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Abstract: In this paper, the distributed tracking problem for multiple nonholonomic mobile
robots is investigated, in which the nonholonomic models are transformed into chained-form
systems. By utilizing the dynamic oscillator strategy, the distributed controllers are constructed
such that all the mobile robots’ trajectories converge to the desired reference asymptotically.
One advantage of the chained-form system solution that we propose is that it requires no other
variable transformations, which could help reducing the system’s complexity and broadening the
proposed controller’s practical applications. Simulations are presented to show the effectiveness
of the proposed control algorithms.
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1. INTRODUCTION

With the features of robustness against failures, extend-
able in structures and reduced cost when separating a cen-
tralized task, multi-agent systems have received tremen-
dous attentions in the past decade. Consequently, the
distributed cooperative control problem for multi-agent
systems has been intensively studied in many directions
including consensus, trajectory tracking, formation con-
trol, containment, rendezvous, to name few.

As far as the system model is concerned, the majority of
the research on distributed control starts from the simplest
model, i.e., single integrator, see e.g. Jadbabaie et al.
(2003); Fax and Murray (2004); Ren and Beard (2005).
Due to the reason that the single integrator systems are
sometimes too simplified to capture real agents’ dynamics,
efforts have been made to study double integrator systems,
such as Hong et al. (2008); Lin and Jia (2009); Seyboth
et al. (2013). Besides the simple linear systems, different
topics on general linear dynamics have been discussed,
for example, analytic synchronization for way-point model
Cao et al. (2008), synchronization conditions being an-
alyzed in Tuna (2009), observer-based consensus control
in Li et al. (2010), and self-triggered control in Hu et al.
(2015). Even though numerous control problems on linear
systems have been extensively studied, the theories pro-
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posed so far cannot be directly put into practice in view of
the nonlinearities and uncertainties existing in most of the
mechanical systems. To narrow this gap, the cooperative
control for Euler-Lagrange systems, which can represent a
large class of mechanical systems, were considered in Mei
et al. (2011); Nuno et al. (2011); Yang et al. (2014a,b).
Moreover, efforts were also made to conduct distributed
control for general nonlinear systems, such as Wang and
Huang (2005) and Yu et al. (2010).

To be specific, due to the increasing need for nonholonomic
systems in various applications, the results for distributed
control of multiple nonholonomic mobile robots are re-
ported more often in recent years. As shown in Brockett
(1983), nonholonomic systems cannot be asymptotically
stabilized by smooth state feedback control laws, which
imposes difficulties for the control algorithm design. The
tracking and stabilization problem for unicycle-type mo-
bile robots were solved by employing the coordinate trans-
formation and backstepping techniques in Do et al. (2004).
For the geometric formation feasibility problem, Lin et al.
(2005) presented the necessary and sufficient conditions
for the existence of distributed controllers to stabilize
the closed-loop system under the assumption that each
nonholonomic mobile robot rotates freely. Using a special
change of variable, distributed controllers were designed
for multiple wheeled mobile robots to realize trajectory
tracking under undirected graphs in Dong (2012). To
deal with the nonholonomic constraints, Liu and Jiang
(2013) made use of dynamic feedback linearization and
small-gain methods to come up with a novel distributed
controllers without global position measurements. More-
over, the adaptive distributed formation controllers were
respectively developed for kinematics and dynamics using
nonsmooth functions in Peng et al. (2016).
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In addition to directly analyzing the nonholonomic models,
an equivalently chained-form system has been considered
to implement the cooperative control tasks. Through vari-
able transformations, dynamic distributed control laws
have been proposed with the aid of a so called σ-process,
which is also effective when it is subjected to communi-
cation delays Dong and Farrell (2008). Recently, a com-
putationally simple controller for single wheeled mobile
robot is developed based on Lyapunov’s direct method
and backstepping technique Wang et al. (2014). However,
it should be noted that it is nontrivial to apply the results
for a single agent to multi-agent systems. As an extension,
control for high order chained-form systems was addressed
in Cao et al. (2014), where cascading theory is used to
overcome the difficulty when the group reference signal is
not persistently exciting.

In this paper, we consider the distributed tracking problem
for multiple nonholonomic mobile robots, where only a
subset of the robots have access to the reference trajectory.
The tracking errors can be guaranteed to asymptotically
convergence to zero using our proposed distributed control
laws, in which special components, serving as dynamic
oscillator Dixon et al. (2000), are carefully designed with
the aid of Lyapunov stability theory. Moreover, the control
scheme is constructed under a general directed graph
that contains a spanning tree, which has more potential
applications.

The rest of the paper is organized as follows. Section
2 presents the nonholonomic models and the necessary
preparations for the theoretical analysis. Distributed con-
trol laws and the rigorous theoretical proof are given in
Section 3. Moreover, numeration simulations in Section
4 show that the proposed control algorithms are quite
effective. Section 5 gives a short summary.

2. PROBLEM FORMULATION

Consider a group of n nonholonomic wheeled mobile
robots, moving on a horizontal plane. The kinematics of
robot i is described as


ẋi

ẏi
θ̇i


 =

[
cos(θi) 0
sin(θi) 0

0 1

] [
vi
ωi

]
(1)

where qi = (xi, yi, θi) are the position and orientation of
robot i, and vi and ωi are the linear and angular velocities.

The neighboring relationships between the robots are
described by a directed graph G with the vertex set V =
{1, 2, · · · , n} and the edge set E ⊆ V × V. We use A =
(aij)n×n to denote the adjacency matrix, where aij > 0
means there is an edge (j, i) between robot i and j, and
robot i can obtain information from agent j, but not vice
versa, and aij = 0 otherwise. The interaction relationships
among the followers and the leader is denoted by matrix
B = diag{b1, · · · , bn}, where bi > 0 if robot i is a neighbor
of the leader, bi = 0 otherwise. In this paper, the nonzero
elements of A and B are chosen to be 1. The Laplacian
matrix L = (lij)n×n is defined by lii =

∑
j∈Ni

lij and
lij = −aij , i �= j, where Ni denotes the set of neighbors of
robot i. Let D = diag{d1, · · · , dn} represents the in-degree
matrix, where di =

∑
j∈Ni

aij , i = 1, · · · , n.

To simplify the controller design, we introduce the follow-
ing coordinate transformation and state feedback Murray
and Sastry (1993):

[
z1i
z2i
z3i

]
=

[
0 0 1

sin(θi) − cos(θi) 0
cos(θi) sin(θi) 0

]

︸ ︷︷ ︸
�T1i

[
xi

yi
θi

]
(2)

[
vi
ωi

]
=

[
z2i 1
1 0

]

︸ ︷︷ ︸
�T2i

[
u1i

u2i

]
(3)

It can be seen that the matrices T1i and T2i are globally
invertible, under which system (1) can be converted to the
chained form as:

ż1i = u1i

ż2i = u1iz3i
ż3i = u2i

(4)

Given a reference trajectory, q0(t) = (x0(t), y0(t), θ0(t)),
satisfying

ẋ0 = v0 cos(θ0)

ẏ0 = v0 sin(θ0)

θ̇0 = ω0

(5)

where all the states, i.e., q0, v0, ω0, are available to parts
of the n robots. Hereafter, we call the virtual agent
following exactly the reference trajectory the leader and
call the n robots represented by (1) followers. Since the
two matrices T1i and T2i are globally nonsingular, under
similar operation (2) and (3), we can equivalently obtain
for the leader the transformed states zl0, l = 1, 2, 3.

Control objective: Design control laws u1i and u2i for
system imodeled by (4), such that the reference trajectory
is tracked, namely,

lim
t→∞

(zli − zl0) = 0, ∀ l = 1, 2, 3, i = 1, · · · , n (6)

In order to achieve the objective, we need the following
assumptions.

Assumption 1. The communication directed graph G has
a spanning tree with the root node being that of the leader.

Assumption 2. The leader’s inputs u10(t) and u20(t) are
continuous. Moreover, there exist positive constants ε and
T , such that for all τ ≥ 0,∫ τ+T

τ

[u10(t)]
2dt > ε (7)

Lemma 3. (Wang et al. (2014)) Let V : R+ → R+ be
continuously differentiable and W : R+ → R+ uniformly
continuous satisfying that, for each t > 0,

V̇ (t) ≤ −W (t) + p1(t)V (t) + p2(t)
√
V (t) (8)

with both p1(t) and p2(t) being non-negative and belong-
ing to L1 space. Then, there exists a constant c, such that
W (t) → 0 and V (t) → c as t → ∞.

Notations: In this paper |x| and ‖x‖ are used to denote the
1-norm and 2-norm of vector x ∈ Rn respectively. When x
is a scalar, |x| denotes the absolute value of x. We use ‖X‖1
and ‖X‖ to denote the corresponding induced 1-norm and
2-norm of square matrix X respectively.
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In addition to directly analyzing the nonholonomic models,
an equivalently chained-form system has been considered
to implement the cooperative control tasks. Through vari-
able transformations, dynamic distributed control laws
have been proposed with the aid of a so called σ-process,
which is also effective when it is subjected to communi-
cation delays Dong and Farrell (2008). Recently, a com-
putationally simple controller for single wheeled mobile
robot is developed based on Lyapunov’s direct method
and backstepping technique Wang et al. (2014). However,
it should be noted that it is nontrivial to apply the results
for a single agent to multi-agent systems. As an extension,
control for high order chained-form systems was addressed
in Cao et al. (2014), where cascading theory is used to
overcome the difficulty when the group reference signal is
not persistently exciting.

In this paper, we consider the distributed tracking problem
for multiple nonholonomic mobile robots, where only a
subset of the robots have access to the reference trajectory.
The tracking errors can be guaranteed to asymptotically
convergence to zero using our proposed distributed control
laws, in which special components, serving as dynamic
oscillator Dixon et al. (2000), are carefully designed with
the aid of Lyapunov stability theory. Moreover, the control
scheme is constructed under a general directed graph
that contains a spanning tree, which has more potential
applications.

The rest of the paper is organized as follows. Section
2 presents the nonholonomic models and the necessary
preparations for the theoretical analysis. Distributed con-
trol laws and the rigorous theoretical proof are given in
Section 3. Moreover, numeration simulations in Section
4 show that the proposed control algorithms are quite
effective. Section 5 gives a short summary.

2. PROBLEM FORMULATION

Consider a group of n nonholonomic wheeled mobile
robots, moving on a horizontal plane. The kinematics of
robot i is described as


ẋi

ẏi
θ̇i


 =

[
cos(θi) 0
sin(θi) 0

0 1

] [
vi
ωi

]
(1)

where qi = (xi, yi, θi) are the position and orientation of
robot i, and vi and ωi are the linear and angular velocities.

The neighboring relationships between the robots are
described by a directed graph G with the vertex set V =
{1, 2, · · · , n} and the edge set E ⊆ V × V. We use A =
(aij)n×n to denote the adjacency matrix, where aij > 0
means there is an edge (j, i) between robot i and j, and
robot i can obtain information from agent j, but not vice
versa, and aij = 0 otherwise. The interaction relationships
among the followers and the leader is denoted by matrix
B = diag{b1, · · · , bn}, where bi > 0 if robot i is a neighbor
of the leader, bi = 0 otherwise. In this paper, the nonzero
elements of A and B are chosen to be 1. The Laplacian
matrix L = (lij)n×n is defined by lii =

∑
j∈Ni

lij and
lij = −aij , i �= j, where Ni denotes the set of neighbors of
robot i. Let D = diag{d1, · · · , dn} represents the in-degree
matrix, where di =

∑
j∈Ni

aij , i = 1, · · · , n.

To simplify the controller design, we introduce the follow-
ing coordinate transformation and state feedback Murray
and Sastry (1993):

[
z1i
z2i
z3i

]
=

[
0 0 1

sin(θi) − cos(θi) 0
cos(θi) sin(θi) 0

]

︸ ︷︷ ︸
�T1i

[
xi

yi
θi

]
(2)

[
vi
ωi

]
=

[
z2i 1
1 0

]

︸ ︷︷ ︸
�T2i

[
u1i

u2i

]
(3)

It can be seen that the matrices T1i and T2i are globally
invertible, under which system (1) can be converted to the
chained form as:

ż1i = u1i

ż2i = u1iz3i
ż3i = u2i

(4)

Given a reference trajectory, q0(t) = (x0(t), y0(t), θ0(t)),
satisfying

ẋ0 = v0 cos(θ0)

ẏ0 = v0 sin(θ0)

θ̇0 = ω0

(5)

where all the states, i.e., q0, v0, ω0, are available to parts
of the n robots. Hereafter, we call the virtual agent
following exactly the reference trajectory the leader and
call the n robots represented by (1) followers. Since the
two matrices T1i and T2i are globally nonsingular, under
similar operation (2) and (3), we can equivalently obtain
for the leader the transformed states zl0, l = 1, 2, 3.

Control objective: Design control laws u1i and u2i for
system imodeled by (4), such that the reference trajectory
is tracked, namely,

lim
t→∞

(zli − zl0) = 0, ∀ l = 1, 2, 3, i = 1, · · · , n (6)

In order to achieve the objective, we need the following
assumptions.

Assumption 1. The communication directed graph G has
a spanning tree with the root node being that of the leader.

Assumption 2. The leader’s inputs u10(t) and u20(t) are
continuous. Moreover, there exist positive constants ε and
T , such that for all τ ≥ 0,∫ τ+T

τ

[u10(t)]
2dt > ε (7)

Lemma 3. (Wang et al. (2014)) Let V : R+ → R+ be
continuously differentiable and W : R+ → R+ uniformly
continuous satisfying that, for each t > 0,

V̇ (t) ≤ −W (t) + p1(t)V (t) + p2(t)
√
V (t) (8)

with both p1(t) and p2(t) being non-negative and belong-
ing to L1 space. Then, there exists a constant c, such that
W (t) → 0 and V (t) → c as t → ∞.

Notations: In this paper |x| and ‖x‖ are used to denote the
1-norm and 2-norm of vector x ∈ Rn respectively. When x
is a scalar, |x| denotes the absolute value of x. We use ‖X‖1
and ‖X‖ to denote the corresponding induced 1-norm and
2-norm of square matrix X respectively.
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3. MAIN RESULTS

3.1 Controller design

Define the tracking error for system i as

z̃li = zli − zl0, l = 1, 2, 3, i = 1, · · · , n (9)

and the local relative tracking error

eli =
∑

aij(zli − zlj) + bi(zli − zl0), l = 1, 2, 3 (10)

eri = e2i − z3ie1i (11)

Eq. (10) can be written into the vector form as

el = (L+B)z̃l = (L+B)zl −B1nzl0 (12)

er = e2 − diag(z3)e1 (13)

where el = [el1, · · · , eln]T , zl = [zl1, · · · , zln]T , diag(z3) =
diag{z31, · · · , z3n} ∈ Rn×n and 1n is the column vector of
all ones.

The control laws for agent i are given by

u1i =
1∑

j∈Ni

aij + bi

(
− k1e1i + biu10 +

∑
j∈Ni

aiju1j + u2ieri

)

(14)

u2i =
1∑

j∈Ni

aij + bi

(
− k3e3i + biu20 +

∑
j∈Ni

aiju2j

− k2e
−βt sin(αit)eri√

1 + e21i + e23i
+ u′

2i

)
(15)

with

u′
2i =

1∑
j∈Ni

aij + bi

( ∑
j∈Ni

ajiu
′
2j +

∑
j∈Ni

aijeriu1j

−
∑
j∈Ni

ajiu1ierj + biu10eri

)
(16)

where kj , j = 1, 2, 3, αi and β are positive constants,
satisfying 2k3 > k2. The vector form of the control inputs
can be written as

u1 = (D +B)−1 (−k1e1 +B1nu10 +Au1 + diag(u2)er)
(17)

u2 = (D +B)−1 (−k3e3 +B1nu20 +Au2 − k2u2p + u′
2)
(18)

with

u′
2 =(D +B)−1ATu′

2 + (D +B)−1
[
diag(er)(Au1)

− diag(u1)A
T er + u10Ber

]
(19)

where uι = [uι1, · · · , uιn]
T , ι = 1, 2 and

u2p = e−βt

[
sin(α1t)er1√
1 + e211 + e231

, · · · , sin(αnt)ern√
1 + e21n + e23n

]T

Motivated by Khoo et al. (2009) , equivalently, (17) can
be rewritten as

[I − (D +B)−1A)]u1

=(D +B)−1 (−k1e1 +B1nu10 + diag(u2)er) (20)

Substituting I = (D +B)(D +B)−1 into (20), we get

(D +B)−1(D +B −A)u1

=(D +B)−1
(
− k1e1 +B1nu10 + diag(u2)er

)
(21)

Noting that D −A = L, it follows

(L+B)u1 = −k1e1 +B1nu10 + diag(u2)er (22)

Analogously, for the control input u2, we have

(L+B)u2 = −k3e3 +B1nu20 − k2u2p + u′
2 (23)

By virtue of (19), it follows that

[I − (D +B)−1AT ]u′
2

=(D +B)−1
[
diag(er)(Au1)− diag(u1)A

T er + u10Ber
]

(24)

Taking the transpose of both sides of (24) yields

(u′
2)

T [I −A(D +B)−1] =
[
− diag(er)(Au1) + diag(u1)A

T er − u10Ber
]T

(D +B)−1

(25)

Rewriting I as (D + B)(D + B)−1 and post-multiplying
D +B on both sides of (25) follows that

(u′
2)

T (D +B −A)

=
[
− diag(er)(Au1) + diag(u1)A

T er − u10Ber
]T

(26)

Considering the fact that L = D −A, we get

(L+B)Tu′
2 = −diag(er)(Au1) + diag(u1)A

T er − u10Ber
(27)

Remark 4. u1p and u2p serve as dynamic oscillator or
persisting excitation

3.2 Stability analysis

Lemma 5. (Samson (1995)) If a given differentiable func-
tion f(x) : R+ → R converges to some limit value when
x → ∞, and if the derivative (df/dx)(x) of this function
is the sum of two terms, one being uniformly continuous
and the other one tending to zero when x → ∞, then
(df/dx)(x) → 0 when x → ∞.

Theorem 6. Under the Assumptions 1, the mobile robots
modeled by (4) can be driven to track the dynamic leader
using the distributed control laws (14) and (15).

Proof. Consider the Lyapunov function candidate as

V =
1

2

n∑
i=1

(
e21i + e2ri + e23i

)
=

1

2
(eT1 e1+eTr er+eT3 e3) (28)

Differentiating both sides of (11) in conjunction with (10),
we have

ėri =
∑
j∈Ni

aij (z3i − z3j)u1j+bi(z3i−z30)u10−u2ie1i (29)

Note that∑
j∈Ni

aij(z3i − z3j)u1j =
∑
j∈Ni

aij(z̃3i − z̃3j)u1j

=
∑
j∈Ni

aij z̃3iu1j −
∑
j∈Ni

aij z̃3ju1j

(30)

and
n∑

i=1

eriu2ie1i = [diag(u2)e1]
T
er = eT1 diag(u2)er (31)

Then, The compact form of (29) is given as

ėr = diag(z̃3)(Au1)−A[diag(u1)z̃3] +u10Bz̃3−diag(u2)e1
(32)
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The derivative of (28) along (22), (23) and (32) satisfies

V̇ =eT1 [(L+B)u1 −B1nu10] + eT3 [(L+B)u2 −B1nu20]

+ eTr

[
diag(z̃3)(Au1)−A[diag(u1)z̃3]

+ u10Bz̃3 − diag(u2)e1

]

=eT1 (−k1e1 + diag(u2)er) + eT3 (−k3e3 − k2u2p + u′
2)

+ eTr

[
diag(z̃3)(Au1)−A[diag(u1)z̃3]

+ u10Bz̃3 − diag(u2)e1

]
(33)

In view of (27), we obtain

eT3 u
′
2 = z̃T3 (L+B)Tu′

2

= −z̃T3 diag(er)(Au1) + z̃T3 diag(u1)A
T er − u10z̃

T
3 Ber
(34)

Since

z̃T3 diag(er)(Au1)− z̃T3 diag(u1)A
T er

=eTr diag(z̃3)(Au1)− eTr A[diag(u1)z̃3] (35)

Eq. (33) can be simplified into the following form

V̇ = −k1e
T
1 e1 − k3e

T
3 e3 − k2e

T
3 u2p (36)

By using the Holder’s inequality, we obtain

V̇ ≤ −k1e
T
1 e1 − k3e

T
3 e3 + k2e

−βt‖e3‖‖u2p‖ (37)

Then, due to ‖u2p‖ ≤ ‖er‖, using Young’s inequality yields

V̇ ≤− k1‖e1‖2 − k3‖e3‖2 +
k2
2
e−βt(‖e3‖2 + ‖er‖2)

≤− k1‖e1‖2 −
(
k3 −

k2
2

)
‖e3‖2 +

k2
2
e−βt‖er‖2

≤− k1‖e1‖2 −
(
k3 −

k2
2

)
‖e3‖2 + k2e

−βtV (t) (38)

Noting that the parameters kj , j = 1, 2, 3 are chosen such
that k1 > 0 and k3 − k2/2 > 0 in the proposed controllers
(14)-(16) and k2e

−βt ∈ L1. Then, by means of Lemma 3,
we obtain{

lim
t→∞

‖e1(t)‖ = 0

lim
t→∞

‖e3(t)‖ = 0
and lim

t→∞
‖er(t)‖ = c (39)

where c is a non-negative constant, which implies that
e1(t) → 0 and e3(t) → 0, as t → ∞, equivalently, both
e1i and e3i, i = 1, · · · , n tend to zero, as t → ∞. It follows
from Khoo et al. (2009) that zli = zl0, l = 1, 3. Taking the
derivative of (12) along (22), we get

ė1 = −k1e1 + diag(u2)er (40)

Furthermore, under Assumption 2, it can be verified that
the control input u2 presented in (18) is continuous. Hence,
from Lemma 5, we know

lim
t→∞

ė1(t) = 0 and lim
t→∞

diag(u2)er(t) = 0 (41)

which implies that limt→∞ u1i = u10. Similarly, it also
follows that limt→∞ ė3(t) = 0, and thus limt→∞ u2i = u20.
Combining (23), (27) and the fact that
limt→∞ diag(u2)er(t) = 0, we have

u10




f1(er1, erj), j∈N1

.

..
fn(ern, erj), j∈Nn




︸ ︷︷ ︸
�f(er)

−k2e
−βt




sin(α1t)e2r1√
1 + e211 + e231

...
sin(αnt)e2rn√
1 + e21n + e23n




= 0,

as t → ∞ (42)

0

1

2 3 4

5

Fig. 1. Interaction topology

where fi(eri, erj), j∈Ni , i = 1, · · · , n, is a function of order
two with respect to eri and erj , which is determined by
the interaction relationships. Noting that limt→∞ e−βt =
0, we naturally get limt→∞ u10f(er) = 0 from (42).
Consider that A �= AT due to the asymmetric structure
of the directed graph and u10 is persistently exciting from
Assumption 2, therefore, limt→∞ er = 0. It follows from
(13) that limt→∞ e2 = 0, which implies limt→∞ z2i = z20.
This completes the proof.

4. SIMULATIONS

Consider a group of 5 nonholonomic robots and the
reference labeled by 0, whose interaction relationship is
shown in Fig. 1, which is chosen to be the same as that in
Liu and Jiang (2013). It can be seen that the reference is
only available to robot 1, and there exists a spanning tree
with 0 as the root.

The reference velocity v0 and angular velocity w0 are set as
5 and 1, respectively. Then, the kinematics of the reference
trajectory is given by

ẋ0 = 5 cos(θ0)

ẏ0 = 5 sin(θ0)

θ̇0 = 1

(43)

The initial values for zιi = 0.15 ∗ (i− 3), i = 1, · · · , 5. The
control parameters k1, k2 and k3 are set as 2, 6 and 20,
respectively. In addition, for simplicity, αi in (15) is chosen
as the same value α = 0.1, and β is taken as 0.01.

It can be seen from Fig. 2 and Fig. 3 that the tracking
errors converge to zero using our proposed control algo-
rithms.

5. CONCLUSION

We have studied the distributed tracking problem for mul-
tiple nonholonomic mobile robots under a directed graph.
Based on the transformed chain-form system, distributed
control algorithms have been proposed to solve the track-
ing problem by employing dynamic oscillator strategy.
Moreover, the tracking errors for each robot have been
shown to converge to zero asymptotically. Numerical sim-
ulation results also demonstrated that the nonholonomic
robots can track the reference using proposed control laws.
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The derivative of (28) along (22), (23) and (32) satisfies

V̇ =eT1 [(L+B)u1 −B1nu10] + eT3 [(L+B)u2 −B1nu20]

+ eTr

[
diag(z̃3)(Au1)−A[diag(u1)z̃3]

+ u10Bz̃3 − diag(u2)e1

]

=eT1 (−k1e1 + diag(u2)er) + eT3 (−k3e3 − k2u2p + u′
2)

+ eTr

[
diag(z̃3)(Au1)−A[diag(u1)z̃3]

+ u10Bz̃3 − diag(u2)e1

]
(33)

In view of (27), we obtain

eT3 u
′
2 = z̃T3 (L+B)Tu′

2

= −z̃T3 diag(er)(Au1) + z̃T3 diag(u1)A
T er − u10z̃

T
3 Ber
(34)

Since

z̃T3 diag(er)(Au1)− z̃T3 diag(u1)A
T er

=eTr diag(z̃3)(Au1)− eTr A[diag(u1)z̃3] (35)

Eq. (33) can be simplified into the following form

V̇ = −k1e
T
1 e1 − k3e

T
3 e3 − k2e

T
3 u2p (36)

By using the Holder’s inequality, we obtain

V̇ ≤ −k1e
T
1 e1 − k3e

T
3 e3 + k2e

−βt‖e3‖‖u2p‖ (37)

Then, due to ‖u2p‖ ≤ ‖er‖, using Young’s inequality yields

V̇ ≤− k1‖e1‖2 − k3‖e3‖2 +
k2
2
e−βt(‖e3‖2 + ‖er‖2)

≤− k1‖e1‖2 −
(
k3 −

k2
2

)
‖e3‖2 +

k2
2
e−βt‖er‖2

≤− k1‖e1‖2 −
(
k3 −

k2
2

)
‖e3‖2 + k2e

−βtV (t) (38)

Noting that the parameters kj , j = 1, 2, 3 are chosen such
that k1 > 0 and k3 − k2/2 > 0 in the proposed controllers
(14)-(16) and k2e

−βt ∈ L1. Then, by means of Lemma 3,
we obtain{

lim
t→∞

‖e1(t)‖ = 0

lim
t→∞

‖e3(t)‖ = 0
and lim

t→∞
‖er(t)‖ = c (39)

where c is a non-negative constant, which implies that
e1(t) → 0 and e3(t) → 0, as t → ∞, equivalently, both
e1i and e3i, i = 1, · · · , n tend to zero, as t → ∞. It follows
from Khoo et al. (2009) that zli = zl0, l = 1, 3. Taking the
derivative of (12) along (22), we get

ė1 = −k1e1 + diag(u2)er (40)

Furthermore, under Assumption 2, it can be verified that
the control input u2 presented in (18) is continuous. Hence,
from Lemma 5, we know

lim
t→∞

ė1(t) = 0 and lim
t→∞

diag(u2)er(t) = 0 (41)

which implies that limt→∞ u1i = u10. Similarly, it also
follows that limt→∞ ė3(t) = 0, and thus limt→∞ u2i = u20.
Combining (23), (27) and the fact that
limt→∞ diag(u2)er(t) = 0, we have

u10




f1(er1, erj), j∈N1

.

..
fn(ern, erj), j∈Nn




︸ ︷︷ ︸
�f(er)

−k2e
−βt




sin(α1t)e2r1√
1 + e211 + e231

...
sin(αnt)e2rn√
1 + e21n + e23n




= 0,

as t → ∞ (42)
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where fi(eri, erj), j∈Ni , i = 1, · · · , n, is a function of order
two with respect to eri and erj , which is determined by
the interaction relationships. Noting that limt→∞ e−βt =
0, we naturally get limt→∞ u10f(er) = 0 from (42).
Consider that A �= AT due to the asymmetric structure
of the directed graph and u10 is persistently exciting from
Assumption 2, therefore, limt→∞ er = 0. It follows from
(13) that limt→∞ e2 = 0, which implies limt→∞ z2i = z20.
This completes the proof.

4. SIMULATIONS

Consider a group of 5 nonholonomic robots and the
reference labeled by 0, whose interaction relationship is
shown in Fig. 1, which is chosen to be the same as that in
Liu and Jiang (2013). It can be seen that the reference is
only available to robot 1, and there exists a spanning tree
with 0 as the root.

The reference velocity v0 and angular velocity w0 are set as
5 and 1, respectively. Then, the kinematics of the reference
trajectory is given by

ẋ0 = 5 cos(θ0)

ẏ0 = 5 sin(θ0)

θ̇0 = 1

(43)

The initial values for zιi = 0.15 ∗ (i− 3), i = 1, · · · , 5. The
control parameters k1, k2 and k3 are set as 2, 6 and 20,
respectively. In addition, for simplicity, αi in (15) is chosen
as the same value α = 0.1, and β is taken as 0.01.

It can be seen from Fig. 2 and Fig. 3 that the tracking
errors converge to zero using our proposed control algo-
rithms.

5. CONCLUSION

We have studied the distributed tracking problem for mul-
tiple nonholonomic mobile robots under a directed graph.
Based on the transformed chain-form system, distributed
control algorithms have been proposed to solve the track-
ing problem by employing dynamic oscillator strategy.
Moreover, the tracking errors for each robot have been
shown to converge to zero asymptotically. Numerical sim-
ulation results also demonstrated that the nonholonomic
robots can track the reference using proposed control laws.
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Fig. 2. Tracking errors of states x, y and θ

Fig. 3. Tracking errors of states z1, z2 and z3
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