675 research outputs found

    Nonlinear control of nonholonomic mobile robot formations

    Get PDF
    In this thesis, the framework developed to control a single nonholonomic mobile robot is expanded to include the control of formations of multiple nonholonomic mobile robots. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers typically found in literature --Abstract, page iv

    Control of Nonholonomic Mobile Robot Formations Using Neural Networks

    Get PDF
    In this paper the control of formations of multiple nonholonomic mobile robots is attempted by integrating a kinematic controller with a neural network (NN) computed-torque controller. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. The NN is introduced to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are uniformly ultimately bounded, and numerical results are provided

    Control of Nonholonomic Mobile Robot Formations: Backstepping Kinematics into Dynamics

    Get PDF
    In this paper, we seek to expand framework developed to control a single nonholonomic mobile robot to include the control of formations of multiple nonholonomic mobile robots. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. The asymptotic stability of the entire formation is guaranteed using Lyapunov theory, and numerical results are provided The kinematic controller is developed around control strategies for single mobile robots and the idea of virtual leaders. The virtual leader is replaced with a physical mobile robot leader and the assumption of constant reference velocities is removed An auxiliary velocity control is developed allowing the asymptotic stability of the followers to be proved without the use of Barbalat\u27s Lemma which simplifies proving the entire formation is asymptotically stable. A novel approach is taken in the development of the dynamical controller such that the torque control inputs for the follower robots include the dynamics of the follower robot as well as the dynamics of its leader, and the case when all robot dynamics are known is considered

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Formation control of nonholonomic mobile robots: the virtual structure approach

    Get PDF
    PhDIn recent years, there has been a considerable growth in applications of multi-robot systems as opposed to single-robot systems. This thesis presents our proposed solutions to a formation control problem in which mobile robots are required to create a desired formation shape and track a desired trajectory as a whole. In the first instance, we study the formation control problem for unicycle mobile robots. We propose two control algorithms based on a cascaded approach: one based on a kinematic model of a robot and the other based on a dynamic model. We also propose a saturated controller in which actuator limitations are explicitly accounted for. To demonstrate how the control algorithms work, we present an extensive simulation and experimental study. Thereafter we move on to formation control algorithms in which the coordination error is explicitly defined. Thus, we are able to give conditions for robots keeping their desired formation shape without necessarily tracking the desired trajectory. We also introduce a controller in which both trajectory tracking and formation shape maintenance are achieved as well as a saturated algorithm. We validate the applicability of the introduced controllers in simulations and experiments. Lastly, we study the formation control problem for car-like robots. In this case we develop a controller using the backstepping technique. We give conditions for robots keeping their desired formation shape while failing to track their desired trajectories and present simulation results to demonstrate the applicability of the proposed controlle

    Formation of Multiple Groups of Mobile Robots Using Sliding Mode Control

    Full text link
    Formation control of multiple groups of agents finds application in large area navigation by generating different geometric patterns and shapes, and also in carrying large objects. In this paper, Centroid Based Transformation (CBT) \cite{c39}, has been applied to decompose the combined dynamics of wheeled mobile robots (WMRs) into three subsystems: intra and inter group shape dynamics, and the dynamics of the centroid. Separate controllers have been designed for each subsystem. The gains of the controllers are such chosen that the overall system becomes singularly perturbed system. Then sliding mode controllers are designed on the singularly perturbed system to drive the subsystems on sliding surfaces in finite time. Negative gradient of a potential based function has been added to the sliding surface to ensure collision avoidance among the robots in finite time. The efficacy of the proposed controller is established through simulation results.Comment: 8 pages, 5 figure

    Formation Control of Car-like Mobile Robots: A Lyapunov Function Based Approach

    Get PDF
    In literature leader - follower strategy has been used extensively for formation control of car-like mobile robots with the control law being derived from the kinematics. This paper takes it a step further and a nonlinear control law is derived using Lyapunov analysis for formation control of car-like mobile robots using robot dynamics. Controller is split into two parts. The first part is the development of a velocity controller for the follower from the error kinematics (linear and angular). The second part involves the use of the dynamics of the robot in the development of a torque controller for both the drive and the steering system of the car-like mobile robot. Unknown quantities like friction, desired accelerations (unmeasured) are computed using an online neural network. Simulations results prove the ability of the controller to effectively stabilize the formation while maintaining the desired relative distance and bearing

    Distributed coordinate tracking control of multiple wheeled mobile robots

    Get PDF
    In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is studied. Control algorithms are proposed for both kinematic and dynamic models. All vehicle agents share the same mechanical structure. The communication topology is leader-follower topology and the reference signal is generated by the virtual leader. We will introduce two common kinematic models of WMR and control algorithms are proposed for both kinematic models with the aid of graph theory. Since it is more realistic that the control inputs are torques so dynamic extension is studied following by the kinematics. Torque controllers are designed with the aid of backstepping method so that the velocities of the mobile robots converge to the desired velocities. Because of the fact that in practice, the inertial parameter of WMR maybe not exactly known or even unknown, so both dynamics with and without inertial uncertainties are considered in this thesis
    corecore