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ABSTRACT 

 

Yifan Xing, Distributed Coordinate Tracking Control of Multiple Wheeled-Mobile Robots. 

Master of Science (MS), May 2015, 117 pp., 34 figures, references 62 titles. 

In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is 

studied. Control algorithms are proposed for both kinematic and dynamic models. All vehicle 

agents share the same mechanical structure. The communication topology is leader-follower 

topology and the reference signal is generated by the virtual leader.  

We will introduce two common kinematic models of WMR and control algorithms are 

proposed for both kinematic models with the aid of graph theory. Since it is more realistic that 

the control inputs are torques so dynamic extension is studied following by the kinematics. 

Torque controllers are designed with the aid of backstepping method so that the velocities of the 

mobile robots converge to the desired velocities. Because of the fact that in practice, the inertial 

parameter of WMR maybe not exactly known or even unknown, so both dynamics with and 

without inertial uncertainties are considered in this thesis. 
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CHAPTER I 

 

INTRODUCTION 

 

A wheeled mobile robot (WMR) is defined as a wheeled vehicle that can move 

autonomously without assistance from external human operator. Every WMR is equipped with a 

set of motorized actuators and an array of sensors, which help it to carry out useful work. In 

order to govern its motion, usually, there will be an on-board computer to command the motors 

to drive, based on reference inputs and the signals gathered by the sensors. 

Unlike the majority of industrial robots that can only move with a fixed frame in a 

specific workspace, the wheeled mobile robot has a distinct future of moving around freely 

within its predefined workspace to fulfill a desired task. The mobility of wheeled mobile robot 

makes it suitable for a variety of applications in structured as well as in unstructured 

environments. For example, NASA has already developed a WMR that successfully 

demonstrated its ability to achieve the mission goals in exploring and running experiments on 

other plants such as moon. In military and high-risk hazardous environments, a miniature 

remotely operated vehicle that has been in use in many military and law enforcement 

organizations worldwide.  It provides distinct advantages over human operators to complete 

critical missions in a safe manner. The wheeled mobile robots can also be found in other field of 

applications such as mining, transportation, entertainment and so on.  
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We should expect WMR to have stronger autonomous capabilities and higher agility, be 

able to self-learn and reliable for continuous operation regardless of time and environment in the 

future. The ever increasing demand and applications of wheeled mobile robots justify the 

research needs and potentials of this very fascinating topic.  

In general, the research on WMR can be divided into several components namely the 

modeling of the WMR, the planning and the navigation strategies, the localization techniques, 

the communication system and the mobility (i.e., control task). The research in mobility of the 

WMR is related to understand the physical mechanics of the Mobile robot platform, the model of 

the interaction between the robot and its environment as well as the overall effect of control 

algorithm on the WMR. In localization, the research objective is to estimate the location, 

attitude, velocity and acceleration of the WMR. Navigation is concerned with the acquisition of 

and response to external sensed information to execute the mission. Meanwhile, research in 

planning is related to behaviors, trajectories or waypoints generation for the robot mission. 

Lastly, the goal of communication research is to provide the link between WMR and any 

remaining elements in the whole system, including system operators or other wheeled mobile 

robots. 

For the theoretical part of this thesis, we need some basic knowledge of kinematics, 

dynamics, control theory, and mathematics and for the application part we require some idea on 

robotic systems. A good introduction on kinematics, dynamics and control of robotic system can 

be found in [1]. Majority of the car-like mobile robots platforms we studied in this research use 

standard wheels over omni-directional wheels due to the inherent mechanical simplicity. These 

car-like mobile robots are called nonholonomic mobile robots because of the velocity constrains 

imposed due to the structure of the wheels. A car is an example of a four-wheel vehicle system 
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that shares many similarities with a WMR system due to the same wheel structure. The 

nonholonomic nature of the car-like robot is related to the assumption that the robot wheels roll 

without slipping, WMR is the simplest nonholonomic vehicle that displays the general 

characteristics. A review from WMR literatures indicates that conventional modeling of a WMR 

assumes nonholonomic, no-slip constraints at the contact point between the wheel and the 

ground surface [2]-[5]. The dynamics of general nonholonomic systems was thoroughly analyzed 

in [6], a controllability study for kinematic models of car-like robots with trailers was presented 

in [7]. 

The subject of this thesis is the control problem for nonholonomic wheeled mobile robots 

moving on the plane, and in particular the use of feedback techniques for achieving a given 

motion task. A number of works have dealt with the problem of controlling via feedback. In 

automatic control, feedback improves system performance by allowing the successful 

completion of a task even in the presence of external disturbances. The trajectory tracking 

problem was solved in [8] by means of a local feedback action. Use of dynamic feedback 

linearization was proposed in [9]. For car-like robots, the trajectory tracking problem was also 

addressed in [10] through the use of dynamic feedback linearization. 

In the past two decades, multiple vehicle cooperative control has received significant 

attention in the system and control society, multiple agents system are composed of multiple 

interacting agents and can solve complex problems which cannot be achieved by monolithic 

system. Multiple agents system have been useful in many applications, different applications of 

multiple agents system are discussed in [11]-[24], including distributed sensor networks [11] 

[12] and cooperative control of unmanned air vehicles [13] [14], flocking [15]-[17], formation 

control [18]-[21] and rendezvous [22]-[24]. 
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A distributed approach used in tracking control of multiple car-like mobile robots is 

called consensus, it means that a group of vehicles reach an agreement on a common value by 

interacting with local neighbors. With the aid of new techniques such as graph theory [25]-[26] 

and distributed computing [31]-[33], consensus problem for multiple WMRs system has been 

studied intensively in recent years. Consensus for multiple WMRs system means all the agents 

can reach an agreement in respect with a certain quantity of interests. In real-life operations, it is 

common that multiple agents are expected to be operated synchronically and preserve common 

quantity of states to accomplish tasks cooperatively. Consensus with dynamics leader is called 

consensus tracking has been studied from different perspective. The authors in [27] proposed and 

analyzed a consensus tracking algorithm under a variable undirected network topology. In [28], 

the authors proposed a proportional-and-derivative-like consensus tracking algorithm under a 

directed network topology in both continuous-time and discrete-time settings. In [29], the authors 

studied a leader-follower consensus tracking algorithm with time-varying delays.  

The authors in [34]-[40] focus on the different common forms of dynamic agents, 

distributed control of multiple single-integrator systems are discussed in [34]-[36], and in [37]-

[40] multiple systems with higher order are addressed. Due to the fact that different dynamic 

systems can be modeled by the combination of first-order, second order and even multiply order 

systems, so it is necessary to study control algorithms for those simplified systems. [34] is 

concerned with sampled-data consensus of first-order delayed multiply agent systems with 

delayed-state-derivative feedback. In [35], the sampled-data based quantized consensus problem 

has been investigated for multi-agent system with first order dynamics. In [36], the author 

proposed two distributed adaptive consensus tracking controllers for multiple nonlinear first-

order systems with unknown parameters and external disturbances, it is shown that perfect 
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tracking performance can be accomplished. In [37], cooperative tracking control of higher-order 

nonlinear systems are studied, a practical design method is developed for cooperative tracking 

control of higher-order nonlinear systems with a dynamic leader. In [38], the authors have 

considered the consensus problem for the first-order linear network and the second-order linear 

network with time-delays, and the relationship between network mathematical relationships and 

consensus has proposed. In [39], the author addressed second-order consensus algorithm and 

performs a convergence analysis under a fixed directed information exchange topology, a second 

order protocol for information consensus among multiple vehicles are proposed. In [40], the 

author extended the consensus algorithm for double integrator dynamics in [39] to the case that 

the information exchange topologies switch randomly with time and to the case that the final 

consensus value evolves according to a given nonlinear reference model.  

Most works on consensus focus on algorithms taking the form of first-order dynamics 

and second-order dynamics, however, in this thesis we extend the algorithms to third-order 

dynamics.  

Besides the different forms of dynamics agents, different assumptions of the 

communication topologies such as time-delays of communication links, communication 

switching and node link failure and different models of agent systems also are very important in 

distributed control consensus problem.  

The theoretical framework for modeling and solving consensus problems for networked 

dynamics systems are introduced in [41] and [42]. In [41], the average consensus problems were 

solved in a distributed way, both linear consensus protocol and nonlinear consensus protocol are 

proposed for networks of dynamic agents under undirected communication graph, also the 

analysis for the case of networks with non-ideal links such as communication time-delays is 
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addressed. In [42], based on several different theories such as matrix theory, graph theory and 

control theory, the authors discussed both fixed and switching communication topologies for the 

consensus problems for networks of dynamic agents. Both fixed and switching topologies are 

studied under directed and undirected graph. For networks with and without time-delays, two 

consensus protocols are presented for each case. In [43], the authors discussed the consensus 

problem with the aid of directed information flow, also the disturbances such as time-delays and 

link/node failures are considered. Consensus algorithms control law for multiple WMR 

networked systems are proposed under the assumption that the communication graph is directed 

communication graph. In [44], the authors focus on linear discrete-time multiple WMR systems 

under the undirected and fixed graph, communication delay among the mobile agents are 

considered. All the WMRs’ inputs are assumed to be a constant, albeit possibly unknown time 

delay. It is shown that communication delay between WMRs will affect the restrictions on the 

communication topologies and will generally influence the consensus. In [45], the consensus 

problem for discrete-time multiple systems under directed and fixed graph is studied, a 

distributed dynamic output feedback control law is proposed.  

The motivation behind multiple wheeled mobile robots cooperative control is that a group 

of vehicles working together can achieve great benefits including increasing reliability and 

efficiency, low cost, high adaptively and easy maintenance compared to single robot operation, 

especially in military. One of the most important and interesting problem of multiple mobile 

vehicle system is coordination of each single agent. The problem can be solved either by 

controlling each mobile agent respectively or by applying distributed control law with the aid of 

communication between all the mobile robots. The communication between different vehicles 

can be described by communication graph [25] [26] [27], each mobile system is considered as 
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one node in the graph and there are communication links between different systems if one can 

receive others’ information or can send out  the information of itself. The links can be both 

directed and undirected based on different types of communication. In reality case, all WMRs are 

equipped with different sensors such as sonar that will detect and provide neighbors’ information 

to them. It is known that if the communication graph satisfies some specific requirements, all the 

mobile systems will converge to a consensus states by using distributed control laws.  

One common problem of multiple WMRs system coordination is the navigation problem. 

The navigation problem can be divided into three basic problems: coordinated tracking a 

reference trajectory, following a path and point stabilization. Some nonlinear feedback 

controllers have been proposed to solve these problems, the main idea behind all of these 

algorithms is to define velocity control inputs which stabilize the closed-loop system. Here in 

this thesis, our focus is the first problem which is coordinated tracking problem of a reference 

trajectory. In [46], a new control law for determining vehicles’ linear and rotational velocities are 

given, the authors proposed a stable tracking control law for nonholonomic vehicles. In [30], the 

authors considered distributed tracking control problem for both first-order kinematics and 

second-order dynamics when there is a virtual leader and the leader’s information is only known 

to a subset of a group of followers. For the first-order kinematics, the authors proposed a 

distributed consensus tracking algorithm without knowing the velocity and showed it can be 

achieved in finite time. For the second-order dynamics, the authors proposed two distributed 

tracking algorithm without knowing the acceleration. In [47], the authors proposed and analyzed 

a neighbor-based observer consensus tracking algorithm for a group of mobile agents with a 

virtual leader moving with an unknown velocity under a variable undirected communication 

graph. In [48], the authors studied a leader-follower consensus tracking problem for a multiple-
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agent system with a vary-velocity dynamic leader with time-varying delays. In [16], the author 

studied a flocking algorithm under the assumption that the leader’s velocity is constant and is 

available to all followers. In [49], the flocking algorithm proposed in [16] is extended from two 

directions: the leader’s accurate position and velocity are needed if the leader has a constant 

velocity and the leader’s position is required when the leader has a varying velocity. In [50], the 

authors studied flocking problems of a group of autonomous vehicles with dynamic leader and a 

set of switching law relies on the state information of its neighbors and external signals were 

proposed to solve the problem. 

All these controllers consider only the kinematic model, in other words, the steering 

system of the mobile robot and the “perfect velocity” tracking is assumed to generate the actual 

vehicle control inputs. However, it is more realistic that the control inputs are torques, so the 

dynamic model of mobile robots should be considered. 

In [51], a dynamic extension and a method for dynamic model were proposed. The 

authors first designed a kinematic controller that makes the tracking error between the follower 

robots and the leader robot converges to zero. Second, a torque controller (i.e. dynamic 

controller) was designed by the aid of backstepping method to guarantee the velocities of the 

follower robots converge to the desired velocities. In [53], the authors considered three common 

problems of motion stabilization of a nonholonomic vehicle to a predefined trajectory, and a 

control laws for dynamic model of mobile robot was proposed. In [55], the authors presented a 

method to design an adaptive tracking controller for the dynamic model of a nonholonomic 

mobile robot with unknown parameters with the aid of backstepping method. In [58], the authors 

proposed a novel controller for wheeled mobile robots that can make all states of the closed-loop 

dynamic model of WMRs with unknown dynamics globally track a given trajectory. In [59], the 
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authors studied the dynamic tracking problem of a class of the nonholonomic systems with 

unknown constant inertial parameters. The proposed tracking controller not only ensures all the 

follower robots asymptotically track the leader’s trajectory, but also is characterized by low 

dimension and the absence of singular points. In [60], the authors considered the tracking control 

problems of a nonholonomic mobile robot with both parameter uncertainty and non-parameter 

uncertainty, a robust adaptive controller was proposed with the aid of backstepping method and 

robust control techniques.  

In this thesis, distributed coordinate tracking control of multiple wheeled mobile robots is 

studied and both kinematic model and dynamic model are considered. Control algorithms are 

proposed for both kinematic model and dynamic model. All the vehicle agents share the same 

control and structural properties and are assumed to be able to receive specific neighbors’ 

information or send out the information of itself to specific neighbors. The communication 

topology is leader-follower topology and the reference signal is generated by the virtual leader, 

in other words, the reference trajectory is the trajectory of the leader WMR, we define the 

trajectory of the virtual leader is a unit circle throughout this thesis.  

In the text of kinematics, we introduced two common kinematic models of mobile 

system, one is two-wheel model vehicle with three generalized states including two Cartesian 

coordinates with respect to 𝑥-axis and 𝑦-axis, and the heading angle with respect to 𝑥-axis while 

the other one is four-wheel model vehicle with four generalized states including two Cartesian 

coordinates with respect to 𝑥-axis and 𝑦-axis, the orientation of the car body with respect to 𝑥-

axis and the steering angle. We first transform both of the nonlinear car-like mobile robot models 

to linear models. In control theory, it is well known that if the number of generalized coordinates 

equals the number of input commands, a nonlinear static state feedback law can be used in order 
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to transform the nonlinear robot kinematics and dynamics into linear system. It is easier and 

straightforward to design controllers for tracking control problems in linear model. There are two 

types of linearization algorithms can be considered, one is full-state linearization and another one 

is input-out linearization. Full-state linearization transforms the whole set of differential 

equations into linear system via feedback while only the input-output differential map is made 

linear in input-out linearization, it is obviously that the input-output linearization gives a weaker 

result. In the text of linearization we used full-state linearization algorithms for four-wheel model 

vehicles and input-out linearization algorithms for two-wheel model vehicles.  After 

linearization, new distributed control methods were proposed for both kinematic systems with 

the aid of cascaded system theory and graph theory. For the four generalized states, the results of 

first-order kinematics and second-order dynamics controllers in [30] are extended to the third-

order dynamics in this thesis. We assume that only a few mobile robots in the system can receive 

trajectory information from the leader robot directly and all the rest followers can only access the 

information of their neighbors from the communication topology. Our results showed that 

follower robots that are not neighbor of the leader can still be able to track the trajectory of the 

leader by using the state information of neighbor vehicles with the aid of communication graph. 

The control inputs in kinematic model are translational and rotational velocities. 

However, dynamic extension was studied following by the kinematics because that it is 

more realistic that the control inputs are torques. In the text of dynamics, the control velocities 

that designed in kinematics are used as intermediate variables. Torque controllers are designed 

with the aid of backstepping method so that the velocities of the mobile robots converge to the 

desired velocities, which are obtained by the kinematic controller that we designed at the first 

step. Because of the fact that in practice, the inertial parameter of WMR maybe not exactly 
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known or unknown, so both dynamics with and without inertial uncertainties are considered in 

this thesis, distributed tracking control laws are proposed for both scenarios. In order to verify 

the effectiveness of the proposed control laws, all simulations were conducted under the 

environment of Simulink in Matlab and all the simulation results showed that the proposed 

control laws are effective. 
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CHAPTER II 

 

BACKGROUND AND PRELIMINARIES 

 

In this chapter, some useful theories such as graph theory and Laplacian matrix 

throughout this thesis are introduced, all the theories are important analytical tools for distributed 

coordinate tracking control of multiple wheeled mobile robots. The reminder of this chapter is 

organized as follow. First, graph theory is introduced to model the information exchange 

between different agents in a multiple robots system, then Laplacian matrix is studied to analyze 

the communication graph mathematically, last stability of nonlinear  system will be addressed. 

 

2.1 Local Interaction 

 

Suppose that there is a team consists of multiple WMRs, it is natural to model 

information exchange between different WMRs by using local interaction known as directed or 

undirected graphs. Conceptually, a graph  𝒢 is formed by a group of vertices and edges that 

connecting those vertices. Formally, a graph is a pair of sets 𝒢 = (𝑉, 𝐸), where 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} is defined as the set of vertices and 𝐸 is defined as the set of edges and formed by 

pairs of vertices, 𝐸 ⊆ 𝑉 × 𝑉, the pairs of vertices is ordered if the graph is directed otherwise it 

is unordered. 𝐸 is a multiset which means the elements in 𝐸 can occur more than once so that 

every element has a multiplicity.  



  

13 
 

Based on different characteristics of the elements in 𝐸, a communication graph 𝒢 can be 

either directed or undirected, if the links between different nodes are directional, then the 

communication graph is directed graph, in other words, if the links between different nodes are 

bidirectional, then the communication graph is undirected graph. If there is a directed edge from 

node 𝑣𝑖 to node 𝑣𝑗, then 𝑣𝑖 is defined as the parent node and 𝑣𝑗 is defined as the child node, 

𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗). Here we show an example of a directed communication topology in Figure 2.1 to 

better demonstrate the above conceptions. 

 

 

Figure 2.1 Communication graph I 

 

In figure 2.1, we can see that there are five vertices in the graph and the all the 

communication links are directional, so 𝒢 = (𝑉, 𝐸) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐸 =

{𝑒12, 𝑒23, 𝑒34, 𝑒25, 𝑒54}. 
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2.2 Properties in Communication Graph 

 

From subsection 2.1 we discussed the basic idea and expression of communication graph 

and it is learned that the communication system of multiple car-like systems can be either 

directed or undirected. In order to have a deeper understanding of communication graph, in this 

section, we will introduce some definitions such as path and subpath as well as some 

fundamental properties such as connectivity and tree structure in communication graph, which 

are very crucial to the end of controller design. 

Some definitions and properties in communication graph: 

1) In a directed graph or digraph, a directed path is a sequence of ordered edges of the 

form (𝑣1, 𝑣2), (𝑣2, 𝑣3), … , where 𝑣𝑖 ∈ 𝑉.  

2) If there exists a subpath 𝒢2 of graph 𝒢1, then the subpath 𝒢2 is defined as 𝑉(𝒢2) ⊆

𝑉(𝒢1) and 𝐸(𝒢2) ⊆ 𝐸(𝒢1). 

3) If there exists a path starts and ends at the same node, then the path is defined as a 

cycle.  

4) A directed graph is called strongly connected if there is a directed path form every 

node to every other node.  

5) An undirected graph is called connected if there is a path between any distinct pair 

nodes.  

6) For a node 𝑣𝑖 in a communication graph 𝒢 = (𝑉, 𝐸), the in-degree and out-degree of 

node 𝑣𝑖 are, respectively, defined as 𝑑𝑒𝑔𝑖𝑛(𝑣𝑖) = ∑ 𝑎𝑗𝑖
𝑛
𝑗=1  and 𝑑𝑒𝑔𝑜𝑢𝑡(𝑣𝑖) =

∑ 𝑎𝑖𝑗
𝑛
𝑗=1 . 
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7) Given a graph 𝒢 = (𝑉, 𝐸), two vertices 𝑣𝑖 and 𝑣𝑗 are said to be neighbors or adjacent 

nodes if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸, also if 𝒢 is directed, we distinguish between incoming 

neighbors of 𝑣𝑖 (those vertex 𝑣𝑗 ∈ 𝑉 such that (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸) and outgoing neighbors of 

𝑣𝑖 (those vertex 𝑣𝑗 ∈ 𝑉 such that (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸). 

8) In the case of undirected graph, a tree is defined as a graph that every pair of vertices 

is connected by only one path.  

9) In the case of directed graph, a directed tree is defined that every node has exactly 

one parent except for one node which is known as root, root has no parent and has 

directed path to every other node. Note that there is no circle in directed tree and 

every edge has a natural orientation away from the root.  

10) A directed spanning tree of a graph is defined as a directed tree that containing graph 

edges that connect all the nodes of the graph, in other words, a graph has or contains a 

directed spanning tree if there is a directed spanning tree being a subset of the graph. 

The condition that there exists a node having a directed path to all the other nodes is 

equivalent to the case that the digraph has a directed spanning tree.  

 

Remark: 

In the case of undirected graphs, having an undirected spanning tree is equivalent to 

being connected, however, it does not apply for directed graphs. In the case of directed graphs, 

having a directed spanning tree is a weaker condition than being strongly connected.  
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2.3 Laplacian Matrix 

 

It is shown in sections 2.1 and 2.2 that information exchange between different mobile 

agents in multiple car-like robots system can be modeled by a communication graph, in a 

communication graph each vehicle is considered as a vertex in the graph. In order to have a 

better understanding of graph theory and to design distributed tracking controller later, Laplacian 

matrix will be studied in this section. The Laplacian matrix can be used to find many other 

properties of the graph.  

In the mathematical field of graph theory, the Laplacian matrix is a matrix representation 

of a graph, with the aid of Laplacian matrix, one can analyzes communication graph 

mathematically.  

For a communication graph 𝒢𝑛 that contains 𝑛 vehicles 𝒢𝑛 = (𝑉𝑛, 𝐸𝑛), an adjacency 

matrix 𝒜 associated with 𝒢𝑛 is defined as 𝒜 = [𝑎𝑖𝑗] ∈  ℝ𝑛×𝑛, where 𝑎𝑖𝑗 = 1 if 𝑣𝑗 is able to 

receive information from 𝑣𝑖, if 𝑣𝑗 cannot receive information from 𝑣𝑖 then 𝑎𝑖𝑗 = 0. Because of 

the fact that a mobile robot is always able to acquire its own information without communicating 

with any other vehicles, so 𝑎𝑖𝑖 are assumed to be zero for all 𝑖, unless stated otherwise. An 

additional weight factor 𝒜𝑤 = [𝑤𝑖𝑗𝑎𝑖𝑗] ∈  ℝ𝑛×𝑛 is needed to describe the communication more 

accurately due to the fact that in real life the communication intensity between different links is 

usually uneven. It is proved that the additional weights have no effects on the overall system 

consensus performance but only affect the convergence time. 

Given a simple graph 𝒢𝑛 with 𝑛 vehicles 𝒢𝑛 = (𝑉𝑛, 𝐸𝑛), its Laplacian matrix 𝐿 ≔

(𝑙𝑖𝑗)𝑛×𝑛 is defined as 

𝐿 = 𝐷 − 𝒜                                                          (2.1) 
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where 𝐷 = 𝑑𝑖𝑎𝑔(∑ 𝑎1𝑗
𝑛
𝑗=1 , ∑ 𝑎2𝑗

𝑛
𝑗=1 , … , ∑ 𝑎𝑛𝑗

𝑛
𝑗=1 ) is the degree matrix and 𝒜 is the adjacency 

matrix of the graph. Note that the degree matrix 𝐷 of a digraph is a diagonal matrix 𝐷 = [𝐷𝑖𝑗] 

where 𝐷𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗 and 𝐷𝑖𝑖 = 𝑑𝑒𝑔𝑜𝑢𝑡(𝑣𝑖). 

 Take the undirected communication topology shown in Figure 2.2 as an example. 

 

Figure 2.2 Communication graph II   

 

Figure 2.2 shows a graph contains six vertexes and all the links between different 

vertexes are bidirectional, so the communication graph is undirected. According to (2.1), the 

Laplacian matrix that associated with the graph shown in Figure 2.2 is  

 

𝐿 = 𝐷 − 𝒜                                                                                                     

=

[
 
 
 
 
 
2
0
0
0
0
0

   

0
3
0
0
0
0

   

0
0
2
0
0
0

   

0
0
0
3
0
0

   

0
0
0
0
3
0

   

0
0
0
0
0
1]
 
 
 
 
 

−

[
 
 
 
 
 
0
1
0
0
1
0

   

1
0
1
0
1
0

   

0
1
0
1
0
0

   

0
0
1
0
1
1

   

1
1
0
1
0
0

   

0
0
0
1
0
0]
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=

[
 
 
 
 
 

2
−1
0
0

−1
0

   

−1
3

−1
0

−1
0

   

0
−1
2

−1
0
0

   

0
0

−1
3

−1
−1

   

−1
−1
0

−1
3
0

   

0
0
0

−1
0
1 ]

 
 
 
 
 

 

 

Note that for an undirected graph, there exists a property that the Laplacian matrix 𝐿 is a 

symmetric positive semi-definite matrix, however, the Laplacian matrix 𝐿 for a directed graph 

does not have this property.  

 

2.4 Properties of Laplacian Matrix 

 

From section 2.3, some basic concepts and notations in Laplacian matrix are introduced. 

Consider that all the distributed tracking controllers we designed in this thesis are under a simple 

directed communication topology, so in this subsection some fundamental properties of 

Laplaican matrix of digraphs will be studied. 

Theorem 2.1: Consider a weighted digraph 𝒢 = (𝑉, 𝐸,𝒜) with Laplacian matrix 𝐿, then 

𝑟𝑎𝑛𝑘(𝐿) = 𝑛 − 1 if 𝒢 is strongly connected.  

A direct relation between the strongly connected property of a directed graph and the 

rank of its Laplacian is established by the above theorem, according to theorem 2.1, the 

Laplacian of a strongly connected directed graph always has an isolated eigenvalue at zero. For 

an undirected graph 𝒢, 𝒢 is connected if and only of 𝑟𝑎𝑛𝑘(𝐿) = 𝑛 − 1. Note that the opposite 

side of theorem does not hold. 

Proof:   The proof of theorem 2.1 is given in [42]                                                              ∎ 
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Definition 2.1: Gershgorin disc 𝐷(𝑘𝑖𝑖 , 𝑅𝑖) is defined as a closed disc centered at 𝑘𝑖𝑖 with 

radius 𝑅𝑖, where 𝐾 is a complex matrix with entries 𝑘𝑖𝑗. For 𝑖 ∈ {1,…𝑛} let 𝑅𝑖 = ∑ |𝑘𝑖𝑗|𝑗≠𝑖  be 

the sum of the absolute values of the non-diagonal entries in the 𝑖𝑡ℎ row.  

Theorem 2.2: Every eigenvalue of 𝐾 lies within at least one of the Gershgorin discs 

𝐷(𝑘𝑖𝑖 , 𝑅𝑖).  

Theorem 2.3: Let 𝒢 = (𝑉, 𝐸,𝒜) be a weighted digraph with Laplacian matrix 𝐿, all the 

eigenvalues of 𝐿 are located in the following disk: 

 

𝐷(𝐺) = {|𝓏 − 𝑑𝑚𝑎𝑥(𝒢)| ≤ 𝑑𝑚𝑎𝑥(𝒢)} 

 

The disc is centered at 𝓏 = 𝑑𝑚𝑎𝑥(𝒢) + 0𝑗 in the complex plane (Figure 2.3). Where 

𝑑𝑚𝑎𝑥(𝒢) = 𝑚𝑎𝑥𝑖𝑑𝑒𝑔𝑜𝑢𝑡(𝑣𝑖) denotes the maximum node out-degree of the digraph 𝒢.  

Proof:    The proof of theorem 2.3 is given in [42]                                                             ∎ 

By definition, the sum of every row of the Laplacian matrix is zero, therefore, the 

laplacain matrix always has a zero eigenvalue. 

Theorem 2.4: Let 𝒢 = (𝑉, 𝐸) be a graph with Laplacian matrix 𝐿, all eigenvalues of 𝐿 are 

located in the right half of the complex plane but one is zero if 𝒢 has a spanning tree. 

Theorem 2.5: Let 𝒢 = (𝑉, 𝐸,𝒜) be a weighted digraph with Laplacian matrix 𝐿, all 

eigenvalues of 𝐿 are located in the right half of the complex plane but one is zero if 𝒢 is strongly 

connected. 

Theorem 2.6: Assume 𝒢 is a strongly connected digraph with Laplacian matrix 𝐿 

satisfying 𝐿𝑤𝑟 = 0, 𝑤𝑙
𝑇𝐿 = 0 and 𝑤𝑙

𝑇𝑤𝑟 = 1, then 

 

𝑅 = lim
𝑡→∞

𝑒𝑥𝑝 (−𝐿𝑡) = 𝑤𝑟𝑤𝑙
𝑇𝜖 𝑀𝑛 
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where 𝑤𝑟 and 𝑤𝑙 are the right and left eigenvectors of the Laplacian matrix 𝐿 associated with 

𝜆1 = 0, respectively. 𝑀𝑛 are the set of square 𝑛 × 𝑛 matrices.  

 

Figure 2.3 Gershgorin disc 

 

2.5 Stability of Nonlinear System 

 

A nonlinear system refers to a set of nonlinear equations such as algebraic, differential, 

integral or abstract equations used to describe a physical device which is mobile robot in our 

case. Stability theory plays a central role in system engineering, especially in the field of control 

systems and automation. The basic concept of stability emerged from the study of an equilibrium 

state of a mechanical system. In general, stability means the outputs of the system and its internal 

signals are bounded within admissible limits (bounded-input/bounded output stability) or more 

strictly, the system outputs tend to an equilibrium state of interest (asymptotic stable).  
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A continuous-time nonlinear control system in generally described by a differential 

equation following the form 

 

�̇� = 𝑓(𝑥, 𝑡; 𝑢),   𝑡 ∈ [𝑡0, ∞)                                               (2.2) 

 

where 𝑥 = 𝑥(𝑡) is the state of the system, 𝑢 is the control input and 𝑓 is a Lipschitz or 

continuously differentiable nonlinear function. System (2.2) has a unique solution for each 

control input and suitable initial condition 𝑥(𝑡0) = 𝑥0, the initial time used here is 𝑡0 ≥ 0 unless 

otherwise indicated. Since function 𝑓 depends explicitly on time variable 𝑡, so the system is 

called non-autonomous, a special case of the nonlinear system (2.2) is that the time variable 𝑡 is 

independent from the state vector in the system function 𝑓, in this case the nonlinear system (2.2) 

is called autonomous. For example, 

 

�̇� = 𝑓(𝑥),     𝑥(𝑡0) = 𝑥0                                                  (2.3)  

 

with a state feedback control 𝑢(𝑡) = ℎ(𝑥(𝑡)).  

An equilibrium or fixed point 𝑥∗ of system (2.3), if exists, must be a constant state and is 

defined as  

𝑓(𝑥∗) = 0 

 

 An equilibrium is stable if some nearby trajectories of the system states approach it, it is 

unstable if some nearby trajectories of the system states move away from it.  

In an autonomous system, suppose that 𝑥∗ ≠ 0 and consider the a variable 𝑦 = 𝑥 − 𝑥∗. 

The derivative of 𝑦 is given by 

 

�̇� = �̇� = 𝑓(𝑥) = 𝑓(𝑦 + 𝑥∗) ≝ 𝑔(𝑦) 
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where 𝑔(0) = 0, so system has an equilibrium at 0 with the new variable 𝑦. Therefore, without 

loss generality, we can study the stability of the origin 𝑥 = 0 with the assumption that 𝑓(𝑥) 

satisfies 𝑓(0) = 0. 

Definition 2.2: The equilibrium point 𝑥 = 0 of autonomous system (2.3) is stable if for 

each 휀 > 0, there exists 𝛿 = 𝛿(휀) > 0 such that  

 
‖𝑥(0)‖ < 𝛿 ⇒ ‖𝑥(𝑡)‖ < 휀,    ∀ 𝑡 ≥ 0 

 

 

Definition 2.3: The equilibrium point 𝑥 = 0 of autonomous system (2.3) is 

asymptotically stable if it is stable and 𝛿 can be chosen such that  

 

‖𝑥(𝑡0)‖ < 𝛿 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0 

 

Having defined stability and asymptotic stability of equilibrium points in definition 2.2 

and 2.3, now we show the ways to determine stability. Let us define the energy 𝐸(𝑥) as the sum 

of the system’s potential and kinematic energies, here we choose the reference of the potential 

energy such that 𝐸(0) = 0. When friction is neglected,  𝐸 is a constant, in other words, 𝑑𝐸/𝑑𝑡 =

0 while the system is in motion, so we can again say that 𝑥 = 0 is a stable equilibrium. When 

friction is not neglected, 𝑑𝐸/𝑑𝑡 ≤ 0 while the system is in motion, and the trajectory tends to 

𝑥 = 0 as 𝑡 → ∞ sicne 𝐸 cannot remain as a constant and keeps decreasing until it eventually 

reaches zero.  So one can determine the stability of the equilibrium point by examining the 

derivative of 𝐸. However, Lyapunov showed that particular functions can be used instead of 

energy to determine stability. Let 𝑉:𝐷 → 𝑅 be a continuously differentiable function defined in a 

domain 𝐷 ∈ 𝑅𝑛 that contains the origin, the derivative of 𝑉 of system (2.3) is given by 
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�̇�(𝑥) = ∑
𝜕𝑉

𝜕𝑥𝑖
�̇�𝑖

𝑛

𝑖=1

= ∑
𝜕𝑉

𝜕𝑥𝑖
𝑓𝑖(𝑥)

𝑛

𝑖=1

 

 

                                                                   = [
𝜕𝑉

𝜕𝑥1
,
𝜕𝑉

𝜕𝑥2
, … ,

𝜕𝑉

𝜕𝑥𝑛
] [

𝑓1(𝑥)
𝑓2(𝑥)

⋮
𝑓𝑛(𝑥)

] 

                                                                   =
𝜕𝑉

𝜕𝑥
𝑓(𝑥) 

 

The derivative of 𝑉 is dependent on the system’s equation, so �̇�(𝑥) will be different for 

different systems. Assume 𝜙(𝑡, 𝑥) is the solution of (2.3) that starts at initial state 𝑥 at 𝑡 = 0, 

then 

�̇�(𝑥) =
𝑑

𝑑𝑡
𝑉(𝜙(𝑡, 𝑥))  at 𝑡 = 0 

 

therefore, if �̇�(𝑥) is negative, 𝑉 will decrease along the solution of (2.3). Now Lyapunov’s 

stability theorem is ready to be used.  

 Theorem 2.7: Let 𝑥 = 0 is an equilibrium point for system (2.3) and 𝐷 ∈ 𝑅𝑛 be a 

domain that contains 𝑥 = 0. Let 𝑉:𝐷 → 𝑅 be a continuously differentiable function such that 

 

𝑉(0) = 0     and     𝑉(𝑥) > 0  in 𝐷 − {0}                                (2.4) 

 

�̇�(𝑥) ≤ 0  in  𝐷                                                         (2.5) 

 

then 𝑥 = 0 is stable. Moreover, if  

 

�̇�(𝑥) < 0  in  𝐷 

 

then 𝑥 = 0 is asymptotically stable. 
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Proof:   The proof of theorem 2.7 is given in [61]                                                              ∎ 

 

A continuously differentiable function 𝑉(𝑥) satisfying (2.4) and (2.5) is called a 

Lyapunov function. If a function 𝑉(𝑥) satisfying (2.4), then it is positive definite. If it satisfies a 

weaker condition 𝑉(𝑥) ≥ 0 for 𝑥 ≠ 0, then it is positive semi-definite. A function 𝑉(𝑥) is called 

negative definite if −𝑉(𝑥) is positive definite and negative semi-definite if −𝑉(𝑥) is positive 

semi-definite. 

Theorem 2.8: Let 𝑥 = 0 is an equilibrium point for system (2.3). Let 𝑉:𝑅𝑛 → 𝑅 be a 

continuously differentiable function such that 

 

𝑉(0) = 0     and     𝑉(𝑥) > 0  ∀ 𝑥 ≠ 0                                     (2.6) 

 
‖𝑥‖ → ∞ ⇒  𝑉(𝑥) → ∞                                                 (2.7) 

 

�̇�(𝑥) < 0, ∀ 𝑥 ≠ 0                                                      (2.8) 

 

then 𝑥 is globally asymptotically stable. 

Proof:   The proof of theorem 2.8 is given in [61]                                                              ∎ 

 

So far in this section, we discussed the stability of equilibrium in autonomous systems 

which is a special case of the nonlinear system (2.2). Now we consider the non-autonomous 

system (2.2), for simplicity discussion, if we combine the control input  𝑢(𝑡) = ℎ(𝑥(𝑡), 𝑡) in 

(2.2) into the system function 𝑓, then we have a general non-autonomous system 

 

�̇� = 𝑓(𝑥, 𝑡),     𝑥(𝑡0) = 𝑥0                                                  (2.9)  
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Definition 2.4: System (2.9) is stable in the sense of Lyapunov (Lyapunov stable) with 

respect to the equilibrium 𝑥∗ = 0, for any 휀 > 0 and any initial time 𝑡0 > 0, if there exists a 

constant 𝛿 = 𝛿(휀, 𝑡0) such that  

 

‖𝑥(𝑡0)‖ < 𝛿 ⇒ ‖𝑥(𝑡)‖ < 휀,    ∀ 𝑡 ≥ 𝑡0 

 

Note that the constant 𝛿 is always depend on both 휀 and 𝑡0. Conceptually, Lyapunov 

stability of an equilibrium means that solutions starting with a distance 𝛿 from the equilibrium 

which is close enough, and remain that distance forever. This must be true for any 휀 that one may 

choose. 

Definition 2.5: System (2.9) is said to be asymptotically stable with respect to the 

equilibrium 𝑥∗ = 0, if it is Lyapunov stable, moreover, if there exists a constant 𝛿 = 𝛿(𝑡0) > 0 

such that 

‖𝑥(𝑡0)‖ < 𝛿 ⇒ ‖𝑥(𝑡)‖ → 0,    as 𝑡 → ∞ 

 

Conceptually, asymptotic stability means that solutions not only remain close enough to 

the equilibrium, but also converge to the equilibrium eventually. Note that the nonlinear system 

(2.9) is called uniform asymptotically stable if the constant 𝛿 is independent on 𝑡0 ∈ [0,∞), and 

is called global asymptotically stable if ‖𝑥(𝑡)‖ → 0 is not dependent on the initial state 𝑥(𝑡0).  

Definition 2.6: System (2.9) is exponential stable with respect to the equilibrium 𝑥∗ = 0, 

if it is asymptotically stable, furthermore, if for two positive constants 𝑐 and 𝜎 such that  

 

‖𝑥(𝑡0)‖ < 𝛿 ⇒ ‖𝑥(𝑡)‖ ≤ 𝑐𝑒−𝜎𝑡   

 

Exponential stability means that solutions not only converge to the equilibrium, but also 

converge faster than or at least as fast as a particular known rate. 



  

26 
 

It is shown in definition 2.4 to definition 2.6 that exponential stability implies asymptotic 

stability and asymptotic stability implies the Lyapunov stability.  
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CHAPTER III 

 

DISTRIBUTED TRACKING CONTROL OF MULTIPLE 

 KINEMATIC WMRS 

 

In this chapter, we shall derive two common types of kinematic equations for wheeled 

mobile robots, distributed tracking control laws are proposed for both kinematic models with the 

aid of the analytical tools that are introduced in previous chapter II. The main feature of a 

kinematic model of wheeled mobile robot is the presence of nonholonomic constrains due to the 

rolling without slipping condition between the wheels and ground. 

 First, we introduce two common kinematic models of car-like robots, two-wheel model 

and four-wheel model. Two-wheel model vehicle has three generalized states including two 

Cartesian coordinates with respect to 𝑥-axis and 𝑦-axis, and the heading angle with respect to 𝑥-

axis while four-wheel model vehicle contains four generalized states including two Cartesian 

coordinates with respect to 𝑥-axis and 𝑦-axis, the orientation of the car body with respect to 𝑥-

axis and the steering angle. Second, linearization algorithms are used to transform the nonlinear 

robot kinematics and dynamics into linear system since it is easier and straightforward to design 

the controller for tracking control problems in linear model. After linearization, new distributed 

control methods will be proposed for both kinematic systems with the aid of cascaded system 

theory and graph theory, for the four-wheel model kinematics, the results of first-order 
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kinematics and second-order dynamics controllers that introduced in [30] are extended to the 

third-order dynamics. The control inputs in kinematic model are translational and rotational 

velocities. 

 

3.1 Kinematic Model of Four-Wheel Mobile Robots 

 

Now we consider multiple four-wheel Mobile Robots with the kinematics as shown in 

Figure 3.1. For simplicity discussion, we use two fixed points located at the midpoint of front 

axle and rear axle as references for each vehicle and the front wheels are steering wheels. The 

generalized coordinates of four-wheel vehicles are defined as 𝑞𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖 , 𝜙𝑖), where 

𝑖 = 0, 1,2, …… , 𝑛, 𝑥𝑖 and 𝑦𝑖 are the Cartesian coordinates of the rear reference points with 

respect to 𝑥-axis and 𝑦-axis, 𝜃𝑖 measures the orientation of the car body with respect to 𝑥-axis 

and 𝜙𝑖 is the steering angle. 

Because of the nonholonomic constrains in the presence of rolling without slipping 

condition between wheels and ground, so the system shown in Figure 3.1 subject to two 

nonholonomic constraints:  

�̇�𝑖𝑓 𝑠𝑖𝑛(𝜃𝑖 + 𝜙𝑖) − �̇�𝑖𝑓cos(𝜃𝑖 + 𝜙𝑖) = 0 

 

�̇�𝑖𝑠𝑖𝑛𝜃𝑖 − �̇�𝑖𝑐𝑜𝑠𝜃𝑖 = 0 

where 𝑥𝑖𝑓 and 𝑦𝑖𝑓 are the Cartesian coordinates of the front wheel and are defined as 

𝑥𝑖𝑓 = 𝑥𝑖 + 𝑙𝑖𝑐𝑜𝑠𝜃𝑖 

𝑦𝑖𝑓 = 𝑦𝑖 + 𝑙𝑖𝑠𝑖𝑛𝜃𝑖 
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where 𝑙𝑖 is the distance between the fixed midpoint of the front axle and rear axle and all the 

vehicle’s 𝑙𝑖 are equal because we assume that all vehicles have the same mechanical structure.  

Then the first constraint can be rewritten as 

 

�̇�𝑖𝑠𝑖𝑛(𝜃𝑖 + 𝜙𝑖) − �̇�𝑖 𝑐𝑜𝑠(𝜃𝑖 + 𝜙𝑖) − �̇�𝑖𝑙𝑖𝑐𝑜𝑠𝜙𝑖 = 0 

 

The Pfaffian constraint matrix is 

 

𝐶(𝑞𝑖) = [
𝑠𝑖𝑛(𝜃𝑖 + 𝜙𝑖)

𝑠𝑖𝑛 𝜃𝑖
     

− 𝑐𝑜𝑠(𝜃𝑖 + 𝜙𝑖)
− cos 𝜃𝑖

     
−𝑙𝑖𝑐𝑜𝑠𝜙𝑖

0
      

0
0
] 

 

Note that the rank of the Pfaffian constraint matrix is 2. 

 

Figure 3.1 Generalized coordinates of four-wheel vehicles  

 

The four-wheel vehicle systems can be either driven by front wheels or rear wheels, and 

kinematic models are different based on different systems model, but throughout this thesis we 
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only focus on the model of rear-wheel driving. The kinematic model of rear-wheel driving model 

is derived as 

 

[
 
 
 
�̇�𝑖

�̇�𝑖

�̇�𝑖

�̇�𝑖]
 
 
 

=

[
 
 
 
 
𝑐𝑜𝑠 𝜃𝑖

𝑠𝑖𝑛 𝜃𝑖
𝑡𝑎𝑛 𝜙𝑖

𝑙𝑖

0 ]
 
 
 
 

𝑣𝑖1 + [

0
0
0
1

] 𝑣𝑖2                                          (3.1) 

 

where 𝑣𝑖1 and 𝑣𝑖2 are the linear velocity and the angular velocity input, respectively, for each 

vehicle. Note that the steering angle 𝜙𝑖 cannot reach or over 90° which makes perfect sense in 

reality. System (3.1) can be rewritten as  

 

�̇�𝑖 = 𝑔𝑖1(𝑞𝑖)𝑣𝑖1 + 𝑔𝑖2(𝑞𝑖)𝑣𝑖2                                               (3.2) 

 

where 

 

𝑔𝑖1 =

[
 
 
 
 
𝑐𝑜𝑠 𝜃𝑖

𝑠𝑖𝑛 𝜃𝑖

𝑡𝑎𝑛 𝜙𝑖

𝑙𝑖
0 ]

 
 
 
 

    and   𝑔𝑖2 = [

0
0
0
1

] 

 

The above system (3.2) is nonlinear and driftless which means in order to make any 

motion of the system, inputs must be implemented and cannot be zero. Note that there are less 

control inputs than generalized coordinates in (3.2).  

 

3.2 Full-State Linearization via Dynamic Feedback 

 

It is well known in control theory that if the number of generalized coordinates equals the 

number of input commands, then a nonlinear static state feedback law can be used to transform 
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exactly the nonlinear robot kinematics and dynamics into a linear system. For a linear system, it 

is easier and straightforward to design the distributed tracking controllers for multiple WMRs 

system, so in this subsection a linearization algorithm called full-state linearization is used to 

transform the nonlinear robot systems into linear systems and another linearization algorithm 

called input-output linearization will be introduced later.  

Suppose that a team consists of 𝑛 vehicles, in accordance with the task definition, we 

choose the two system outputs as 

 

𝑧𝑖 = [
𝑥𝑖

𝑦𝑖
]             

Namely the 𝑥𝑖 and 𝑦𝑖 coordiantes of each robot. Differentiating 𝑧𝑖 with respect to time, 

we have 

 

�̇�𝑖 = [
�̇�𝑖

�̇�𝑖
] = [

𝑣𝑖1 𝑐𝑜𝑠 𝜃𝑖

𝑣𝑖1 𝑠𝑖𝑛 𝜃𝑖
] = [

𝑐𝑜𝑠 𝜃𝑖 0
𝑠𝑖𝑛 𝜃𝑖 0

] [
𝑣𝑖1

𝑣𝑖2
]                                 (3.3) 

 

where both 𝑣𝑖1 and 𝑣𝑖2 are the control inputs. Note that the decoupling matrix is singular because 

the input 𝑣𝑖2 does not appear. In order to proceed with differentiation, an integrator with state 

denoted by 𝜉𝑖1 is added on the first input. 

 

𝑣𝑖1 = 𝜉𝑖1               𝜉𝑖1̇ = 𝑣𝑖1′                                                 (3.4) 

 

where 𝑣𝑖1′ is a new auxiliary input. Using equation (3.4) we can rewrite the first derivative of the 

output (3.3) as 

�̇�𝑖 = [
𝜉𝑖1 𝑐𝑜𝑠 𝜃𝑖

𝜉𝑖1 𝑠𝑖𝑛 𝜃𝑖
] 
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which is independent from the inputs 𝑣𝑖1′ and 𝑣𝑖2 of the extended system. In this way, 

differentiation of the original input signal at the next step of the procedure is avoided, then we 

have 

 

�̈�𝑖 =

[
 
 
 𝑣𝑖1′ 𝑐𝑜𝑠 𝜃𝑖 − 𝜉𝑖1

2 𝑠𝑖𝑛 𝜃𝑖

𝑡𝑎𝑛 𝜃𝑖

𝑙𝑖

𝑣𝑖1′ 𝑠𝑖𝑛 𝜃𝑖 − 𝜉𝑖1
2 𝑐𝑜𝑠 𝜃𝑖

𝑡𝑎𝑛 𝜃𝑖

𝑙𝑖 ]
 
 
 

=

[
 
 
 −𝜉𝑖1

2 𝑠𝑖𝑛 𝜃𝑖

𝑡𝑎𝑛 𝜃𝑖

𝑙𝑖

𝜉𝑖1
2 𝑐𝑜𝑠 𝜃𝑖

𝑡𝑎𝑛 𝜃𝑖

𝑙𝑖 ]
 
 
 

+ [
𝑐𝑜𝑠 𝜃𝑖 0
𝑠𝑖𝑛 𝜃𝑖 0

] [
𝑣𝑖1′ 
𝑣𝑖2 

] 

 

As 𝑣𝑖2 still does not appear yet, another integrator is needed on the input 𝑣𝑖1′, the state of 

integrator is denoted by 𝜉𝑖2  

 

𝑣𝑖1′ = 𝜉𝑖2               𝜉�̇�2 = 𝑣𝑖1′′                                                (3.5) 

 

then we have 

 

�̈�𝑖 =

[
 
 
 
 −𝜉𝑖1

2 𝑡𝑎𝑛 𝜙𝑖 𝑠𝑖𝑛 𝜃𝑖

𝑙𝑖
+ 𝜉𝑖2 𝑐𝑜𝑠 𝜃𝑖

𝜉𝑖1
2 𝑡𝑎𝑛 𝜙𝑖 𝑐𝑜𝑠 𝜃𝑖

𝑙𝑖
+ 𝜉𝑖2 𝑠𝑖𝑛 𝜃𝑖 ]

 
 
 
 

 

  

finally, the last differentiation gives us 

 

𝑧𝑖

=

[
 
 
 
 𝑣𝑖1

′′ 𝑐𝑜𝑠 𝜃𝑖 − 𝜉𝑖2 𝑠𝑖𝑛 𝜃𝑖

𝑡𝑎𝑛 𝜃𝑖

𝑙𝑖
𝜉𝑖1 −

𝑠𝑒𝑐2𝜙𝑖𝑣𝑖2

𝑙𝑖
𝜉𝑖1

2 𝑠𝑖𝑛 𝜃𝑖 +
𝑡𝑎𝑛 𝜙𝑖

𝑙𝑖
2𝜉𝑖1𝜉𝑖2 +

𝑡𝑎𝑛2𝜙𝑖

𝑙𝑖
𝑣𝑖1𝜉𝑖1

2 𝑐𝑜𝑠 𝜃𝑖

𝑣𝑖1
′′ 𝑠𝑖𝑛 𝜃𝑖 + 𝜉𝑖2 𝑐𝑜𝑠 𝜃𝑖

𝑡𝑎𝑛 𝜙𝑖

𝑙𝑖
𝜉𝑖1 +

𝑠𝑒𝑐2𝜙𝑖𝑣𝑖2

𝑙𝑖
𝜉𝑖1

2 𝑐𝑜𝑠 𝜃𝑖 +
𝑡𝑎𝑛 𝜙𝑖

𝑙𝑖
2𝜉𝑖1𝜉𝑖2 −

𝑡𝑎𝑛2𝜙𝑖

𝑙𝑖
𝑣𝑖1𝜉𝑖1

2 𝑠𝑖𝑛 𝜃𝑖]
 
 
 
 

(3.6) 
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We set 𝑧𝑖1 = 𝑟𝑖1  and 𝑧𝑖2 = 𝑟𝑖2  which are both auxiliary inputs values to solve equation 

(3.6) for 

 

[
𝑣𝑖1′′
𝑣𝑖2

] = [
𝜉𝑖1

3 𝑡𝑎𝑛2𝜙𝑖

𝑙𝑖
2 + 𝑟𝑖1 𝑐𝑜𝑠 𝜃𝑖 + 𝑟𝑖2 𝑠𝑖𝑛 𝜃𝑖

−3𝜉𝑖2𝑐𝑜𝑠2𝜙𝑖 𝑡𝑎𝑛 𝜙𝑖

𝜉𝑖1
−

𝑙𝑖𝑟𝑖1𝑐𝑜𝑠2𝜙𝑖 𝑠𝑖𝑛 𝜃𝑖

𝜉𝑖1
2 +

𝑙𝑖𝑟𝑖2𝑐𝑜𝑠2𝜙𝑖 𝑠𝑖𝑛 𝜃𝑖

𝜉𝑖1
2

]                   (3.7)  

 

Putting together the extension equation (3.4) and (3.5) with equation (3.7), the resulting 

nonlinear dynamic feedback controllers 

 

                                                    𝑣𝑖1 = 𝜉𝑖1 

                               𝑣𝑖2 =
−3𝜉𝑖2𝑐𝑜𝑠2𝜙𝑖 tan𝜙𝑖

𝜉𝑖1
−

𝑙𝑖𝑟𝑖1𝑐𝑜𝑠2𝜙𝑖 sin𝜃𝑖

𝜉𝑖1
2 +

𝑙𝑖𝑟𝑖2𝑐𝑜𝑠2𝜙𝑖 cos𝜃𝑖

𝜉𝑖1
2  

                                                    𝜉�̇�1 = 𝜉𝑖2 

                                                    𝜉�̇�2 = 𝜉𝑖1
3 𝑡𝑎𝑛2𝜙𝑖

𝑙𝑖
2 + 𝑟𝑖1 cos 𝜃𝑖 + 𝑟𝑖2 sin 𝜃𝑖 

 

transforms the original nonlinear system into a two linear decoupled system with three 

integrators 

𝑧𝑖1 = 𝑟𝑖1 

(3.8) 

𝑧𝑖2 = 𝑟𝑖2 

 

The original system has four states and the dynamic controllers have two additional states 

(states of two integrators) and all these six states can be found in the above input-output 

description (3.8), so there are no internal dynamics left. Now we can say that the full-state 
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linearization has been achieved. On the linear and decoupled system, it is easier to complete the 

control design with a globally stabilizing feedback for the desired trajectory. Note that if 𝑖 = 0, 

then it means it is the controllers of the virtual leader of the system which are assumed to be 

already known, so here in this thesis we only focus on designing the controller of the follower 

WMRs.     

 

3.3 Distributed Control of Kinematic Four-Wheel Mobile Robots  

 

In section 3.2, all the nonlinear robotic systems are transferred into linear systems, on the 

linear and decoupled system, it is easier to complete the controller design with a globally 

stabilizing feedback for the desired trajectory which is, in our case, the trajectory of the virtual 

leader. Suppose that in a multiple-vehicle system, there are 𝑛 vehicles, labeled 1 to 𝑛, called 

follower robots and there exists a virtual leader which is labeled as vehicle 0 with a positon 

𝑧0 = [𝑥0, 𝑦0] and velocity �̇�0 = [�̇�0, �̇�0]. We assume that throughout this thesis,  �̇�0 ≤ 𝛾ℓ and 

�̇�0 ≤ 𝛾ℓ, where 𝛾ℓ is a positive constant. 

 

Problem statement:  In this section, our control objective is to design distributed 

controllers for all follower robots in the multiple-vehicle system by using its own state 

information as well as its neighbor’s state information such that 

 

lim
𝑡→∞

(𝑥𝑖 − 𝑥0) = 0 

lim
𝑡→∞

(𝑦𝑖 − 𝑦0) = 0 

where (𝑖 = 1, 2,…… , 𝑛).  
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We assume that not all vehicles in the system are neighbors of the leader robot, which 

means only a few subsets of group of followers have the leader robot’s state information.    

Now consider followers with third-order dynamics given by 

 

�̇�𝑖1 = 휀𝑖1 ,     휀�̇�1 = 𝛿𝑖1 ,      �̇�𝑖1 = 𝑟𝑖1 ,    𝑖 = 1, 2, …… , 𝑛                             (3.9) 

 

�̇�𝑖2 = 휀𝑖2 ,     휀�̇�2 = 𝛿𝑖2 ,      �̇�𝑖2 = 𝑟𝑖2 ,    𝑖 = 1, 2, …… , 𝑛                           (3.10) 

 

where 𝑧𝑖1 𝜖 ℝ, 휀𝑖1 𝜖 ℝ and 𝛿𝑖1 𝜖 ℝ are, respectively, the 𝑥-axis position, velocity and acceleration 

of 𝑥-axis direction of follower 𝑖, 𝑧𝑖2 𝜖 ℝ, 휀𝑖2 𝜖 ℝ and 𝛿𝑖2 𝜖 ℝ are, respectively, the 𝑦-axis 

position, velocity and acceleration of 𝑦-axis direction of follower 𝑖. Both 𝑟𝑖1 𝜖 ℝ and 𝑟𝑖2 𝜖 ℝ are 

control inputs.  

In this subsection, we only consider the case that when all mobile robots are in a one-

dimensional space, but all the results hereafter are still valid for the 𝑛-dimensional with the aid of 

Kronecker product. The objective here is to design 𝑟𝑖1 in (3.9) and 𝑟𝑖2 in (3.10) for third-order 

dynamics such that all followers are able to track the trajectory of the virtual leader with local 

interaction. 

Now consider system (3.9), with the aid of new variables defined below (3.11), the 

system (3.9) can be rewritten as 

 

�̇�𝑖1 = −𝑘1𝑧𝑖1 + 𝑘1𝑧𝑖1 + 휀𝑖1 = −𝑘1𝑧𝑖1 + 𝑥𝑖2               

                          �̇�𝑖2 = 𝑘1�̇�𝑖1 + 𝛿𝑖1 = −𝑘2𝑥𝑖2 + 𝑘2𝑥𝑖2 + 𝑘1�̇�𝑖1 + 𝛿𝑖1 = −𝑘2𝑥𝑖2 + 𝑥𝑖3 

�̇�𝑖3 = 𝑘2�̇�𝑖2 + 𝑘1�̈�𝑖1 + 𝑟𝑖1 = 𝑢𝑖1                                                   

where 𝑘1 > 0 and 𝑘2 > 0. We have  
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                                                         𝑥𝑖2 = 𝑘1𝑧𝑖1 + 휀𝑖1 

 

                                                    𝑥𝑖3 = 𝑘2𝑥𝑖2 + 𝑘1�̇�𝑖1 + 𝛿𝑖1                                                    (3.11) 

 

𝑢𝑖1 = 𝑘2�̇�𝑖2 + 𝑘1�̈�𝑖1 + 𝑟𝑖1 

 

now system (3.9) becomes to 

 

                                                   �̇�𝑖1 = −𝑘1𝑧𝑖1 + 𝑥𝑖2 

 

�̇�𝑖2 = −𝑘2휀𝑖1 + 𝑥𝑖3                                                    (3.12) 

 

                                                   �̇�𝑖3 = 𝑢𝑖1 

 

 

Lemma 3.1: For the variables that defined in (3.11), if we have 

 

lim
𝑡→∞

(𝑧𝑖1 − 𝑧01) = 0 

 

lim
𝑡→∞

( 𝑥𝑖2 − 𝑥02) = 0 

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = 0 

 

then 

lim
𝑡→∞

(𝑧𝑖1 − 𝑧01) = 0 

 

 lim
𝑡→∞

( 휀𝑖1 − 휀01) = 0 
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 lim
𝑡→∞

(𝛿𝑖1 − 𝛿01) = 0 

 

are guaranteed. 

 

Proof:   First we have 

 

lim
𝑡→∞

( 𝑥𝑖2 − 𝑥02) = 0 

 

so by definition, we get 

 

lim
𝑡→∞

[( 𝑘1𝑧𝑖1 + 휀𝑖1) − (𝑘1𝑧01 + 휀01)] = 0 

 

since 𝑘1 is a positive constant and lim𝑡→∞(𝑧𝑖1 − 𝑧01) = 0, so that 

 

lim
𝑡→∞

( 휀𝑖1 − 휀01) = 0 

 

is achieved.  

Also according to (3.11)  

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = lim
𝑡→∞

[(𝑘2𝑥𝑖2 + 𝑘1�̇�𝑖1 + 𝛿𝑖1) − (𝑘2𝑥02 + 𝑘1�̇�01 + 𝛿01)] 

                                   = lim𝑡→∞[(𝑘2𝑥𝑖2 + 𝑘1휀𝑖1 + 𝛿𝑖1) − (𝑘2𝑥02 + 𝑘1휀01 + 𝛿01)] 

                                                    = 0 

since  

 

lim𝑡→∞( 𝑥𝑖2 − 𝑥02) = 0   and    lim𝑡→∞( 휀𝑖1 − 휀01) = 0 
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so  

lim
𝑡→∞

(𝛿𝑖1 − 𝛿01) = 0 

 

is achieved.                                                                                                                                     ∎  

 

Lemma 3.2:   If we have lim𝑡→∞( 𝑥𝑖3 − 𝑥03) = 0, then 

 

lim
𝑡→∞

( 𝑥𝑖2 − 𝑥02) = 0 

 

lim
𝑡→∞

(𝑧𝑖1 − 𝑧01) = 0 

 

are guaranteed.  

 

Proof:  According to (3.11)  

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = lim
𝑡→∞

[(𝑘2𝑥𝑖2 + 𝑘1�̇�𝑖1 + 𝛿𝑖1) − (𝑘2𝑥02 + 𝑘1�̇�01 + 𝛿01)] 

= lim
𝑡→∞

[(𝑘2𝑥𝑖2 + �̇�𝑖2) − (𝑘2𝑥02 + �̇�02)] 

= 0                                                                 

since 𝑘1 is a positive constant, so we have 

 

lim
𝑡→∞

( 𝑥𝑖2 − 𝑥02) = 0 

 

and we know that  

 

lim
𝑡→∞

[(𝑘2𝑥𝑖2 + �̇�𝑖2) − (𝑘2𝑥02 + �̇�02)] = lim
𝑡→∞

[(𝑘2𝑥𝑖2 − 𝑘2휀𝑖1 + 𝑥𝑖3) − (𝑘2𝑥02 − 𝑘2휀01 + 𝑥03)] 
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since 

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = 0 

 

so we have 

 

lim
𝑡→∞

[(𝑘2𝑦𝑖2 − 𝑘2휀𝑖1) − (𝑘2𝑦02 − 𝑘2휀01)]

= lim
𝑡→∞

{[𝑘2(𝑘1𝑧𝑖1 + 휀𝑖1) − 𝑘2휀𝑖1] − [𝑘2(𝑘1𝑧01 + 휀01) − 𝑘2휀01]} 

                                          = lim𝑡→∞{[𝑘2(𝑘1𝑧𝑖1 + 휀𝑖1) − 𝑘2휀𝑖1] − [𝑘2(𝑘1𝑧01 + 휀01) − 𝑘2휀01]}           

= lim
𝑡→∞

[(𝑘2𝑘1𝑧𝑖1) − (𝑘2𝑘1𝑧01)]                                 

= 0                                                                                    

Finally we get  

 

lim𝑡→∞(𝑧𝑖1 − 𝑧01) = 0                                                              ∎ 

Based on lemma 3.1, lemma 3.2 and the definition of new variables (3.11), we showed 

that a first-order kinematic controller �̇�𝑖3 = 𝑢𝑖1 can be used to solve the third-order dynamics 

tracking control problem. A first-order kinematic controller for distributed tracking control 

problems is proposed in [30] as follows 

 

𝑢𝑖1 = −𝛼 ∑ 𝑎𝑖𝑗(𝑥𝑖3 − 𝑥𝑗3) − 𝛽𝑠𝑔𝑛 ∑ 𝑎𝑖𝑗[(𝑥𝑖3 − 𝑥𝑗3)]
𝑛
𝑗=0

𝑛
𝑗=0                 (3.13) 

 

where 𝑎𝑖𝑗  (𝑖 = 1, … , 𝑛, 𝑗 = 0, … , 𝑛) is the (𝑖, 𝑗)𝑡ℎ entry of the adjacency matrix 𝒜, 𝑎𝑖0 is a 

positive constant if the leader robot’s state information is available to follower robot 𝑖 and 

𝑎𝑖0 = 0 otherwise. 𝛼 and 𝛽 are two positive constants and 𝑠𝑔𝑛(∙) is the signum function.   
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 Theorem 3.1: Suppose that a fixed undirected graph 𝒢 and the leader robot is the root of 

the spanning. Using (3.13) for the new system (3.12), it guarantees that  

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = 0 

 

Proof:   The proof of theorem 3.1 is given in [30]                                                              ∎ 

 

Similar to system (3.9), we can make the same changes to system (3.10), the new 

variables are defined as 

 

�̇�𝑖2 = −𝑘3𝑧𝑖2 + 𝑘3𝑧𝑖2 + 휀𝑖2 = −𝑘3𝑧𝑖2 + 𝑦𝑖2 

                              �̇�𝑖2 = 𝑘3�̇�𝑖2 + 𝛿𝑖2 = −𝑘4𝑦𝑖2 + 𝑘4𝑦𝑖2 + 𝑘3�̇�𝑖2 + 𝛿𝑖2 = −𝑘4𝑦𝑖2 + 𝑦𝑖3 

                              �̇�𝑖3 = 𝑘4�̇�𝑖2 + 𝑘3�̈�𝑖2 + 𝑟𝑖2 = 𝑢𝑖2 

 

where 𝑘3 > 0 and 𝑘4 > 0.  

We now define 

                                                  𝑦𝑖2 = 𝑘3𝑧𝑖2 + 휀𝑖2 
 

                                                           𝑦𝑖3 = 𝑘4𝑦𝑖2 + 𝑘3�̇�𝑖2 + 𝛿𝑖2                                        (3.14) 

            𝑢𝑖2 = 𝑘4�̇�𝑖2 + 𝑘3�̈�𝑖2 + 𝑟𝑖2   

 

now system (3.10) becomes to 

 

�̇�𝑖2 = −𝑘3𝑧𝑖2 + 𝑦𝑖2 

�̇�𝑖2 = −𝑘4휀𝑖2 + 𝑦𝑖3                                                    (3.15) 

                                                   �̇�𝑖3 = 𝑢𝑖2 
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Lemma 3.3:   For the variables that defined in (3.14), if we have 

 

lim
t→∞

(𝑧𝑖2 − 𝑧02) = 0 

 

 lim
t→∞

( 𝑦𝑖2 − 𝑦02) = 0 

  

 lim
t→∞

( 𝑦𝑖3 − 𝑦03) = 0 

 

then 

lim
𝑡→∞

(𝑧𝑖2 − 𝑧02) = 0 

 

lim
𝑡→∞

( 휀𝑖2 − 휀02) = 0 

 

lim
𝑡→∞

(𝛿𝑖2 − 𝛿02) = 0 

 

are guaranteed. 

 

Proof:   The proof of lemma 3.3 is similar to lemma 3.1                                                   ∎ 

 

Lemma 3.4:  If  lim𝑡→∞( 𝑦𝑖3 − 𝑦03) = 0, then  

 

lim
𝑡→∞

(𝑧𝑖2 − 𝑧02) = 0 

 

lim
𝑡→∞

( 𝑦𝑖2 − 𝑦02) = 0 

 

are guaranteed. The proof of lemma 3.4 is similar to the proof of lemma 3.2.  
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Theorem 3.2:  Suppose that a fixed undirected graph 𝒢 and the leader robot is the root of 

the spanning tree. Using the following tracking controller (3.16) for system (3.15), then it 

guarantees that 

 

lim
𝑡→∞

( 𝑦𝑖3 − 𝑦03) = 0 

 

The controller is given as 

 

𝑢𝑖2 = −𝛼 ∑ 𝑎𝑖𝑗(𝑦𝑖3 − 𝑦𝑗3) − 𝛽𝑠𝑔𝑛 ∑ 𝑎𝑖𝑗[(𝑦𝑖3 − 𝑦𝑗3)]
𝑛
𝑗=0

𝑛
𝑗=0                   (3.16) 

 

where 𝑎𝑖𝑗  (𝑖 = 1, … , 𝑛, 𝑗 = 0, … , 𝑛) is the (𝑖, 𝑗)𝑡ℎ entry of the adjacency matrix 𝒜, 𝑎𝑖0 is a 

positive constant if the leader robot’s state information is available to follower robot 𝑖 and 

𝑎𝑖0 = 0 otherwise.  𝛼 and 𝛽 are two positive constants and 𝑠𝑔𝑛(∙) is the signum function.   

 

Theorem 3.3:  Suppose that a fixed undirected graph 𝒢 and the leader robot is the root of 

the spanning tree. Using controller (3.13) for system (3.12) as 𝑥𝑖 in kinematic description (3.1) 

and controller (3.16) for system (3.15) as 𝑦𝑖 in kinematic description (3.1), then both 

 

lim
𝑡→∞

( 𝑥𝑖3 − 𝑥03) = 0 

lim
𝑡→∞

( 𝑦𝑖3 − 𝑦03) = 0 

 

are guaranteed. The control inputs 𝑣𝑖1 and 𝑣𝑖2 are 

 

                                 𝑣𝑖1 = 𝜉𝑖1  

 

𝑣𝑖2 =
−3𝜉𝑖2𝑐𝑜𝑠2𝜙𝑖 tan𝜙𝑖

𝜉𝑖1
−

𝑙𝑖𝑢𝑖1𝑐𝑜𝑠2𝜙𝑖 sin 𝜃𝑖

𝜉𝑖1
2 +

𝑙𝑖𝑢𝑖2𝑐𝑜𝑠2𝜙𝑖 cos 𝜃𝑖

𝜉𝑖1
2  
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where 𝜉𝑖1 and 𝜉𝑖2 are states of integrators that are defined in (3.4) and (3.5). 𝑢𝑖1 and 𝑢𝑖2 are 

defined in (3.13) and (3.16) 

 

Proof:   The proof is given in lemma 3.1 to lemma 3.4. Note that 𝑣𝑖1 and 𝑣𝑖2 can be 

obtained by putting together the dynamic extension (3.4) and (3.5) with equation (3.7).              ∎ 

 

3.4 Simulation  

 

In this section, in order to show the effectiveness of the proposed controllers in section 

3.3, we will present several simulation examples of a group of three wheeled mobile robots with 

a virtual leader, all the vehicles are assumed to have the same mechanical structure as shown in 

Figure 3.1. The communication graph of the multiple-vehicle system is shown in Figure 3.2, 

vertex 𝑣0 represents the leader robot.  

Figure 3.2 is a simple directed communication graph contains three follower robots and 

one leader robot. It is shown that the virtual leader is a neighbor to follower 1 only which means 

with local communication, the state information of the leader robot is only available to follower 

1, the state information of follower 1 is only available to follower 2, the state information of 

follower 2 is only available to follower 3 and all followers are aware of its own state information. 

We choose 𝛼 = 1 and 𝛽 = 1 and define the trajectory of the leader vehicle (the desired 

trajectory) is a unit circle such that 𝑥0 = 𝑠𝑖𝑛 (𝑡) and 𝑦0 = 𝑐𝑜𝑠 (𝑡). The tracking errors of 𝑥𝑖 − 𝑥0 

and 𝑦𝑖 − 𝑦0 of follower 1, follower 2 and follower 3 are shown in, respectively, Figure 3.3, 

Figure 3.4 and Figure 3.5. The state information 𝑞𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖 , 𝜙𝑖] of follower 1, follower 2 and 

follower 3 are shown in, respectively, Figure 3.6, Figure 3.7 and Figure 3.8.  
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It can be seen that the tracking errors of each vehicle ultimately converge to zero and 

state parameters of each vehicle satisfy the condition of being a unit circle, so the proposed 

controllers are effective. 

 

 

 

Figure 3.2 Communication graph III 
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Figure 3.3 Responses of (𝑥1 − 𝑥0) and (𝑦1 − 𝑦0) 
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Figure 3.4 Responses of (𝑥2 − 𝑥0) and (𝑦2 − 𝑦0) 
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Figure 3.5 Responses of (𝑥3 − 𝑥0) and (𝑦3 − 𝑦0) 
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Figure 3.6 Responses of 𝑞1 = [𝑥1, 𝑦1, 𝜃1, 𝜙1] 
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Figure 3.7 Responses of 𝑞2 = [𝑥2, 𝑦2, 𝜃2, 𝜙2] 
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Figure 3.8 Responses of 𝑞3 = [𝑥3, 𝑦3, 𝜃3, 𝜙3] 
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3.5 Kinematic Model of Two-Wheel Mobile Robots 

 

From section 3.1 to section 3.4, kinematic model of four-wheel Mobile Robots are 

discussed and tracking controllers are proposed accordingly. In this section, we will introduce 

the kinematic model of another mobile robot with two actual wheels on each side and the 

controllers will be proposed later. 

The Two-Wheel Mobile Robots model shown in Figure 3.9 is another typical example of 

a nonoholonomic mechanical system. It consists of a vehicle with two driving wheels mounted 

on the same axis. The motion and orientation of the vehicle are achieved by independent 

actuator, which means DC motors provide the necessary power to the driving wheels. We can 

describe the configuration of the two-wheel Mobile Robots model system with a vector 𝑞𝑖 =

(𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) 𝑖 = 1, 2, … , 𝑛. Because of the nonholonomic constrains in the presence of pure rolling 

and non-slipping condition, �̇�𝑖 must satisfy  

 

[𝑠𝑖𝑛𝜃𝑖    − 𝑐𝑜𝑠𝜃𝑖      0]   [

�̇�𝑖

�̇�𝑖

�̇�𝑖

] = 0 

 

where (𝑥𝑖 , 𝑦𝑖) are the coordinates of intersection 𝑷 of the left and right wheel and 𝜃𝑖 are the 

heading angles of the mobile robots, so the kinematic model is derived as  

 

�̇�𝑖 = [

�̇�𝑖

�̇�𝑖

�̇�𝑖

] = [
𝑐𝑜𝑠 𝜃𝑖

𝑠𝑖𝑛 𝜃𝑖

0

] 𝑣𝑖1 + [
0
0
1
] 𝑣𝑖2                                        (3.17) 

 

where one input 𝑣𝑖1 is the linear velocity and another input 𝑣𝑖2 is the angular velocity.  
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Figure 3.9 Generalized coordinates of two-wheel vehicles 

 

3.6 Input-Output Linearization via Static Feedback 

 

For a car-like robot kinematic model (3.8), a natural output choice for the trajectory 

tracking is  

𝑧𝑖 = [
𝑥𝑖

𝑦𝑖
] 

The linearization algorithm begins by computing  

 

�̇�𝑖 = [
𝑐𝑜𝑠𝜃𝑖 0
𝑠𝑖𝑛𝜃𝑖 0

] [
𝑣𝑖1

𝑣𝑖2
] = 𝑆(𝜃𝑖)𝑣𝑖 

At least one input appears in both components of �̇�𝑖, so that 𝑆(𝜃𝑖) is the actual decoupling 

matrix of the system and the system is singular. This well-known result states that linearization 

control techniques fail at point 𝑷. A common solution to this problem is to define a new 

reference point located at a certain distance 𝑑 from point 𝑷 as shown in Figure 3.10. 2𝑹 is the 

width of the mobile robot and 𝑟 is the radius of the wheel. 𝑂 − 𝑥𝑦 is the world coordinate system 
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and 𝑃 − 𝑋𝑌 is the coordinate system fixed to the mobile robot. In this thesis we choose a fixed 

point 𝑪 and use this point as a reference point hereafter.    

 

 

Figure 3.10 Generalized coordinates of two-wheel vehicles with new reference point 

 

By choosing the new reference point 𝑪, the nonholonomic constraints of pure rolling and 

non-slipping can be stated by 

 

�̇�𝑖𝑐  𝑐𝑜𝑠𝜃𝑖𝑐 − �̇�𝑖𝑐  𝑠𝑖𝑛𝜃𝑖𝑐 − 𝑑�̇�𝑖𝑐 = 0 

 

It is easy to derive the kinematic equations of point 𝑪 in terms of its linear velocity and 

angular velocities are  

 

[

�̇�𝑖𝑐

�̇�𝑖𝑐

�̇�𝑖𝑐

] = [
𝑐𝑜𝑠𝜃𝑖𝑐 −𝑑𝑠𝑖𝑛𝜃𝑖𝑐  
𝑠𝑖𝑛𝜃𝑖𝑐 𝑑𝑐𝑜𝑠𝜃𝑖𝑐

0              1

] [
𝑣𝑖𝑐1

𝑣𝑖𝑐2
]                                    (3.18) 
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where we assume 𝑣𝑖𝑐1 < 𝛾ℓ and 𝑣𝑖𝑐2 < 𝛾ℓ, 𝛾ℓ is a positive constant. System (3.18) is called the 

steering system. 

Now the output of the system can be redefined as 

 

𝑧𝑖𝑐 = [
𝑥𝑖𝑐

𝑦𝑖𝑐
] = [

𝑥𝑖 + 𝑑𝑐𝑜𝑠𝜃𝑖𝑐

𝑦𝑖 + 𝑑𝑠𝑖𝑛𝜃𝑖𝑐
] 

with 𝑑 ≠ 0. 

Differentiation of this new output gives 

 

�̇�𝑖𝑐 = [
𝑐𝑜𝑠𝜃𝑖𝑐 −𝑑𝑠𝑖𝑛𝜃𝑖𝑐

𝑠𝑖𝑛𝜃𝑖𝑐    𝑑𝑐𝑜𝑠𝜃𝑖𝑐
] [

𝑣𝑖𝑐1

𝑣𝑖𝑐2
] = 𝑆(𝜃𝑖𝑐)𝑣𝑖𝑐 

Now we can set �̇�𝑖𝑐 = 𝑟𝑖𝑐 as auxiliary input values and solve for in inputs 𝑣𝑖𝑐 as 

𝑣𝑖𝑐 = 𝑆−1(𝜃𝑖𝑐)𝑣𝑖𝑐 

In globally defined transformed coordinates (𝑥𝑖𝑐 , 𝑦𝑖𝑐 , 𝜃𝑖𝑐) the closed-loop system 

becomes  

�̇�𝑖𝑐 = �̇�𝑖𝑐1 = 𝑟𝑖𝑐1 

 

�̇�𝑖𝑐 = �̇�𝑖𝑐1 = 𝑟𝑖𝑐2 

 

                                                    �̇�𝑖𝑐 = 𝑣𝑖𝑐2 = −
𝑠𝑖𝑛𝜃𝑖𝑐

𝑑
𝑟𝑖𝑐1 +

𝑐𝑜𝑠𝜃𝑖𝑐

𝑑
𝑟𝑖𝑐2 

 

which is input-output linear and decoupled.  

After using the input-output linearization algorithm, the nonlinear systems are 

transformed into linear systems, now we are ready to design the distributed tracking controllers 

for two-wheel mobile robots. 
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3.7 Distributed Control of Kinematic Two-Wheel Mobile Robots 

 

In section 3.6, all the nonlinear robotic systems are transformed into linear systems, for a 

linear and decoupled system, it is easier to complete the controller design with a globally 

stabilizing feedback for the desired trajectory which is, in our case, the trajectory of the virtual 

leader. Suppose that in a multiple-vehicle system, there are 𝑛 follower vehicles, labeled 1 to 𝑛, 

and there exists a virtual leader which is labeled as vehicle 0 with a positon 𝑧0 = [𝑥0, 𝑦0] and 

velocity �̇�0 = [�̇�0, �̇�0]. We assume that throughout this thesis,  �̇�0 ≤ 𝛾ℓ and �̇�0 ≤ 𝛾ℓ, where 𝛾ℓ is 

a positive constant. 

Problem statement: In this section, our control objective is to design distributed 

controllers for all follower robots in the multiple-vehicle system by using its own state 

information as well as its neighbor’s state information such that  

 

lim
𝑡→∞

(𝑥𝑖𝑐 − 𝑥0) = 0 

lim
t→∞

(𝑦𝑖𝑐 − 𝑦0) = 0 

where (𝑖 = 1, 2,…… , n). We assume that not all vehicles in the system are neighbors of the 

leader robot which means only a subset of groups of followers have the leader robot’s state 

information. 

We have the kinematics of the leader robot in terms of the reference point 𝑪 is given by 

 

�̇�0𝑐 = [

�̇�0𝑐

�̇�0𝑐

�̇�0𝑐

] = [
𝑐𝑜𝑠 𝜃0𝑐

𝑠𝑖𝑛 𝜃0𝑐

0

] 𝑣0𝑐1 + [
0
0
1
] 𝑣0𝑐2 
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where 𝑥0𝑐, 𝑦0𝑐 and 𝜃0𝑐 are the configure of the leader robot and 𝑣0𝑐1 and 𝑣0𝑐2 are its reference 

inputs and are already known. Similar to follower vehicles, we assume 𝑣0𝑐1 < 𝛾ℓ and 𝑣0𝑐2 < 𝛾ℓ, 

where 𝛾ℓ is a positive constant. 

Now consider the following system: 

 

�̇�𝑖𝑐1 = 𝑟𝑖𝑐1                                                            (3.19) 

 

�̇�𝑖𝑐2 = 𝑟𝑖𝑐2                                                            (3.20) 

 

where 𝑧𝑖𝑐1 𝜖 ℝ and 𝑧𝑖𝑐2 𝜖 ℝ are the position of the reference point 𝒄 of each follower mobile 

robot, and 𝑟𝑖𝑐1 𝜖 ℝ and 𝑟𝑖𝑐2 𝜖 ℝ are the control inputs for each vehicle.  

The two control inputs 𝑟𝑖𝑐1  and 𝑟𝑖𝑐2 that make the tracking error converge to zero are 

given by the following: 

 

𝑟𝑖𝑐1 = −𝛼 ∑𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

                   (3.21) 

 

𝑟𝑖𝑐2 = −𝛼 ∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)]
𝑛
𝑗=0

2
+ 휀

                  (3.22) 

 

where 휀 = 𝑒−2𝑞𝑡, 𝑞 is a positive constant, 𝑎𝑖𝑗(𝑖 = 0, 1,… , 𝑛, 𝑗 = 1,2,… , 𝑛) is the (𝑖, 𝑗)𝑡ℎ entry of 

the adjacency matrix 𝒜 associated with the system, 𝑎𝑖0 is a positive constant if the virtual 

leader’s position is available to follower 𝑖, otherwise 𝑎𝑖0 = 0. 𝛼 is a nonnegative constant and 𝛽 

is a positive constant.  



  

57 
 

Theorem 3.3:  Suppose that a fixed undirected graph 𝒢 and the leader robot is the root of 

spanning tree, then by using the control inputs (3.21) and (3.22) for kinematic system (3.18), if 

we choose 𝛽 > 𝛾ℓ, then  

 

lim
𝑡→∞

(𝑥𝑖𝑐 − 𝑥0) = 0 

lim
𝑡→∞

(𝑦𝑖𝑐 − 𝑦0) = 0 

are guaranteed.  

 

Proof:   For simplicity discussion, here we only provide the proof of controller (3.21), but 

the same procedure also applies to the proof of controller (3.22). We define that �̃�𝑖𝑐 = 𝑥𝑖𝑐 − 𝑥0𝑐, 

so the closed loop system (3.18) can be rewritten as  

 

�̇̃�𝑖𝑐1 = �̇̃�𝑖𝑐 = −𝛼 ∑𝑎𝑖𝑗(�̃�𝑖𝑐 − �̃�𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗)
𝑛
𝑗=0 ]2 + 휀

− �̇�0              (3.23) 

 

Equation (3.23) can be rewritten in matrix form as 

 

�̇̃� = [
�̇̃�1𝑐

⋮
�̇̃�𝑛𝑐

] = −𝛼𝑀 [
�̃�1𝑐

⋮
�̃�𝑛𝑐

] − 𝛽

[
 
 
 
 
 

𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)

√[𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)]2 + 휀
⋮

𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)

√[𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)]2 + 휀]
 
 
 
 
 

− 𝟏�̇�0 

  

where 𝑀 = 𝐿 + 𝑑𝑖𝑎𝑔(𝑎10, … , 𝑎𝑛0) with 𝐿 being the Lapacian matrix associated with the system. 

Because the fixed undirected graph 𝒢 is connected and at least one 𝑎𝑖0 is nonzero (and hence it is 

positive), so 𝑀 is symmetric positive definite. 
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Now consider the following Lyapunov function candidate 

 

𝑉 =
1

2
�̃�𝑇𝑀�̃� 

where (𝑖 = 0, 1, 2, …… , 𝑛). 

Take derivative of 𝑉 gives 

 

�̇� = �̃�𝑇𝑀

[
 
 
 
 
 

−𝛼𝑀�̃� − 𝛽

(

 
 
 

𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)

√[𝑎10𝑏(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)]2 + 휀

⋮
𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)

√[𝑎𝑛0𝑏(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)]2 + 휀)

 
 
 

− 𝟏�̇�0

]
 
 
 
 
 

 

 

= −𝛼�̃�𝑇𝑀2�̃� − 𝛽�̃�𝑇𝑀

(

 
 
 

𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)

√[𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)]2 + 휀
⋮

𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)

√[𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)]2 + 휀)

 
 
 

− �̃�𝑇𝑀𝟏�̇�0 

 

Define 𝑌 = [𝑌1 ⋯ 𝑌𝑛] = �̃�𝑇𝑀, then  

 

�̇� = −𝛼�̃�𝑇𝑀2�̃� − 𝛽𝑌

(

 
 
 

𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)

√[𝑎10(𝑥1𝑐 − 𝑥0𝑐)⋯+ 𝑎1𝑛(𝑥1𝑐 − 𝑥𝑛𝑐)]2 + 휀
⋮

𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)

√[𝑎𝑛0(𝑥𝑛𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑛𝑛−1(𝑥𝑛𝑐 − 𝑥𝑛−1𝑐)]2 + 휀)

 
 
 

− �̃�𝑇𝑀𝟏�̇�0 

 

            ≤ −𝛼�̃�𝑇𝑀2�̃� + |�̇�0|∑ |𝑌𝑖|
𝑛

𝑖=1
− 𝛽 ∑ 𝑌𝑖

𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑐𝑛)

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀

𝑛

𝑖=1
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     ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ |𝑌𝑖|
𝑛

𝑖=1
− 𝛽 ∑ 𝑌𝑖

𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀

𝑛

𝑖=1
 

 

If we choose 𝛽 = 𝛾ℓ, then 

 

�̇� ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ (|𝑌𝑖| − 𝑌𝑖

𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀
)

𝑛

𝑖=1
 

 

≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ (|𝑌𝑖| −
[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]

2

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀
)

𝑛

𝑖=1
 

 

    ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ (|𝑌𝑖| −
[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]

2 + 휀 − 휀

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀
)

𝑛

𝑖=1
 

 

                  ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ (|𝑌𝑖|
𝑛

𝑖=1
− √[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀

+
휀

√[𝑎𝑖0(𝑥𝑖𝑐 − 𝑥0𝑐)⋯+ 𝑎𝑖𝑛(𝑥𝑖𝑐 − 𝑥𝑛𝑐)]2 + 휀
) 

 

                  ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ (|𝑌𝑖| − √|𝑌𝑖|2 + 휀 +
휀

√|𝑌𝑖|2 + 휀
)

𝑛

𝑖=1
 

 

Since √|𝑌𝑖|2 + 휀 > 0, then 

 

�̇� ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑
휀

√|𝑌𝑖|2 + 휀

𝑛

𝑖=1
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                                                         ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ ∑ √휀
𝑛

𝑖=1
 

 

                                                         ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ𝑛√휀 

 

                                                         ≤ 𝛾ℓ𝑛√휀 

 

Since |𝑣01| ≤ 𝛾ℓ, we have |�̇�0| ≤ 𝛾ℓ, so the second inequality is derived. Note that 𝑀2 is 

symmetric positive definite, 𝛼 is nonnegative, 휀 is a sufficient small positive constant and 𝛽 >

𝛾ℓ. Integrate �̇� we have 

 

∫ �̇�
𝑡

0

𝑑𝑡 ≤ ∫ 𝛾ℓ𝑛√휀
𝑡

0

𝑑𝑡 

 

                 ≤ 𝛾ℓ𝑛 ∫ 𝑒−𝑞𝑡
𝑡

0

𝑑𝑡 

 

                      ≤ 𝛾ℓ𝑛
1

𝑞
(1 − 𝑒−𝑞𝑡) 

 

where 𝑡 ∈ [0,∞). Now 𝑉(𝑡) is shown to be bounded.  

Since 

�̇� ≤ −𝛼�̃�𝑇𝑀2�̃� + 𝛾ℓ𝑛√휀 

 

Now we have 

 

∫ �̇�
𝑡

0

𝑑𝑡 ≤ −𝛼 ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡 + 𝛾ℓ𝑛 ∫ √휀
𝑡

0

𝑑𝑡 

so �̃� is bounded. 
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𝛼 ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡 ≤ 𝛾ℓ𝑛 ∫ √휀
𝑡

0

𝑑𝑡 − ∫ �̇�
𝑡

0

𝑑𝑡 

The boundedness of the right side of the above inequality is already shown, so we can see 

that the left side of the inequality is also bounded. Note that 𝑀2 is symmetric positive definite, so 

∫ �̃�2𝑡

0
 is bounded.  

Now we show the boundedness of both �̃� and ∫ �̃�2𝑡

0
, it then follows lemma 3.2.5 with 

𝑝 = 2 in [62] that lim𝑡→∞ �̃� = 0.                                                                                                   ∎  

 

3.8 Simulation 

 

In this section, we will present several simulation examples of a group of three wheeled 

mobile robots with a virtual leader to show the effectiveness of the proposed controllers in 

section 3.7. All the vehicles are assumed to have the same mechanical structure as shown in 

Figure 3.10 and the communication graph is shown in Figure 3.11, vertex 𝑣0 represents the 

leader robot.  

We choose 𝛼 = 1, 𝑞 = 1 and 𝛽 = 1 for the proposed controllers, also define the desired 

trajectory is a unit circle with 𝑥0 = 𝑠𝑖𝑛 (𝑡) and 𝑦0 = 𝑐𝑜𝑠 (𝑡). The tracking errors 𝑥𝑖 − 𝑥0 and 

𝑦𝑖 − 𝑦0 of follower 1, follower 2 and follower 3 are shown in, respectively, Figure 3.12, Figure 

3.13 and Figure 3.14. The state information 𝑞𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖] of follower 1, follower 2 and 

follower 3 are shown in, respectively, Figure 3.15, Figure 3.16 and Figure 3.17.  

It can be seen that the tracking errors of each vehicle ultimately converge to zero and 

state parameters of each vehicle satisfy the condition of being a unit circle, so the proposed 

controllers are effective.  
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Figure 3.11 Communication graph IV 
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Figure 3.12 Responses of (𝑥1 − 𝑥0) and (𝑦1 − 𝑦0) 
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Figure 3.13 Responses of (𝑥2 − 𝑥0) and (𝑦2 − 𝑦0) 

 

 

 

 



  

65 
 

 

 

 

 

 

 

 

Figure 3.14 Responses of (𝑥3 − 𝑥0) and (𝑦3 − 𝑦0) 
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Figure 3.15 Responses of 𝑞1 = [𝑥1, 𝑦1, 𝜃1] 

 

 

 

 



  

67 
 

 

 

 

 

 

 

 

Figure 3.16 Responses of 𝑞2 = [𝑥2, 𝑦2, 𝜃2] 
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Figure 3.17 Responses of 𝑞3 = [𝑥3, 𝑦3, 𝜃3] 
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3.9 Summary 

 

In this chapter, distributed coordinate tracking control of multiple wheeled mobile robots 

is addressed for two different kinematic models. Cooperative coordinate tracking control is 

achieved with the aid of exact feedback control, variable transformations are utilized to transfer 

the original nonlinear kinematics into linear system, and also graph theory is utilized in order to 

design the tracking controllers.    

Control via exact feedback is used in this chapter, in section 3.2 and 3.6 we transform 

both the third-order dynamic four-wheel mobile robots nonlinear system and two-wheel mobile 

robots system to linear systems by using full-state linearization algorithm and input-output 

linearization algorithm respectively. In section 3.3, we extended the results of first-order 

kinematics and second-order dynamics controller that introduced in [30] to the third-order 

dynamics. In section 3.7, distributed tacking controllers for two-wheel kinematic vehicles are 

proposed. The effectiveness of all control laws proposed in this chapter are shown by the 

simulation results and a follower robot is able to track leader robots trajectory without knowing 

leader’s state information.      
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CHAPTER IV 

 

DISTRIBUTED TRACKING CONTROL OF MULTIPLE 

 DYNAMIC WMRS 

 

In chapter III, kinematic models of wheeled mobile robots are discussed and control laws 

for kinematic systems are proposed accordingly. The control inputs of the kinematic controllers 

are generally velocities, however, it is more realistic that the control inputs are torques generated 

by engine or motor of the vehicle. So in this chapter, torque controllers will be designed in 

dynamic model of the vehicle by using backstepping method to make sure the velocities of the 

vehicle converge to the desired velocities. The desired velocities are given by the kinematic 

controllers that designed in chapter III and asymptotic stability is guaranteed by Lyapunov 

theory.    

The dynamic extension proposed in this chapter using the method of taking account the 

specific vehicle dynamics to convert a steering system command into control inputs for the 

actual vehicle. The method is considered as backstepping control approach. First, feedback 

velocity control inputs are designed for kinematic system to make the position error 

asymptotically stable, which is already done in chapter III. Second, feedback velocities following 

control laws are designed such that the vehicle’s velocities converge asymptotically to the given 

velocity inputs. Finally, the torque feedback controller uses the second control signal to compute 

the required torque for the actual mobile robots.   



  

71 
 

In real life, it is hard to calculate some inertial parameters of WMRs such as the inertial 

tensors, also the payload for missions may be different, so in this chapter, we will consider 

dynamics that with and without inertial uncertainties. 

 

4.1 Dynamic Modeling of Wheeled Mobile Robots 

 

 Consider the nonholonomic mobile robot shown in Figure 3.10, the motion and 

orientation are achieved by independent actuators, which means DC motors providing the 

necessary torques to the rear wheels. We consider all the mobile robots are subject to 𝑚 

constraints 

 

𝐷(𝑞𝑖)�̈�𝑖 + 𝐶(𝑞𝑖 , �̇�𝑖)�̇�𝑖 + 𝐺(𝑞𝑖) = 𝐵(𝑞𝑖)𝜏𝑖 − 𝐴𝑇(𝑞𝑖)𝜆𝑖                          (4.1) 

 

where 𝑞𝑖 are defined in (3.19), 𝜏𝑖 ∈  ℝ𝑟  are input vectors, 𝜆𝑖 ∈  ℝ𝑚 are the vectors of constraint 

forces, 𝐷(𝑞𝑖) ∈  ℝ𝑛×𝑛 are symmetric and positive-definite inertial matrix, 𝐶(𝑞𝑖 , �̇�𝑖) ∈ ℝ𝑛×𝑛 are 

the centripetal and Coriolis matrix, 𝐺(𝑞𝑖) ∈  ℝ𝑛 are the gravitational vectors,  𝐵(𝑞𝑖) ∈ ℝ𝑛×𝑟 are 

the input transformation matrixes and 𝐴(𝑞𝑖) ∈  ℝ𝑚×𝑛 are the matrixes associated with the 

constraints. In the following of this chapter, we assume that 𝑟 = 𝑛 − 𝑚.  

Consider that all kinematic equality constraints are independent of time, and can be 

expressed as 

𝐴(𝑞𝑖)�̇�𝑖 = 0                                                                    (4.2) 

 

Let 𝑆(𝑞𝑖) be a full rank matrix formed by a set of smooth and linearly independent vector 

fields spanning the null space of  𝐴(𝑞𝑖) 
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𝑆𝑇(𝑞𝑖)𝐴
𝑇(𝑞𝑖) = 0                                                           (4.3) 

   

Based on equation (4.2) and (4.3), it is possible to find an auxiliary vector time function 

𝑣𝑖(𝑡) ∈  ℝ𝑛−𝑚, such that for all 𝑡 

 

�̇�𝑖 = 𝑆(𝑞𝑖)𝑣𝑖(𝑡)                                                              (4.4) 

 

As we already discussed that for a car-like agent shown in Figure 3.10, linearization 

control algorithm fail at point 𝑷 which is the intersection of the left and right wheel, so a fixed 

point 𝑪 located at a distance 𝑑 from point 𝑷 is redefined as reference point and use this reference 

point to develop the mathematical model. 

The nonholonomic constraints state that wheels of all the mobile robots roll and do not 

slip 

�̇�𝑖𝑐𝑐𝑜𝑠𝜃𝑖𝑐 − �̇�𝑖𝑐𝑠𝑖𝑛𝜃𝑖𝑐 − 𝑑�̇�𝑖𝑐 = 0 

 

It is easy to verify that 𝑆(𝑞𝑖) is given by  

 

𝑆(𝑞𝑖) = [
𝑐𝑜𝑠𝜃𝑖𝑐

𝑠𝑖𝑛𝜃𝑖𝑐

0

 
−𝑑𝑠𝑖𝑛𝜃𝑖𝑐

𝑑𝑐𝑜𝑠𝜃𝑖𝑐

1

]                                                     (4.5) 

   

It matches the kinematics model of point 𝑪 we derived in (3.18). System (4.5) is called 

the steering system of a vehicle.  

The Lagrange formalism is used to derive the dynamic equations of mobile robots, in the 

case that 𝐺(𝑞𝑖) = 0, the dynamic equation of the mobile robots shown in Figure 3.10 can be 

expressed as  
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𝐷(𝑞𝑖) = [

𝑚
0

𝑚𝑑𝑠𝑖𝑛𝜃𝑖𝑐

 
0
𝑚

−𝑚𝑑𝑐𝑜𝑠𝜃𝑖𝑐

 
𝑚𝑑𝑠𝑖𝑛𝜃𝑖𝑐

−𝑚𝑑𝑐𝑜𝑠𝜃𝑖𝑐

𝐼

] 

 

𝐶(𝑞𝑖 , �̇�𝑖)�̇�𝑖 = [
𝑚𝑑�̇�𝑖𝑐

2
𝑐𝑜𝑠𝜃𝑖𝑐

𝑚𝑑�̇�𝑖𝑐
2
𝑠𝑖𝑛𝜃𝑖𝑐

0

] 

 

𝐵(𝑞𝑖) =
1

𝑟
[
𝑐𝑜𝑠𝜃𝑖𝑐

𝑠𝑖𝑛𝜃𝑖𝑐
𝑅

 
𝑐𝑜𝑠𝜃𝑖𝑐

𝑠𝑖𝑛𝜃𝑖𝑐

−𝑅

] 

 

 

𝐴𝑇(𝑞𝑖) = [
−𝑠𝑖𝑛𝜃𝑖𝑐

𝑐𝑜𝑠𝜃𝑖𝑐

−𝑑

] 

 

𝜆𝑖 = −𝑚(�̇�𝑖𝑐𝑐𝑜𝑠𝜃𝑖𝑐 + �̇�𝑖𝑐𝑠𝑖𝑛𝜃𝑖𝑐)�̇�𝑖𝑐 

 

For the nonholonomic mobile robots in (4.1), the following properties hold: 

 

Property 1: 𝐷(𝑞𝑖) and 𝐶(𝑞𝑖 , �̇�𝑖) are bounded. 

Property 2: The matrix �̇� − 2𝐶 is skew-symmetric, that is, 𝑥𝑇(�̇� − 2𝐶)𝑥 = 0. 

 

Differentiating equation (4.4),  

 

�̈�𝑖 = �̇�𝑣𝑖 + 𝑆�̇�𝑖  

 

Substituting the result in (4.1) gives 

 

𝐷(�̇�𝑣𝑖 + 𝑆�̇�𝑖) + 𝐶𝑆𝑣𝑖 = 𝐵(𝑞𝑖)𝜏𝑖 − 𝐴𝑇𝜆𝑖 
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Then multiply by 𝑆T  

 

𝑆𝑇𝐷(�̇�𝑣𝑖 + 𝑆�̇�𝑖) + 𝑆𝑇𝐶𝑆𝑣𝑖 = 𝑆𝑇𝐵(𝑞𝑖)𝜏𝑖 − 𝑆𝑇𝐴𝑇𝜆𝑖 

 

Since 𝑆𝑇𝐴𝑇 = 0, so we have  

 

𝑆𝑇𝐷𝑆 �̇�𝑖 + 𝑆𝑇(𝐷�̇� + 𝐶𝑆𝑣𝑖𝑆)𝑣𝑖 = 𝑆𝑇𝐵 𝜏𝑖  

 

Then the complete equation of motion of nonholonomic mobile robots are transformed 

and divided into the following two equations which is a more appropriate representation for 

control purposes. 

 

�̇�𝑖 = 𝑆(𝑞𝑖)𝑣𝑖(𝑡)                                                               (4.6) 

 

𝐷(𝑞𝑖)�̇�𝑖 + 𝐶(𝑞𝑖, �̇�𝑖)𝑣𝑖 = 𝐵(𝑞𝑖)𝜏𝑖                                             (4.7) 

 

where 𝑣𝑖 ∈ ℝ𝑛−𝑚 is a velocity vector, 𝐷 = 𝑆𝑇𝐷𝑆 is a symmetric and positive-definite inertial 

matrix,  𝐶 = 𝑆𝑇(𝐷�̇� + 𝐶𝑆𝑣𝑖𝑆) is the centripetal and 𝐵 = 𝑆𝑇𝐵 is the input transformation matrix 

and 𝜏𝑖 ∈ ℝ𝑟×𝑟 is the input vector. Equation (4.7) describes the behavior of the nonholonomic 

system in a new local coordinates. If 𝑟 = 𝑛 − 𝑚, then 𝐵(𝑞𝑖) is nonsigular. 

For system (4.7), similar properties hold: 

 

Property 3: 𝐷(𝑞𝑖) and 𝐶(𝑞𝑖 , �̇�𝑖) are bounded. 

Property 4: The matrix �̇� − 2𝐶 is skew-symmetric. 
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 4.2 Distributed Control of Dynamic Systems  

Without Inertial Uncertainties 

 

The complete dynamics system (4.6) and (4.7) consist of the kinematic steering system 

(4.6) plus some extra dynamics (4.7), standard approaches to design nonholonomic controllers 

only deal with (4.6), just like chapter III, ignoring the actual vehicle dynamics. So in this chapter, 

we will correct this omission.  

Let 𝑢𝑖 be an auxiliary input, then by applying the nonlinear feedback 

 

𝜏𝑖 = 𝑓𝜏𝑖
(𝑞𝑖 , �̇�𝑖 , 𝑣𝑖 , 𝑢𝑖) = 𝐵

−1
(𝑞𝑖)[𝐷(𝑞𝑖)𝑢𝑖 + 𝐶(𝑞𝑖, �̇�𝑖)𝑣𝑖]                    (4.8) 

 

If we assume all the dynamical quantities 𝐷(𝑞𝑖) and 𝐶(𝑞𝑖 , �̇�𝑖) are exactly known, then 

one can convert the dynamic control problem into kinematic problem. 

 

�̇�𝑖 = 𝑆(𝑞𝑖)𝑣𝑖                                                                (4.9) 

 

�̇�𝑖 = 𝑢𝑖                                                                       (4.10) 

 

For system (4.9), as we discussed in section (3.6) that the natural output choice for 

trajectory tracking task is  

 

𝑞𝑖𝑐 = [
𝑥𝑖 + 𝑑𝑐𝑜𝑠𝜃𝑖

𝑦𝑖 + 𝑑𝑠𝑖𝑛𝜃𝑖
] 

After linearization, in global defined transformed coordinates 𝑞𝑖𝑐 = (𝑥𝑖𝑐 , 𝑦𝑖𝑐 , 𝜃𝑖𝑐) the 

closed-loop system become 
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�̇�𝑖𝑐 = 𝑟𝑖𝑐1                                           

 

𝑦𝑖𝑐 = 𝑟𝑖𝑐2                                           

 

�̇�𝑖𝑐 = −
𝑠𝑖𝑛𝜃𝑖𝑐

𝑑
𝑟𝑖𝑐1 +

𝑐𝑜𝑠𝜃𝑖𝑐

𝑑
𝑟𝑖𝑐2 

 

which are input-output linear and decoupled. So we can rewrite system (4.9) and (4.10) to 

 

�̇�𝑖𝑐 = 𝑟𝑖𝑐                                                                      (4.11) 

 

�̇�𝑖𝑐 = 𝑢𝑖                                                                       (4.12) 

 

In this section, we will convert the prescribed control 𝑣𝑖(𝑡) in chapter III into a torque 

control 𝜏𝑖 for the actual vehicles.  So our objective is select 𝜏𝑖 in (4.7) such that (4.6) and (4.7) 

exhibit the desired behavior.  

The auxiliary velocity control input that achieves distributed tracking control for system 

(4.11) is given by  

 

𝑟𝑖𝑐1 = −𝛼 ∑𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

 

 

𝑟𝑖𝑐2 = −𝛼 ∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

 

 

where 𝛼, 𝛽, 𝑎𝑖𝑗 and 휀 are all defined in (3.21) and (3.22), then the derivation of 𝑟𝑖𝑐1 and 𝑟𝑖𝑐1 

becomes  
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�̇�𝑖𝑐1 = −𝛼 ∑𝑎𝑖𝑗(�̇�𝑖𝑐 − �̇�𝑗𝑐)

𝑛

𝑗=0

− 2𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑦𝑥𝑗𝑐) ∗ (�̇�𝑖𝑐

− �̇�𝑗𝑐)𝛽

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀 −

(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

2√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)]
𝑛
𝑗=0

2
+ 휀

[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

) 

 

�̇�𝑖𝑐2 = −𝛼 ∑𝑎𝑖𝑗(�̇�𝑖𝑐 − �̇�𝑗𝑐)

𝑛

𝑗=0

− 2𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐) ∗ (�̇�𝑖𝑐

− �̇�𝑗𝑐)𝛽

√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)]
𝑛
𝑗=0

2
+ 휀 −

(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

2√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)]
𝑛
𝑗=0

2
+ 휀

[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)]
𝑛
𝑗=0

2
+ 휀

) 

 

We propose the nonlinear feedback control input is  

𝑢𝑖 = �̇�𝑖𝑐 + 𝐾5(𝑟𝑖𝑐 − 𝑣𝑖)                                                 (4.13) 

where 𝐾5 is a positive definite, diagonal matrix given by 

𝐾5 = 𝑘5𝑰 

where 𝑘5 is a positive constant.  

Theorem 4.1:  Given nonholonomic systems (4.6) and (4.7) with 𝑛 generalized 

coordinates 𝑞, 𝑚 independents and 𝑟 actuators, let the conditions satisfied: 

1) The number of actuators is equal to the number of degree of freedom (i.e. 𝑟 = 𝑛 −

𝑚). 
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2) Smooth auxiliary velocities control input 𝑟𝑖𝑐 are given by (3.21) and (3.22). 

3) 𝑘5 is a positive constant. 

If the leader robot is the root of spanning tree and let the nonlinear feedback control 𝑢𝑖 

given by (4.13) and the mobile robot input commands be given by (4.8), then the velocities of 

mobile robots satisfy 

lim
𝑡→∞

(𝑣𝑖 − 𝑟𝑖𝑐) = 0 

Proof:   Define an auxiliary velocity error 

𝑒𝑣𝑖 = 𝑣𝑖 − 𝑟𝑖𝑐 = [
𝑒𝑣𝑖1

𝑒𝑣𝑖2
] =

[
 
 
 
 
 
 𝑣𝑖1 + 𝛼 ∑𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛

𝑗=0

+ 𝛽
∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

𝑣𝑖2 + 𝛼 ∑𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛

𝑗=0

+ 𝛽
∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

]
 
 
 
 
 
 

(4.14) 

by using (4.13), we have  

�̇�𝑖𝑐 = 𝑢𝑖 − 𝐾5(𝑟𝑖𝑐 − 𝑣𝑖)                                                         (4.15) 

substituting (4.15) gives 

�̇�𝑣𝑖 = 𝑣�̇� − �̇�𝑖𝑐 = 𝑣�̇� − 𝑢𝑖 + 𝐾5(𝑟𝑖𝑐 − 𝑣𝑖) 

by using (4.13) we obtain  

�̇�𝑣𝑖 = 𝐾5(𝑟𝑖𝑐 − 𝑣𝑖) = −𝐾5𝑒𝑣𝑖 
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Under the assumption that 𝑘5 is a positive constant the auxiliary velocity vector 𝑒 

converges exponentially to zero, so the velocity vectors of vehicles satisfy 

lim
𝑡→∞

(𝑣𝑖 − 𝑟𝑖𝑐) = 0                                                                    ∎ 

 

4.3 Simulation 

 

In this section, we will present several simulation examples of a group of three wheeled 

mobile robots with a virtual leader to show the effectiveness of the proposed controllers in 

section 4.2. All the vehicles are assumed to have the same mechanical structure as shown in 

Figure 3.10. The communication graph is shown in Figure 4.1, vertex 𝑣0 represents the leader 

robot. 

 

Figure 4.1 Communication graph V 
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We choose 𝛼 = 1 and 𝛽 = 1, also define the desired trajectory is a unit circle with 

𝑥0 = 𝑠𝑖𝑛 (𝑡) and 𝑦0 = 𝑐𝑜𝑠 (𝑡). The tracking errors of 𝑥𝑖 − 𝑥0 and 𝑦𝑖 − 𝑦0 of follower 1, follower 

2 and follower 3 are shown in, respectively, Figure 4.2, Figure 4.3 and Figure 4.4. The state 

information 𝑞𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖] of follower 1, follower 2 and follower 3 are shown in, respectively, 

Figure 4.5, Figure 4.6 and Figure 4.7.  

It can be seen that the tracking errors of each vehicle ultimately converge to zero and 

state parameters of each vehicle satisfy the condition of being a unit circle, so the proposed 

controllers are effective.  
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Figure 4.2 Responses of (𝑥1 − 𝑥0) and (𝑦1 − 𝑦0) 
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Figure 4.3 Responses of (𝑥2 − 𝑥0) and (𝑦2 − 𝑦0) 
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Figure 4.4 Responses of (𝑥3 − 𝑥0) and (𝑦3 − 𝑦0) 
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Figure 4.5 Responses of 𝑞1 = [𝑥1, 𝑦1, 𝜃1] 
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Figure 4.6 Responses of 𝑞2 = [𝑥2, 𝑦2, 𝜃2] 
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Figure 4.7 Responses of 𝑞3 = [𝑥3, 𝑦3, 𝜃3] 
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4.4 Distributed Control of Dynamic Systems  

With Inertial Uncertainties 

 

In section 4.2, distributed tracking controllers are proposed for dynamic systems without 

inertial uncertainties, we assume that 𝐷(𝑞𝑖) and 𝐶(𝑞𝑖 , �̇�𝑖) are exactly known in system (4.7), 

however, it is more realistic that the inertial parameters are not exactly known or even not 

known.  

Consider the general dynamics of mobile robots (4.1), there exists a differentiable vector 

𝑎𝑖 with components depending on mechanical parameters (masses, moments of inertia, etc.), 

such that  

 

𝐷(𝑞𝑖)�̇�𝑖 + 𝐶(𝑞𝑖 , �̇�𝑖)𝜂𝑖 + 𝐺(𝑞𝑖) = 𝑌(𝑞𝑖, �̇�𝑖 , 𝜂𝑖 , �̇�𝑖)𝑎𝑖 

where 𝑎𝑖 is an inertia parameter vector which is related to the mass and moment of inertia and 

the regressor matrix 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖 , �̇�𝑖) is known as function of 𝑞𝑖 , �̇�𝑖 , 𝜂𝑖 and �̇�𝑖. In practice, the 

inertial parameter vector 𝑎𝑖 is not exactly known or unknown due to the following reasons: 

1) It is hard to calculate some inertial parameters, such as the inertial tensors. 

2) The payload for missions may be different. 

So in this section, we assume the inertial parameter vector 𝑎𝑖 is a constant vector and 

remains unknown. 

 

Problem statement: Our control objective in this section is, under the assumption that the 

inertial parameter vector 𝑎𝑖 are unknown, to design distributed controllers 𝜏𝑖 for all follower 

robots described in (4.1) such that  
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lim
𝑡→∞

(𝑥𝑖𝑐 − 𝑥0) = 0 

lim
t→∞

(𝑦𝑖𝑐 − 𝑦0) = 0 

As we already discussed in section 3.6, a fixed point 𝐂 can be used to redefine the output 

of the system as  

𝑞𝑖𝑐 = [
𝑥𝑖𝑐

𝑦𝑖𝑐
] = [

𝑥𝑖 + 𝑑𝑐𝑜𝑠𝜃𝑖

𝑦𝑖 + 𝑑𝑠𝑖𝑛𝜃𝑖
] 

with 𝑑 ≠ 0.  

Differentiating this new output gives 

�̇�𝑖𝑐 = [
𝑐𝑜𝑠𝜃𝑖 −𝑑𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖    𝑑𝑐𝑜𝑠𝜃𝑖
] [

𝑣𝑖𝑐1

𝑣𝑖𝑐2
] = 𝑆(𝜃𝑖𝑐)𝑣𝑖𝑐 

Now we can set �̇�𝑖𝑐 = 𝑟𝑖𝑐 (an auxiliary input value) and solve for the inputs 𝑣𝑖𝑐 as 

𝑣𝑖𝑐 = 𝑆−1(𝜃𝑖𝑐)�̇�𝑖𝑐 

In globally defined transformed coordinates (𝑥𝑖𝑐 , 𝑦𝑖𝑐 , 𝜃𝑖) the closed-loop system becomes  

�̇�𝑖𝑐1 = 𝑟𝑖𝑐1 

�̇�𝑖𝑐2 = 𝑟𝑖𝑐2 

    �̇�𝑖 = 𝑣𝑖𝑐2 

which is input-output linear and decoupled.  

Now we have  

𝑣𝑖𝑐 = 𝑆−1(𝜃𝑖𝑐)𝑟𝑖𝑐 
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Differentiating 𝑣𝑖𝑐 gives 

�̇�𝑖𝑐 = 𝑆−1̇ 𝑟𝑖𝑐 + 𝑆−1�̇�𝑖𝑐 

Substituting in (4.7)  

𝐷(𝑆−1̇ 𝑟𝑖𝑐 + 𝑆−1�̇�𝑖𝑐) + 𝐶𝑆−1(𝜃𝑖𝑐)𝑟𝑖𝑐 = 𝐵(𝑞𝑖𝑐)𝜏𝑖 

We have  

𝑆−1𝑇
�̅�𝑆−1�̇�𝑖𝑐 + 𝑆−1𝑇

(�̅�𝑆−1̇ + 𝐶̅𝑆−1)𝑟𝑖𝑐 = 𝑆−1𝑇
�̅�𝜏𝑖  

 
Now the complete equations of motion of nonholonomic mobile robots are transformed 

and divided into the following two equations which are more appreciate representations for 

control purposes. We can rewrite systems (4.6) and (4.7) to 

�̇�𝑖𝑐 = 𝑟𝑖𝑐(𝑡)                                                                   (4.16) 

�̿�(𝑞𝑖)�̇�𝑖𝑐 + 𝐶̿(𝑞𝑖 , �̇�𝑖)𝑟𝑖𝑐 = �̿�(𝑞𝑖)𝜏𝑖                                             (4.17) 

where  

�̿� = 𝑆−1𝑇
�̅�𝑆−1 

 

                        𝐶̿ = 𝑆−1𝑇
(�̅�𝑆−1̇ + 𝐶̅𝑆−1)𝑟𝑖𝑐 

�̿� = 𝑆−1𝑇
�̅�       

System (4.16) and (4.17) have cascade structure. �̿� is known and assumed to be a full-

rank matrix. A controller can be designed with the aid of backstepping technique.  
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We define  

�̿�(𝑞𝑖)�̇�𝑖𝑐 + 𝐶̿(𝑞𝑖 , �̇�𝑖)𝜂𝑖𝑐 = �̿�(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖 

where the regressor matrix �̿�(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐) is a known function of 𝑞𝑖 , �̇�𝑖 , 𝜂𝑖 and �̇�𝑖. 𝑎𝑖 is an 

inertial parameter vector which is related to the mass and moment of inertia and is not exactly 

known or unknown. 

Step 1:  For system (4.16), we assume 𝑟𝑖𝑐 is control input, so controller will be designed 

for 𝑟𝑖𝑐 such that  

𝑙𝑖𝑚
𝑡→∞

(𝑞𝑖𝑐 − 𝑞0) = 0 

To this end, we define �̃�𝑖𝑐 = 𝑞𝑖𝑐 − 𝑞0, then we have  

�̇̃�𝑖𝑐 = 𝑟𝑖𝑐 − �̇�0 

Define  

�̃� = [
�̃�1𝑐

⋮
�̃�𝑛𝑐

]            �̃� = [
�̃�1𝑐

⋮
�̃�𝑛𝑐

] 

We choose a Lyapunov function candidate 

𝑉1 =
1

2
�̃�𝑇𝑀�̃� +

1

2
�̃�𝑇𝑀�̃� 

where 𝑀 = 𝐿 + 𝑑𝑖𝑎𝑔(𝑎10, … , 𝑎𝑛0) with 𝐿 being the Laplacian matrix, 𝑉1 is positive definite for 

�̃� and �̃�, then  

�̇�1 = �̃�𝑇𝑀�̇̃� + �̃�𝑇𝑀�̇̃� 
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We choose the controller (3.21) and (3.22) we designed in chapter III, 

𝜂𝑖𝑐1 = −𝛼 ∑𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑥𝑖𝑐 − 𝑥𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

 

𝜂𝑖𝑐2 = −𝛼 ∑𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛

𝑗=0

− 𝛽
∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)

𝑛
𝑗=0

√[∑ 𝑎𝑖𝑗(𝑦𝑖𝑐 − 𝑦𝑗𝑐)
𝑛
𝑗=0 ]2 + 휀

 

where 휀 = 𝑒−2𝑞𝑡, 𝑎𝑖𝑗(𝑖 = 0, 1, … , 𝑛, 𝑗 = 1,2, … , 𝑛) is the (𝑖, 𝑗)𝑡ℎ entry of the adjacency matrix 𝒜 

associated with the system, 𝑎𝑖0 is a positive constant if the virtual leader’s position is available to 

follower 𝑖, otherwise 𝑎𝑖0 = 0. 𝛼 is a nonnegative constant and 𝛽 is a positive constant.  

If 𝑟𝑖𝑐 = 𝜂𝑖𝑐, then we already shown in chapter III that  

�̇�1 ≤ −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝛾ℓ𝑛√휀 

Step 2: Since 𝑟𝑖𝑐 is not the actual control input, so we define �̃�𝑖𝑐 = 𝑟𝑖𝑐 − 𝜂𝑖𝑐, then system 

(4.16) becomes to  

�̇�𝑖𝑐 = [
�̇̃�
�̇̃�
] = [

�̃�𝑖𝑐1 + 𝜂𝑖𝑐1

�̃�𝑖𝑐2 + 𝜂𝑖𝑐2
]                                                          (4.18) 

Define  

�̃�𝑐1 = [
�̃�1𝑐1

⋮
�̃�𝑛𝑐1

]                �̃�𝑐2 = [
�̃�1𝑐2

⋮
�̃�𝑛𝑐2

]                                                  (4.19) 

and  
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𝜂𝑐1 = [

𝜂1𝑐1

⋮
𝜂𝑛𝑐1

]               𝜂𝑐2 = [

𝜂1𝑐2

⋮
𝜂𝑛𝑐2

]                                               (4.20) 

then we have  

�̿�(𝑞𝑖)�̇̃�𝑖𝑐 + 𝐶̿(𝑞𝑖 , �̇�𝑖)�̃�𝑖𝑐 = �̿�(𝑞𝑖)𝜏𝑖 − [�̿�(𝑞𝑖)�̇�𝑖𝑐 + 𝐶̿(𝑞𝑖 , �̇�𝑖)𝜂𝑖𝑐] 

                               = �̿�(𝑞𝑖)𝜏𝑖 − �̿�(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖 

 

Theorem 4.2:  If the leader robot is the root of spanning tree and given nonholonomic 

systems (4.17) with unknown inertial parameter vectors 𝑎𝑖, the adaptive controllers  

 

𝜏𝑖 = 𝐵(𝑞𝑖)
−1 [𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)�̂�𝑖 − [

𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)

𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)
] − 𝐾6�̃�𝑖𝑐] (4.21) 

 

   �̇̂�𝑖 = −Γ𝑌𝑇(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)�̃�𝑖𝑐                                                             (4.22) 

ensures that  

lim
𝑡→∞

(𝑥𝑖𝑐 − 𝑥0) = 0 

lim
t→∞

(𝑦𝑖𝑐 − 𝑦0) = 0 

where 𝐾6 and Γ are positive definite matrices, �̇̂�𝑖 is bounded. 

 

Proof:  Consider the following Lyapunov function candidate  
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𝑉2 = 𝑉1 +
1

2
∑ �̃�𝑖𝑐

𝑇𝐷𝑖�̃�𝑖𝑐
𝑛

𝑖=1
+

1

2
∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1(�̂�𝑖 − 𝑎𝑖)
𝑛

𝑖=1
 

Take derivative of 𝑉2 with respect to time and substitute the result in (4.18), (4.19) and 

(4.20), then we have  

         �̇�2 = �̃�𝑇𝑀�̇̃� + �̃�𝑇𝑀�̇̃� + ∑ �̃�𝑖𝑐
𝑇𝐷𝑖 �̇̃�𝑖𝑐

𝑛

𝑖=1
+

1

2
∑ �̃�𝑖𝑐

𝑇�̇�𝑖�̃�𝑖𝑐
𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

              = �̃�𝑇𝑀(�̃�𝑐1 + 𝜂𝑐1) + �̃�𝑇𝑀(�̃�𝑐2 + 𝜂𝑐2) + ∑ �̃�𝑖𝑐
𝑇𝐷𝑖 �̇̃�𝑖𝑐

𝑛

𝑖=1
+

1

2
∑ �̃�𝑖𝑐

𝑇�̇�𝑖�̃�𝑖𝑐
𝑛

𝑖=1

+ ∑ (�̂�𝑖 − 𝑎𝑖)
𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

              ≤ �̃�𝑇𝑀�̃�𝑐1 + �̃�𝑇𝑀�̃�𝑐2 − 𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀

+ ∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝐶𝑖�̃�𝑖𝑐 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖 , �̇�𝑖)𝑎𝑖]

𝑛

𝑖=1
+ ∑

1

2
�̃�𝑖𝑐

𝑇�̇�𝑖𝑐�̃�𝑖𝑐
𝑛

𝑖=1

+ ∑ (�̂�𝑖 − 𝑎𝑖)
𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

              ≤ �̃�𝑇𝑀�̃�𝑐1 + �̃�𝑇𝑀�̃�𝑐2 − 𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀

+ ∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖]

𝑛

𝑖=1
+

1

2
∑ �̃�𝑖𝑐

𝑇 (�̇�𝑖 − 2𝐶𝑖) �̃�𝑖𝑐
𝑛

𝑖=1

+ ∑ (�̂�𝑖 − 𝑎𝑖)
𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

              ≤ �̃�𝑇𝑀�̃�𝑐1 + �̃�𝑇𝑀�̃�𝑐2 − 𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀

+ ∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖]

𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 



  

94 
 

              ≤ �̃�𝑐1
𝑇𝑀�̃� + �̃�𝑐2

𝑇𝑀�̃� − 𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀

+ ∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖]

𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

              ≤ �̃�𝑐1 ∑𝑎𝑖𝑗(�̃�𝑖𝑐 − �̃�𝑗𝑐)

𝑛

𝑗=0

+ �̃�𝑐2 ∑𝑎𝑖𝑗(�̃�𝑖𝑐 − �̃�𝑗𝑐)

𝑛

𝑗=0

− 𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 

+∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖]

𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
   

             ≤ ∑ �̃�𝑖𝑐1[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1

+ ∑ �̃�𝑖𝑐2[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1
    

                           −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 

+∑ �̃�𝑖𝑐
𝑇[𝐵𝑖𝜏𝑖 − 𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)𝑎𝑖]

𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
   

 

We choose the control input (4.21) 

𝜏𝑖 = 𝐵(𝑞𝑖)
−1[𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)�̂�𝑖 − [

𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)

𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)
] − 𝐾6�̃�𝑖𝑐] 

where  𝐾6 is a positive definite matrix, with the control input we have  

�̇�2 ≤ ∑ �̃�𝑖𝑐1[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1

− ∑ �̃�𝑖𝑐1[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1
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                           +∑ �̃�𝑖𝑐2[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1

− ∑ �̃�𝑖𝑐2[𝑎𝑖0(�̃�𝑖𝑐 − �̃�0𝑐) + ⋯+ 𝑎𝑖𝑛(�̃�𝑖𝑐 − �̃�𝑛𝑐)]
𝑛

𝑖=1
  

                           −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 − ∑ �̃�𝑖𝑐
𝑇𝐾6�̃�𝑖𝑐

𝑛

𝑖=1

− ∑ �̃�𝑖𝑐
𝑇𝑌(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)(�̂�𝑖 − 𝑎𝑖)

𝑛

𝑖=1
+ ∑ (�̂�𝑖 − 𝑎𝑖)

𝑇Γ−1�̇̂�𝑖

𝑛

𝑖=1
 

     ≤ −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 − ∑ �̃�𝑖𝑐
𝑇𝐾6�̃�𝑖𝑐

𝑛

𝑖=1

+ ∑ (�̂�𝑖 − 𝑎𝑖)
𝑇𝛤−1[�̇̂�𝑖 + 𝛤𝑌𝑇(𝑞𝑖, �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)�̃�𝑖𝑐]

𝑛

𝑖=1
 

Now we use the update law of �̂�𝑖 as (4.22) 

�̇̂�𝑖 = −𝛤𝑌𝑇(𝑞𝑖 , �̇�𝑖 , 𝜂𝑖𝑐 , �̇�𝑖𝑐)�̃�𝑖𝑐 

where 𝛤 is a positive definite matrix, then  

�̇�2 ≤ −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 − ∑ �̃�𝑖𝑐
𝑇𝐾6�̃�𝑖𝑐

𝑛

𝑖=1
 

                                         ≤ 2𝑛𝛾ℓ√휀                                              

Note that 𝑀2 is symmetric positive definite and K6 is positive definite matrix. 

Integrating �̇�2 gives 

∫ �̇�2

𝑡

0

𝑑𝑡 ≤ ∫ 2𝑛𝛾ℓ√휀
𝑡

0

𝑑𝑡 
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                   ≤ 2𝑛𝛾ℓ ∫ 𝑒−𝑞𝑡
𝑡

0

𝑑𝑡 

                        ≤ 2𝑛𝛾ℓ

1

𝑞
(1 − 𝑒−𝑞𝑡) 

where 𝑡 ∈ [0,∞). Now we can see that 𝑉2(𝑡) is bounded. 

Since  

�̇�2 ≤ −𝛼�̃�𝑇𝑀2�̃� − 𝛼�̃�𝑇𝑀2�̃� + 2𝑛𝛾ℓ√휀 − �̃�𝑐
𝑇𝐾6�̃�𝑐 

We get  

∫ �̇�2

𝑡

0

𝑑𝑡 ≤ −𝛼 ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡 − 𝛼 ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡 − ∫ �̃�𝑐
𝑇𝐾1�̃�𝑐

𝑡

0

+ 2𝛾ℓ𝑛 ∫ √휀
𝑡

0

𝑑𝑡 

So �̃�, �̃� and �̃�𝑐 are bounded. 

𝛼 ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡𝛼 + ∫ �̃�𝑇𝑀2�̃�
𝑡

0

𝑑𝑡 + ∫ �̃�𝑐
𝑇𝐾6�̃�𝑐

𝑡

0

≤ 2𝛾ℓ𝑛 ∫ √휀
𝑡

0

𝑑𝑡 − ∫ �̇�2

𝑡

0

𝑑𝑡 

The boundedness of the right side of the inequality is already shown, so we can see the 

left side of the inequality is also bounded. Note that 𝑀2 and 𝐾6 are both symmetric positive 

definite, so ∫ �̃�2𝑡

0
, ∫ �̃�2𝑡

0
 and ∫ �̃�𝑐

2𝑡

0
 are bounded.  

Now we have the boundedness of both �̃�𝑖 and ∫ �̃�𝑖𝑐
2𝑑𝑡

𝑡

0
, �̃�𝑖𝑐 and ∫ �̃�𝑖𝑐

2𝑑𝑡
𝑡

0
, then with the 

aid of Barbalat’s lemma 3.2.5 with 𝑝 = 2 in [62], it can be shown that  

lim
𝑡→∞

�̃� = 0 

lim
𝑡→∞

�̃� = 0 
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lim
𝑡→∞

�̃�𝑐  = 0                                                                          ∎ 

 

Remark:  

𝐾6�̃�𝑖𝑐 is used to make �̃�𝑖𝑐 converge to zero and 𝑌�̂�𝑖 is used to cancel the term 𝑌𝑎𝑖. The 

advantage of this controllers is the tracking error converge to zero even if the inertial parameter 

vectors are unknown, however, the inertial parameter vector must be constant.   

 

4.5 Simulation 

 

In this section, we will present several simulation examples of a group of three wheeled 

mobile robots with a virtual leader to show the effectiveness of the proposed controllers in 

section 4.4. All the vehicles are assumed to have the same mechanical and system structure as 

shown in Figure 3.10. The communication graph is shown in Figure 4.8, vertex 𝑣0 represents the 

leader robot. 

We choose 𝛼 = 1 and 𝛽 = 1, also define the desired trajectory is a unit circle with 

𝑥0 = 𝑠𝑖𝑛 (𝑡) and 𝑦0 = 𝑐𝑜𝑠 (𝑡). With the proposed controllers, the control parameters are chosen 

as: 𝑘6 = 1, Γ = 𝑑𝑖𝑎𝑔[1,1,1].  

The tracking errors of 𝑥𝑖 − 𝑥0 and 𝑦𝑖 − 𝑦0 of follower 1, follower 2 and follower 3 are 

shown in, respectively, Figure 4.9, Figure 4.10 and Figure 4.11. The state information 𝑞𝑖 =

[𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖] of follower 1, follower 2 and follower 3 are shown in, respectively, Figure 4.12, 

Figure 4.13 and Figure 4.14.  
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It can be seen that the tracking errors of each vehicle ultimately converge to zero and 

state parameters of each vehicle satisfy the condition of being a unit circle, so the proposed 

controllers are effective.  

 

 

 

Figure 4.8 Communication graph VI 
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Figure 4.9 Responses of (𝑥1 − 𝑥0) and (𝑦1 − 𝑦0) 
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Figure 4.10 Responses of (𝑥2 − 𝑥0) and (𝑦2 − 𝑦0) 
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Figure 4.11 Responses of (𝑥3 − 𝑥0) and (𝑦3 − 𝑦0) 
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Figure 4.12 Responses of 𝑞1 = [𝑥1, 𝑦1, 𝜃1] 
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Figure 4.13 Responses of 𝑞2 = [𝑥2, 𝑦2, 𝜃2] 
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Figure 4.13 Responses of 𝑞3 = [𝑥3, 𝑦3, 𝜃3] 
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4.6 Summary 

 

Distributed coordinate tracking control of multiple WMRs with dynamic extension is 

studied, standard approaches to design nonholonomic controllers only deal with the kinematics 

of the vehicle system and ignore the actual vehicle dynamics, so we correct this omission in this 

chapter.  

Instead of designing velocities inputs for kinematic model, we proposed torque inputs for 

dynamics model which is more realistic in real life. The controllers proposed in this chapter are 

based on the kinematic controllers proposed in chapter III and backstepping technique. Both 

dynamics with and without inertial uncertainties are considered and control laws are proposed 

accordingly, all the proposed control laws are proved to be effective.   
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CHAPTER V 

 

CONCLUSION 

 

In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is 

studied. All WMRs are assumed to have same mechanical structure and are able to send out 

information or receive others state information. The desired trajectory is predefined as the 

trajectory of the virtual leader of the multiple WMRs system. Note that not all the follower 

robots are able to receive the state information of the virtual leader, we assume only a subset of 

groups of the followers can communicate to the virtual leader directly. The control objective is to 

design control laws for each WMR in the system, such that all follower vehicles are able to track 

the leader vehicle’s trajectory eventually with the aid of graph theory and Laplacian matrix. 

Graph theory is utilized to model the information exchange between vehicles and Laplacian 

matrix is used to analysis the system mathematically. Dynamics of WMRs are considered 

following by kinematics of WMRs since it is more realistic that the control inputs are torques not 

the velocities, the velocity inputs in kinematic model are considered as intermediate variables as 

well as backstepping technique to design the torque inputs.  

In the text of kinematics, we introduced two common kinematic models of mobile 

system, two-wheel model car-like robot with three generalized states and four-wheel 
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model car-like robot with four generalized states. First the nonlinear car-like mobile robot 

models are transformed to linear models with the aid of full-state linearization technique and 

input-output linearization technique, then new distributed control methods are proposed for both 

kinematic systems with the aid of cascaded system theory and graph theory. The results showed 

that follower robots that are not neighbors of the leader can still be able to follow the leader robot 

by using the proposed controllers. The control inputs in kinematic model are translational and 

rotational velocities. 

In the text of dynamics, the control velocities designed in kinematic section are used as 

intermediate variables. Torque controllers are designed with the aid of backstepping method so 

that the velocities of the mobile robots converge to the desired velocities, which are obtained by 

the kinematic controller designed at the first step. Because of the fact that in practice, the inertial 

parameter of WMR maybe not exactly known or unknown, so both dynamics with and without 

inertial uncertainties are considered, distributed tracking control laws are proposed for both 

scenarios. 

Contributions of this thesis are: first, simpler and higher order distributed tracking 

algorithms are proposed based on the feedback control and stability of cascaded system. The 

results of first-order kinematics and second-order dynamics controller in [30] are extended to the 

third-order dynamics in this thesis and the variable transformation used in chapter III makes the 

control algorithm much more concise. Second, the dynamic extensions are considered. Standard 

approaches to design nonholonomic controllers only deal with the kinematics of the vehicle 

system and ignore the actual vehicle dynamics, so we correct this omission. Both vehicles 

dynamics with and without inertial uncertainties are addressed based on the velocity control 

inputs and backsteeping method.  



  

108 
 

Some future works and improvements including collision avoidance algorithm between 

WMRs during the tracking process need to be established.    
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