝑝(𝑞)−1(𝑣 + �̈�1
𝑑 − Γ�̇� − 𝑓(𝑞)) ( 7) 

Where 𝑣 is the Super-Twisting sliding-mode control 
given by: 

𝑣 = −𝐾1𝜙1(𝜎) + 𝜆 ( 8) 

�̇� = −𝐾2𝜙2(𝜏)         ( 9) 

with: 

𝜙1(𝜎) = 𝜎
1
2𝑠𝑔𝑛(𝜎) + 𝜎 

𝜙2(𝜎) =
1

2
𝑠𝑔𝑛(𝜎) +

3

2
𝜎

1
2𝑠𝑔𝑛(𝜎) + 𝜎 

 

( 10) 

Where 𝑠𝑔𝑛(⋅) denotes the sign function and is 
defined as: 

𝑠𝑔𝑛(𝑥) = {
1

−1
∈ [−1,1]

      

𝑖𝑓 𝑥 > 0
𝑖𝑓 𝑥 < 0

𝑖𝑓 𝑥 = 0
 

 
𝐾1 = 𝑑𝑖𝑎𝑔[𝑘11, 𝑘12, 𝑘13] and 𝐾2 = 𝑑𝑖𝑎𝑔[𝑘21, 𝑘22, 𝑘23] 
are the gain positive definite matrices. 
 
3.2 Position controller design 
From (1), we have the following state variables: 
 

�̈� = (
ℎ1

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈))          ( 11) 
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�̈� = (
ℎ2

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈))          

�̈� = (
ℎ3

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈)) − 𝑔 

 
Where: 

ℎ1 = 𝑆𝜃𝐶𝜓𝐶𝜙 + 𝑆𝜓𝑆𝜙 

ℎ2 = 𝑆𝜃𝑆𝜓𝐶𝜙 − 𝐶𝜓𝑆𝜙 

ℎ3 = 𝐶𝜃𝐶𝜙                    

 
Let the state variables defined by: 

[
 
 
 
 
 
𝑥1

𝑥2

𝑦1

𝑦2

𝑧1

𝑧2]
 
 
 
 
 

=

[
 
 
 
 
 
𝑥
�̇�
𝑦
�̇�
𝑧
�̇�]
 
 
 
 
 

 

 
Now, the system (11) is given in the next form: 
 

[
 
 
 
 
 
�̇�1

�̇�2

�̇�1

�̇�2

�̇�1

�̇�2]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝑥2

(
ℎ1

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈))

𝑦2

(
ℎ2

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈))

𝑧2

−𝑔 + (
ℎ3

𝑚
) (𝐹𝑝𝑟𝑜𝑝 − 𝐴𝐹(𝑈))]

 
 
 
 
 
 
 
 

 ( 11) 

 
Following the methodology of the previous section, 
the controller is designed to enforce sliding mode 
on the manifold: 

𝜍 = �̇� + Δ𝑟 ( 13) 

Where the position error and its derivative are 

defined respectively as 𝑟 = [𝑥1
𝑑 − 𝑥1, 𝑦1

𝑑 − 𝑦1, 𝑧1
𝑑 −

𝑧1]
𝑇 and 𝑟 = [�̇�1

𝑑 − 𝑥2, �̇�1
𝑑 − 𝑦2, �̇�1

𝑑 − 𝑧2]
𝑇 with Δ ∈

ℝ3×3 is a diagonal positive definite matrix. 𝐴𝐹(𝑈) is 
considered as a bounded perturbation. 
 
The Super-Twisting controller: 

𝑣𝑖 = −𝐾3𝜙3(𝜍) + 𝛼𝑖  
�̇�𝑖 = −𝐾4𝜙4(𝜍) 

( 14) 

 
With 𝑖 = 1,2,3. Where: 

𝜙3(𝜍) = 𝜍
1
2𝑠𝑔𝑛(𝜍) + 𝜍 

𝜙4(𝜍) =
1

2
𝑠𝑔𝑛(𝜍) +

3

2
𝜍

1
2𝑠𝑔𝑛(𝜍) + 𝜍 

( 15) 

 
The gain matrices 𝐾3 = 𝑑𝑖𝑎𝑔[𝑘31, 𝑘32, 𝑘33], 𝐾4 =
𝑑𝑖𝑎𝑔[𝑘41, 𝑘42, 𝑘43] are positive definite. 
  

From (12) the controller for 𝑧 is obtained as: 

𝑈𝑧 = 𝐹𝑝𝑟𝑜𝑝 = (
𝑚

ℎ3

) (𝑔 + 𝑣3) 
( 16) 

Note from (12) that is only possible to control the 
attitude of quadrotor directly due to the form of 
𝐹𝑝𝑟𝑜𝑝, while the (𝑥 − 𝑦) control is done by modifying 

the Euler angles (𝜙 − 𝜃). Therefore, a first step in 
controlling the position of the quadrotor on the (𝑥 −
𝑦)axes, a virtual controller is proposed as follows: 
 

𝑈𝑥 = ℎ1 = (
𝑚

𝑈𝑧

) 𝑣1 ( 17) 

 

𝑈𝑦 = ℎ2 = (
𝑚

𝑈𝑧

) 𝑣2 
( 18) 

 
From the equations above, 𝑈𝑧 only tends to zero 
when the helicopter is on the ground, therefore, the 
expression (17)-(18) is not indeterminate. 
The next step is to find algebraic relations between 
virtual controllers and the Euler angles desired. 
From (11) without considering the effect of the given 
disturbance and maintaining the variable 𝜓𝑑 free, 
we obtained the following expressions: 
 

tan 𝜃𝑑 =
�̈� cos𝜓𝑑 + �̈� sin𝜓𝑑

�̈� + 𝑔
         

 

( 19) 

sin𝜙𝑑 =
𝑚(�̈� cos𝜓𝑑 + �̈� sin𝜓𝑑)

√�̈�2 + �̈�2 + (�̈� + 𝑔)2
 

 

( 
2012) 

4. OBSERVER DESIGN 
 
In this section, the design of a state observer for 
estimating speed variables is shown. The high-
order sliding mode observer to estimate the altitude 
velocity has already been implemented [20]. We 
propose a scenario where only the position 
variables  (𝑥, 𝑦, 𝑧) are measured and their speed 
variables are not available, under this assumption is 
possible to recover exactly and in time finite with 
only the position measurement using the 
Generalized Super-Twisting observer [14]: 
 

�̇̂�1 = −𝜅1�̅�1(�̂�1 − 𝑥) + �̂�2

�̇̂�2 = −𝜅2�̅�2(�̂�1 − 𝑥)         

�̇̂�1 = −𝜅3�̅�3(�̂�1 − 𝑥) + �̂�2

�̇̂�2 = −𝜅4�̅�4(�̂�1 − 𝑥)          

�̇̂�1 = −𝜅5�̅�5(�̂�1 − 𝑥) + �̂�2

�̇̂�2 = −𝜅6�̅�6(�̂�1 − 𝑥)          

 

 

( 21) 
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Where 𝜅𝑖 with 𝑖 = 1,6̅̅ ̅̅  are the gains of the algorithm 
and 

�̅�2𝑛+1(𝜒𝑛) = 𝜒𝑛

1
2𝑠𝑔𝑛(𝜒𝑛) + 𝜒𝑛                             

�̅�2𝑛+2(𝜒𝑛) =
1

2
𝑠𝑔𝑛(𝜒𝑛) +

3

2
𝜒𝑛

1
2𝑠𝑔𝑛(𝜒𝑛) + 𝜒𝑛 

 
With 𝑛 = 0,1,2 and 𝜒 = [𝜒0, 𝜒1, 𝜒2] = [�̂� − 𝑥, �̂� −
𝑦, �̂� − 𝑧] and (�̂�, �̂�, �̂�) are the estimated variables. 

Note that the use of discontinuous injection in �̅� 
allows obtaining an exact estimate as discussed 
below. 
 
5. SIMULATION RESULTS  
 
In this section, we test the robustness of the 
proposed controller. The quadrotor model 
parameters used are: 𝑚 = 0.468𝑘𝑔, 𝐼𝑥 = 𝐼𝑦 =

3.83 × 10−3𝑘𝑔 ⋅ 𝑚2, 𝐼𝑧 = 7.13 × 10−3𝑘𝑔 ⋅ 𝑚2 and 𝑔 =
9.81 𝑚/. 
The controller parameters for the attitude control 

were selected as: Γ = diag[2,2,2], K1 = 4√W, K2 =
2W, where W = diag[12,12,8]. For the position 

controller: Δ = Γ, K3 = 8√W, K4 = 4W. 
 
For the observer, selected gains were as follows: 
𝜅1 = 𝜅3 = 𝜅5 = 10 and 𝜅2 = 𝜅4 = 𝜅6 = 2𝜅1. 
The proposed trajectory is a spiral whose three-
dimensional parametric expression is given by the 
function: 

[

𝑥𝑑

𝑦𝑑

𝑧𝑑

] = [
sin(2𝑡)

cos(2𝑡) − 1
𝑡

] (22) 

 
The external disturbance in (1) is defined by 

𝐴𝐹(𝑈) = 7𝐻(𝑥) 
 
Where: 

𝐻(𝑥) = 0  𝑖𝑓   𝑥 < 0 
 

𝐻(𝑥) =  {
0  𝑖𝑓, 𝑥 < 0
1  𝑖𝑓, 𝑥 ≥ 0

 

 
This external disturbance lasted two seconds in the 
span of 2 to 3 seconds as shown in Figure 2. A low 
pass filter with transfer function, 𝐿𝑃𝐹 = 10/(𝑠 + 10) 
(𝑠 is the Laplace variable) is applied to 𝜓𝑑  and 𝜃𝑑   
in order to minimize the chattering effect in the 
references. The results show that the vehicle 
follows the desired path even in the presence of the 
large external perturbation. 
 
The controller performance for the position and 

orientation of the quadrotor respectively are shown 
in figures 2 and 3. 

 

Fig. 2. Path tracking of the quadrotor. 
 
Figures 3 and 4 show the orientation and the 
desired orientation of the quadrotor during the test 
maintaining 𝜓𝑑 = 0. 
 

 

Fig. 3. Euler angles 𝜙, 𝜃 and 𝜓 in tracking 

disturbance test. 

 

Fig. 4. Desired Euler angles 𝜙𝑑 , 𝜃𝑑, 𝜓𝑑 in tracking 

disturbance test. 
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Figures 5 and 6. Also, the effect of the external 

disturbances is shown. From these figures we can 

see that the control signals have low amplitude 

chattering. 

 

Fig. 5. Controller outputs in tracking disturbance 

test. 

 

Fig. 6. Controller outputs in tracking disturbance 
test. 
 
The Figure 7 shown the tracking error of the 
position controller.  Also, these plots demonstrate 
that the position and the attitude of quadrotor are 
clearly affected by the external disturbance but the 
controller estimate the disturbance and compensate 
for it quickly such that the errors converge to zero. 
 
Finally, Figure 8 shows the velocity estimation. 
From this plot we can see that the estimated 
velocities converge to the actual values despite the 
disturbance introduced in the test. 
 
 

 
Fig. 7. Error tracking in disturbance test. 
 

 
Fig. 8. Velocity variables (gray) and estimated 
velocity variables (dotted line) under perturbation 
test (2-3 seconds). 
 
We show that the performance of the GSTA 
controller presents better results compared to a 
classic controller such as the PD controller (figure 
9). To evaluate the performance of the controllers 
we use the average Euclidean distance, given by 
the following equation. 

𝐸𝑑 =
1

𝑁
∑ √(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 + (𝑧 − 𝑧∗)2

𝑁

𝑖=0

  

 
Where 𝑥𝑑, 𝑦𝑑  and 𝑧𝑑 are the desired path, 𝑥∗, 𝑦∗ 
and 𝑧∗  are the trajectories obtained with the 
controllers. N is the number of samples. 
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Fig. 9. Performance of the proposed controller and 
PD. 
 
6. CONCLUSIONS 
 
In this paper, a super twisting controller algorithm to 
solve the path tracking problem for a quadrotor has 
been presented. The controller has been designed 
using second order sliding mode approach in order 
to reduce chattering phenomenon and to ensure 
robustness with respect to external disturbances. 
The whole system was divided into six subsystems. 
Three of them represent the attitude of quadrotor 
and have implemented the super-twisting algorithm 
to stabilize the roll, pitch and yaw angles. The rest 
subsystems have implemented the super twisting 
algorithm too, in order to tracking control of 
quadrotor and taking into account nonholonomic 
constraints, it was possible modified the yaw and 
roll angles necessary for displacement on x and y 
axes. Also, it is assumed that the velocities are not 
available and were estimated by the Generalized 
Super-Twisting observer. The simulation results 
obtained on a quadrotor system show the 
effectiveness of the proposed controller in the 
stabilization, path tracking and disturbance rejection 
cases. 
 
APPENDIX 1: LYAPUNOV STABILITY OF THE 
SUPER-TWISTING ALGORITHM 
 
Based in [11]. From  (6) and  (11), the closed loop 
dynamics is given by: 
 

�̇� = 𝜔(𝑡) − K1 [|𝜎|
1
2𝑠𝑔𝑛(𝜎) + 𝜎]                     

−𝐾2 ∫ [
1

2
𝑠𝑔𝑛(𝜏) +

3

2
|𝜏|

1
2𝑠𝑔𝑛(𝜏) + 𝜏] 𝑑𝜏

𝑡

0

 
(23) 

  

𝜍̇ = 𝜛(𝑡) − 𝐾3 [|𝜍|
1
2𝑠𝑛𝑔(𝜍) + 𝜍]                       

−𝐾4 ∫ [
1

2
𝑠𝑔𝑛(𝜏) +

3

2
|𝜏|

1
2𝑠𝑔𝑛(𝜏) + 𝜏] 𝑑𝜏

𝑡

0

 

 

(24) 

Let: 
 
𝜇1𝑖      =  𝜎𝑖 

𝜇2𝑖      =  −𝐾2𝑖 ∫ [
1

2
𝑠𝑔𝑛(𝜏) +

3

2
|𝜏|

1
2𝑠𝑔𝑛(𝜏) + 𝜏] 𝑑𝜏

𝑡

0

 

�̇�(𝑡)  =  𝛽𝑖(𝑡) 
𝜇3𝑗     =  𝜍𝑗 

𝜇4𝑗     = −𝐾4𝑗 ∫ [
1

2
𝑠𝑔𝑛(𝜏) +

3

2
|𝜏|

1
2𝑠𝑔𝑛(𝜏) + 𝜏] 𝑑𝜏

𝑡

0

 

�̇�(𝑡) = 𝛾𝑗(𝑡) 

 
Then (23) and (24) can be rewritten in scalar form 

(𝑖, 𝑗 = 1,3̅̅ ̅̅ ) as: 
 

�̇�1𝑖 = −𝐾1𝑖 [|𝜇1𝑖|
1
2𝑠𝑔𝑛(𝜇1𝑖) + 𝜇1𝑖] + 𝜇2𝑖 

�̇�2𝑖 = −𝐾2𝑖 [
1

2
𝑠𝑔𝑛(𝜇1𝑖) +

2

3
|𝜇1𝑖|

1
2𝑠𝑔𝑛(𝜇1𝑖) + 𝜇1𝑖]

+ 𝛽𝑖(𝑡) 

�̇�3𝑖 = −𝐾3𝑗 [|𝜇3𝑗|
1
2𝑠𝑔𝑛(𝜇3𝑗) + 𝜇3𝑗] + 𝜇4𝑗 

�̇�4𝑖 = −𝐾4𝑗 [
1

2
𝑠𝑔𝑛(𝜇3𝑗) +

2

3
|𝜇3𝑗|

1
2 + 𝜇3𝑗] + 𝛾𝑗(𝑡) 

 
 
Without loss of generality, we can choose a single 
component of the system above and simplifying the 
notation as follows: 
 

�̇�1 = −�̅�1 [|𝜇1|
1
2𝑠𝑔𝑛(𝜇1) + 𝜇1] + 𝜇2 

�̇�2 = −�̅�2 [
1

2
𝑠𝑔𝑛(𝜇1) +

2

3
|𝜇1|

1
2𝑠𝑔𝑛(𝜇1)           

+ 𝜇1]  + 𝛽(𝑡) 

 

(25) 

The Lyapunov candidate function is given by 

𝑉(𝜇) =
1

2
𝜌2(�̅�1|𝜇1|

1
2𝑠𝑔𝑛(𝜇1) + �̅�1𝜇1

− 𝜇2
2 )2 +

1

2
𝜌1𝜇2

2 + (𝜌1

+ 𝜌2) �̅�2 [|𝜇1| +
1

2
|𝜇1|

3

+ |𝜇1|
3
2] 

 

( 26) 

Note that the proposed Lyapunov candidate 
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function is a continuous, positive definite and 
differentiable function except in 𝜇1 = 0. This 

function can be rewritten in quadratic form 𝑉(𝜇) =

𝜉𝑇𝑃𝜉 where 𝜉𝑇 = [|𝜇1|
1

2 𝑠𝑔𝑛(𝜇1), 𝜇1, 𝜇2] , then: 
 

𝑝 =
1

2
[

𝜌1�̅�1
2 + 2𝐿�̅�2 𝜌2�̅�1

2 + 𝐿�̅�2 −𝜌2�̅�1

𝜌2�̅�1
2 + 𝐿�̅�2 𝜌2�̅�1

2 + 𝐿�̅�2 −𝜌2�̅�1

−𝜌2�̅�1 −𝜌2�̅�1 𝐿

] 

 
where 𝐿 =  𝜌1 + 𝜌2. If the scalar free parameters 

 𝜌1,  𝜌2, �̅�1 and �̅�2 are chosen positive, then 𝑉(µ) is a 
positive definite matrix. 
 
Now, this form satisfies: 
 

𝜆𝑚𝑖𝑛(𝑃)‖𝜉‖2
2 ≤ 𝑉(𝜇) ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝜉‖2

2 (27) 
 

Where ‖𝜉‖2
2 = |𝜇1| + 𝜇1

2 + 𝜇2
2 is the Euclidean norm 

of ξ .The time derivative along the trajectories of the 
system is: 
 

�̇� ≤ −𝜉𝑇[𝑄1 + 𝑄2]𝜉 −
1

|𝜇1|
1
2

𝜉𝑇[𝑅1 + 𝑅2]𝜉

+
1

|𝜇1|
1
2

𝜐1
Τ𝜉 

(28) 

Where: 
 

𝑄1 = �̅�1

[
 
 
 
2𝜌2�̅�1

2 0 0

0 𝜌2�̅�1
2 −𝜌2�̅�1

0 −𝜌2�̅�1

1

2
𝜌2 ]

 
 
 

 

𝑄2 = �̅�1

[
 
 
 
 
 
 �̅�2(

5

2
𝜌1 +

1

2
𝜌2) 0 0

0 �̅�2(2𝜌1 + 𝜌2) −
1

2
𝐿

�̅�2

�̅�1

0 −
1

2
𝐿

�̅�2

�̅�1

1

2
𝜌2

]
 
 
 
 
 
 

 

𝑅1 = �̅�1

[
 
 
 
𝜌1�̅�1

2 0 0

0 5𝜌2�̅�1
2 −3𝜌2�̅�1

0 −3𝜌2�̅�1

1

2
𝜌2 ]

 
 
 

 

𝑅2 = �̅�1

[
 
 
 
 
 �̅�2(2𝜌1 + 𝜌2) 0 −

1

2
𝐿

�̅�2

�̅�1

0 �̅�2(7𝜌1 + 2𝜌2) 0

−
1

2
𝐿

�̅�2

�̅�1

0
1

2
𝜌2

]
 
 
 
 
 

 

𝑣1
𝑇 = 𝛿[𝜌2

�̅�1 𝜌
2
�̅�1 𝐿] 

 

Suppose that the perturbation terms of (25) are 
globally bounded by Assumption 5. Then, the time 
derivative of the Lyapunov function can be rewritten 
as follows: 
 

�̇�(𝜇) ≤ −𝜉𝑇𝑄𝜉 −
1

|𝜇1|
1
2

𝜉𝑇𝑅𝜉 

 
Where 𝑄 = 𝑄1 + 𝑄2 and 𝑅 = 𝑅1+𝑅2-𝛿𝑅3. The matrix 

𝑅3 is given by: 
 

𝑅3 =

[
 
 
 
 
 𝜌2�̅�1

1

2
𝜌2�̅�1

1

2
𝐿

1

2
𝜌2�̅�1 0 0

1

2
𝐿 0 0 ]

 
 
 
 
 

 

 
Choosing the parameters 𝜌1 > 0, 𝜌2 > 0 the gains 

�̅�1 > 0, �̅�2 > 𝛿 and also high enough, matrices 𝑄 
and 𝑅 are positive definite. Under the conditions 
described: 

�̇�(𝜇) ≤ −
1

|𝜇1|
1
2

𝜉Τ𝑅𝜉 ≤ −
1

|𝜇1|
1
2

𝜉Τ𝜆𝑚𝑖𝑛(𝑅)‖𝜉‖2
2

̇
 

(29) 

 
Using  (27), (29) and also: 

|𝜇1|
1
2 ≤ ‖𝜉‖2 ≥

𝑉
1
2(𝜇)

𝜆
𝑚𝑖𝑛

1
2 (Ρ)

 

(30) 

 
It follows that: 
 

�̇�(𝜇) ≤ −𝜖𝑉
1
2(𝑠) 

 

With 𝜖 =
𝜆
𝑚𝑖𝑛

1
2 (𝑃)𝜆𝑚𝑖𝑛(�̃�2)

𝜆𝑚𝑎𝑥(�̃�2)
 

 
Solving its analog differential equation: 

�̇� = −𝜖𝜐
1
2, 𝜐(0) = 𝜐0 ≥ 0 

 
The solution is given by: 
 

𝜐(𝑡) = (𝑣0

1
2 −

𝜖

2
𝑡)2 

 
And using the comparison principle, the solution 
converges in finite time to the origin with 𝑇 =

2𝑉
1

2(𝜇0)\𝜖 units of time. 
 
Finally, 𝜇1 = 0  in finite time and according to (6) 
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and  (13) this implies that lim
𝑡→∞

𝑒 = 0 and lim
𝑡→∞

�̇� = 0  

and  lim
𝑡→∞

𝑟 = 0  and lim
𝑡→∞

�̇� = 0  

 
 
7. REFERENCES 
 
[1]  Madani, T. and Benallegue, A. Backstepping 

sliding mode control applied to a miniature 
quadrotor flying robot, in IEEE Industrial 
Electronics, IECON 2006-32nd Annual 
Conference on, pp. 700–705, IEEE, 2006. 

 
[2]  Lee, S.-h., Kang, S. H., and Kim, Y., 

Trajectory tracking control of quadrotor uav, 
in Control, Automation and Systems (ICCAS), 
2011 11th International Conference on, pp. 
281–285, IEEE, 2011. 

  
[3]  Bouabdallah, S. and Siegwart, R. 

Backstepping and sliding-mode techniques 
applied to an indoor micro quadrotor, in 
Robotics and Automation, 2005. ICRA 2005. 
Proceedings of the 2005 IEEE International 
Conference on, pp. 2247–2252, IEEE, 2005. 

 
[4]  Zuo, Z. Trajectory tracking control design with 

command-filtered compensation for a 
quadrotor, Control Theory & Applications, 
IET, vol. 4, no. 11, pp. 2343–2355, 2010. 

  
[5]  Madani, T. and Benallegue, A. Sliding mode 

observer and backstepping control for a 
quadrotor unmanned aerial vehicles, in 
American Control Conference, 2007. ACC’07, 
pp. 5887–5892, IEEE, 2007. 

  
[6]  Bouadi, H., Bouchoucha, M., and Tadjine, M. 

Sliding mode control based on backstepping 
approach for an uav type-quadrotor, World 
Academy of Science, Engineering and 
Technology, vol. 26, no. 5, pp. 22– 27, 2007. 

  
[7]  Raffo, G. V., Ortega, M. G. and Rubio, F. R. 

Backstepping/nonlinear h control for path 
tracking of a quadrotor unmanned aerial 
vehicle, in American Control Conference, 
2008, pp. 3356–3361, IEEE, 2008. 

 
[8]  Besnard, L., Shtessel, Y. B., and Landrum, B. 

Quadrotor vehicle control via sliding mode 
controller driven by sliding mode disturbance 
observer, Journal of the Franklin Institute, vol. 
349, no. 2, pp. 658–684, 2012. 

  
[9]  Zuo, Z. Adaptive trajectory tracking control 

design with command filtered compensation 
for a quadrotor, Journal of Vibration and 
Control, vol. 19, no. 1, pp. 94–108, 2013. 

  
[10]  Mellinger, D., Michael, N. and Kumar, V., 

Trajectory generation and control for precise 
aggressive maneuvers with quadrotors, The 
International Journal of Robotics Research, 
p. 0278364911434236, 2012. 

  
[11]  Derafa, L., Benallegue, A. and Fridman, L. 

Super twisting control algorithm for the 
attitude tracking of a four rotors uav, Journal 
of the Franklin Institute, vol. 349, no. 2, pp. 
685–699, 2012. 

  
[12]  Luque-Vega, L., Castillo-Toledo, B. and 

Loukianov, A. G. Robust block second order 
sliding mode control for a quadrotor, Journal 
of the Franklin Institute, vol. 349, no. 2, pp. 
719–739, 2012. 

  
[13]  Cabecinhas, D., Cunha, R. and Silvestre, C. 

A nonlinear quadrotor trajectory tracking 
controller with disturbance rejection, Control 
Engineering Practice, vol. 26, pp. 1–10, 2014. 

  
[14]  Moreno, J. A. Lyapunov approach for 

analysis and design of second order sliding 
mode algorithms, in Sliding Modes after the 
first decade of the 21st Century, pp. 113–
149, Springer, 2011. 

  
[15]  Bošnak, M., Matko, D. and Blažič, S.  

Quadrocopter control using an on-board 
video system with off-board processing, 
Robotics and Autonomous Systems, vol. 60, 
no. 4, pp. 657–667, 2012. 

  
[16]  Cai, G., Chen, B. M., Peng, K., Dong, M. and 

Lee, T. H. Modeling and control of the yaw 
channel of a uav helicopter, Industrial 
Electronics, IEEE Transactions on, vol. 55, 
no. 9, pp. 3426–3434, 2008. 

  
 
[17]  Bouabdallah, S. and Siegwart, R. Full control 

of a quadrotor, in Intelligent robots and 
systems, 2007. IROS 2007. IEEE/RSJ 
international conference on, pp. 153–158, 
IEEE, 2007. 

 



 
 
 
 

J. N. Guerrero-Tavares, S. Ortiz-Santos, J. L. Ortiz-Solano,  
Quadrotor robust path tracking without velocity measurements using the generalized super-twisting control 

124 

[18]  Moreno, J. A.  and Osorio, M. A. Lyapunov 

approach to second-order sliding mode 

controllers and observers, in Decision and 

Control, 2008. CDC 2008. 47th IEEE 

conference on, pp. 2856–2861, IEEE, 2008. 

[19]  Xiong, J. J., and Zhang, G. B. Global fast 

dynamic terminal sliding mode control for a 

quadrotor UAV. ISA transactions, 66, 233-

240, 2017. 

[20]  Gonzalez-Hernandez, I., Palacios, F. M., 
Cruz, S. S., Quesada, E. S. E., and Leal, R. 
L. Real-time altitude control for a quadrotor 
helicopter using a super-twisting controller 
based on high-order sliding mode observer. 
International Journal of Advanced Robotic 
Systems, 14(1), 2017. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


