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Abstract

In recent years, there has been a considerable growth in applications of

multi-robot systems as opposed to single-robot systems. This thesis

presents our proposed solutions to a formation control problem in

which mobile robots are required to create a desired formation shape

and track a desired trajectory as a whole.

In the first instance, we study the formation control problem for uni-

cycle mobile robots. We propose two control algorithms based on a

cascaded approach: one based on a kinematic model of a robot and

the other based on a dynamic model. We also propose a saturated

controller in which actuator limitations are explicitly accounted for.

To demonstrate how the control algorithms work, we present an ex-

tensive simulation and experimental study.

Thereafter we move on to formation control algorithms in which the

coordination error is explicitly defined. Thus, we are able to give con-

ditions for robots keeping their desired formation shape without nec-

essarily tracking the desired trajectory. We also introduce a controller

in which both trajectory tracking and formation shape maintenance

are achieved as well as a saturated algorithm. We validate the appli-

cability of the introduced controllers in simulations and experiments.

Lastly, we study the formation control problem for car-like robots. In

this case we develop a controller using the backstepping technique.

We give conditions for robots keeping their desired formation shape

while failing to track their desired trajectories and present simulation

results to demonstrate the applicability of the proposed controller.
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Chapter 1

Introduction

For many years now, the occurrence of robots in numerous areas of human life,

operating both in industrial and every-day applications, has been increasingly

prominent. This has lead to new research being launched in robotics investigating

robot control and design. Recently, the interest of researchers is being more and

more shifted towards cooperative control of multi–robot systems, as opposed

to single robot systems. This thesis forms another contribution in this field

and concerns specifically a formation control problem or a coordinated control

problem where the objective is to steer all robots in the formation in a coordinated

fashion. In the realm of this thesis, this in particular means that the robots in

the formation are required to create a particular geometry of the group while

performing an additional control task, e.g. following a desired trajectory, see

Figure 1.1.
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desired
trajectory

(a)

desired
trajectory

(b)

Figure 1.1: Examples of different formation shapes and trajectories (a) a platoon–
shaped formation and a straight trajectory, (b) a hexagon-shaped formation and
a circular trajectory.

In the remainder of this chapter we explain where applications of the formation

control problem may be found and what motivates such a broad interest. We also

present some existing approaches to the formation control problem.

1.1 Applications of robot formations

There are many practical situations where robot formations may be used: e.g. in

moving target observation, in reconnaissance and surveillance tasks, in a ware-

house, see (Jung and Sukhatme, 2002; Kolling and Carpin, 2006; Luke et al.,

2005). This also includes human rescue missions as considered by Murphy (2004)

who focused upon the human-robot interactions in rescue missions. Interestingly,
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Figure 1.2: Robot teams during rescue mission in WTC after the September 11
attack. Photos from (CRASAR, 2012).

in practical applications of rescue robots, the robots are not assigned a task to

perform it instead of the humans but with them as a part of human–robot rescue

teams. To prevent further catastrophe it is therefore important that the atten-

dance of humans in such missions is reduced. Robots in rescue missions have

been successfully used to date, e.g. in the World Trade Centre, see Figure 1.2.

More recently, robot teams were used to support the rescue operations during

the Japan earthquake in March 2011 (Guizzo, 2011). For this particular oper-

ation, apart from wheeled robots, also snake–like mobile robots were deployed.
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These are illustrated in Figure 1.3 and are built to serve as Active Scope Camera

(Hatazaki et al., 2007) to enable reaching spaces unreachable to humans due to

their restricted dimensions.

Within the scope of rescue robotics, Kamegawa et al. (2008, 2010, 2011) proposed

to use two kinds of robots in the search operations in rescue missions. The first

ones are the pioneer type robots which are human–operated and whose job in-

cludes removing any lightweight obstacles as well as opening doors to allow access

to the area to the surveyor type robots. These latter robots semi–autonomously

collect data from the area about the environment and possible victims trapped

inside. The two types of robots communicate through a wireless network, the so–

called Robohoc network, which allows robots to freely join a pre–existing group.

Also the authors of (Kantor et al., 2003) considered a similar problem in which

robots are used together with humans to perform search and rescue missions.

That research is concentrated on a localisation task based on the so–called Si-

multaneous Localisation and Mapping (Singh et al., 2002; Thrun, 2008) in an en-

vironment where possibly no infrastructure exists as well as on information flow

between various agents involved. The proposed strategy is such that information

collected from a variety of sensors is used to create a map of the territory. This is

then transferred to the humans engaged in the mission for further investigation.

The problem of Simultaneous Localisation and Mapping was also considered in,

for example, (Weiss, 2011) where mapping swarmbots were studied. The article

concerned general issues of application of robots and robot teams in military

actions and pointed out a number of existing problems. In particular, for a robot
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Figure 1.3: A snake–like robot. Photo from (Guizzo, 2011).

team to be able to fully participate in a military mission, robots should ultimately

be able to cooperate within heterogenous groups so that they can interchangeably

be attached to or detached from a group. A more general concern in terms of

robots taking part in military operations is the level of autonomy that the robots

are granted and the need for a fault–proof mechanism of robots which would

enable robots to understand a situation in which intelligent reasoning is essential.

Regarding unknown environment exploration, Hougen et al. (2000) contributed

in this realm and proposed a system consisting of miniature heterogeneous robots

that may be used for rescue missions, in the occurrence of hazardous substance

spills and in general for reconnaissance and surveillance. In contrast, Thrun et al.

(2003) concentrated on volumetric mapping of abandoned life-threatening land

mines in the territory of the United States. Moreover, the research of Burgard

et al. (2005) centred on general multi-robot exploration projects that resulted in
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Figure 1.4: Two robots performing a cooperative furniture relocation task. Photo
from (Rus et al., 1995).

the proposal of an algorithm to fulfil these tasks while minimising both the range

of undiscovered areas and the associated cost.

Groups of mobile robots may also be used in everyday–life situations, for example

in the circumstances considered in (Rus et al., 1995) which deals with furniture

relocation without communication between robots, global knowledge or planning,

see Figure 1.4. Moreover, the use of robot formations in day-to-day tasks was

also studied by Endres et al. (1998) and by Jager and Nebel (2002) who regarded

the issue of coordinated autonomous cleaning. It has been shown that such tasks

may be successfully performed by multiple robots providing the advantages of

the cleaning being performed in a distributed fashion with added robustness and

speed of performing the task.

Another application, although not concerning mobile robot formations but satel-

lite formations, is the task of observation of far-away celestial bodies, which are

impossible to be directly investigated because of their vast distance from the
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Earth. To this end, a group of satellites to work as interferometers may be

employed. It should be noted that the interferometry, as studied by Lawton and

Beard (2002), involves high precision of execution of the controller. This is due to

the necessity of having each pair of the interferometer satellites kept scrupulously

aligned with respect to each other for the interferometry to be realisable.

To the broad range of applications of robot formations mentioned so far, one

may also add autonomous ocean mapping, see (Curtin and Bellingham, 2009;

Curtin et al., 1993). The reason for ocean mapping is to provide the necessary

data for three-dimensional numerical models of the ocean, thus allowing for a

wider variety of hypotheses regarding the ocean to be tested as well as the oceans

to be monitored more thoroughly than in the case of a two–dimensional ocean

map. In contrast with the previous employments of agents like ships or satellites

that could only provide data for a two-dimensional ocean image, the scenario

considered in (Curtin and Bellingham, 2009; Curtin et al., 1993) engages a team

of Autonomous Underwater Vehicles and therefore, more accuracy follows.

1.2 Rationale behind multiple robot systems

The omnipresence of practical applications of robot formations clearly stems from

the numerous benefits of multi-robot formations over single robots, see e.g. (Arai

et al., 2002; Cao et al., 1997; Chen and Wang, 2005; Parker, 2008). Arguably

the major advantage is the fact that a given task may be too complicated for a

single robot and hence a multiple robot formation may be necessary to fulfil it.
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However, since there are several robots involved, the mathematical analysis may

become complex with the transient behaviour becoming difficult to anticipate.

It was already pointed out in the previous section that an important benefit

of using multiple robot groups to conduct a task instead of single robots is the

fact that robots performing the task are spread out throughout the area involved.

This is advantageous in many cases, e.g. reconnaissance, exploration or patrolling.

In these instances, the territory that is being examined may be covered by a

group of mobile robots more quickly than by a single multi-task robot. Another

advantage, stemming from the distributed manner of the execution of a task, is

the robustness of the approach. In a case of a single robot, failure of a robot

will result in failure of the whole mission. However, in the case of a task being

performed by a formation consisting of multiple robots, break down of one robot

may not be fatal because the rest of the team might still be able to fulfil the task.

Thus, nowadays the majority of studies on multiple robot formations gravitates

towards distributed information flow in the formation in which the robustness

does not depend on a particular individual in the group as there is no superior

agent in the team.

Evidently, the application of robot formations is favourable in many situations.

This follows from the manifold favourable qualities of the cooperative approach

that were listed above. In fact, the broad range of applications of cooperative

agents may be observed not only among artificial agents, like robots. It could

be argued that the origin of studies in cooperative and synchronous behaviour

of artificial agents have emerged from investigation of the existing occurrence of
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synchronisation and cooperation phenomena among living creatures. In the next

two sections we show first what are the different collective strategies between

multiple mobile agents that have been identified in the literature. Then it is

exemplified that in fact the principle of cooperative behaviour is ubiquitous in

nature and indeed observation of this phenomenon inspired the development of

the cooperative approach in control of mobile robots.

1.3 Other collective behaviour coordination strate-

gies

In the realm of multiple agent systems, there are a number of concepts that

specify mutual relations between members of a group. Apart from the formation

control problem, which is of particular interest for us, one may also mention

synchronisation, consensus, rendezvous and flocking. Here, all these concepts are

consecutively explained and illustrated with appropriate examples.

Synchronisation is probably the most general concept among multiple agent co-

ordination strategies mentioned in this section. According to (Blekhman, 1988;

Blekhman et al., 1997, 2002), the term synchronisation is used to characterise the

phenomenon of coinciding in time of a set of functionals associated with two or

more processes. In particular, one may distinguish a specific subcategory within

this scope, i.e. phase synchronisation which is specifically related to periodic or

chaotic systems, see (Pikovsky et al., 1999, 2000; Rosenblum et al., 1996). The

term phase synchronisation initially concerned periodic oscillators and referred to
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the phenomenon of locking phases of the periodic motion of the oscillators while

the amplitude of the vibrations remains unrestricted. Nowadays, one also regards

phase synchronisation of chaotic systems which has a particular importance in

private communication systems (Chen et al., 2003). In particular, by synchronis-

ing a receiving chaotic system to a transmitting chaotic system, communication

can be accomplished privately over a public channel. An interesting observation

noted in the mentioned papers is that the phase synchronisation of periodic sys-

tems occurs even in the presence of merely weak couplings. Another interesting

feature concerning synchronisation was observed originally by Voss (2000) and

later on studied in e.g. (Huijberts et al., 2007; Nijmeijer and Oguchi, 2006) which

all examined the anticipating synchronisation phenomenon of chaotic oscillators.

It was discovered that in a scenario involving two systems, one of which was de-

signed to be the drive system, the second system was able to synchronise to the

future drive system’s state and therefore anticipate the state of the drive system.

For a robotic system, the synchronisation control problem was studied, among

others, by Rodriguez-Angeles (2002) and Rodriguez-Angeles and Nijmeijer (2003)

who worked on synchronisation of fully actuated robotic manipulators. They

considered two major scenarios, both based on the master–slave hierarchy, one

of which is called external synchronisation and the other one internal synchro-

nisation. External synchronisation refers to the case when the non–dominant

systems, or the slaves, are controlled to synchronise with the trajectories of the

dominant system, also known as the master. Hence, the control of the master

system is independent and such that the master tracks a given desired trajectory,

while the controllers for the slave systems are designed to obtain synchronous
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behaviour with the master. Conversely, in the internal or mutual synchronisation

strategy, all manipulators involved equally act towards synchronisation of their

trajectories towards a common desired trajectory. This is through feedback con-

trol that involves each robot manipulator obtaining information regarding other

manipulators to achieve the common goal.

Similarly, in (Bouteraa et al., 2011) the problem of synchronisation of robotic

manipulators was considered and resulted in a control strategy in which each

manipulator was synchronised with its neighbours, as opposed with all other ma-

nipulators as proposed in (Rodriguez-Angeles, 2002; Rodriguez-Angeles and Ni-

jmeijer, 2003). Also the authors of (Nuño et al., 2010) studied the same problem

but with the possibility of the coupling time delays. They presented controllers

which assure that manipulators either track a desired trajectory or reach a con-

sensus. Moreover, the unknown network parameters like robots’ inertia matrices,

Coriolis matrices and the gravitational forces were estimated by robots through

an adaptive control strategy. In contrast, the results in (Chung and Slotine, 2009)

concern concurrent synchronisation of multiple groups of Lagrangian systems that

are synchronised internally. To obtain this, a decentralised control strategy that

achieves synchronisation of all robots in subgroups by ensuring coexistence of

fully synchronised subgroups is presented. In the light of the terminology pre-

sented in (Rodriguez-Angeles, 2002; Rodriguez-Angeles and Nijmeijer, 2003), the

three latter papers (Bouteraa et al., 2011; Chung and Slotine, 2009; Nuño et al.,

2010) may be regarded to consider the internal synchronisation case.

An important collective behaviour problem that should be mentioned here is the
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consensus control problem (Olfati-Saber and Murray, 2003a, 2004; Olfati-Saber

et al., 2007; Ren et al., 2005; Sepulchre, 2011; Zhang et al., 2008). This consists

in all agents in a group converging to a common value of the state vector that

depends on the initial states of all agents in the group. If all agents have achieved

the common state, one says they agree with each other or that they have reached

an agreement/consensus. Contingent upon the relation between the common

value of the state and the initial states of the agents, one studies the average

consensus problem if the common value is an average, possibly weighted, of the

initial states of all agents. There are also both minimum andmaximum consensus

problems if the common value is the minimum or the maximum amongst initial

states respectively.

The basic control algorithm proposed in (Olfati-Saber and Murray, 2003a, 2004;

Olfati-Saber et al., 2007; Ren et al., 2005; Sepulchre, 2011; Zhang et al., 2008)

for the ith agent, i = 1, . . . , n, is based on an inter-agent information exchange

protocol

ui =
∑

j 6=i

aij(xj − xi), (1.1)

where aij = 1 if agents i and j are neighbours meaning they can sense each

other and aij = 0 otherwise. This consensus algorithm was studied for a group

of n mobile agents described by single integrator dynamics ẋi = ui. Clearly, this

dynamics are unrealistic in many cases. Yet, as shown later in this section, this

approach may still be used when appropriate adjustments are made.

The behaviour of a group under (1.1) depends on the communication structure

of the group. In particular, according to (Olfati-Saber et al., 2007), a group
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of mobile agents reaches consensus, if the communication graph of the group

is strongly connected, meaning that each agent can exchange information with

each other agent possibly through other agents on the way, see (Godsil and Royle,

2001). In addition, (Olfati-Saber et al., 2007) also provides conditions for average

consensus, for a network with time delays and for the discrete time case.

Given the subject of this thesis it is appealing that one can use the consensus

approach to provide a framework for analysis of the formation control problem.

This technique was studied by Ren (2007a) as well as by Wu et al. (2007). In

(Ren, 2007a) in particular the initial formation control problem was converted

to the consensus control problem by means of a state transformation and solved

within the general framework as discussed above. Therefore, one may extend the

usefulness of the consensus protocol (1.1) since, although it was initially studied

for single integrator dynamics, it can be seen from this example that it may be

applied to more complicated systems too, including mobile robots which are of

a particular interest in this thesis. Moreover, the general averaging procedure of

the algorithm also seems attractive to be further examined and motivated many

other researches in the area of the formation control problem (Kostić et al., 2010b;

Van den Broek et al., 2009), including the work contributed in this thesis.

A third major category of inter-agent coordination problems is the rendezvous

problem where one requires all agents in the group to reach a common location.

It was studied by Lin et al. (2003) where a so–called ”stop-and-go” technique was

established. In this technique, the motion of single systems is based on two main

actions: one occurs in the sensing period in which no motion is performed and
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only scanning is active and the other one takes place during the manoeuvring

period in which agents’ positions are changed.

In this field, the study by Dimarogonas and Kyriakopoulos (2007) was particularly

focused on rendezvous of a group of unicycle mobile robots. In this scheme, a kind

of attractive potential is to be minimised to drive robots to a common location.

Once again, though, the necessary condition for coordinated behaviour is that

the communication graph associated with the group is connected. It includes the

case of switching graph topology as long as each configuration of the network

constitutes a connected graph. This is an advantage as the set of neighbours of

agents in the group may change while proceeding towards the common location.

Another benefit is the information flow structure of this algorithm which is such

that each robot requires information from its neighbours only.

The collective behaviour concept that is probably mostly related to and inspired

by synchronous behaviours in nature is flocking, also known as swarming. Here,

the control strategy normally includes dealing with a large number of agents

performing a mutual task. This scheme is based on the observation of natural

swarms of insects, fish or birds. One easily notices the surprising phenomenon of

an ideally-distributed-communication network of natural flocks which one aims

to imitate in artificial swarms. Moreover, remarkably there is no leader in a group

and hence all members of the group are in general equal. Swarming phenomena

were examined by Reynolds (1987) where three fundamental rules on particle

behaviour in a flock were determined, namely, trying to stay close to neighbours,

avoiding collisions with each other, and aiming to match velocities with regard
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to each other. These rules are labelled as cohesion, separation and alignment

respectively (Olfati-Saber, 2006) and are applied in (Olfati-Saber, 2006; Olfati-

Saber and Murray, 2003b) in which the authors proposed, among others, an

algorithm for flocking that substantiates the three rules of Reynold’s flocks for a

group of n double integrator particles.

From a different perspective, the flocking control problem was studied by Savkin

(2004) where a swarm model based on local interactions between neighbours was

analysed. According to the so-called Vicsek’s model in its simplified version pre-

sented in (Savkin, 2004), each particle updates its position and heading depending

on its previous state as well as the previous states of its neighbours. In fact, the

procedure is such that the heading angle of each particle in each step is an av-

erage of its own and its neighbours’ heading angles in the previous step rounded

to a nearest value from a given set of discrete values between 0 and 2π. Then

the new position is calculated accordingly. The advantage of this approach is

that it is indeed distributed as each member requires knowledge of its neighbours

only. Moreover, the set of neighbours of every agent is time–varying which em-

bodies the fact that when the flock moves, the relative positions of particles in

the flock change and therefore, neighbours change. These two features reflect the

behaviour of actual flocks in nature.

Another contribution in the realm of swarming phenomena is the work by Cheah

et al. (2009) and Hou et al. (2009) in which a swarming algorithm for a group of

fully actuated robots is proposed. The control strategy is to fulfil two objectives:

robots maintain desired minimum distances between each other while remaining
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inside a prescribed moving region, e.g. a square or an ellipse. The first objective

is considered a local objective of a robot while the latter is said to be a global

objective since it concern a group as a whole. What is important, is the fact

that the control algorithm is executed on a local level and hence robots do not

need to communicate with the whole group. Instead, local interactions between

neighbours suffice.

We next illustrate how all these concepts of cooperative behaviour of multiple

mobile agents are realised in the natural world. This is important in that one

can argue that it is the observation of synchronous phenomena in nature that

lies behind the trend of utilisation of cooperative artificial agents in science and

technology.

1.4 Inspiration for multi–robot systems from na-

ture

In literature, there are numerous examples of control algorithms for groups of

multiple agent which by modelling various phenomena occurring in nature try

to imitate the behaviours observed amongst living creatures (Arkin et al., 2000;

Howsman et al., 2002; Hsieh et al., 2008; Weitzenfeld et al., 2006). Indeed, in

recent years there is a trend to emulate the behaviour of animals in artificial

agents to obtain various benefits of cooperative or synchronised entities as op-

posed to when a single agent would be used. In terms of recording synchronous

and cooperative behaviour in nature, arguably the first scientific remark on syn-
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Figure 1.5: A colony of fireflies on a tree. Photo from (Welcome to Malaysia,
2010).

chronisation dates back to the year 1673 when the Dutch physicist Christiaan

Huygens examined the behaviour of two coupled pendula, see (Blekhman, 1988;

Klarreich, 2002). The pendula were suspended from a double beam and started

with arbitrary phases but eventually synchrony was reached, in the sense that

they ended up oscillating in an anti-phase manner. Although aware of the po-

tential importance of his discovery, Huygens could not explain this ”odd kind of

sympathy” as named later by him. Nowadays, this phenomenon has been fur-

ther studied and labelled as self–synchronisation (Blekhman et al., 1997, 2002;

Nijmeijer, 2001), because synchronisation occurs in the absence of any external

driving signal. It may be distinguished from so–called controlled synchronisation

where a control input is introduced that ensures the existence of synchronisation

between the systems.

Although it had not been discovered until the 17th century, coordinated behaviour

in nature may be widely observed. There are many examples where one finds
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Figure 1.6: A colony of ants. Photo from (National Geographic, 2011).

cooperative or synchronous behaviour between individual systems. One may

mention here, for instance, the collective flashing of fireflies, as shown in Figure

1.5. In (Buck, 1938; Buck and Buck, 1968; Stewart, 1999; Strogatz, 1997) it is

described how the fireflies group in trees during the night and start to glimmer

at different times. Eventually their glimmers coincide with each other and thus

an observable twinkling pattern is created. This glimmering is only performed

by the males with the purpose of mating. Nonetheless, it is not straightforward

to explain the reason of this distinguishable synchrony which in the past was

regarded to be a mere illusion (Buck, 1938; Buck and Buck, 1968). Yet, it seemed

to be too much of a coincidence and therefore many scientists have studied this

problem ever since. Nowadays, it is believed that by this synchronous twinkling

the males are visible to the females from further distances (Stewart, 1999).

Another well-known example of insects that benefit from living in groups are

ants, see Figure 1.6. It was pointed out by Miller (2007) that ant colonies have

something that is called swarm intelligence which results from adding up simple

actions of the individuals and gives rise to such complex actions as finding the best
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path to food and defending the colony. The key to understanding their collective

behaviour stems from the phenomenon of self-organisation that is the fact that

there is no superior ant in the colony that would be in charge (Miller, 2007). Only

by collective behaviours - the swarm intelligence - ants indeed manage to achieve

the complex actions that would otherwise be infeasible for single ants.

A similar kind of behaviour may be observed in shoals of fish, see Figure 1.7. A

shoal consists of a large number of fish that by forming a shoal improve their

chances to survive predator attacks and increase probability of mating, see (Vis-

cido et al., 2004). When analysing the complex behaviours of these types of

animals, it is especially surprising how actions of fish in the shoal are coordinated

once they are in the formation. More so, the coordination of fish is obtained just

by communicating with their nearest neighbours, see (Inada, 2001).

The ubiquitous tendency of objects towards a synchronous state may not only be

observed within living beings but also among astronomical objects which makes

it altogether even more universal. As mentioned by Blekhman et al. (1997), one

of the most prominent examples is the moon that always has the same side facing

the earth. Such examples also exist in the human body, although the synchroni-

sation phenomena in the human body are not always beneficial as in the case of

epilepsy which is caused by excessive synchronous activity of the neuronal cells

in the brain (Fisher et al., 2005). On the other hand, an advantageous example

of synchronisation in the human body can be found in the regulation of blood

pressure as controlled by the kidneys’ filtering units which are called nephrons.

This mechanism consists in kidneys regulating arterial blood flow by adjusting
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Figure 1.7: An example of a shoal of fish. Photo from (National Geographic,
2011).

the diameter of the smaller blood vessels by means of chemical substances. In

particular, synchronisation occurs between neighbouring nephrons that transmit

synchronous signals to each other. This is called cross-talk (Mosekilde et al.,

2002).

Mindful of the numerous occurrences of synchronisation phenomena in nature, re-

search on implementing a similar behaviour pattern for mobile robots and robotic

manipulators has emerged (Ihle et al., 2006; Zou, 2008). In the next section, we

demonstrate the most prominent results from our point of view in the area of

formation control.
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1.5 Previous developments in the area of mul-

tiple robot systems

The foregoing discussion has shown how widespread synchronous and coordinated

behaviour in nature is. Indeed, observation of nature provides numerous exam-

ples of multiple mobile agents acting in cooperation to achieve a common goal.

Aware of the advantages that coordinated agents can benefit from, analogous

ways of functioning have been introduced for robots that take advantage of work-

ing in groups to accomplish the task. Accordingly, in this section we present an

overview of the results available in the control systems and robotics literature

regarding formation control of mobile robots. The formation control problem has

been studied extensively and hence there are many results that introduce differ-

ent formation control algorithms. In general, they may be classified into three

major approaches: the behavioural approach, the leader–follower approach and

the virtual structure approach. Each of these approaches are briefly described

below.

The behaviour–based approach is supported by the general idea of behavioural

robotics, first introduced by Brooks (1986). Within this approach, the forma-

tion control problem was examined in (Balch and Arkin, 1998; Dougherty et al.,

2004) which both proposed to split up robots’ complex behaviour into simple

actions such as ’moving to goal’ or ’keeping formation’. A clear advantage of the

behavioural approach is the intuitiveness of the specific separate actions to be

performed by the robots. The meaning of these manoeuvres is self-explanatory
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which makes this approach easier to follow and understand. However, because

there are no explicit mathematical equations of motion, it is not straightforward

to analyse the behaviour of the formation in a mathematical fashion.

Another approach is the leader–follower approach, where one considers two types

of robots in the formation: leaders and followers. The leaders are controlled in-

dependently, regardless of the behaviour of the followers and are only influenced

by e.g. the desired trajectory they are to track. In contrast, the motion of the

followers depends on the leaders associated with them. Therefore, the followers

need to measure the leaders’ states or communicate with them to obtain these

data. An important advantage of the leader–follower control scheme is its math-

ematical simplicity. However, due to the existence of group leaders, the whole

formation may fail to execute its task if one of the leaders fails.

Examples of the leader–follower approach are given by e.g. Desai et al. (1998,

2001) who proposed two control algorithms. In the first algorithm the aim was

for the follower to maintain a desired distance ℓ and angle Ψ relative to the

leader. This was called the ℓ − Ψ control. In contrast, in the second proposed

control algorithm, the ℓ − ℓ control, a follower followed two leaders by keeping

desired distances to the two leaders. The disadvantages of these two algorithms

are certain geometric restrictions of possible shapes that leaders and followers can

produce. Moreover, there is no feedback information from the followers to the

leaders so in effect the leaders are completely unaware of the follower’s actions.

This means that they are not equipped with a mechanism that would allow them

to react to any malfunctions of the followers and hence the formation behaviour
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may be compromised. Furthermore, only constant relative postures that the

followers are able to track are considered. However, what makes these strategies

interesting is the possibility to create a distributed formation control scheme for

a larger number of robots governed by an appropriate segmentation of the whole

formation into subgroups of two or three robots in such a way that the followers

in one subgroup may be leaders in other pairs or trios of robots. Then, each

of these groups may be treated individually using either one of the controllers.

Therefore, there is no need for extensive communication, since all robots only

transmit information to and receive from other robots in their small groups of

two or three robots. However, having in mind the principles of the ℓ−Ψ and ℓ−ℓ

strategies, there are robots in the formation that de facto lead the whole group

and so the behaviour of the whole formation depends heavily on the adequacy of

these robots which may prove to be fault–prone.

The idea of the follower maintaining desired distance and angle with respect to the

leader was also the subject of the work in (Li et al., 2005) and (Consolini et al.,

2007). The first of these papers considered Cartesian coordinates to represent

the desired position of the follower relative to the leader as opposed to polar

coordinates used in the ℓ − Ψ strategy. By doing so, it was possible to get

rid of the singularities in the control design of the original research in which

the idea of relative posture tracking was concerned (Desai et al., 1998, 2001).

However, due to the nature of the controller as in (Desai et al., 1998, 2001), the

result in (Li et al., 2005) also inherently disregards the possibilities of the follower

changing its desired distance relative to the leader. In the second paper (Consolini

et al., 2007), the authors accounted for actuator limitations in that the control
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law ensured saturated inputs. Moreover, contrary to the developments in (Desai

et al., 1998, 2001; Li et al., 2005) where the position of the follower with respect to

the leader was rigorously given, in (Consolini et al., 2007) the relative position of

the follower with respect to the leader is situated in a cone centred at the leader.

Hence, arguably, more flexibility of the formation follows. In turn, in (Chen

et al., 2010) a leader–follower controller was developed based in principle on the

ℓ− ℓ or ℓ−Ψ strategies in which a receding-horizon scheme was employed. The

receding-horizon scheme was presented in (Fontes, 2001; Mayne and Michalska,

1990; Mayne et al., 2000; Michalska and Mayne, 1989) and was incorporated in

the leader–follower strategy in (Chen et al., 2010) to improve the convergence

speed. However, relying purely on a one–way communication between the leader

and the follower, as in the other papers proposing the leader–follower strategies

mentioned above (Consolini et al., 2007; Desai et al., 1998, 2001; Li et al., 2005),

may result in faults since the leader has no means of verifying the follower’s

functioning.

The authors of (Consolini et al., 2007) also used their control strategy to develop

a scheme for a formation of multiple robots similar to the extension of the algo-

rithms in (Desai et al., 1998, 2001) that we proposed earlier. The idea is such

that the whole formation is divided into a number of subgroups and then leaders

in one group are possibly followers in another group and so on. This is interest-

ing because it implies that a control strategy that may be believed to work for

a pair of robots only in fact works for a larger number of robots as well which

consequently extends the applicability of that controller.
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The leader–follower approach in the case of industrial manipulators was exam-

ined by Rodriguez-Angeles and Nijmeijer (2001a,b, 2003). It was found that in

the so–called master–slave scheme, the slave system was synchronised with the

master system by measuring the master system’s angular position, without any

knowledge of the master system’s dynamics. Also Nuño et al. (2008) studied the

master–slave approach for robotic manipulators with the distinction that they

in particular considered the bilateral teleoperation task. Since in teleoperation

the master and slave systems are normally remote from each other, time–delays

are inevitable and thus communication time–delays were taken into considera-

tion in (Nuño et al., 2008). The proposed control law is based in principle on a

simple PD scheme. The bilateral teleoperation was also the subject of the work

of Forouzantabar et al. (2011). These results aimed to improve transparency of

teleoperation with respect to some previous work and used a PID controller. By

transparency in bilateral teleoperation it is understood how precisely the human

operating the master system can sense the environment through the slave system

using the feedback from the slave system as compared to when the human would

operate in the environment directly. Note that the results in (Forouzantabar

et al., 2011; Nuño et al., 2008; Rodriguez-Angeles and Nijmeijer, 2001a,b, 2003)

apply to robotic manipulators and thus cannot be directly employed for mobile

robots.

The third category is the virtual structure approach in which in a certain sense

the behaviour of the formation is summarised in that of a so-called virtual struc-

ture. The virtual structure is to track a given desired trajectory. Then, knowing

the behaviour of the virtual structure, this behaviour is converted to that of indi-
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vidual robots by imposing a certain formation shape with respect to the virtual

structure. In comparison to the leader-follower approach, it may therefore be

argued that the virtual structure approach allows for a greater deal of robust-

ness as it does not depend critically on a single real (as opposed to virtual) unit.

Algorithms utilising the virtual structure approach for a formation of multiple

spacecraft are presented in, among others, (Ren and Beard, 2002, 2003, 2004),

where the authors added a formation feedback term to the control input applied

to the virtual structure to accommodate the vehicles’ actual performance. Simi-

larly in (Tan and Lewis, 1996), the control law is also constructed in such a way

that should a robot in a formation be faulty, the virtual structure is to react. The

disadvantage of the scheme presented in (Tan and Lewis, 1996) is that it makes

allowances for constant formation geometries only. Likewise, in the scheme given

in (Dong and Farrell, 2008; Dong et al., 2006) also only constant formation shapes

are considered. One may argue that this feature limits the applicability of con-

trollers and to some degree this prompted our study. The issue of time–varying

formation shapes was also examined by Kostić et al. (2010b) who also studied

the problem of controlling multiple mobile robots using the virtual structure ap-

proach and proposed a saturated control law where all robots in the formation

communicate with all other robots to perform the formation task (all-to-all com-

munication). Therefore, as in the aforementioned papers, the formation can react

to possible perturbations. Nonetheless, it is not the virtual structure that acts in

response to the perturbation but individual robots in the formation. Because of

the communication between the robots, they react to possible perturbations of

other robots in the formation. However, the all-to-all communication structure

where all robots need to exchange information with each other in (Kostić et al.,
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2010b) may not be efficient due to possibly many communication links between

robots, especially in the case of a large number of robots in the formation. Also

in (Do and Pan, 2007) time–varying formations were considered and a dynamic

robot model and observer theory were used to estimate unmeasurable quanti-

ties. To develop the control algorithm, a backstepping technique is utilised and

consequently, the resultant control algorithm is rather complex in form. More-

over, the communication structure proposed in (Do and Pan, 2007) may prove

to be inefficient since it again relies on an all-to-all communication strategy. In

addition to these papers, Lalish et al. (2006) studied a problem of formation

control, primarily for a group of aircraft, and in the first instance introduced a

completely decoupled control scheme for agents in the formation. This approach

poses a question of applicability of this strategy in the sense that should any

disturbances occur to any of the agents, the rest of the formation has no way to

respond to it. Having said that, in the second instance, another control strategy

was introduced in (Lalish et al., 2006). That algorithm employs an inter–agent

collision avoidance scheme for spacecraft during manoeuvres. Yet, the control

strategy requires calculating avoidance variable to localise a possible upcoming

collision between all pairs of robots. As mentioned earlier, this kind of communi-

cation topology – the all-to-all communication – may be very resource–consuming

and hence possibly undesirable.

The discussion about the possible flaws of the all-to-all communication structure

has lead us to a different type of division of formation control algorithms. Ac-

cordingly, the formation control algorithms can be classified into those requiring a

global or a local communication network, see Figures 1.8 and 1.9. In particular, in
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Figure 1.8: An example of a formation with a global communication network.
Each agent communicates with every other robot. This is denoted by arrows
representing the direction of the information flow between the robots.

algorithms employing a global communication network (all-to-all communication)

all robots in the formation need to communicate with all remaining robots, see

e.g. (Kostić et al., 2010b; Van den Broek et al., 2009). This type of communication

structure is sometimes referred to as centralised, although this term is ambiguous

in that centralised control algorithms are also those with a central governing unit.

As briefly mentioned earlier, a global communication structure is burdened with

high communication cost which may need to be reduced. Therefore, in formation

control algorithms incorporating a local communication network, robots in the

formation do not need to exchange information with all remaining robots but

instead they communicate with robots in their communication neighbourhood

only, see (Dong and Farrell, 2008; Jadbabaie et al., 2003; Lawton et al., 2003;

Moshtagh and Jadbabaie, 2007; Ren and Sorensen, 2008; Sun et al., 2009; Wu
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Figure 1.9: An example of a formation with a distributed communication network.
Each agent is assigned with a neighbourhood marked by a circle of the same colour
as the robot. The arrows denote the direction of the information flow between
the robots.

et al., 2007). Such algorithms relying on local interactions between robots are

called distributed or decentralised. Note that the term decentralised may also be

considered more generally and refer to those control algorithms that do not have

a central governing unit. Interesting results in this field are those in (Jadbabaie

et al., 2003) where a coordination algorithm based on a nearest neighbour rule

was proposed. Also in the more recent paper (Moshtagh and Jadbabaie, 2007),

the authors contributed in the area of distributed control and studied a problem

of flocking for which a distributed geodesic control law was given. This scheme
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relates to coordination and velocity alignment of nonholonomic mobile agents to

obtain flocking by means of minimising a so–called misalignment energy. Clearly,

in comparison to the work communicated in this thesis, both (Jadbabaie et al.,

2003) and (Moshtagh and Jadbabaie, 2007) consider the flocking control problem

as opposed to the formation control problem.

Also in (Lafferriere et al., 2005) a decentralised formation control algorithm was

proposed. The authors developed a condition for agents converging to their de-

sired positions within the formation based on connectivity of the communication

graph of the formation. Moreover, if one of the agents in the formation is steered

independently, a kind of a leader–follower scheme follows in which all other robots

follow the independently steered robot due to local interactions. However, this

controller only works for agents with linear dynamics. Hence, its applicability is

questionable. This is not an issue in (Dong, 2011) in which a decentralised forma-

tion control algorithm is given for nonholonomic robots for which both kinematic

and dynamic models are considered. More specifically, this paper concerns a

stabilisation task in which robots are to converge to a given desired formation

shape and equate their orientations on the plane. To this end, a backstepping

based controller is developed for which robustness to communication time–delay

is analysed. In relation to the work in this thesis, the results in (Dong, 2011) con-

cern a stabilisation task to a desired formation shape as opposed to a trajectory

tracking task.

The above control algorithms apply either to a general nonholonomic system in

chained form eg. (Dong and Farrell, 2008; Dong et al., 2006), spacecraft (Ren
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and Beard, 2002, 2003, 2004) or unicycle mobile robot eg. (Kostić et al., 2010b;

Van den Broek et al., 2009). On the other hand, to our knowledge, only little

work regarding specifically formations of car–like nonholonomic mobile robots

has been performed. This includes (Ramaswamy and Balakrishnan, 2008) which

proposed a control scheme based on the leader–follower strategy. In particular,

again the idea of the follower maintaining desired distance and angle between itself

and the leader was studied on the level of the robots’ dynamics, as opposed to

solely kinematics of the robots. However, inherent to the principles of the leader–

follower scheme, this strategy is also burdened with a disposition to failure since

it is highly dependent on a single unit. Also (Hsu and Liu, 2005) exploited the

leader–follower scheme but in addition it also included some results in the realm

of the behavioural approach to formation control. The strategy, as per principles

of behavioural robotics, is such that individual behaviours like goal seeking or

obstacle avoidance are combined to create the overall formation control. However,

clearly both approaches bear the normal disadvantages of the leader–follower and

behavioural approach, as mentioned earlier. Nonetheless, the article goes deeper

into the problem of formation control and also considered the cooperative control

of multiple robot teams (see also (Chung and Slotine, 2009)). Consequently,

the robots use a set of behaviours to not only individually join a pre-existing

formation or to remove itself from the formation but also to merge or split two

existing formations.

This summarises the main current results in the area of cooperative behaviour of

mobile robots. We are now able to present contributions of this thesis that are

aimed to tackle some of the existing problems in the area of formation control of
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mobile robots.

1.6 Main contributions and outline

In this section, we identify the contributions of this thesis. Further to the earlier

discussions, the aim of our research is to design a formation control law in which

robots in the formation follow a given desired trajectory as a whole and form a

desired formation geometry. To this end, we consider the dynamic equation of

motion of mobile robots and based on this we develop control algorithms to solve

the formation control problem. The main contributions of the thesis are placed

in Chapters 3, 4 and 5. We briefly review them in Table 1.1.

The outline of the thesis and a more detailed description of the main contributions

of the thesis listed in Table 1.1 are as follows.

Chapter 2 In this chapter we derive mathematical models of motion of a mo-

bile robot. Since our research concerns unicycle mobile robots and car–

like mobile robots, dynamic models for both types of robots are presented.

Afterwards, we formally formulate the formation control problem that is

considered in this thesis. To this end we translate the verbal description of

the formation control problem studied in this thesis into desired mathemat-

ical behaviours of individual robots in the formation. Then, we show the

equivalence of the formation control problem with convergence to zero of

appropriately defined error variables of each robot in the formation. This

32



1. INTRODUCTION

Chapter number Main contributions

Chapter 3

• a formation controller based on the kinematic model
of a unicycle robot

• a dynamic formation controller for a dynamic model
of a robot

• a saturated formation controller to account
for actuators limitations

• analysis of the influence of the communication
between the robots

Chapter 4

• explicit definition of the coordination error between
a pair of robots in a formation

• a formation controller ensuring explicitly both
trajectory tracking and coordination

• a formation controller in which only coordination
between the robots in achieved

• a saturated controller ensuring directly trajectory
tracking and coordination

Chapter 5
• a formation controller for car-like mobile robots
• extension of the formation controller to ensure
coordination of robots only

Table 1.1: A list of major contributions of the thesis.

lays foundations for the introduction of our developments – the formation

control algorithms – in the subsequent chapters.

Chapter 3 After the general formulation of the formation control problem, we

are now able to present our main results. In this chapter, we propose a

controller for formation control of unicycle mobile robots using the cascaded

approach. In principle, this approach allows to redefine the stability analysis

of a complicated nonlinear system into stability analysis of two simpler

systems when additional conditions on the interconnecting term hold. Using

this method, we are able to design a formation control algorithm in which

a standard tracking controller is supplemented with mutual coupling terms
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to account for robots interactions. The importance of the mutual coupling

terms can be specifically viewed when some of the robots are subject to a

perturbation. In such circumstances, through inter–robot communication,

robots are aware of possible problems occurring to other robots and hence

can try to counteract the perturbations. In a similar way, the formation

control problem was tackled in (Van den Broek et al., 2009). However,

our work advances this paper in several ways. First of all, the control

algorithm in (Van den Broek et al., 2009) was only studied for two robots

in the formation while our contribution covers the case of an arbitrary

number of robots in the formation. Moreover, the results in (Van den

Broek et al., 2009) provide only a local convergence proof as opposed to a

global convergence which is warranted in our contribution.

This nominal controller is then extended into a novel dynamic formation

control algorithm in which both a dynamic and kinematic model as opposed

to solely a kinematic model is considered. Moreover, we also propose an

extension of the nominal controller in which actuator limitations are explic-

itly taken into account. This extension is particularly important in practice

as clearly for actual robots input magnitudes are limited due to technical

restrictions. Arguably, this aspect was also missing in (Van den Broek

et al., 2009). After the introduction of the formation control algorithms

and the stability analysis of the closed–loop error dynamics, we validate

the applicability of the algorithms in simulations for all three controllers

and in experiments for the nominal controller.

It is worth noting that the formation control algorithms presented in this
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chapter are distributed which means that robots in the formation are only

able and required to communicate to their neighbours as opposed to all

other robots. This, from our point of view, is a considerable contribution

with respect to other results available in the literature (Kostić et al., 2010b;

Lalish et al., 2006; Van den Broek et al., 2009) as it reduces the communi-

cation costs. Furthermore, contrary to the results presented in (Dong and

Farrell, 2008; Dong et al., 2006) where only constant formation shapes were

taken care of, we allow for time–varying formation shapes. Hence this is a

more useful and applicable approach.

The results presented in Chapter 3 are partially done in collaboration with

colleagues at Eindhoven University of Technology, the Netherlands who

acted as advisors on the topics included in this chapter and helped with

performing the experiments. These results are in part published in (Sad-

owska et al., 2011a,b).

Chapter 4 In this chapter we propose another solution to the formation control

problem for unicycle mobile robots using control algorithms derived by ex-

plicitly defining the coordination error between a pair of robots. Note that

in the developments in Chapter 3, coordination was obtained implicitly via

tracking control of all robots with additional terms representing inter-robot

communication. Here, the coordination of robots is explicitly acted upon.

To this end, we express all tracking errors as well as the coordination errors

in the world frame, whereas in the literature, the tracking error is normally

expressed in the local coordinate frame of each robot. This concerns the

literature in the field of the tracking control of a unicycle robot. Similarly,
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tracking errors in local coordinate frames are also normally used in the

literature regarding the formation control in which trajectory tracking is

one of the objectives of the robots in the formation (Kostić et al., 2010b;

Van den Broek et al., 2009) including our own work presented in the pre-

vious chapter. However, in the scenario discussed in this chapter, using the

tracking error variables expressed in the world frame proves to lend itself to

be more useful in the stability analysis. Moreover, it lays the foundations

to show that for robots to be coordinated with each other, tracking errors

should be in consensus (Olfati-Saber and Murray, 2003a, 2004) with each

other. By coordination of robots we understand robots forming the desired

formation shape regardless of the trajectory tracking of the formation. In

this sense, the work presented in this chapter advances the previous re-

sults derived using the cascaded approach in that here robots explicitly act

towards coordination of robots in the formation.

We propose four control algorithms in this setting. The first, most basic

algorithm assures that robots track a desired trajectory as an entity and

create a desired formation shape. In the second algorithm, the formation is

only guaranteed to achieve its desired geometry without necessarily tracking

the desired trajectory. To our best knowledge, studying this Pure Coordina-

tion, as we named it, is novel in the robotics literature. The third algorithm

solves the formation control problem in which one of the robots is chosen

to be superior to the others and acts as a leader. The followers follow the

leader through local communication. The fourth algorithm is an extension

of the first algorithm in which actuator constraints are taken into account.

We perform simulation and experimental studies to show how the proposed
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strategies work in practice.

The results in Chapter 4 also benefit from their distributed character which

makes them arguably superior to the results in (Kostić et al., 2010b; Lalish

et al., 2006; Van den Broek et al., 2009). Moreover, as in the results in

Chapter 3 time–varying formation geometries are allowed.

Our work presented in Chapter 4 is partially included in the publication

(Sadowska et al., 2012). Similarly to the results given in Chapter 3, these

results have been obtained as a collaborative effort with colleagues from

Eindhoven University of Technology who partially supervised this work as

well as helped with collecting the experimental data.

Chapter 5 Subsequent to the formation control algorithms for unicycle mobile

robots we present a formation control algorithm for car–like mobile robots.

This was inspired by scrutinising the existing literature in the realm of

formation control. It was shown in Section 1.5 that available results for

formation control of car–like mobile robots are rather limited. Arriving at

this conclusion has instigated our research in this field.

The approach presented here is based on the virtual structure approach

and as such it may be considered preferable to other existing algorithms for

car–like robots (Hsu and Liu, 2005; Ramaswamy and Balakrishnan, 2008)

that are mostly based on the leader–follower approach. The benefit is that

in the virtual structure strategies, there are no leaders and in general all

robots are considered as equal. Therefore, failure of any single robots will

in principle not result in failure of the whole formation. Contrariwise, in

the leader–follower strategies, the performance of a single robot – the leader
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– is vital for the formation.

The derivation of the formation control algorithm is similar to the one in

Chapter 4 in that the coordination error for a robot is expressed in a co-

ordinate frame in which also the tracking error for this robot is expressed.

In Chapter 4 this was the world frame and hence the coordinate frame was

ultimately identical for all robots. However, while in Chapter 4 it proved

useful to express all errors in the global coordinate frame, in Chapter 5 we

express the coordination errors as well as tracking errors of each individual

robot in a local coordinate frame associated with this robot. By doing so,

the analysis is more straightforward mathematically in the settings given in

Chapter 5 as opposed to a common global coordinate frame for all robots

as used in Chapter 4. Having said that, in the proofs we still end up with

expressions in terms of the tracking errors given in the world frame and

so we again arrive at the conclusion that the formation shape maintenance

is equivalent to the consensus of the tracking error variables given in the

world frame. Note that while in Chapters 4 and 5 slightly modified defi-

nitions of tracking and coordination errors are used, the results for either

definition of the tracking and coordination errors are equivalent. The choice

of the particular coordinate frame in each of the chapters follows from the

convenience of the mathematical analysis in the particular settings.

The formation control algorithm introduced in Chapter 5 is designed using

the backstepping technique. To confirm the applicability of the formation

control algorithm, we include simulation results.

Chapter 6 In this chapter, we perform simulations study for all major forma-
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tion control algorithms introduced in the thesis in Chapters 3, 4 and 5.

This is to compare the performance yielded by each of the algorithms to

distinguish strengths and possible weaknesses of each of the algorithms in

various circumstances.

Chapter 7 In the last chapter of the thesis we present our concluding remarks

on the subject of the formation control problem. We also propose further

work that could be done in the realm of the formation control problem.

Appendix A In this appendix we present some mathematical results regarding

the material that is being used throughout the thesis.

Appendix B In this appendix we concentrate on the stability analysis of dynam-

ical systems. In particular we first introduce the Lyapunov direct method,

then we discuss stability of invariant sets. Afterwards, we elaborate on sta-

bility analysis of an equilibrium of a cascaded system and at the end we

present the backstepping technique.

Appendix C This appendix presents some basic definitions and facts regarding

graph theory.

Appendix D This appendix gives a brief description of the E-Puck mobile robot

that is used in experiments in this thesis.
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Chapter 2

Modeling and problem statement

In this chapter we first derive kinematic and dynamic models of nonholonomic

mobile robots in Section 2.1. Then, in Section 2.2, we formulate the formation

control problem.

2.1 Mathematical model of a nonholonomic mo-

bile robot

In this section we derive mathematical models of nonholonomic mobile robots: in

Subsection 2.1.1 a model of a unicycle mobile robot, in Subsection 2.1.2 a model

of a car–like mobile robot and in Subsection 2.1.3 we describe a chained–form

representation of a kinematic model of a generic nonholonomic mobile robot.
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y

x

v
ẏ

ẋ

θ

Figure 2.1: Orthogonal projection of a robot wheel (view from the top of the
wheel).

The kinematic model of a mobile robot is normally obtained from nonholonomic

constraints on the mobility of the robot. In general, we consider two types of

constraints: the lateral slip constraint and the longitudinal slip constraint (Cam-

pion et al., 1991; De Wit et al., 1996). The lateral slip constraint stems from the

inability of robot wheels to move sideways. Wheel velocity may be decomposed

into two components as shown in Figure 2.1

ẋ = v cos θ,

ẏ = v sin θ,
(2.1)

in which v is the forward speed of the robot.

By multiplying the first equation by sin θ and the second one by cos θ and adding
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2. MODELING AND PROBLEM STATEMENT

both equations, one obtains

ẋ sin θ − ẏ cos θ = 0, (2.2)

which is the lateral slip constraint. In contrast, the longitudinal slip constraints

result from the assumption that there is no longitudinal slip of the robot’s wheels,

which implies that

v = Rϕ̇, (2.3)

where ϕ is the angular velocity of the wheel and R is the radius of the wheel, see

Figure 2.2. Noting that from (2.1) it follows that v = ẋ cos θ + ẏ sin θ, we thus

obtain

ẋ cos θ + ẏ sin θ − Rϕ̇ = 0. (2.4)

It can be shown that the kinematic constraints given by (2.2) and (2.4) cannot

be integrated, i.e. there does not exist a function f(x, y, θ, ϕ) such that the con-

straints are equivalent to
d

dt
f(x, y, θ, ϕ) = 0. This kind of constraints is called

nonholonomic. Conversely, if constraints can be integrated, they are named holo-

nomic constraints. As an example of holonomic constraints, consider the following

dynamic system (Lefeber, 2000)

ẋ = ωy,

ẏ = −ωx,
(2.5)

which implies the velocity constraint

xẋ+ yẏ = 0. (2.6)
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Figure 2.2: Mobile robot’s wheel.

Equation (2.6) may be integrated to yield

1

2
x2 +

1

2
y2 = c, (2.7)

where c ∈ R+. Hence (2.6) is a holonomic constraint.

All nonholonomic constraints that apply to a particular robot may be grouped

and presented in the matrix form A(q)q̇ = 0, where A(q) is the so–called Pfaffian

matrix associated with the nonholonomic constraints and q is the vector of gen-

eralised positions. For example, given that mobile robot’s constraints are (2.2)

and (2.4), the Pfaffian matrix is

A =



sin θ − cos θ 0 0

cos θ sin θ 0 −R


 . (2.8)
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2. MODELING AND PROBLEM STATEMENT

The kinematic model of the robot is then

q̇ = G(q)η, (2.9)

where the matrix G(q) contains linearly independent column vectors gi(q) such

that gi(q) ∈ kerAT (q) and η is a vector of auxiliary velocities. For the Pfaffian

matrix in (2.8), the resultant matrix G(q) is calculated as

G =




cos θ 0

sin θ 0

0 1

1
R

0




. (2.10)

At this point, it is worth to mention that one can use the well-known Frobenius

theorem (Bloch, 2003; Sastry, 1999) to determine whether a dynamic system (2.9)

is nonholonomic or holonomic. This is particularly interesting since it may be very

difficult to verify the integrability of the constraints per se. From the Frobenius

theorem it can be deduced that a system (2.9) is holonomic if the distribution

∆ = span{g1(q), . . . , gr(q), in which r is the dimension of the null space of AT (q),

is involutive, i.e. we have that gi(q), gj(q) ∈ ∆ implies that [gi(q), gj(q)] ∈ ∆.

Here, [gi(q), gj(q)] denotes the Lie bracket (Sastry, 1999) defined as

[gi(q), gj(q)] =
∂gj

∂q
gi −

∂gi

∂q
gj . (2.11)
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2. MODELING AND PROBLEM STATEMENT

Using this result, we can show that for the system in (2.5), we have that

g1(q) =




0

−ωy


 , g2(q) =



ωx

0


 and [gi(q), gj(q)] =



0

0


 , (2.12)

which confirms the holonomic nature of the constraint in (2.6) as shown earlier.

For the sake of simplicity, we only consider the lateral slip constraint in the sequel.

2.1.1 Unicycle mobile robot

Consider a unicycle mobile robot as depicted in Figure 2.3. The state vector

q = col(x, y, θ) denotes position (x, y) of the centre of mass of the robot and

orientation θ with respect to the horizontal axis, respectively. The control inputs

are the forward velocity v and the angular velocity ω.

It is assumed that the robot moves without side slip which is equivalent to the

nonholonomic constraint in (2.2). Hence, the matrix G(q) is given by

G(q) =




cos θ 0

sin θ 0

0 1



, (2.13)

and the kinematic model immediately follows (Campion and Chung, 2008; De Wit
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x

y
θ

L

x1x2

y1

y2

Figure 2.3: A unicycle-type mobile robot. (x, y) denote the position of the
barycentre of the robot, (x1, y1) and (x2, y2) denote the centres of the two wheels
of the robot and θ stands for the orientation with respect to the inertial horizontal
axis.

et al., 1996; Siciliano et al., 2009):

ẋ = v cos θ,

ẏ = v sin θ, (2.14)

θ̇ = ω.

In addition to the kinematic model of a unicycle robot, we can also obtain the

dynamic model. Normally, it may be obtained using either the Newton’s Second

Law of Motion or the Euler–Lagrange formalism. We use the first approach and
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2. MODELING AND PROBLEM STATEMENT

arrive at (cf. (Jiang and Nijmeijer, 1997; Panteley et al., 1998)):

v̇ =
F

m
,

ω̇ =
τ

J
,

(2.15)

in which m denotes the mass of the robot, J is its moment of inertia around the

vertical axis passing through its centre of mass and the control inputs F and τ

denote force and torque respectively. The full dynamic model of a unicycle mobile

robot is then given by

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

v̇ =
F

m
,

ω̇ =
τ

J
.

(2.16)

2.1.2 Car–like mobile robot

A simple schematic of a car–like mobile robot is given in Figure 2.4. Here, the

state vector is q = col(x, y, θ, ϕ) denoting the robot’s Cartesian position (x, y) of

the mid–point of the robot’s rear axle, orientation of the robot’s body θ and front

wheel steering angle ϕ.

We consider two constraints for rolling–without–slipping, one for the mid–point

of the rear axle

ẋ sin θ − ẏ cos θ = 0, (2.17)
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b
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θ

b

ϕ

l
ỹ

x̃

Figure 2.4: A car–like mobile robot. (x, y) denotes the position of the centre of
the rear axle of the robot, (x̃, ỹ) denotes the centre of the front axle of the robot,
θ stands for the orientation with respect to the inertial horizontal axis and ϕ is
the wheel steering angle.

and one for the front axle

˙̃x sin(θ + ϕ)− ˙̃y cos(θ + ϕ) = 0. (2.18)

Keeping in mind the dependence of (x̃, ỹ) on (x, y):

x̃ = x+ l cos θ, (2.19)

ỹ = y + l sin θ,
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we obtain the counterpart of (2.18) in terms of (x, y)

ẋ sin(θ + ϕ)− ẏ cos(θ + ϕ)− θ̇l cosϕ = 0. (2.20)

Then, the associated Pffafian matrix is given by

A =




sin θ − cos θ 0 0

sin(θ + ϕ) cos(θ + ϕ) −l cosϕ 0


 , (2.21)

and consequently the kinematics of a car–like robot follows forthwith (De Luca

et al., 1998; De Wit et al., 1996; Morin and Samson, 2006; Murray et al., 1994;

Siciliano et al., 2009; Spong et al., 2006):

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v

l
tanϕ,

ϕ̇ = ω,

(2.22)

in which v is the robot’s forward velocity and ω is the front wheel’s angular

velocity. Model (2.22), with such a choice of the kernel of the Pfaffian matrix A

(2.21), becomes singular when ϕ = ±π
2
which is equivalent to the front wheels

being perpendicular to the car body. Understandably, a car–like robot (5.1) is

not controllable in this situation which can also be verified by checking the Lie

Algebra rank condition (De Luca et al., 1998; Isidori, 2000). However, as pointed

out in (De Luca et al., 1998) this is not a problem in most cases because of a

restricted range of ϕ in practice and the ability to directly control ϕ. Moreover,
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one might choose an alternative kernel of matrix A, for example such that matrix

G is given by

G(q) =




cos θ cosϕ 0

sin θ cosϕ 0

sinϕ

l
0

0 1




. (2.23)

The disadvantage of it, though, is the fact that while in (2.22) the control inputs

v and ω have practical meaning, in (2.23) the meaning of the control inputs is

less obvious.

2.1.3 Chained form representation of kinematics of a non-

holonomic mobile robot

The chained form is a special representation in which kinematic equation of mo-

tion of nonholonomic systems can be presented:

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2u1, (2.24)

...

ẋn = xn−1u1.

It is a well–known fact that a chained form can be obtained for numerous nonholo-

nomic systems by means of a local or global coordinate transformation (De Wit
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et al., 1996; Leroquais and d’Andrea Novel, 1995; Murray and Sastry, 1993). This

includes the unicycle mobile robot (2.14), when the following state transformation

x1 = θ,

x2 = x cos θ + y sin θ, (2.25)

x3 = x sin θ − y cos θ,

and input change

u1 = v cos θ,

u2 =
1

cos2 θ
ω.

(2.26)

are applied. This change of coordinates is only local as it is singular for θ = ±π
2

(De Wit et al., 1996; Morin and Samson, 2008). A global transformation (De Luca

et al., 1998) of the unicycle robot model (2.14) into the chained form can be

obtained if we redefine u1 and u2 as

u1 = ω,

u2 = v − x3ω.
(2.27)

Similarly, the kinematics of a car–like robot (2.22) can be transformed into the

chained form. To this end, one uses the well-known coordinate change (De Luca

et al., 1998; De Wit et al., 1996; Morin and Samson, 2006; Murray et al., 1994;
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Siciliano et al., 2009; Spong et al., 2006)

x1 = x,

x2 =
tanϕ

l cos3 θ
,

x3 = tan θ,

x4 = y,

(2.28)

and the input transformation

u1 = v cos θ,

u2 =
lω cos2 θ + 3v sin θ sin2 ϕ cos θ

l2 cos3 θ cos4 ϕ
.

(2.29)

From (2.28) and (2.29) it is visible that the chained form for (2.22) is defined

excluding θ = ±π
2
and for ϕ 6= ±π

2
, see (De Luca et al., 1998) for details.

2.2 General formulation of the formation con-

trol problem

In this section we give a formal problem statement of the formation control prob-

lem studied in this thesis.

Consider a formation consisting of N nonholonomic mobile robots with identical

dynamics

q̇i = fi(t, qi, ui), (i = 1, . . . , N) (2.30)
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where fi(t, qi, ui) : R×Rn×Rm → Rn, qi ∈ Rn and ui ∈ Rm is the robot’s control

input. Let I = {1, . . . , N} denote the set of indices of robots in the formation.

Without loss of generality, let the state vector qi be such that qi = col(pi, ri),

where pi = col(xi, yi) denotes the Cartesian position of a representative point of

the robot i and ri is the remaining part of the state vector. In the case of a

unicycle robot ri = θi and for a car–like mobile robot ri = col(θi, ϕi).

The formation control problem studied in this thesis requires robots to converge

to a desired formation shape and for such a formation as a whole to track a

given desired trajectory denoted as qdvc(t). To solve a problem defined like this,

we use the so-called virtual structure approach (Do and Pan, 2007; Lewis and

Tan, 1997; Ren and Sorensen, 2008; Van den Broek et al., 2009). Following

(Lewis and Tan, 1997), the virtual structure is a rigid body whose vertices are

formed by the robots in the formation. The virtual structure is then supposed

to track the given desired trajectory for the formation control problem to be

solved. Consequently, let qvc(t) = col(pvc(t), rvc(t)) represent the state vector of

the so-called virtual centre (see eg. Ren and Sorensen, 2008; Van den Broek et al.,

2009) of the formation which is a moving coordinate frame attached to a certain

point in the virtual structure, the orientation of which follows from the desired

trajectory of the formation qdvc(t). Note that the virtual centre does not need to

be placed in an actual geometric centroid of the virtual structure but may be in

any point considered as central for a particular application. The virtual structure

follows a given desired trajectory if the virtual centre tracks this trajectory. Then,

one may define the positions of the vertices of the virtual structure or in other

words a desired formation shape with respect to the virtual centre with the aid
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qdvc(t)
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vc
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VC

Robot 1

Robot 2

Robot 3
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Figure 2.5: Desired positions of robots in the formation with respect to the virtual
centre’s position and a given formation shape. In the local virtual-centre-fixed
frame desired positions are ld1, l

d
2, l

d
3, l

d
4 and in the global coordinate system these

positions become (xd
i , y

d
i ) for Robot i ∈ {1, . . . , 4}.

of vectors ldi = col
(
ldix, l

d
iy

)
, ∀i ∈ I. In practice, the vectors ldi express the position

coordinates of robot i with respect to the local coordinate system of the virtual

centre whose orientation coincides with the given desired trajectory qdvc(t).

In this thesis, we use an extended concept of the virtual structure since we allow

for the desired formation shape to be time–varying and determined by time–

varying vectors ldi (t), i ∈ I. Hence the original characterisation of the virtual

structure being a rigid body in (Lewis and Tan, 1997) should rather be redefined

to a more general geometric structure to accommodate for the possibility of the

virtual structure changing its shape.

To execute the formation control problem, based on the desired trajectory of the

formation and the desired formation geometry, one can define desired trajectories
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for individual robots in the formation pdi (t) = (xd
i (t), y

d
i (t))

T as the trajectories of

the vertices of the virtual structure whose virtual centre tracks qdvc(t). This gives

pdi (t) = pdvc(t) +R(θdvc(t))l
d
i (t), (2.31)

where

R(θ) =



cos θ − sin θ

sin θ cos θ


 (2.32)

is a rotation matrix, and θdvc is the desired orientation of the virtual centre. Note

that having position coordinates pi(t), p
d
i (t) and pdvc(t), the remaining part of the

state vectors qdvc, qi and qdi are uniquely defined due to nonholonomic constraints,

see further chapters for details. With the aid of (2.31) we define desired states

for all individual robots by qdi (t) = ((pdi )
T (t), (rdi (t))

T )T . Note that vectors pi, p
d
i ,

pvc and pdvc are given relative to the world frame while, as mentioned earlier, ldi is

expressed with respect to the moving virtual-centre-fixed coordinate system.

Now, for the formation problem to be solved, we require the following set of

equalities to hold asymptotically

pi(t)− pdi (t) =



0

0


 , i ∈ I, (2.33)

and consequently, the error variable

ei(t) = pi(t)− pdi (t) (2.34)
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should converge to zero. Differentiating (2.34) along dynamics (2.30) and dynam-

ics of qdi (t), we obtain

ėi(t) = fpi(t, qi, ui)− f d
pi(t), (2.35)

where fpi and f d
pi are such that fi = col(fpi, fri) and f d

i = col(f d
pi, f

d
ri) in which

q̇di = f d
i (t) defines dynamics of qdi (t).

Then, the formation control problem can be stated as follows.

Problem Statement. Consider N mobile robots, each given by kinematic equa-

tions (2.30), a desired trajectory of the virtual center of the formation qdvc(t) and

desired formation shape ldi (t), i ∈ I. The formation control problem consists in

finding closed–loop controls ui (i ∈ I) such that the origin of the error dynamics

(2.35) is globally asymptotically stable.

It is important to remark that although we consider the virtual centre of the

formation and define the desired trajectory of the virtual centre, we do not ex-

plicitly look at its dynamics or calculate its trajectory. In fact, we merely use

the concept of the virtual centre to define the desired trajectories of individual

robots in the formation given the desired trajectory of the virtual centre and the

desired formation shape. Indeed, when the formation control problem as defined

above is solved, one may say that the virtual centre’s trajectory coincides with its

desired trajectory. Consequently, when the formation control problem is solved,

the vertices of the virtual structure follow the same trajectories as the robots in

the formation. However, we do not consider the trajectory of the virtual centre as

such otherwise. On the contrary, we only consider the trajectories and behaviour

of individual robots in the formation and then by examining the convergence of
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individual robots to their desired trajectories we state that the virtual centre also

converges to its desired trajectory by the formulation of the formation control

problem.
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Chapter 3

Cascaded approach to the

formation control of unicycle

mobile robots

3.1 Introduction

In this chapter we present a formation control algorithm based on a cascaded

approach. These results have been previously published in part in (Sadowska

et al., 2011a,b).

Further to the general problem formulation, we consider a formation consisting

of N identical unicycle mobile robots with a nonholonomic no-side-slip constraint

ẋ sin θ− ẏ cos θ = 0, where the state vector q = (x, y, θ) represents position (x, y)
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and orientation θ. Hence, the motion of each robot in the group is given by (see

Section 2.1.1 and (Campion and Chung, 2008; de Wit et al., 1996; Siciliano et al.,

2009))

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

(3.1)

where ui = (vi, ωi)
T is the control input of the ith robot with vi the forward

velocity and ωi the angular velocity, (xi, yi) are the Cartesian coordinates of the

robot and θi is its orientation, i ∈ I = {1, . . . , N}. Given the robot’s trajectory

qi(t), vi(t) and ωi(t) can then be obtained from

vi =
√
(ẋi)2 + (ẏi)2,

ωi =
ÿiẋi − ẍiẏi

(ẋi)2 + (ẏi)2
.

(3.2)

The existence of these expressions is well-known in the robotics literature (Lau-

mond, 1998; Morin and Samson, 2008) and is a consequence of the differential

flatness of (3.1) (Fliess et al., 1995).

Following the virtual structure approach, an additional virtual robot with identi-

cal kinematics (3.1) as for all robots in the group is introduced and placed in the

so–called virtual centre of the formation. Based upon the position and orientation

of the virtual centre, desired positions of robots in the formation are given with

the aid of possibly time–varying bounded vectors ldi (t) =
(
ldxi(t), l

d
yi(t)

)T
given

with respect to the local coordinate system associated with the virtual robot that

is in accordance to its orientation. We also assume that d
dt
(ldi (t)) is bounded.
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For the formation control problem to be solved, we require first that the virtual

centre follows a predefined trajectory (xd
vc(t), y

d
vc(t), θ

d
vc(t)), where (xd

vc(t), y
d
vc(t))

denotes desired Cartesian positions and θdvc(t) denotes a desired orientation of the

virtual centre satisfying the no–side–slip constraint ẋ sin θ− ẏ cos θ = 0. Simulta-

neously, all robots in the formation should maintain a given spatial pattern with

respect to the virtual centre defined by the desired formation shape ldi (t), i ∈ I.

In terms of the behaviours of individual robots, this requirement is tantamount to

the condition that robots should converge to their desired trajectories calculated

according to

xd
i = xd

vc + ldxi cos θ
d
vc − ldyi sin θ

d
vc,

ydi = ydvc + ldxi sin θ
d
vc + ldyi cos θ

d
vc,

(3.3)

These functions are determined to the specification of a particular desired tra-

jectory of the virtual centre and a particular desired formation shape. Moreover,

as for θdvc, the remaining state variable, θdi , also follows from the nonholonomic,

no-side-slip constraint and (3.3).

Let vdvc and ωd
vc be the desired forward and angular velocities respectively that are

associated with the given desired trajectory (xd
vc(t), y

d
vc(t)) of the virtual structure

and can be calculated similarly to (3.2). Assume that vdvc and ωd
vc are bounded.

Using expressions in (3.2), we may obtain the counterparts vdi and ωd
i of vdvc and

ωd
vc. We present them here for the sake of completeness:

vdi (t) =
√
(ẋd

i (t))
2 + (ẏdi (t))

2,

ωd
i (t) =

ÿdi (t)ẋ
d
i (t)− ẍd

i (t)ẏ
d
i (t)

(ẋd
i (t))

2 + (ẏdi (t))
2

.
(3.4)

The boundedness of vdvc, ω
d
vc, l

d
i and l̇di as assumed implies the boundedness of vdi
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and ωd
i .

Following (Kanayama et al., 1990), to simplify the analysis of the behaviour of

the robots in the settings of this chapter, the error variables of robot i are defined

by 


xe
i

yei

θei




=




cos θi sin θi 0

− sin θi cos θi 0

0 0 1







xd
i − xi

ydi − yi

θdi − θi




, (3.5)

and correspond to the error coordinates in the local robot-associated frame. This

choice of error variables is used to simplify the stability analysis in the settings

as considered in this chapter. It is shown in (Kanayama et al., 1990) that the

error dynamics are given by

ẋe
i = ωiy

e
i − vi + vdi cos θ

e
i ,

ẏei = −ωix
e
i + vdi sin θ

e
i , i ∈ I

θ̇ei = ωd
i − ωi.

(3.6)

Therefore, the formation control problem may be stated as follows: design con-

trol inputs vi and ωi that render the origin of the error dynamics (3.6) globally

asymptotically stable.

Bearing in mind Section 1.5, the main contribution of this chapter may be consid-

ered as a distributed formation control algorithm, i.e. such that each robot i can

only communicate with robots j ∈ Ni, where Ni is a set of neighbours of robot

i defined in Definition C.2. The algorithm is based upon the virtual structure

approach and motivated by (Van den Broek et al., 2009). Note that the control
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algorithm presented in (Van den Broek et al., 2009) is centralised, i.e. robots need

to communicate with all other robots in the formation. Moreover, the algorithm

(Van den Broek et al., 2009) is nonlinear in terms of some of the error variables

and only provides local convergence. In addition, in (Van den Broek et al., 2009)

the analysis of the formation control algorithm is only given for two robots in

the formation, which obviously is a considerable limitation. In comparison with

(Van den Broek et al., 2009), the feedback terms introduced for the formation

control are linear functions of the robot states. Moreover, our results hold glob-

ally and the case of an arbitrary number of robots in the formation is studied.

Therefore, the applicability of our results is broader. In addition, we extend our

main result to a simplified dynamic control algorithm that takes into considera-

tion mobile robots’ dynamic properties like mass or moment of inertia. Also the

case of robot actuator limitations is taken care of. Further, it is important to

remark that our contribution also includes a numerical and experimental inves-

tigation of the impact of connected and disconnected communication structures

on robots’ behaviour in a formation.

The control algorithms that we establish to solve the formation control problem

are based on the well-known cascade approach, see (Panteley and Loria, 1998;

Panteley et al., 1998). By using this control scheme, we are able to enjoy the

major advantage of the cascade approach, i.e. the ability to decompose a task

of stabilising the origin of a complex nonlinear system into stabilising two sim-

pler systems when an additional condition regarding the interconnection term is

satisfied.
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The outline of this chapter is as follows. We give our main results in Section 3.2.

In particular, in Subsection 3.2.1 we introduce the kinematic control law and in

Subsection 3.2.2 we propose the simplified dynamic control law. After that, we

present a practical extension of our results accounting for the actual actuator

limitations in Subsection 3.2.3 where a saturated version of the control algorithm

is given. In Section 3.3 we present simulation results and in Section 3.4 we

present experimental results that validate the controllers. Section 3.5 contains a

discussion of the results obtained.

3.2 Control design

3.2.1 Kinematic formation control algorithm

In this section, we introduce a formation control algorithm based on the virtual

structure approach to solve the formation control problem. The formation control

algorithm should ensure that the formation follows a given desired trajectory as a

whole. For this to be possible, the virtual centre of the formation ought to follow

the given desired trajectory while the robots in the formation maintain a given

formation shape given with the aid of time-varying coordinates (ldxi(t), l
d
yi(t)), i ∈ I

with respect to the virtual centre. To allow the robots to react to any pertur-

bation occurring to any of the robots in the formation, the formation controller

should be designed to balance between the robots tracking their desired trajecto-

ries and keeping the desired formation shape. To meet this objective, we employ

a modified version of the control algorithm proposed originally for a single non-

63



3. CASCADED APPROACH TO THE FORMATION CONTROL OF UNICYCLE MOBILE ROBOTS

holonomic system by Panteley et al. (1998) and revisited afterwards by Jakubiak

et al. (2002). The augmentation that is crucial for a formation control algorithm

involves the inclusion of a mutual coupling between the robots. Therefore, for

the ith robot we introduce additional mutual coupling terms xe
i − xe

j , y
e
i − yej and

θei − θej for each robot j ∈ Ni. Note that in (Rodriguez-Angeles and Nijmeijer,

2003, 2004) the concept of mutual coupling was employed in the synchronisation

of industrial robots. However, in that work the mutual coupling terms were in-

troduced at the level of the desired trajectories. In our work, the mutual coupling

terms are introduced in the control input of each individual robot which results

in the following controller:

vi = vdi + cxi x
e
i − c

y
iω

d
i y

e
i +

∑

j∈Ni

c̃xij(x
e
i − xe

j)−
∑

j∈Ni

c̃
y
ijω

d
i (y

e
i − yej ),

ωi = ωd
i + cθi θ

e
i +

∑

j∈Ni

c̃θij(θ
e
i − θej ), i ∈ I,

(3.7)

where cxi , c
y
i , c

θ
i for i ∈ I represent tracking control gains and c̃xij , c̃

y
ij , c̃

θ
ij for

i ∈ I, j ∈ Ni represent mutual coupling gains. Note that the original tracking

algorithm for a single mobile robot proposed by Panteley et al. (1998) can be

retrieved by setting all coupling gains to zero, i.e. c̃xij = 0, c̃yij = 0, c̃θij = 0. In

the case of formation control, these mutual coupling gains are crucial for robots

in the formation to be aware of their neighbours’ states. The importance of the

mutual coupling terms can be particularly viewed if some of the robots in the

formation are subject to a perturbation.

In the following theorem, we examine when the formation control problem as

defined in this chapter is solved using the control law given in (3.7).
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Theorem 3.2.1. Consider a group of N nonholonomic mobile robots (3.1), a de-

sired trajectory of the virtual centre of the formation (xd
vc(t), y

d
vc(t)) giving bounded

desired forward vdvc(t) and angular ωd
vc(t) velocities of the virtual centre, a desired

formation shape given by coordinates ldi (t) that are bounded and such that l̇di (t) are

also bounded, and associated desired trajectories of robots in the formation (3.3)

together with desired forward and angular velocities (3.4). Let the control law be

defined in (3.7) in which cxi , c
y
i , c

θ
i , c̃

x
ij,c̃

y
ij, c̃

θ
ij are positive parameters such that

c̃xij = c̃xji and c̃
y
ij = c̃

y
ji and c̃νij 6= 0 iff j ∈ Ni for all ν ∈ {x, y, θ}. Assume that for

i ∈ I, ωd
i (t) are such that Ω̄d(t) = col(ωd

1(t), . . . , ω
d
N(t)) satisfies the persistence

of excitation condition in Definition A.2, and vdi (t) is nonzero, for all t. Then

the origin is a globally K–exponentially stable equilibrium point of the closed–loop

error dynamics (3.6, 3.7) and hence the control law (3.7) solves the formation

control problem.

Proof. Application of the control law (3.7) yields the following closed–loop error

dynamics of the overall formation



Ẋe

Ẏ e


 =



−Cx Ωd

(
Cy + I

)

−Ωd 0






Xe

Y e




︸ ︷︷ ︸
ż1=f1(t,z1)

+



ȲeCθ +VdΘcos

−X̄eCθ +VdΘsin




︸ ︷︷ ︸
g(t,z1,z2)

Θe,

Θ̇e = −CθΘe

︸ ︷︷ ︸
ż2=f2(z2)

, (3.8)

where Xe = col(xe
1, . . . , x

e
N ), Y

e = col(ye1, . . . , y
e
N), Θ

e = col(θe1, . . . , θ
e
N), X̄

e =

diag(xe
1, . . . , x

e
N ), Ȳ

e = diag(ye1, . . . , y
e
N), I is the identity matrix of appropriate di-

mensions, 0 is a matrix with all entries equal zero of appropriate dimensions, Ωd =
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diag(ωd
1, . . . , ω

d
N),V

d = diag(vd1 , . . . , v
d
N),Θcos = diag

(
cos θe1 − 1

θe1
, . . . ,

cos θeN − 1

θeN

)

andΘsin = diag

(
sin θe1
θe1

, . . . ,
sin θeN
θeN

)
. Note that the functions

sin θei
θei

and
cos θei − 1

θei
are smooth if their definition is extended to θei = 0 in the standard way and as

such they are used in the sequel of the thesis without further commentary.

The remaining matrices Cx, Cy and Cθ in (3.8) are given by:

Cx =




cx1 +
∑

j∈N1

c̃x1j −c̃x12 . . . −c̃x1N

...
. . .

. . .
...

−c̃xN−11
. . . cxN−1 +

∑

j∈NN−1

c̃xN−1j −c̃xN−1N

−c̃xN1 −c̃xN2 . . . cxN +
∑

j∈NN

c̃xNj




, (3.9)

Cy =




c
y
1 +

∑

j∈N1

c̃
y
1j −c̃

y
12 . . . −c̃

y
1N

...
. . .

. . .
...

−c̃
y
N−11

. . . c
y
N−1 +

∑

j∈NN−1

c̃
y
N−1j −c̃

y
N−1N

−c̃
y
N1 −c̃

y
N2 . . . c

y
N +

∑

j∈NN

c̃
y
Nj




, (3.10)

Cθ =




cθ1 +
∑

j∈N1

c̃θ1j −c̃θ12 . . . −c̃θ1N

...
. . .

. . .
...

−c̃θN−11
. . . cθN−1 +

∑

j∈NN−1

c̃θN−1j −c̃θN−1N

−c̃θN1 −c̃θN2 . . . cθN +
∑

j∈NN

c̃θNj




, (3.11)

where for i 6= j, we have Cx
ij 6= 0, Cy

ij 6= 0 and Cθ
ij 6= 0 iff j ∈ Ni. For matrix Cx,
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we may define deleted absolute row sums (Horn and Johnson, 1990) as

Ri(C
x) =

∑

j∈I
j 6=i

|Cx
ij | =

∑

j∈Ni

c̃xij, (3.12)

where i = 1, . . . , N . Then, by the Geršgorin disc theorem (Horn and Johnson,

1990), all eigenvalues of Cx lie in the region defined by

G(Cx) =

N⋃

i=1

{
z ∈ C

∣∣∣ |z −Cx
ii| ≤ Ri(C

x)
}

=
N⋃

i=1

{
z ∈ C

∣∣∣ |z − (cxi +
∑

j∈Ni

c̃xij)| ≤
∑

j∈Ni

c̃xij

}
⊂ C

+, (3.13)

where C
+ denotes the open right-half plane of the complex plane. In addition,

since Cx is symmetric, it is positive definite. Similarly, it may be shown that also

Cy is positive definite.

The formation error dynamics (3.8) has the cascade form (B.25). Thus, if the

assumptions in Corollary B.18 hold, the origin of (3.8) is globallyK-exponentially

stable.

To show this, let us first consider the first stage of the cascade, i.e. ż1 = f1(z1):

ż11 = −Cxz11 +Ωd(I+Cy)z12,

ż12 = −Ωdz11,
(3.14)

in which z1 = col(z11, z12) := col(Xe, Y e). Consider a Lyapunov function candi-
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date for (3.14) of the form

V (z11, z12) =
1

2
(zT11z11 + zT12(I+Cy)z12). (3.15)

Then, the time derivative of (3.15) along trajectories of (3.14) yields

V̇ (z11, z12) = −zT11C
xz11+ zT11Ω

d(I+Cy)z12− zT12(I+Cy)Ωdz11 = −zT11C
xz11 ≤ 0,

(3.16)

where the second equality holds because Cy is symmetric and the inequality

follows from the fact that Cx is positive definite. Additionally, from Theorem

B.12 we know that z1 = 0 is a globally exponentially stable equilibrium point of

(3.14) if, besides (3.16), the observability Gramian of the pair (A(t), C) satisfies

(B.21) where

A(t) =



−Cx Ωd

(
Cy + I

)

−Ωd 0


 C =

[√
Cx 0

]
. (3.17)

Following the developments in (Alvarez Aguirre, 2011; Khalil, 1996) it can indeed

be shown that given the fact that Ω̄d(t) is persistently exciting according to

Definition A.2, the pair (A(t), C) is completely uniformly observable and hence

Condition (B.21) is satisfied. Thus, Theorem B.12 can be used to show that

z1 = 0 is a globally exponentially stable equilibrium of (3.14) which proves the

validity of Assumption 1 in Corollary B.18.

The second assumption from Corollary B.18 can be proven to be true immediately
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since ż2 = f2(z2) is the following linear time-invariant system:

Θ̇e = −CθΘe. (3.18)

Once again using the Geršgorin disc theorem (Horn and Johnson, 1990), it may

be shown that all eigenvalues of Cθ lie in C+. Hence, Θe = 0 is a globally

exponentially stable equilibrium point of (3.18). This proves Assumption 2 in

Corollary B.18.

Next, we show that g(t, z1, z2) from (3.8) satisfies Assumption 3 from Corollary

B.18. After some manipulations, we obtain

‖g(t, z1, z2)‖F ≤ 2Nv∗ + ‖Cθ‖‖z1‖, (3.19)

where

v∗i = sup{|vdi (t)| | t ≥ 0},

v∗ = max{v∗i | i = 1, . . . , N}, (3.20)

and ‖ · ‖F denotes the Frobenius norm, see (Khalil, 1996). By assumption vdi for

i ∈ I are bounded and hence, Assumption 3 in Corollary B.18 is satisfied with

k1(·) = 2Nv∗ and k2(·) = ‖Cθ‖. Therefore it follows from Corollary B.18, that

the origin (z1, z2) = (0, 0) of the cascade system (3.8) is globally K–exponentially

stable. Therefore, the control law (3.7) solves the formation control problem

studied in this chapter.

Remark 3.2.2. Theorem 3.2.1 only poses rather weak constraints on the control
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parameters. Therefore, there is a considerable freedom to design the control

parameters in a way which is desirable for a specific application. In particular,

to focus on tracking of the individual robot trajectories, the tracking gains cxi ,

c
y
i , c

θ
i should dominate the mutual coupling gains c̃xij, c̃

y
ij , c̃

θ
ij . Conversely, when

keeping formation is the major objective, the mutual coupling gains c̃xij , c̃
y
ij and

c̃θij ought to dominate the tracking gains cxi , c
y
i , c

θ
i .

Remark 3.2.3. The condition c
y
i > 0 may be weakened to c

y
i > −1. This is

because we only require the matrix (I + Cy) in (3.15) to be a positive definite

matrix, as opposed to the matrixCy being positive definite. However, it was noted

in (Van den Broek et al., 2009) that the choice of a negative control parameter

c
y
i may cause some undesirable transient behaviour of robots in the formation.

Remark 3.2.4. In the literature, control algorithms have been proposed that

implement obstacle avoidance strategies on the level of desired trajectories, see

e.g. (Kostić et al., 2010a; Sadowska et al., 2012). Such algorithms for obstacle

avoidance can also be integrated with the formation control strategy proposed in

this chapter by feeding such adapted reference trajectories to the formation con-

troller. Having said that, in this work we refrain from such a technical extension

and concentrate on the formation control design as such.

Remark 3.2.5. The distributed character of the control law in Theorem 3.2.1 can

be further enhanced when only some selected members of the group are able to

communicate with the virtual centre. These selected robots will receive informa-

tion directly from the virtual centre about, for example, the desired trajectory of

the formation. Then, if the communication graph of the formation is connected,

all other robots would obtain all necessary information about the virtual centre
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too through local interaction with their neighbours. Note that this modification

does not alter the control law in Theorem 3.2.1. It is merely a proposition how

in practice communication cost can be further dimished.

Remark 3.2.6. The persistence of excitation condition that is required in The-

orem 3.2.1 can be relaxed in the manner proposed in (Loria et al., 1999). This

technical extension would allow robots to track trajectories such that ωd
i (t) = 0,

i.e. straight lines.

3.2.2 Dynamic formation control algorithm

In this section we consider a distributed dynamic formation control algorithm

based on a simple dynamic model of a mobile robot introduced in Section 2.1.2

(Jiang and Nijmeijer, 1997; Panteley et al., 1998):

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi, (3.21)

v̇i =
Fi

mi

,

ω̇i =
τi

Ji

.

The notation is as follows: mi denotes the mass of robot i ∈ I, Ji is its moment

of inertia about an axis through the robot’s barycentre which is perpendicular to

the ground, Fi is force and τi is torque. The control inputs are the force Fi and

the torque τi.
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The dynamic formation control algorithm is an extension of the kinematic control

law presented in the previous subsection and is motivated by the developments

in (Panteley et al., 1998). Based on the control law defined in Theorem 3.2.1, we

define nominal forward and angular velocities as

v̄i = vdi + cxi x
e
i − c

y
iω

d
i y

e
i +

∑

j∈Ni

c̃xij(x
e
i − xe

j)−
∑

j∈Ni

c̃
y
ijω

d
i (y

e
i − yej ),

ω̄i = ωd
i + cθi θ

e
i +

∑

j∈Ni

c̃θij(θ
e
i − θej ).

(3.22)

Also, we define additional velocity error variables by

vei = vi − v̄i,

ωe
i = ωi − ω̄i.

(3.23)

Differentiating (3.23), we obtain time derivatives of the new error variables defined

along solutions of (3.21) for each robot i ∈ I in the formation:

v̇ei =
Fi

mi

− ˙̄vi,

ω̇e
i =

τi

Ji

− ˙̄ωi.
(3.24)

Combining (3.6) and (3.24) yields the following error dynamics:

ẋe
i = ω̄iy

e
i − v̄i + vdi cos θ

e
i + ωe

i y
e
i − vei ,

ẏei = −ω̄ix
e
i + vdi sin θ

e
i − ωe

ix
e
i ,

θ̇ei = ωd
i − ω̄i − ωe

i ,

v̇ei =
Fi

mi
− ˙̄vi,

ω̇e
i =

τi

Ji

− ˙̄ωi,

(3.25)
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for which we should design control laws for Fi and τi, such that it possesses a

globally asymptotically stable equilibrium point at the origin. Using the expres-

sions of v̄i and ω̄i in (3.22), we obtain the following error dynamics for the overall

formation




Ẋe

Ẏ e

V̇ e




=




−Cx Ωd
(
Cy + I

)
−I

−Ωd 0 0

0 0 0







Xe

Y e

V e




+




0

0

I




(
M−1F − ˙̄V

)

+




ȲeCθ +Vdθcos Ȳe

−X̄eCθ +Vdθsin −X̄e

0 0






Θe

Ωe


 , (3.26)



θ̇e

Ω̇e


 =



−Cθ −I

0 0






θe

Ωe


+



0

I



(
J−1T − ˙̄Ω

)
,

where V e = col(ve1, . . . , v
e
N), Ω

e = col(ωe
1, . . . , ω

e
N), M = diag(m1, . . . , mN), J =

diag(J1, . . . , JN), F = col(F1, . . . , FN), T = col(τ1, . . . , τN),
˙̄V = col( ˙̄v1, . . . , ˙̄vN)

and ˙̄Ω = col( ˙̄ω1, . . . , ˙̄ωN). Moreover, the constant matrices Cx, Cy and Cθ are

defined in (3.9)–(3.11). The control design, as motivated by (Panteley et al.,

1998), now relies on defining the control inputs F and T for the whole formation in

such a way that the resultant closed–loop error dynamics have a cascade structure

as in (B.25) and are globally K–exponentially stable.

To this end, we propose the following control law

F = M
(
˙̄V +CvxXe −CvvV e

)
,

T = J
(
˙̄Ω−CωΩe

)
,

(3.27)
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whereCvx = diag(cvx1 , . . . , cvxn ),Cvv = diag(cvv1 , . . . , cvvn ) andCω = diag(cω1 , . . . , c
ω
n)

are positive definite matrices. Equivalently, (3.27) may be written as

Fi = mi( ˙̄vi + cvxi xe
i − cvvi vei ),

τi = Ji( ˙̄ωi − cωi ω
e
i ).

(3.28)

It is shown in the following theorem that indeed application of the control law

(3.27) to the formation of mobile robots with the open–loop error dynamics (3.26)

globally exponentially stabilises the zero equilibrium of the formation error dy-

namics (3.26).

Theorem 3.2.7. Consider N unicycle mobile robots satisfying (3.21), a desired

trajectory of the virtual centre of the formation (xd
vc, y

d
vc) such that resulting de-

sired forward vdvc(t) and angular ωd
vc(t) velocities are bounded, and a desired for-

mation shape ldi (t), i ∈ I, such that both ldi (t) and l̇i(t) are bounded. Consider

the control law defined in (3.28), where cvxi , cvvi , cωi are positive parameters, both

v̄i and ω̄i are defined in (3.22) and additional kinematic control parameters in

(3.22) satisfy the conditions given in Theorem 3.2.1. Assume that for all i ∈ I,

ωd
i (t) in (3.4) is such that Ω̄d(t) = col(ωd

1(t), . . . , ω
d
N(t)) satisfies the persistence

of excitation condition in Definition A.2, and vdi (t) in (3.4) is nonzero. Then, the

origin of the closed–loop error dynamics (3.21, 3.28) is globally K–exponentially

stable and hence, the formation control problem is solved.
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Proof. The error dynamics of the whole formation controlled by (3.27) are




Ẋe

Ẏ e

V̇ e




=




−Cx Ωd
(
Cy + I

)
−I

−Ωd 0 0

Cvx 0 −Cvv







Xe

Y e

V e




︸ ︷︷ ︸
ż1=f1(t,z1)

+




ȲeCθ +VdΘcos Ȳe

−X̄eCθ +VdΘsin −X̄e

0 0




︸ ︷︷ ︸
g(z1,z2)



Θe

Ωe


 ,



Θ̇e

Ω̇e


 = −



Cθ I

0 Cω






Θe

Ωe


 ,

︸ ︷︷ ︸
ż2=f2(z2)

(3.29)

which has the cascade structure as in (B.25). Thus, if the three assumptions of

Corollary B.18 are satisfied, then the origin of (3.29) is a globallyK–exponentially

stable equilibrium. To prove that this is indeed the case, consider the first stage

of the cascade system, ż1 = f1(t, z1), which is a linear time-varying system of the

form

ż11 = −Cxz11 +Ωd(I+Cy)z12 − z13,

ż12 = −Ωdz11,

ż13 = Cvxz11 −Cvvz13,

(3.30)

where z1 = col(z11, z12, z13) := col(Xe, Y e, V e). We define a positive definite
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Lyapunov function candidate for this system by

V (z1) =
1

2

(
zT11z11 + zT12

(
Cy + I

)
z12 + zT13(C

vx)−1z13

)
. (3.31)

By differentiating (3.31) with respect to time along trajectories of (3.30), one

arrives at

V̇ (z11, z12, z13) = −zT11C
xz11 + zT11Ω

d(I+Cy)z12 − zT11z13

− zT11Ω
d(I+Cy)z12 + zT13(C

vx)−1Cvxz11 − zT13(C
vx)−1Cvvz13

= −zT11C
xz11 − zT13(C

vx)−1Cvvz13 ≤ 0. (3.32)

Consequently, using similar arguments as in the proof of Theorem 3.2.1, we can

prove by Theorem B.12 that the origin z1 = 0 is a globally exponentially stable

equilibrium. Thus, Assumption 1 of Corollary B.18 holds.

As for Assumption 2 in Corollary B.18, let us rewrite subsystem ż2 = f2(z2) as

ż2 = −



Cθ I

0 Cω


 z2 = :−Hz2, (3.33)

which is a time-invariant linear system. Because H is an upper block triangular

matrix, the set of its eigenvalues is created by merging the sets of eigenvalues

of Cθ and Cω. As shown before, all eigenvalues of Cθ have positive real parts.

Moreover, Cω is a positive definite diagonal matrix. Therefore, all eigenvalues

of both Cθ and Cω lie in the open right half of the complex plane and so do

all eigenvalues of H. Thus, (3.33) is globally exponentially stable which proves
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Assumption 2 of Corollary B.18.

As for Assumption 3 in Corollary B.18, it may be easily shown that

‖g(t, z1, z2)‖F ≤ 2Nv∗ + ‖Cθ + I‖‖z1‖, (3.34)

in which v∗ is defined in (3.20) and ‖ · ‖F denotes the Frobenius norm (Khalil,

1996). Hence Assumption 3 in Corollary B.18 is satisfied with k1(·) = 2Nv∗ and

k2(·) = ‖Cθ+I‖. Therefore, by Corollary B.18, the origin of the cascaded system

(3.29) is globally K–exponentially stable. Hence, the dynamic formation control

problem studied is solved.

Remark 3.2.8. As in the kinematic control algorithm, also in the dynamic for-

mation control algorithm, there is a trade-off between two control objectives:

tracking of individual robot trajectories and keeping formation. Regarding pure

trajectory tracking, this objective may be influenced by setting appropriate kine-

matic tracking gains cxi , c
y
i , c

θ
i or dynamic tracking parameters cvxi , cvvi , cωi . In

turn, the formation geometry maintenance can be affected by mutual coupling

terms c̃xij, c̃
y
ij and c̃θij.

3.2.3 Saturated control

In this section we propose an extension of the kinematic formation control al-

gorithm given in Section 3.2.1 which accounts for robot actuator limitations. A

saturated version of the controller is given in which control inputs of each robot
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satisfy

|vi| ≤ v̄i |ωi| ≤ ω̄i ∀ i ∈ I. (3.35)

This extension is significant because the nominal control law could be a very

large signal if the initial state is unfavourable. However, in real robots such

large inputs cannot be realised due to hardware limitations. Therefore, it is

important to extend the results given earlier in this chapter to take into account

this practical issue. Thus, to accommodate for actuator limitations, the formation

control problem may be re–stated as follows: find control inputs vi and ωi for each

robot in the formation such that the origin of the error dynamics (3.6) is globally

asymptotically stable and the control inputs satisfy the upper bound condition

(3.35).

Mindful of the bounds that the control inputs are to satisfy, we define so–called

saturation function as follows.

Definition 3.2.9 (Saturation function). A scalar function ν : R → R is called

a saturation function if it is nondecreasing, ν(s)s > 0 for s 6= 0, |ν(s)| ≤ c|s| for

c > 0, and there exists ν̄ < +∞ such that ν(·) ≤ ν̄.

Simple examples of saturation functions are f(s) = f̄ 2
π
arctan(s), f(s) = f̄ tanh(s)

or

f(s) =





s for |s| ≤ f̄ ,

sign(s)f̄ for |s| > f̄.
(3.36)

The saturated formation controller is based on the nominal formation controller

given in Section 3.2.1 in which, for the sake of simplicity, we disregard the yei
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terms. By doing so, we are able to concentrate on presenting the method of

extending the controller to achieve a saturated version. Extending further the

controller to obtain the full saturated version of the controller proposed in Section

3.2.1 incorporating the yei terms remains an open problem requiring more in-depth

technical investigation.

Recall the nominal controller from (3.7) without the yei terms:

vi = vdi + cxi x
e
i +

∑

j∈Ni

c̃xij(x
e
i − xe

j),

ωi = ωd
i + cθi θ

e
i +

∑

j∈Ni

c̃θij(θ
e
i − θej ).

(i ∈ I) (3.37)

The right hand side of these equalities could in some situations be larger than

the actuator limits of the actual robots. In this case, the formation control law,

for each robot i ∈ I, is modified and given by

vi = vdi + cxi α(x
e
i ) +

∑

j∈Ni

c̃xij(α(x
e
i )− α(xe

j)),

ωi = ωd
i + cθiγ(θ

e
i ) +

∑

j∈Ni

c̃θij(γ(θ
e
i )− γ(θej )),

(3.38)

where cxi , c
θ
i , c̃

x
ij and c̃θij are control parameters and α(·) and γ(·), for i ∈ I are

saturation function as defined above.

For the saturated formation control problem to be solvable, the formation control

task needs to be feasible. Accordingly, the desired trajectory of the formation and

the desired formation shape should be such that the desired feedforward terms vi
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and ωi associated with the desired trajectories of individual robots satisfy

v∗i < vmax
i < v̄i, (3.39)

ω∗
i < ωmax

i < ω̄i, (3.40)

where

v∗i = sup{|vdi (t)| | t ≥ 0}, (3.41)

ω∗
i = sup{|ωd

i (t)| | t ≥ 0}. (3.42)

We now state the theorem in which we give conditions under which the formation

control law given in (3.38) solves the formation control problem as mentioned in

this section.

Theorem 3.2.10. Consider a group of N nonholonomic robots (3.1) and a de-

sired trajectory of the virtual centre of the formation (xd
vc(t), y

d
vc(t)) with associ-

ated bounded desired forward vdvc(t) and angular ωd
vc(t) velocities. Consider also

a desired formation geometry given by time–varying coordinates ldi (t) such that

both ldi (t) and l̇di (t) are bounded, and the resultant desired trajectories of robots in

the formation (3.3) and the desired forward and angular velocities (3.4). Let the

control law be defined in (3.38), in which cxi , c
θ
i , c̃

x
ij and c̃θij are positive control

parameters such that c̃νij = c̃νji and c̃νij 6= 0 iff j ∈ Ni for ν ∈ {x, θ}. Moreover,

α(·) and γ(·) are saturation functions subject to |α(·)| ≤ ᾱ and |γ(·)| ≤ γ̄, and

for i ∈ I, ωd
i (t) is such that Ω̄d(t) = col(ωd

1(t), . . . , ω
d
N(t)) satisfies the persistence

of excitation condition, see Definition A.2, and vdi (t) is nonzero for all t and
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Conditions (3.39, 3.40) are satisfied. The control parameters cxi , c
θ
i , c̃

x
ij and c̃θij

and the saturation functions upper bounds ᾱ and γ̄ are chosen to satisfy

v̄i ≥ v∗i + ᾱ

(
cxi + 2

∑

j∈Ni

c̃xij

)
, (3.43)

ω̄i ≥ ω∗
i + γ̄

(
cθi + 2

∑

j∈Ni

c̃θij

)
, (3.44)

for given v̄i and ω̄i, i ∈ I. Then, the origin of the closed–loop error dynamics (3.6,

3.38) is rendered globally uniformly asymptotically stable, and vi and ωi satisfy

(3.35).

Proof. The closed–loop error dynamics (3.6, 3.38) are

ẋe
i =

(
ωd
i + cθiγ(θ

e
i ) +

∑

j∈Ni

c̃θij(γ(θ
e
i )− γ(θej ))

)
yei + vdi cos θ

e
i − vdi

− cxi α(x
e
i )−

∑

j∈Ni

c̃xij(α(x
e
i )− α(xe

j)),

ẏei = −
(
ωd
i + cθiγ(θ

e
i ) +

∑

j∈Ni

c̃θij(γ(θ
e
i )− γ(θej ))

)
xe
i + vdi sin θ

e
i , (3.45)

θ̇ei = −cθiγ(θ
e
i )−

∑

j∈Ni

c̃θij(γ(θ
e
i )− γ(θej )), (i ∈ I)

or, equivalently, in the matrix form for the whole formation



Ẋe

Ẏ e


 =



−CxA

0


+ S⊗Ωd



Xe

Y e




︸ ︷︷ ︸
ż1=f1(t,z1)

+




ȲeCθ

−X̄eCθ


Γ +



VdΘcos

VdΘsin


Θe,

︸ ︷︷ ︸
g(t,z1,z2)z2

Θ̇e = −CθΓ︸ ︷︷ ︸
ż2=f2(z2)

, (3.46)
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in which the notation is explained in earlier sections of this chapter and in addition

A = col(α(xe
1), . . . , α(x

e
n)), Γ = col(γ(θe1), . . . , γ(θ

e
n)) and

S =




0 1

−1 0


 . (3.47)

Clearly, system (3.46) has the cascade form (B.25). Thus, if the assumptions of

Theorem B.17 hold, the origin of the overall system is globally K-exponentially

stable. Hereafter, we elaborate on each of the assumptions.

1. Subsystem ż2 = f2(z2) is globally uniformly asymptotically stable which

can be verified using the Lyapunov function candidate V (Θe) = 1
2
(Θe)TΘe.

Its time derivative along system trajectories is

V̇ = −(Θe)TCθΓ = −
N∑

i=1

(
γ(θei )θ

e
i (c

θ
i +

∑

j∈Ni

c̃θij)− γ(θei )
∑

j∈Ni

c̃θijθ
e
j

)

= −




N∑

i=1

cθiγ(θ
e
i )θ

e
i +

∑

(i,j)∈E

c̃θij
(
γ(θei )θ

e
i + γ(θej )θ

e
j − γ(θei )θ

e
j − γ(θej )θ

e
i

)



= −




N∑

i=1

cθiγ(θ
e
i )θ

e
i +

∑

(i,j)∈E

c̃θij
(
θei − θej

) (
γ(θei )− γ(θej )

)

 ≤ 0, (3.48)

where E denotes a set of all pairs of neighbours. So Θe = 0 is a globally

uniformly asymptotically stable equilibrium point.

2. The origin of subsystem ż1 = f1(t, z1) is uniformly globally stable, since

using a quadratic Lyapunov function V (Xe, Y e) = 1
2

(
(Xe)TXe + (Y e)TY e

)
,

we obtain V̇ ≤ −(Xe)TCxA ≤ 0. Moreover, we can be rewrite the system
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dynamic equation as



Ẋe

Ẏ e


 =




−I Ωd

−Ωd 0






Xe

Y e




︸ ︷︷ ︸
ẇ=F0(t,w)

+



Xe −CxA

0




︸ ︷︷ ︸
K(t,w)

, (3.49)

where w := col(Xe, Y e). Global uniform asymptotic stability of the origin

w = 0 can be proven using Proposition B.18.1 with F0(t, w) and K(t, w)

defined as in (3.49). We can immediately say that the origin of the system

ẇ = F0(t, w) is globally exponentially stable using the Lyapunov func-

tion candidate V (Xe, Y e) = 1
2

(
(Xe)TXe + (Y e)TY e

)
and the same ratio-

nale as in the proof of Theorem 3.2.1. Thus, the origin of ẇ = F0(t, w)

is globally uniformly asymptotically stable. Furthermore, ‖K(t, w)‖ ≤

(1 + c‖Cx‖F ) ‖Xe‖ for some positive constant c and letting h(t, w) = Xe

we have ‖h(t, w)‖ ≤ ‖Xe‖ ≤ ‖w‖. Moreover, using again V (Xe, Y e) =

1
2

(
(Xe)TXe + (Y e)TY e

)
yields V̇ ≤ −(Xe)TCxA ≤ −µ(‖Xe‖), where µ ∈

K∞. By integrating V̇ we obtain V (t)−V (0) ≤ −
t∫
0

µ(‖h(τ)‖)dτ which for

t → ∞ gives ‖µ(‖h(t, x)‖)‖1 ≤ V (0)− V (t) ≤ V (0) ≤ 1
2
‖w(0)‖2. Hence all

conditions of Proposition B.18.1 hold and thus in light of this proposition

the origin of the whole system is globally uniformly asymptotically stable.

3. The final condition of Corollary B.18 can be proven if g(t, z1, z2)z2 is rear-

ranged as

g(t, z1, z2)z2 =




ȲeCθ

−X̄eCθ


Γ +



VdΘcos

VdΘsin


Θe
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=







ȲeCθ

−X̄eCθ


 Γ̄ +



VdΘcos

VdΘsin





Θe, (3.50)

where Γ̄ = diag
(

γ(θe
1
)

θe
1

, . . . ,
γ(θen)
θen

)
. Consequently, it can be deduced that

‖g(t, z1, z2)‖F ≤ 2Ndv∗ + ‖Cθ‖‖z1‖, (3.51)

in which v∗ is defined in (3.20) and d > 0, see Definition 3.2.9. Thus,

the final assumptions of Corollary B.18 holds with k1(z2) = 2Ndv∗ and

k2(z2) = ‖Cθ‖.

Therefore by Corollary B.18 the origin of the error dynamics of (3.46) is globally

uniformly asymptotically stable. Accordingly, the formation control problem is

solved.

It remains to prove that the control inputs vi and ωi satisfy (3.35). Straightfor-

ward calculations using the triangular inequality lead us to

|vi| ≤ v∗i + ᾱ

(
cxi + 2

∑

j∈Ni

c̃xij

)
≤ v̄i, (3.52)

|ωi| ≤ ω∗
i + γ̄

(
cθi + 2

∑

j∈Ni

c̃θij

)
≤ ω̄i, (3.53)

which indeed establishes (3.35).

Remark 3.2.11. Since the control algorithm presented in Theorem 3.2.10 is

based on the same reasoning as the control algorithm given in Theorem 3.2.1, we

can again choose control parameters cxi , c
θ
i , c̃

x
ij and c̃θij, in a way that would best
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suit the particular application of the control algorithm. Accordingly, to focus

on tracking of robots’ individual trajectories, the tracking control gains cxi and cθi

should prevail over the mutual coupling gains c̃xij and c̃θij. Alternatively, if keeping

formation is the priority, then c̃xij and c̃θij should be dominant with respect to cxi

and cθi .

Remark 3.2.12. In the proof above we show global uniform asymptotic stability

of the equilibrium points of subsystems ż1 = f1(t, z1) and ż2 = f2(z2). In fact

also local uniform exponential stability can be established which together with

the claim of the global uniform asymptotic stability yields global K-exponential

stability of the origins of subsystems ż1 = f1(t, z1) and ż2 = f2(z2) (Burger,

2011). However, the result to obtain global K-exponential stability of the origin

of a cascaded system in which the origin of the disconnected subsystems are

only globally K-exponentially stable as opposed to globally exponentially stable

is more involving and requires some more conditions to be met (Aneke, 2003). In

this thesis we do not analyse such a technical extension of our result.

Remark 3.2.13. For large tracking errors xe
i and θei and such that sign(xe

i ) =

sign(xe
j) and sign(θei ) = sign(θej ), the control law (3.38) becomes decoupled since

both α(xe
i )− α(xe

j) and γ(θei )− γ(θej ) are approximately zero.

In the next section, we show simulation results of the nominal formation controller

given in Section 3.2.1 as well as its extensions: the dynamic formation control

algorithm given in Section 3.2.2 and the saturated formation control algorithm

proposed in this section.
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R1 R2 R3

(a)

R1 R2 R3

(b)

Figure 3.1: Communication graph structures used in simulations: (a) discon-
nected graph (b) connected graph.

3.3 Simulation study

In this section we illustrate the behaviour of robots in a formation when the three

control algorithms proposed in Section 3.2 are applied. We consider the case of

three robots with two different communication structures: a disconnected one, as

illustrated in Figure 3.1(a) and a connected one, as illustrated in Figure 3.1(b).

For both disconnected and connected communication networks, we allow for per-

turbations to occur. In particular, we consider the perturbation of Robot 1 due

to a displacement of this robot at time t = 200 from its current position along

(δx, δy) = (15,−26) in the inertial coordinate frame. This perturbation, although

unrealistic in practice, serves well to present the behaviour of robots in the for-

mation in the presence of perturbations.

To show advantages of the formation control algorithms proposed in this chapter

we consider a formation geometry maintenance index defined as follows. Let

pi(t) = col(xi(t), yi(t)) denote a robot’s actual position with respect to the inertial

coordinate frame and ldi (t) a robot’s desired position in the formation relative to

the virtual centre. Then the formation geometry maintenance index is defined
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according to

I(t) =

3∑

i=1

3∑

j=1
j 6=i

(
‖pi(t)− pj(t)‖ − ‖ldi (t)− ldj (t)‖

)2
, (3.54)

which shows discrepancy between the actual formation shape and the desired

one. In particular, it measures the difference between actual and desired distances

between all pairs of robots in the formation. Note that I(t) = 0 occurs if and only

if the formation shape is maintained, modulo a rotation or a reflection (a mirror

image), see Figure 3.2. We still consider a formation shape to be maintained

despite a possible rotation or a reflection because we are purely interested here

in verifying the geometric shape of the formation. Appropriate location of a

formation in the plane as well as appropriate orientation of robots in the formation

count among desired trajectory tracking component which we do not measure via

index I (3.54).

We choose the desired trajectory of the formation as

ẋd
vc = 5 cos θdvc,

ẏdvc = 5 sin θdvc, (3.55)

θ̇dvc = 0.2 sin t,

in which xd
vc(0) = 0, ydvc(0) = 0 and θdvc(0) = 0. Moreover, initial conditions of

robots in the formation are given by (x1(0), y1(0), θ1(0)) =
(
−23.56, 4.01,−π

3

)
,

(x2(0), y2(0), θ2(0)) = (5, 1.23,−π) and (x3(0), y3(0), θ3(0)) =
(
12, 15.55, π

2

)
. Fur-

thermore, the desired formation shape is defined via ld1 =
(
−10,−10

√
3

3

)T
, ld2 =
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(a) (b) (c)

Figure 3.2: Examples of congruent triangular formations that are considered
identical according to the index (3.54) (a) an original formation shape, (b) a
rotated formation shape, (c) a reflected formation shape.

(
10,−10

√
3

3

)T
and ld3 =

(
0, 20

√
3

3

)T
and forms an equilateral triangle as illustrated

in Figure 3.3 in which the length of the sides equals 20. All simulations in this

section are performed for the period of t ∈ [0, 300], where t denotes simulation

time.

Remark 3.3.1. The purpose of the simulations in this chapter is to give a proof-

of-concept that with mutual coupling gains dominating the tracking gains, more

priority is given to the cooperative behaviour of the robots towards the desired

formation shape. Therefore, no optimisation of controller parameters has taken

place, but rather a set of controller parameters highlighting this phenomenon has

been chosen.

We give the particular values of the control parameters used in simulations in

each of the proceeding subsections of this section.
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b

b

b

ld3

ld1
ld2

Robot 1 Robot 2

Robot 3

Figure 3.3: Desired formation geometry used in the simulations and experiments.

3.3.1 Kinematic formation control algorithm

In this section we present simulation results regarding the kinematic formation

control law given in Section 3.2.1. Besides the simulation settings introduced in

the introduction of this section, the additional control parameters are summarised

in Table 3.1.

With such a choice of simulation settings, all conditions in Theorem 3.2.1 are

now met and hence global exponential stability of the formation error dynamics

is guaranteed. First, the simulations presented next illustrate that the robots

(asymptotically) form the desired formation. Secondly, they illustrate the benefit

of mutual coupling between the robots in terms of the robustness of the formation

keeping properties in the face of perturbations and the convergence speed with

which the robots form the desired formation. The simulation results are shown
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Figure 3.4: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a disconnected communication graph using the
kinematic control algorithm (3.7). (a) paths between t = 0 and t = 50 (b) paths
between t = 50 and t = 170 (c) paths between t = 170 and t = 210 (d) paths
between t = 210 and t = 300 (e) whole paths.
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Figure 3.5: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the kinematic
control algorithm (3.7): (a) paths between t = 0 and t = 50 (b) paths between
t = 50 and t = 170 (c) paths between t = 170 and t = 210 (d) paths between
t = 210 and t = 300 (e) whole paths.
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Robot number Control gains

Robot 1
cx1 = 6 c

y
1 = 4 cθ1 = 0.1

c̃x12 = 19 c̃
y
12 = 15 c̃θ12 = 3

c̃x13 = 0 c̃
y
13 = 0 c̃θ13 = 0

Robot 2
cx2 = 6 c

y
2 = 1.5 cθ2 = 0.3

c̃x21 = 19 c̃
y
21 = 15 c̃θ21 = 3

c̃x23 = 27 c̃
y
23 = 15 c̃θ23 = 3

Robot 3
cx3 = 2 c

y
3 = 3 cθ3 = 0.5

c̃x31 = 0 c̃
y
31 = 0 c̃θ31 = 0

c̃x32 = 27 c̃
y
32 = 15 c̃θ32 = 3

Table 3.1: List of control parameters used in simulations in Section 3.3.1. Note
that in the case of a disconnected communication graph, coupling gains c̃ν23 and
c̃ν32 for ν ∈ {x, y, θ} are set to 0.

in Figures 3.4–3.6. In Figure 3.4, we depict the robots’ paths in the case of the

disconnected communication graph of the formation in Figure 3.1(a). It can be

seen that the robots in the formation converge to the desired formation geometry

which is the equilateral triangle. This is owing to the individual tracking control

of each robot. Then, when Robot 1 is perturbed, only Robot 1 and Robot 2 try

to counteract its effect and keep the formation shape while Robot 3 is unaware

of the perturbation and thus it does not divert from its desired trajectory in

order for the formation shape to be maintained. Also at the beginning of the

simulations, the disconnected Robot 3 swiftly converges to its desired trajectory

regardless of the ill-positioned Robots 1 and 2, see Figure 3.4(a).

The results are different when the communication graph is connected, see Figure

3.5. The formation shape is restored faster when the communication graph is con-

nected, see Figures 3.4(a) and 3.5(a). When the perturbation takes place, both

unperturbed robots diverge temporarily from their desired trajectories in favour
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Figure 3.6: Comparison between formation geometry maintenance index I using
the kinematic control algorithm for a connected and a disconnected communica-
tion graph.

of keeping the formation geometry. This is due to the fact that the communica-

tion graph is connected and the particular choice of mutual coupling terms c̃xij,

c̃
y
ij , c̃

θ
ij which dominate chosen tracking control gains cxi , c

y
i and cθi . This affects

the value of the formation geometry maintenance index, see Figure 3.6. Recall

that the index I is a measure of the discrepancy between the actual formation

shape and the desired one. After the perturbation, the formation geometry main-

tenance index is larger in the case of the disconnected communication graph than

in the case of the connected communication graph. Something similar may also

be observed at the beginning of the simulations. As a result of non-zero initial

conditions, the formation geometry maintenance index is also nonzero and con-

verges to zero faster when the connectivity condition of the communication graph

holds.

We summarise our findings in the following. Formation behaviour under the for-
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mation control law in (3.7) can be improved if the communication graph G of the

formation is connected. This requirement stems from the fact that each robot

needs to be able to exchange information with the rest of the group so that every

member of the formation is aware of the actual performance of the whole group.

Only if the communication graph is connected, we can be sure that the actual

performance is known to each robot through their neighbours. This guarantees

that the two objectives of trajectory tracking and formation keeping are carried

on independently. Note that, an all-to-all communication is not required but

it suffices if the communication network is distributed with the communication

graph being connected in the sense that there is a connection from each robot to

all other robots, possibly through other robots on the way, see Definition C.4. On

the contrary, when the communication graph of the formation is disconnected,

i.e. there are robots in the formation completely decoupled from the rest of the

formation, one obtains pure trajectory tracking by some of the robots. By im-

plication this also solves the formation control problem, but as illustrated by the

simulation results, a better performance in terms of the robustness of the for-

mation with respect to perturbations may be obtained when the communication

graph is indeed connected.

3.3.2 Dynamic formation control algorithm

In this section we present the simulation results for the dynamic formation con-

trol law given in Section 3.2.2. We provide all control parameters used in the

simulations appearing in this section in Tables 3.1 and 3.2.
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Figure 3.7: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph using the dynamic
control algorithm (3.28). (a) paths between t = 0 and t = 50 (b) paths between
t = 50 and t = 170 (c) paths between t = 170 and t = 210 (d) paths between
t = 210 and t = 300 (e) whole paths.
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Figure 3.8: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the dynamic
control algorithm (3.28). (a) paths between t = 0 and t = 50 (b) paths between
t = 50 and t = 170 (c) paths between t = 170 and t = 210 (d) paths between
t = 210 and t = 300 (e) whole paths.
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Robot number Control gains

Robot 1 cvv1 = 15 cvx1 = 15 cω2 = 15
Robot 2 cvv2 = 15 cvx2 = 15 cω2 = 15
Robot 3 cvv3 = 9 cvx3 = 9 cω3 = 15

Table 3.2: List of control parameters used in simulations in Section 3.3.2.
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Figure 3.9: Comparison between formation geometry maintenance index I using
the dynamic control algorithm for a connected and a disconnected communication
graph.

In Figure 3.7, robot paths in the case of a disconnected communication graph

are shown. It can be concluded that initially all robots converge to their desired

positions in the formation and form the shape of the equilateral triangle. This

situation changes entirely when a perturbation is applied to Robot 1. Since

Robot 3 is disconnected from the other robots in the group, it does not react when

the perturbation occurs, as illustrated in Figure 3.7. On the other hand, in the

case of a connected communication graph, even though only Robot 1 is perturbed,

both remaining robots after the perturbation also adjust their positions to keep

the desired geometry. This comes about on account of the mutual coupling terms
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that cause the robots to again face a trade–off between trajectory tracking and

formation shape preservation, as in the case of the kinematic control law in the

previous subsection. It may be seen in Figure 3.8 that when Robot 1 is perturbed,

both Robot 2 and Robot 3 react to this perturbation so that the perturbation

is counteracted and the formation shape remains close to the desired formation

geometry in the transient after the perturbation.

As in the previous set of simulations, we can even more clearly observe the ad-

vantage of having a connected communication graph by presenting the formation

geometry maintenance index, see Figure 3.9. In particular, we can observe two

positive aspects of such a communication structure. First of all, the index has a

larger magnitude in the case of the communication graph being disconnected both

at the beginning of the simulations and when the perturbation occurs. Moreover,

it approaches zero at a faster rate when the communication graph is connected.

3.3.3 Saturated formation control algorithm

In this section we present simulation results of the saturated formation control

algorithm given in Section 3.2.3. It is assumed that the maximum actuator inputs

that robots can produce are v̄i = 10 and ω̄i = 2 for all robots in the formation.

Therefore, the control parameters are selected as shown in Table 3.3. Moreover,

using (3.43, 3.44) and the aforementioned control parameters we choose α(s) =

0.9 tanh(s) and γ(s) = 0.5 tanh(s). With such a choice of control parameters, the

control inputs vi and ωi obtained in the saturated control algorithm (3.38) are

guaranteed to satisfy the limits v̄i = 10 and ω̄i = 2
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Robot number Control gains

Robot 1
cx1 = 0.4 cθ1 = 0.7
c̃x12 = 1.5 c̃θ12 = 0.9
c̃x13 = 0 c̃θ13 = 0

Robot 2
cx2 = 0.15 cθ2 = 0.7
c̃x21 = 1.5 c̃θ21 = 0.9
c̃x23 = 1.5 c̃θ23 = 0.9

Robot 3
cx3 = 0.3 cθ3 = 0.7
c̃x31 = 0 c̃θ31 = 0
c̃x32 = 1.5 c̃θ32 = 0.9

Table 3.3: List of control parameters used in simulations in Section 3.3.3. In the
case of a disconnected communication graph, coupling gains c̃ν23 and c̃ν32 are set
to 0 for ν ∈ {x, θ}.

The simulation results of the formation control algorithm with saturated inputs

are given in Figures 3.10 – 3.12. In particular, in Figures 3.10 and 3.11 we present

the robot paths in the plane in the case of the disconnected communication graph

and the connected communication graph, respectively. Based on these results, it

is concluded that in the case of a disconnected communication graph, robots in

the formation do not create the desired formation shape which is an equilateral

triangle nor do they follow the prescribed trajectory as a whole. It can be partic-

ularly seen in Figures 3.10(a) and 3.10(b) that when the communication graph is

disconnected, the tracking is not achieved for Robot 3 which is disconnected from

the rest of the formation as its actual trajectory does not coincide with its desired

trajectory. It appears that due to lack of interactions with the rest of the group,

this robot needs some more time to converge to its desired trajectory and thus its

desired location within the formation. On contrary, the formation control task

is fulfilled in the case of the connected communication graph as both trajectory

tracking and formation shape are attained by all robots in the formation.
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Figure 3.10: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a disconnected communication graph using the
saturated control algorithm (3.38). (a) paths between t = 0 and t = 50 (b) paths
between t = 50 and t = 300 (c) whole paths.

In addition to these results, we again depict the formation geometry maintenance

index, see Figure 3.12. This is to show that also in the case of the saturated

formation controller robots benefit from being able to exchange information with

their neighbours. The comparison between the value of the index in the case

of a disconnected and a connected communication topology of the formation re-

veals that the robots in the formation are more oriented towards formation shape

maintenance when coupling between robots is allowed. There is a large disparity
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Figure 3.11: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the saturated
control algorithm (3.38). (a) paths between t = 0 and t = 50 (b) paths between
t = 50 and t = 300 (c) whole paths.

between the values of the index in both cases in favour of the connected com-

munication graph. In fact, in the case of a disconnected communication graph,

it is confirmed that the robots did not manage to create the desired formation

shape although they are converging to this state and need more time to accom-

plish this task. Once again therefore it is seen that the robots converge to their

desired formation shape faster and with smaller transient error in terms of the

formation geometry maintaining when information exchange between the robots
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Figure 3.12: Comparison between formation geometry maintenance index I using
the saturated control algorithm for a connected and a disconnected communica-
tion graph.

in the formation is in operation.

Note that in the simulations regarding the saturated formation control algorithm

we do not apply the perturbation to any of the robots. This is because in this

subsection we want to merely emphasise that formation control problem can be

solved using the saturated formation control algorithm as opposed to expounding

on all aspects of robots behaviour in the formation.

3.4 Experiments

In this section we illustrate the behaviour of a mobile robot formation under the

influence of the kinematic control law given in Theorem 3.2.1 based on experi-

ments. The experimental setup is described in Subsection 3.4.1. Then, the results
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obtained in experiments are given in Subsection 3.4.2.

3.4.1 Experimental setup

The experimental setup is shown in Figure 3.13. The experiments were performed

at Eindhoven University of Technology in Eindhoven, the Netherlands, with three

E-Puck mobile robots (Mondada and Bonani, 2007; Mondada et al., 2009). The

E-Puck robot is a differentially driven unicycle robot with two individually driven

wheels actuated by stepper motors (for a more detailed description of E-Puck

robots, refer to Appendix D). In the experimental setup, a camera is used to

localise the robots in the arena. To that end, on top of each robot a unique

marker is attached so that each robot can be distinguished from the others on

camera images (Adinandra, 2012; Caarls et al., 2009). These images are sent

to the PC for processing and subsequently robots’ positions and orientations

are determined. The PC is also used to generate the desired trajectories for

the robots according to the desired trajectory of the overall formation and the

desired formation shape. Moreover, because of the restricted processing power of

the microcontroller available on the E-Pucks, the PC also calculates the control

algorithms for all robots and consequently evaluates the resulting velocities of

the robots’ wheels. The obtained velocities of the robots’ right and left wheels

are sent via a BlueTooth communication protocol to the robots to execute the

control algorithm.
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Figure 3.13: The experimental setup.
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Control gains

cxi = 1 1
s

c
y
i = 30 cθi = 0.5 1

s

c̃xij = 2.5 1
s

c̃
y
ij = 30 c̃θij = 0.1 1

s

Table 3.4: List of control parameters used in experiments in Section 3.4.

3.4.2 Experimental results

In this section we present experimental validation of the control law given in The-

orem 3.2.1. The control parameters employed in the experiments are summarised

in Table 3.4, where we use the fact that from (3.7) it can be deduced that while

the units of cxi , c̃
x
ij , c

θ
i and cθij are 1

s
, both c

y
i and c̃

y
ij are unitless. Similarly to

the simulation results in Section 3.3, the control parameters for experiments were

chosen to show the influence of the mutual coupling gains, see Remark 3.3.1.

The desired virtual structure’s trajectory is given by

xd
vc(t) = 0.05t− 1.2, (3.56)

ydvc(t) = 0.1 cos(0.3t) + 0.025t− 0.7, (3.57)

where xd
vc and ydvc are in meters and t is in seconds.

As in the simulations, the desired formation shape is an equilateral triangle as

shown in Figure 3.3 where ld1 =
(
−0.15 m,−0.15√

3
m
)T

, ld2 =
(
0.15 m,−0.15√

3
m
)T

and ld3 =
(
0 m, 0.3√

3
m
)T

. Thus the sides of the triangle have a length of 0.3 m.

The perturbation is a manual displacement of one of the robots in the formation

executed after around 30 s.
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Figure 3.14: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane obtained in experiments in the case of a disconnected communication
graph. (a) paths between t = 0 s and t = 27 s (b) paths after t = 27 s (c) whole
paths.

The experimental results are presented in Figures 3.14-3.16. In particular, in

Figure 3.14 we present the robots’ paths in the case of completely uncoupled

robots, where c̃xij = 0, c̃yij = 0 and c̃θij = 0. This is equivalent to a completely

disconnected communication graph of the formation. In turn, in Figure 3.15,

the robots’ paths in the plane are presented when the communication graph is

connected according to the communication network shown in Figure 3.1(b). It

can be seen in the plots, that in both cases robots in the formation converge
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Figure 3.15: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane obtained in experiments in the case of a connected communication
graph. (a) paths between t = 0 s and t = 27 s (b) paths after t = 27 s (c) whole
paths.

to the desired formation shape. Moreover, after the perturbation has occurred,

the neighbours of the perturbed robot in Figure 3.15 diverge from their desired

trajectories to recover the formation shape. This formation keeping behaviour is

induced by the coupling terms added to the formation control algorithm and is

absent in Figure 3.14 for a disconnected communication graph. We can there-

fore again confirm that these additional coupling terms in (3.7) enhance actual

formation behaviour of robots in the formation.
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The beneficial influence of allowing robots in the formation to exchange informa-

tion with each other is also confirmed by examining Figure 3.16 which compares

the formation geometry maintenance index (3.54) for a connected and a discon-

nected communication graph. Clearly, when the communication graph is con-

nected, the index is smaller except for the perturbation peak. This is purely due

to the fact that in experiments the displacement is done manually and therefore

is not equal in the case of a connected and a disconnected communication graph.

In fact, it is larger in the experiment with the connected communication graph

which may be seen explicitly by comparing Figure 3.14 and Figure 3.15. Apart

from the very moment of the perturbation, the formation geometry maintenance

index is smaller for the case of a connected communication graph. Moreover,

despite the larger perturbation magnitude, the formation geometry maintenance

index decreases faster in the case of a connected communication graph.

In Section 6.2 we present a simulation study based on the settings of the experi-

ments given in this section. This gives us a chance to compare the performance of

the formation control algorithm (3.7) under similar conditions in the experiments

and in the simulations.

3.5 Discussion

In this chapter, a formation control algorithm for unicycle mobile robots based on

the virtual structure approach was proposed. We have designed two controllers

depending on the kind of the unicycle robot: one based on a kinematic model
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Figure 3.16: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph in experiments.

of a mobile robot and one based on a dynamic model of a mobile robot. They

both comprise terms in the control law associated with communication between

robots in the formation – the mutual coupling terms. These are a causative factor

for increased robustness should some robots in the formation be confronted with

perturbations. This is because the mutual coupling terms relate to information

exchange between robots as opposed to schemes where information flow is unidi-

rectional only, e.g. leader-follower or master-slave approaches. Moreover, we give

a stability proof of the proposed approach for a formation of an arbitrary number

of robots. In doing so, we are able to claim an exponential convergence rate of

the formation error variables to zero, which is associated with a certain amount

of robustness. In addition to that, we also study the effect of robot actuator limi-

tations which resulted in a saturated control algorithm for formation control. To

corroborate the proposed formation control algorithms in practice, simulations

and experiments were performed for a three-robot system. The results obtained
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support the claim of the significance of the inclusion of the mutual coupling terms

in the formation control law. In particular, we have observed that if the commu-

nication graph of the formation is connected and mutual coupling is employed,

the performance of the formation is enhanced. More specifically, sensitivity to

perturbations is reduced in the sense that when a perturbation occurs, robots try

to maintain a desired formation shape thus counteracting the perturbation. Fur-

thermore, the simulation and experimental results also illustrate that the relation

between the mutual coupling gains and the tracking gains may serve to balance

between tracking individual trajectories and keeping the desired formation shape.

If the emphasis is put on individual trajectory tracking, the tracking gains should

prevail over the mutual coupling gains. On the other hand, if the formation shape

maintenance is the leading objective, the mutual coupling gains ought to prevail

over the tracking gains.

The strength of the algorithms presented follows among others from their sim-

plicity in that the kinematic control law is linear in terms of the tracking errors

of robots in the formation and the dynamic control law in addition depends lin-

early on the first derivative of the kinematic control inputs. Furthermore, the

weak condition of the persistence of excitation of the angular velocity of a desired

trajectory to be tracked, allows for a broad range of practical applications.
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Chapter 4

Coordination–based control

design for formations of unicycle

mobile robots

4.1 Introduction

In this chapter, we study a formation control problem in which the objective is

again for a group of unicycle robots to maintain a given time–varying forma-

tion geometry while following a desired trajectory. These results are partially

published in (Sadowska et al., 2012).

In the developments in the previous chapter the coordination of robots in the for-

mation was achieved implicitly via tracking control of all robots in the formation
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with additional terms in the control law related to the robots’ interactions. Con-

versely, in this chapter we take advantage of the method introduced in (Kostić

et al., 2010b) which to a certain extent serves as a basis for the development of the

control algorithm in this chapter. It was already mentioned in the Introduction

that Kostić et al. (2010b) proposed a saturated formation control algorithm for

time–varying formation shapes utilising a global communication network. More-

over, besides considering tracking errors of all robots, also a coordination error

between a pair of robots in the formation control law is exploited in (Kostić et al.,

2010b). This type of additional variables, likewise studied in (Sun et al., 2009), is

also explicitly taken into account in the control law proposed in this chapter. In

this sense, our results may be considered as an extension of (Kostić et al., 2010b)

with the following additional contributions. First, we solve the formation control

problem for the case of a distributed communication structure in lieu of a global

one. This means that robots in the formation are only required to have access to

information regarding the states of robots in their communication neighbourhood,

instead of all other robots in the formation. Having a distributed communica-

tion network is undoubtedly advantageous, as it reduces the communication cost.

This partially motivated our research. Secondly, we allow for non-identical or

even in some cases non-symmetric coupling between robots. Thirdly, we also

propose a saturated formation control law that takes into consideration actuator

limitations and is distributed as opposed to the saturated control algorithm in

(Kostić et al., 2010b) in which communication structure was global. Lastly, we

include a simulation and experimental study to observe the difference between

different communication structures of the formation. Therefore, the results given

in this chapter possess the advantages of a distributed communication network
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which is highly relevant in practice, and are more general than those in (Kostić

et al., 2010b).

Although the main focus of this chapter is on coordination of a group of unicy-

cle mobile robots, we show that this subject is closely related to the consensus

control problem as defined in (Bliman and Ferrari-Trecate, 2008; DeLellis et al.,

2010; Hui and Haddad, 2008; Olfati-Saber and Murray, 2003a, 2004; Olfati-Saber

et al., 2007; Ren et al., 2005; Zhang et al., 2008). In particular we show that

physical coordination of robots in the formation is equivalent to the consensus

of tracking error variables given in a common coordinate system. To this end,

we express all tracking error variables in the world frame to show that when the

tracking error variables are in consensus, the robots form a desired formation

shape. This is also what distinguishes the work presented in this chapter from

the previous chapter, where all tracking error variables were given in local moving

frames associated with individual robots. In such a case, when coupling terms

are included, robots de facto act on consensus of tracking error variables given in

local frames. However, in general consensus of the local error variables does not

imply physical coordination of robots in the formation. Therefore, in Chapter 3

the robots in the formation may not create the desired formation shape despite

the consensus of the considered tracking error variables. Moreover, in principle

coordination is obtained only when tracking error variables are all zero.

We consider a formation consisting of N identical unicycle–type mobile robots.

Let again I = {1, . . . , N} denote the set of indices of robots in the formation. For

the sake of completeness, let us recall that the kinematic equations of motion of

113



4. COORDINATION–BASED CONTROL DESIGN FOR FORMATIONS OF UNICYCLE MOBILE ROBOTS

the ith robot, i ∈ I as follows (Campion and Chung, 2008; De Wit et al., 1996;

Siciliano et al., 2009):

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

(4.1)

in which pi(t) = (xi(t), yi(t))
T denotes the position of robot i and θi is the heading

angle of this robot both with respect to the world frame. Moreover, vi is the for-

ward speed and ωi is the angular velocity of the robot. Let qi(t) = col(pi(t), θi(t))

denote the state of robot i at time t and let qdvc(t) = col(pdvc(t), θ
d
vc(t)) = col(xd

vc(t),

ydvc(t), θ
d
vc(t)) denote the given desired trajectory of the virtual centre of the for-

mation. Then, a desired formation shape is defined using ldi (t) = col
(
ldix(t), l

d
iy(t)

)
,

which are bounded and subject to d
dt
(ldi (t)) being bounded, ∀i ∈ I, where ldi (t) ex-

presses the desired position coordinates of robot i relative to the local coordinate

system of the virtual centre. Note that, in the case of a unicycle robot, the ori-

entation variable is always uniquely determined using the no–side–slip constraint

(2.2) and a robot’s trajectory.

Following the Problem Statement in Chapter 2, the objective of the formation

control problem is such that the formation as a whole should track a given de-

sired trajectory qdvc(t) and the desired formation shape ldi (t), i ∈ I, should be

maintained by all robots in the formation. Assume that the velocities vdvc and

ωd
vc associated with the desired trajectory of the virtual centre are bounded. As

per the Problem Statement in Chapter 2, it is clear that the formation control

objective is met if all robots in the formation track their individual trajectories

pdi (t) = (xd
i (t), y

d
i (t))

T defined using the information about the desired trajectory
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of the virtual centre and the desired formation shape. In particular, the desired

trajectory of each robot i ∈ I is given by

pdi = pdvc +R(θdvc)l
d
i , (4.2)

where the rotation matrix R(θ) is given in (2.32). Then, the full desired state is

qdi (t) = ((pdi )
T (t), θdi (t))

T for each robot in the formation.

Now, let the position tracking error in the inertial coordinate frame ei be defined

as

ei(t) = pdi (t)− pi(t), (i ∈ I). (4.3)

According to (Kanayama et al., 1990), error ei relates to the error exyi defined in

(3.5) given in the local robot-associated coordinate frame as follows:

ei = R(θi)e
xy
i . (4.4)

We also define the angular error coordinate θei by θei = θdi − θi.

The usual well–known approach to solve the trajectory tracking problem is to

analyse the convergence of the local error coordinates exyi , see (Fierro and Lewis,

1997; Jiang and Nijmeijer, 1997; Kanayama et al., 1990; Morin and Samson, 2008).

This approach is also followed in the previous chapter. However, as mentioned

earlier in this section we now propose to use the global error variables ei instead

of the local variables exyi . As is illustrated in the subsequent part of this chapter,

this choice plays a role in stability analysis of the control algorithm.
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Bearing in mind (4.1), (4.3) and (4.4), and using Ṙ(θi) = ωi(t)SR(θi) where

S =



0 −1

1 0


 , (4.5)

the error dynamics in global coordinates are given by

ėi = R(θi)Sωi(t)e
xy
i +R(θi)


−Sωi(t)e

xy
i +



vdi cos θ

e
i − vi

vdi sin θ
e
i







= R(θdi − θei )



vdi cos θ

e
i − vi

vdi sin θ
e
i


 , (4.6)

and

θ̇ei = ωd
i − ωi. (4.7)

The desired velocities vdi , ω
d
i of a robot in the formation are derived from the

desired velocities of the virtual centre and the desired position of a robot in the

formation according to (3.4). As in the previous chapter, by the assumptions on

vdvc, ω
d
vc and ldi we have that vdi , i ∈ I, are bounded.

It was said before that the objective of the control law proposed in this chapter

is twofold. First, robots need to create a given formation geometry and secondly,

the formation as a whole needs to follow a prescribed trajectory. If the error

variables (4.3) are zero, both objectives are satisfied because of the definition of

the desired trajectories of the individual robots (4.2). However, note that the first

objective can be independently verified. In particular, it follows from an earlier

discussion that the first objective is satisfied if there exist a time–varying vector
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pvc(t) and a function θvc such that for all robots i ∈ I and all t the following is

fulfilled

pi(t)− pvc(t) = R(θvc(t))l
d
i (t). (4.8)

This is tantamount to all robots in the formation maintaining their desired forma-

tion shape irrespective of the trajectory tracking of the virtual centre. Therefore,

when Condition (4.8) holds for all robots in the formation, the desired formation

shape has been attained. However the actual position of the formation in the

plane at a specific time instance may differ from the desired position determined

by the desired trajectory of the virtual centre. If in addition, we consider a more

strict requirement that the actual orientation of the formation needs to coincide

with the desired value, i.e. θvc = θdvc, we obtain the following condition

pi(t)− pvc(t) = R(θdvc)l
d
i (t) = pdi (t)− pdvc(t), (4.9)

where we used (4.2). Condition (4.9) is equivalent to ei = ej . As a consequence

of this reasoning and following the developments in (Kostić et al., 2010b), we

declare a pair of robots i and j in the formation being coordinated with respect

to one another when ei = ej , irrespective of whether or not trajectory tracking is

ensured for these robots. Therefore, we define the coordination error between a

pair of robots i and j as

σij = ei − ej. (4.10)

Then, we say that a desired formation geometry is obtained when all robots are

coordinated with respect to each other. In other words, the coordination error
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needs to be zero for all pairs of robots i, j ∈ I:

σij = 0, ∀i, j ∈ I. (4.11)

Condition (4.11) is referred to as coordination of a group of robots. From (4.10),

it is clear that if both ei = 0 and ej = 0 then also σij = 0. Nonetheless, we later

show that coordination may be achieved with nonzero position tracking errors of

robots in the formation.

It needs to be remarked that in contrast to the results presented in (Kostić et al.,

2010b), we do not rotate the vector σij to obtain σ̄ij = RT (θi + θj)σij in the local

frame, common for robot i and robot j. Conversely, similarly to the tracking

error of individual robots, the coordination error σij is expressed in the common

coordinate frame for all robots in the formation, i.e. the world frame. The ratio-

nale behind this choice is to get rid of some conservatism brought by this selection

of the coordination error σ̄ij in (Kostić et al., 2010b), where the coordination of

robots is not possible without zero tracking errors. We explain this issue in more

detail in Section 4.2

From the definition of the coordination errors σij , it is apparent that coordination

of a group of mobile robots is equivalent to consensus (Olfati-Saber and Murray,

2003a, 2004; Olfati-Saber et al., 2007) of the tracking error variables in the world

frame. Therefore, we connect in our work the notion of consensus with coor-

dination of a group of mobile robots in the sense of convergence to the desired

formation geometry.
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Note that the coordination error σij defined in (4.11) satisfies

σ̇ij = R(θi)



vdi cos θ

e
i − vi

vdi sin θ
e
i


−R(θj)



vdj cos θ

e
j − vj

vdj sin θ
e
j


 , (4.12)

where we used (4.6).

In consideration of the new error variables ei, θ
e
i and σij introduced above, the

objective of the formation control problem discussed in this chapter is to render

the origin of (4.6, 4.7) globally asymptotically stable. Obviously, in this case we

have that σij → 0 as t → ∞. However, we also show that it is possible to obtain

coordination of robots in the formation despite nonzero position tracking errors.

In this case, we require that {(θei , σij) = (0, 0), ∀i, j ∈ I} is a globally asymptot-

ically stable set, see Definition B.14, for (4.6, 4.7). To solve these problems, we

propose adequate formation control algorithms in the next section.

In light of the above, the main contributions of this chapter may be summarised

as follows. We introduce a distributed formation control algorithm for unicycle

mobile robots that explicitly ensures both trajectory tracking and coordination

of cooperative robots. The control algorithm solves the formation control prob-

lem for time-varying formation geometries. In the control law design, we analyse

the tracking error variables expressed in the world frame which paves the way

to the determination of the analogy between the notion of consensus and coor-

dination in the case of cooperative nonholonomic mobile robots. We also extend

the formation control law by introducing a distributed saturated control that ex-

plicitly accommodates for actuator constraints. Moreover, we study the influence
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of a connected and disconnected communication graph of the formation on the

formation behaviour and perform simulation and experimental validation of the

applicability of the control algorithms proposed.

The outline of this chapter is as follows. In Section 4.2 we present the control

design. This includes the case when robots in the formation create a given forma-

tion shape and the virtual centre tracks a desired trajectory in Subsection 4.2.1 as

well as the case when the trajectory tracking of the virtual centre is not obtained

and only coordination of robots in the formation is achieved, see Subsection 4.2.2.

To expand the applicability of our results, we also examine the case of saturated

control law in Subsection 4.2.4. To illustrate the behaviour of robots when the

proposed control law is applied, we include a simulation study in Section 4.3 and

experimental study in Section 4.4. Concluding remarks are given in Section 4.5.

4.2 Control design

In this section, we introduce a number of formation control laws. In particular, in

Subsection 4.2.1 we give our main result that describes formation control law in

which the closed–loop error dynamics of the tracking error variables are globally

asymptotically stable. This ensures that the desired formation shape is achieved

and the formation as a whole tracks its desired trajectory. In Subsection 4.2.2 we

relax some of the requirements of the main results and provide conditions for Pure

Coordination, where robots do create their desired formation shape but do not

necessarily track their desired trajectories. At the end of this section, we also give
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an extension of our main result in a kind of leader–follower–like scheme where one

robot is assigned as leader and others are followers, see Subsection 4.2.3. Further,

in Subsection 4.2.4 we present the results regarding a saturated controller and we

discuss the properties and benefits of the controllers in Subsection 4.2.5.

4.2.1 Tracking and coordination

In this subsection, we propose a formation control law that achieves the control

objective to drive the tracking errors ei and θei to zero for all i ∈ I while the error

dynamics are stable. In other words, we aim to globally asymptotically stabilise

the tracking error dynamics (4.6, 4.7) (therefore also σij → 0 as t → ∞). To this

end, we propose the following control law:

vi(t) = vdi (t) +

(
1 0

)
RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)
, (4.13)

ωi(t) = ωd
i (t) + cθi θ

e
i + vdi (t)

(
eTi C

e
i +

∑

j∈Ni

σT
ijC

σ
ij

)
R(θi)




cos θei − 1

θei
sin θei
θei


 , (4.14)

where Ce
i , C

σ
ij and cθi , i, j ∈ I, are control parameters to be defined. Note that

(4.13, 4.14) constitutes a smooth control law.

We now give our main result in the following theorem that states the conditions

under which controller (4.13, 4.14) globally asymptotically stabilises both the

tracking and coordination error dynamics. Further, in the sequel of this section,

we explain some consequences of our main result and provide some extensions of
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the result.

Theorem 4.2.1. Consider N unicycle mobile robots with kinematics described

by (4.1). Consider a desired trajectory of the virtual centre of the formation

qdvc(t) =
(
xd
vc(t), y

d
vc(t), θ

d
vc(t)

)T
such that the corresponding velocities vdvc and ωd

vc

are bounded, for each i ∈ I a desired formation shape given by a bounded vec-

tor ldi (t) subject to l̇di (t) being bounded. Consider also the corresponding desired

trajectory qdi (t) =
(
xd
i (t), y

d
i (t), θ

d
i (t)
)T

given by (4.2), together with matching

feedforward control inputs vdi (t) and ωd
i (t) given in (3.4), with vdi (t) bounded

away from zero and ωd
i (t) bounded. Assume that cθi > 0, Ce

i = diag(cxei , c
ye
i ),

Cσ
ij = diag(cxσij , c

yσ
ij ), where cxei > 0, c

ye
i > 0, cxσij > 0 and c

yσ
ij > 0 subject to

Cσ
ij = Cσ

ji for i ∈ I, j ∈ Ni. Then, the origin of the closed–loop error dynamics

(4.6, 4.7, 4.13, 4.14) is a globally asymptotically stable equilibrium.

Proof. Consider a radially unbounded Lyapunov function candidate

V =
1

2

N∑

i=1

(
(θei )

2 + eTi C
e
iei +

1

2

∑

j∈Ni

σT
ijC

σ
ijσij

)
. (4.15)

The time derivative of V in (4.15) along trajectories of (4.6, 4.7) is

V̇ =
N∑

i=1


θei (ω

d
i (t)− ωi) + eTi C

e
iR(θi)



vdi (t) cos θ

e
i − vi

vdi (t) sin θ
e
i




+
1

2

∑

j∈Ni

σT
ijC

σ
ij


R(θi)



vdi (t) cos θ

e
i − vi

vdi (t) sin θ
e
i


− R(θj)



vdj (t) cos θ

e
i − vj

vdj (t) sin θ
e
j









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=
N∑

i=1


θei


ωd

i (t)− ωi + vdi (t)

(
eTi C

e
i +

∑

j∈Ni

σT
ijC

σ
ij

)
R(θi)




cos θei − 1

θei
sin θei
θei







+

(
eTi C

e
i +

∑

j∈Ni

σT
ijC

σ
ij

)
R(θi)



1

0



(
vdi (t)− vi

)

 , (4.16)

where the second equality holds because of the symmetry of the coupling terms

Cσ
ij = Cσ

ji. Furthermore, when the control law for vi and ωi given by (4.13, 4.14)

is applied, V̇ becomes

V̇ = −
N∑

i=1



cθi (θ
e
i )

2 +

∥∥∥∥∥

(
1 0

)
RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)∥∥∥∥∥

2


 ≤ 0, (4.17)

where ‖ · ‖ denotes the Euclidean norm of a vector. Therefore, the equilibrium

(ei, θ
e
i ) = (0, 0), for all i ∈ I, is stable. Moreover, by Theorem B.11, we can show

that limt→∞ V̇ = 0, and hence the system trajectories converge to the manifold

defined by

θei = 0, (4.18)

(
1 0

)
RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)
= 0. (4.19)

Furthermore, consider the closed-loop error dynamics of θei given by

θ̇ei = −cθi θ
e
i − vdi (t)

(
eTi C

e
i +

∑

j∈Ni

σT
ijC

σ
ij

)
R(θi)




cos θei − 1

θei
sin θei
θei


 . (4.20)

Note that from (4.18) it is evident that θei → 0 as t → ∞. Therefore, applying
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Lemma A.6, one concludes that also

(
0 1

)
RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)
→ 0 as t → ∞, (4.21)

where the fact that cθi > 0 and vdi (t) 6= 0 ∀i ∈ I, ∀t was used. (4.19) together

with (4.21) yields

RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)
→ 0 as t → ∞, (4.22)

which is equivalent to

Ce
iei +

∑

j∈Ni

Cσ
ijσij → 0 as t → ∞, (4.23)

due to the regularity of the rotation matrix R(θi). The property in (4.23) may

be written in a compact matrix form in terms of tracking errors ei for all i ∈ I as

follows




cxe1 +
∑

j∈N1

cxσ1j −cxσ12 . . . −cxσ1N

...
. . .

. . .
...

−cxσN−1,1
. . . cxeN−1 +

∑

j∈NN−1

cxσN−1,j −cxσN−1,N

−cxσN1 −cxσN2 . . . cxeN +
∑

j∈NN

cxσNj




ex → 0, (4.24)
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


c
ye
1 +

∑

j∈N1

c
yσ
1j −c

yσ
12 . . . −c

yσ
1N

...
. . .

. . .
...

−c
yσ
N−1,1

. . . c
ye
N−1 +

∑

j∈NN−1

c
yσ
N−1,j −c

yσ
N−1,N

−c
yσ
N1 −c

yσ
N2 . . . c

ye
N +

∑

j∈NN

c
yσ
Nj




ey → 0, (4.25)

as t → ∞, where ex = col(ex1 , . . . , e
x
N), e

y = col(ey1, . . . , e
y
N) and ei = col(exi , e

y
i ).

The matrices in (4.24) and (4.25) have the same structure as matrix A in (A.3).

Thus, based on Lemma A.5, we conclude that the matrices in (4.24) and (4.25) are

non-singular which in turn implies that both ex and ey converge to 0 as t → ∞.

Thus, the origin of the (ei, θ
e
i )–dynamics is globally asymptotically stable.

Remark 4.2.2. Under the conditions of Theorem 4.2.1 we have that for all

i, j ∈ I, σij(t) → 0 as t → ∞, so coordination is asymptotically achieved.

The following corollary is an extension to Theorem 4.2.1 in which, apart from

considering synchronisation of position errors as earlier, a coordination of angular

errors is added. This is done in the spirit of results in Theorem 3.2.1 in which

also synchronisation of angular errors is employed. The additional term θei − θej

for all neighbours of robot i relates to synchronisation of velocity ratios, since

from the kinematics of a nonholonomic mobile robot we have that

tan θi =
ẏi

ẋi
. (4.26)

Therefore, adding synchronisation in terms of angular errors to the formation
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control law may be viewed as adding a velocity matching factor similarly to

e.g. (Moshtagh and Jadbabaie, 2007; Olfati-Saber, 2006; Yu et al., 2008). This

allows for further adjustments of the control law to a particularly required ap-

plication. More specifically, the synchronisation of angular errors can be useful

to promote averaging of robot heading angles as in flocking (cf. (Savkin, 2004)).

We discuss further benefits of this mechanism in Chapter 6.

Corollary 4.2.3. Consider N unicycle-type mobile robots with kinematics (4.1)

and a formation control algorithm given in Theorem 4.2.1 and (4.13, 4.14) with

a supplementary synchronisation factor in terms of θei − θej as shown below:

ωi(t) = ωd
i (t) + cθi θ

e
i +

∑

j∈Ni

cθij(θ
e
i − θej ) (4.27)

+ vdi (t)

(
eTi C

e
i +

∑

j∈Ni

σT
ijC

σ
ij

)
R(θi)




cos θei − 1

θei
sin θei
θei


 .

Besides the conditions on the control parameters defined in Theorem 4.2.1, let

• ∀i ∈ I and ∀j ∈ Ni, c
θ
ij > 0;

• if cθij 6= cθji, then ∀i ∈ I, ∀j ∈ Ni c
θ
i >

1
2

∑

j∈Ni

(
cθji + cθij

)
.

Then, the origin of (4.6, 4.7, 4.13, 4.27) is globally asymptotically stable and

σij → 0 as t → ∞.

Proof. (Sketch) Consider again the Lyapunov function candidate (4.15). The
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time derivative of this function is given by

V̇ = −(Θe)
TCθΘe −

N∑

i=1

∥∥∥∥∥

(
1 0

)
RT (θi)

(
Ce

iei +
∑

j∈Ni

Cσ
ijσij

)∥∥∥∥∥

2

, (4.28)

where Θe = col(θe1, . . . , θ
e
N) and Cθ has the structure of the matrices in (4.24)

and (4.25). Thus, if cθij = cθji, C
θ is a positive definite matrix by Lemma A.5 and

if cθij 6= cθji and cθi > 1
2

∑

j∈Ni

(
cθji + cθij

)
, then the symmetric part of matrix Cθ is

positive definite. Hence, (4.28) yields that V̇ ≤ 0.

Further stability analysis of the origin of the closed–loop tracking and coordi-

nation error dynamics is similar to the one presented above for Theorem 4.2.1.

Therefore, one concludes that (ei, θ
e
i ) = (0, 0) for i, j ∈ I is a globally asymptoti-

cally stable equilibrium of (4.6, 4.7, 4.13, 4.27). Therefore, the formation control

problem is solved.

4.2.2 Pure Coordination

Although it is not necessary in Theorem 4.2.1 for the communication graph to

be connected, if the connectivity condition is satisfied, the formation behaviour

is enhanced. This may be observed in particular when we assume that for all

i ∈ I the position tracking control gains are set to be zero, i.e. cxei = 0 and

c
ye
i = 0, for all i ∈ I, which is the case studied in the following theorem. Before

we can state the theorem though, we need to formally introduce the following

technicalities. Let e = col(e1, . . . , eN) and Θe = col(θe1, . . . , θ
e
N). Assume first
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that the communication graph of the formation is disconnected and that the

graph has k > 1 connected components, i.e. I = I1 ∪ . . . ∪ Ik, where Iℓ is the

largest set of vertices in the ℓ-th connected component. Then define E as

E =

k⋂

ℓ=1

{e | ei = ej , i, j ∈ Iℓ}, (4.29)

and Ω as

Ω = {(θei , ei) |Θe = 0, e ∈ E}. (4.30)

When the communication graph is connected, the set E is equal to

Ē = {e | ei = ej , i, j ∈ I}, (4.31)

and Ω to

Ω̄ = {(θei , ei) |Θe = 0, e ∈ Ē}. (4.32)

We can now present the theorem.

Theorem 4.2.4 (Pure Coordination). Consider a formation consisting of N

unicycle mobile robots (4.1), a given desired trajectory of the virtual centre of

the formation qdvc(t) =
(
xd
vc(t), y

d
vc(t), θ

d
vc(t)

)T
with bounded feedforward inputs vdvc

and ωd
vc, and a desired formation geometry given by bounded vectors ldi (t) such

that l̇di (t) is bounded, i ∈ I, that together define desired trajectories of individual

robots in the formation qdi (t) =
(
xd
i (t), y

d
i (t), θ

d
i (t)
)T

according to (4.2) and their

desired forward and angular velocities vdi (t) and ωd
i (t). Assume further that for

i ∈ I, vdi (t) is bounded away from zero and ωd
i (t) is bounded. Let the formation

control law be given in (4.13, 4.14) in which for all i ∈ I, cxei = 0 and c
ye
i = 0,
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i.e.

vi(t) = vdi (t) +

(
1 0

)
RT (θi)

∑

j∈Ni

Cσ
ijσij , (4.33)

ωi(t) = ωd
i (t) + cθi θ

e
i + vdi (t)

∑

j∈Ni

σT
ijC

σ
ijR(θi)




cos θei − 1

θei
sin θei
θei


 , (4.34)

and, moreover, cθi > 0, ∀i ∈ I, Cσ
ij = diag(cxσij , c

yσ
ij ), where cxσij > 0 and c

yσ
ij > 0

satisfy Cσ
ij = Cσ

ji, ∀i, j ∈ I. Then

1. if the communication graph of the formation is disconnected and robots cre-

ate k connected components, the set Ω given in (4.30) is a globally asymp-

totically stable set of (4.6, 4.7);

2. if the communication graph of the formation is connected, the set Ω̄ in

(4.32) is globally asymptotically stable; hence the desired formation shape is

attained for all robots in the formation.

Proof. Consider the Lyapunov function candidate

V =
1

2

N∑

i=1

(
(θei )

2 +
1

2

∑

j∈Ni

σT
ijC

σ
ijσij

)
. (4.35)

The time derivative of this function along solutions of the closed–loop system
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(4.6, 4.7) with controller (4.33, 4.34) yields

V̇ = −
N∑

i=1


cθi (θ

e
i )

2 +
∑

j∈Ni

σT
ijC

σ
ijR(θi)



1

0



(
1 0

)
RT (θi)

∑

j∈Ni

Cσ
ijσij


 ≤ 0.

(4.36)

Therefore, following Lemma B.16 the set {θei = 0, σij = 0} is stable for all (i, j) ∈

{i ∈ I, j ∈ Ni}. Moreover, based on the rationale presented in the proof of

Theorem 4.2.1, we can show that as t → ∞

θei → 0, (i ∈ I), (4.37)

and
∑

j∈Ni

Cσ
ijσij → 0, (i ∈ I, j ∈ Ni), (4.38)

which in terms of the components exi and e
y
i of the tracking error ei gives




∑

j∈N1

cxσ1j −cxσ12 . . . −cxσ1N

...
. . .

. . .
...

−cxσN−1,1
. . .

∑

j∈NN−1

cxσN−1,j −cxσN−1,N

−cxσN1 −cxσN2 . . .
∑

j∈NN

cxσNj




︸ ︷︷ ︸
Lx

ex → 0 as t → ∞, (4.39)
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


∑

j∈N1

c
yσ
1j −c

yσ
12 . . . −c

yσ
1N

...
. . .

. . .
...

−c
yσ
N−1,1

. . .
∑

j∈NN−1

c
yσ
N−1,j −c

yσ
N−1,N

−c
yσ
N1 −c

yσ
N2 . . .

∑

j∈NN

c
yσ
Nj




︸ ︷︷ ︸
Ly

ey → 0 as t → ∞. (4.40)

By comparing matrices Lx and Ly in (4.39) and (4.40), respectively, with a general

Laplacian matrix given in Definition C.3, we conclude that both Lx and Ly are

in fact Laplacian matrices associated with the weighted communication graph of

the formation. For k > 1 connected components in I, the eigenspace associated

with the zero eigenvalue of Lx and Ly is created by Im(E1, . . . , Ek), where vectors

Eℓ ∈ RN , ℓ ∈ {1, . . . , k}, consist of elements Eℓ
j such that Eℓ

j = 1 if j ∈ Iℓ and

Eℓ
j = 0 otherwise. Thus, the form of this eigenspace implies that for all pairs of

neighbours i, j ∈ Iℓ, ℓ ∈ {1, . . . , k} we have ei(t) → ej(t) as t → ∞. Therefore,

we can conclude that the set Ω is a globally asymptotically stable set. Thus,

Part 1 of Theorem 4.2.4 holds.

Now, if the comminication graph is connected, we have k = 1. Following (Olfati-

Saber and Murray, 2004; Olfati-Saber et al., 2007), a Laplacian matrix of a

connected communication graph has a single zero eigenvalue with associated

eigenspace span{1N}, where 1N ∈ RN×1 is a vector with all entries equal to

1. Hence ex → kx1N and ey → ky1N as t → ∞, where kx, ky ∈ R. Therefore,

for all pairs of robots i, j we have ei(t) → ej(t) as t → ∞. Hence for all i, j ∈ I,

σij → 0. Furthermore, in view of Part 1 of the theorem and the connectedness of
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the communication graph of the formation, we conclude that the set Ω̄ is glob-

ally asymptotically stable and thus, all robots in the formation create the desired

formation shape. This proves Part 2 of the theorem.

Remark 4.2.5. In Theorem 4.2.4 we do not prove that ei(t) → 0 as t → ∞,

hence trajectory tracking is not necessarily obtained. Instead, the group of robots

reaches the prescribed formation geometry and, due to the effect of the feedfor-

ward terms vdi (t) and ωd
i (t), follows a trajectory that is translated with respect to

the desired one. Therefore, the control scheme proposed in Theorem 4.2.4 may

be referred to as pure coordination. Note that, in contrast to the tracking error

ei(t), for pure coordination the angular error θei does need to converge to zero.

Remark 4.2.6. A representative example of an application of the pure coordi-

nation control scheme introduced in Theorem 4.2.4 is that of distributed sensor

networks, see (Gungor and Hancke, 2009; Jiang et al., 2008; Kumar et al., 2008;

Li et al., 2008). In such an application, the focus of attention is for robots to

create a given formation geometry and to cover a certain area, not the accurate

absolute positioning of robots in the plane or trajectory tracking. Similarly, in

multiple aircraft manoeuvres the exact position of the formation in the sky is

not of major importance (within reason). Instead, the coordinated motion of the

formation is the key objective. Clearly, this second example does not concern

unicycle robots but aircraft formations and hence the control law in Theorem

4.2.4 cannot be directly applied.

Based on Theorem 4.2.4, we can see that by ensuring that the communication

graph is connected, one obtains consensus of the tracking error variables ei if the
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tracking gains Ce
i are zero. Therefore, if the communication graph is connected

and both tracking control gains Ce
i and coordination gains Cσ

ij are nonzero, we

may act simultaneously upon the two control objectives - coordination and trajec-

tory tracking. This is in spite of the fact that in Theorem 4.2.1, the connectivity

of the communication graph is not required. The prevalent behaviour – trajec-

tory tracking or coordination – for a particular application can be determined by

choosing appropriate values of the tracking gains Ce
i and coordination gains Cσ

ij.

To illustrate results of this work, we show the existing trade-off between tracking

and coordination in simulations in Section 4.3; a quantitative distinction between

dominance of one of these two behaviours is recommended for future research.

4.2.3 Leader–follower–like strategy

The result in this subsection is an extension of Theorem 4.2.1 and is motivated

by the results in (Ren, 2007b) which concerns a formation of single integrator

vehicles. Our result considers a group of mobile robots where only one robot

il ∈ I is aware of its position tracking error. The remaining robots only act

towards coordination of the group. Therefore, this control algorithm may be

interpreted as a leader-follower-like scheme. Accordingly, robot il is the leader

of the formation and all other robots if ∈ I \ {il} are the followers with the

augmentation of the leader adjusting its position with respect to its followers due

to the effect of the coupling gains Cσ
ilj
.

Theorem 4.2.7 (Leader-Follower). Let il ∈ I and consider a formation of N

unicycle-type mobile robots with kinematics (4.1) and the formation control algo-
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rithm given in (4.13, 4.14) and Theorem 4.2.1 with the following conditions on

the control parameters:

• ∀i ∈ I: cθi > 0 and ∀j ∈ Ni: Cσ
ij = diag(cxσij , c

yσ
ij ), c

xσ
ij > 0 and c

yσ
ij > 0;

• ∀i ∈ I: Ce
i = diag(cxei , c

ye
i ), subject to cxeil > 0, cyeil > 0 and ∀if ∈ I \ {il}:

cxeif = 0, cyeif = 0.

Then the origin of (4.6, 4.7, 4.13, 4.14) is globally asymptotically stable if the

communication graph of the formation is connected. Hence σij → 0 as t → ∞,

and thus coordination is achieved.

Proof. (Sketch) Proceeding as in the proof of Theorem 4.2.1 and assuming that

the communication graph is connected, we use the Lyapunov function candidate

(4.15). Its time derivative along system trajectories is negative semi-definite.

Thus, stability of the origin of (4.6, 4.7, 4.13, 4.14) follows. Furthermore, one

can conclude that θei → 0 as t → ∞ and one obtains matrices similar to (4.24)

and (4.25) with cxeil > 0, cyeil > 0 and cxeif = 0, cyeif = 0. Hence, these matrices are

non-singular as, by assumption, the communication graph is connected. Thus,

ei(t) → 0 as t → ∞. Therefore, the origin of the (ei, θ
e
i )–dynamics is globally

asymptotically stable. This implies that also σij → 0 as t → ∞ which implies

coordination of robots in the formation.
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4.2.4 Saturated control

In this section we propose an extension of the aforementioned control algorithms

in which actuator constraints are taken into consideration. Therefore, the re-

sultant control law should satisfy a condition like (3.35), i.e. |vi(t)| ≤ v̄i and

|ωi(t)| ≤ ω̄i for all t, i ∈ I. To this end, we define



ξi

χi


 = RT (θi)




Ce
iei

1 + eTi C
e
iei

+

∑

j∈Ni

Cσ
ijσij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij


 , (4.41)

and propose the following control law

vi(t) = vdi (t) + αi(ξi), (4.42)

ωi(t) = ωd
i (t) + βi(θ

e
i ) + vdi (t)

[
ξi χi

]



cos θei − 1

θei
sin θei
θei


 , (4.43)

in which αi(·) and βi(·) are saturation functions, see Definition 3.2.9 and the

remaining control parameters are defined earlier in this chapter. It was already

discussed in Section 3.2.3 that the saturated formation control problem can only

be solved if the desired trajectories (4.2) are such that the actuator constraints

(3.35) are respected. As discussed in Section 3.2.3, this implies that the following

conditions need to be fulfilled

v∗i < vmax
i < v̄i, (4.44)

ω∗
i < ωmax

i < ω̄i, (4.45)
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in which v∗ and ω∗ denote the upper bounds of the desired feedforward inputs

v∗i = sup{|vdi (t)| | t ≥ 0}, (4.46)

ω∗
i = sup{|ωd

i (t)| | t ≥ 0}. (4.47)

In the following theorem we present the stability analysis of the origin of the error

dynamics (4.6, 4.7) when robots are controlled by (4.42, 4.43).

Theorem 4.2.8. Consider N unicycle robots with kinematics (4.1), a desired

trajectory of the virtual centre of the formation qdvc(t) =
(
xd
vc(t), y

d
vc(t), θ

d
vc(t)

)T

for which the corresponding forward vdvc and angular velocities ωd
vc are bounded.

Let for each robot i ∈ I the desired formation geometry be defined with the aid

of a bounded vector ldi (t) subject to l̇di (t) being bounded, and an associated desired

trajectory qdi (t) =
(
xd
i (t), y

d
i (t), θ

d
i (t)
)T

such that the associated feedforward control

inputs vdi (t) and ωd
i (t) given in (3.4) are such that Conditions (4.44) and (4.45)

are met and vdi (t) be bounded away from zero and ωd
i (t) be bounded. Let αi(·)

and βi(·), i ∈ I, be saturation functions such that |αi(·)| ≤ ᾱi and |βi(·)| ≤ β̄i.

Moreover, assume that cθi > 0, Ce
i = diag(cxei , c

ye
i ), Cσ

ij = diag(cxσij , c
yσ
ij ), where

cxei > 0, cyei > 0, cxσij > 0 and c
yσ
ij > 0 subject to Cσ

ij = Cσ
ji for i ∈ I, j ∈ Ni and

all control parameters are such that

v̄i ≥ v∗i + ᾱi, (4.48)

ω̄i ≥ ω∗
i + β̄i + 2v∗i

(
√

cxei +
√

c
ye
i +

∑

j∈Ni

(√
cxσij +

√
c
yσ
ij

))
. (4.49)

Then, the formation control law (4.42, 4.43) renders the origin of the error dy-
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namics (4.6, 4.7) globally asymptotically stable while the resultant control inputs

vi and ωi satisfy (3.35).

Proof. Consider the Lyapunov function candidate

V =
1

2

N∑

i=1

(
ln
(
1 + eTi C

e
iei
)
+

1

2
ln

(
1 +

∑

j∈Ni

σT
ijC

σ
ijσij

)
+ (θei )

2

)
. (4.50)

The time–derivative of V along system dynamics (4.6, 4.7) yields

V̇ =
N∑

i=1




eTi C
e
i

1 + eTi C
e
iei

R(θi)



vdi (t) cos θ

e
i − vi

vdi (t) sin θ
e
i


+ θei (ω

d
i (t)− ωi)

+
1

2

∑

j∈Ni

σT
ijC

σ
ij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij


R(θi)



vdi (t) cos θ

e
i − vi

vdi (t) sin θ
e
i


− R(θj)



vdj (t) cos θ

e
i − vj

vdj (t) sin θ
e
j










=
N∑

i=1







eTi C
e
i

1 + eTi C
e
iei

+

∑

j∈Ni

σT
ijC

σ
ij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij


R(θi)



vdi (t) cos θ

e
i − vi

vdi (t) sin θ
e
i




+θei (ω
d
i (t)− ωi)

)

=
N∑

i=1



[
ξi χi

]


vdi (t)− vi

0


+ θei


ωd

i (t)− ωi + vdi (t)

[
ξi χi

]



cos θei − 1

θei
sin θei
θei








 ,

(4.51)

where we used σij = −σji. Then, using the control law (4.42, 4.43), we obtain

V̇ = −
N∑

i=1

(ξiα(ξi) + θeiβi(θ
e
i )) ≤ 0. (4.52)
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Therefore, the origin of (4.6, 4.7) is stable. Furthermore, using Theorem B.11 we

conclude that limt→∞ V̇ = 0 and so for all i ∈ I we have

ξi → 0 and θei → 0. (4.53)

Consequently, by Lemma A.7 we can demonstrate that χi → 0 as t → ∞, i ∈ I,

using the dynamic closed–loop equation of θei

θ̇ei = −βi(θ
e
i )− vdi (t)

[
ξi χi

]



cos θei − 1

θei
sin θei
θei


 , (4.54)

and the fact that

lim
s→0

cos s− 1

s
= 0 and lim

s→0

sin s

s
= 1. (4.55)

This shows that

Ce
iei

1 + eTi C
e
iei

+

∑

j∈Ni

Cσ
ijσij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij

→ 0 as t → ∞, (4.56)

which can then be presented in the matrix form for the horizontal and vertical

components of vector ei = col(exi , e
y
i ) for all robots in the formation, i.e. ex =

(ex1 , . . . , e
x
N)

T and ey = (ey1, . . . , e
y
N)

T as

Aνeν → 0. (4.57)
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Here ν ∈ {x, y} and Aν is a matrix of the form of (A.3) in which the diagonal

elements are

aνii =
cνi

1 + eTi C
e
iei

+

∑

j∈Ni

cσνij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij

, (4.58)

and the off-diagonal elements are

aνij = −
cσνij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij

, i 6= j. (4.59)

Thus, by Lemma A.5, matrix Aν is positive definite, since aνij = aνji. Therefore

ei → 0 as t → ∞ for all i ∈ I. As a result, the origin of the error dynamics (4.42,

4.43, 4.6, 4.7) is globally asymptotically stable.

To show that vi and ωi satisfy (3.35), simple manipulations using the triangular

inequality suffice. This shows that

|vi| ≤ v∗i + ᾱi ≤ v̄i, (4.60)

|ωi| ≤ ω∗
i + β̄i + 2v∗i

(
√

cxei +
√

c
ye
i +

∑

j∈Ni

(√
cxσij +

√
c
yσ
ij

))
≤ ω̄i, (4.61)

which consequently proves our claim.

In Theorem 4.2.8 we obtain both convergence to the desired formation shape and

trajectory tracking of the formation, as in Theorem 4.2.8 except in this section

we also account for actuator limitations. Similarly to the results in Theorem 4.2.4

we can also consider the case when robots form a desired formation shape but
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do not track their desired trajectories. For this purpose, we redefine ξi and χi in

(4.41) as


ξi

χi


 = RT (θi)

∑

j∈Ni

Cσ
ijσij

1 +
∑

j∈Ni

σT
ijC

σ
ijσij

. (4.62)

We study the pure coordination control problem with the saturation of the control

inputs of robots in the formation in the following corollary.

Corollary 4.2.9. Consider N unicycle mobile robots (4.1) and the control law

given in Theorem 4.2.8 and control inputs in (4.42, 4.43) in which ξi and χi,

i ∈ I are given in (4.62) and the control parameters satisfy

v̄i ≥ v∗i + ᾱi, (4.63)

ω̄i ≥ ω∗
i + β̄i + 2v∗i

∑

j∈Ni

(√
cxσij +

√
c
yσ
ij

)
. (4.64)

Define Ē as in (4.31) and Θe = col(θe1, . . . , θ
e
N ). If the communication graph of

the formation is connected, then the set Ω̄ (4.32) is globally asymptotically stable

and hence coordination of all robots in the formation is achieved while the control

inputs vi and ωi meet Condition (3.35).

Proof. The proof follows the same lines as the proof of Theorems 4.2.4 and 4.2.8

with the following Lyapunov function candidate

V =
1

2

N∑

i=1

(
1

2
ln

(
1 +

∑

j∈Ni

σT
ijC

σ
ijσij

)
+ (θei )

2

)
. (4.65)

For this reason, we omit the proof here.
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4.2.5 Discussion

In Theorem 4.2.1 as well as in the succeeding Theorems 4.2.4, 4.2.7 and 4.2.8, and

Corollaries 4.2.3 and 4.2.9, there is a great deal of freedom regarding the choice of

control parameters. Not only the coupling parameters do not need to be identical

but also there is no need for symmetric coupling parameters regarding the angu-

lar errors. Also, the tracking control gains in general are only required to satisfy

the mild condition of being positive. Therefore, one may adapt the control algo-

rithm according to the actual required performance of the mobile robot formation

and therewith obtain a desired behaviour. In particular, one may choose larger

tracking gains to prioritise trajectory tracking in comparison to maintaining the

formation shape. On the other hand, if it is desired to keep the desired formation

geometry rather than to track individual robot trajectories, this may be achieved

by using larger coordination gains and smaller tracking gains. In the extreme

case when coordination gains are the only non-zero parameters, we obtain pure

coordination, see Theorem 4.2.4. Note that this only refers to the tracking gains

of the position errors. As far as gains cθi related to the angular error θei are con-

cerned, these always need to be non-zero since in both trajectory tracking with

coordination and in pure coordination, one requires that the orientation tracking

error θei converges to zero.

This almost unconstrained freedom of choice of control parameters is with the

exception of the saturation formation controller in which some slightly stricter

conditions are required, i.e. the parameters need to be selected in such a way

that the resultant control inputs do not disregard the bounds for vi and ωi.
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However, the choice of the control parameters should also be dictated by the kind

of prevailing behaviour – tracking or formation maintenance – that is required in

an application.

Since our results are based on the same rationale as (Kostić et al., 2010b), it also

inherently possesses the interesting property of allowing ωd
i (t) to be discontinuous

as long as it is bounded. This allows for a great range of desired trajectories to be

tracked. For example, a rectangular trajectory with rounded corners is possible

to be tracked.

In the following section, we demonstrate the influence of the control parameters

on the behaviour of multiple mobile robots to illustrate the aforementioned ad-

vantages of the control algorithms proposed in Theorem 4.2.1 and Theorem 4.2.4

as well as the saturated version in Theorem 4.2.8.

4.3 Simulation results

In this section we present a validation of the control algorithms given in Section

4.2 by means of simulations of formations of three robots. In particular, in Sub-

section 4.3.1 we give simulation results regarding the control algorithm given in

Theorem 4.2.1, and in Subsection 4.3.2 regarding the pure coordination control

algorithm given in Theorem 4.2.4. Afterwards, in Subsection 4.3.3 we present

simulation results of the controller given in Theorem 4.2.8.

To investigate the influence of communication graph topologies on formation be-
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R1 R2 R3

(a)

R1 R2 R3

(b)

Figure 4.1: Communication graph structures used in simulations: (a) discon-
nected graph (b) connected graph.

haviour, we first consider a disconnected communication graph and later a con-

nected communication graph of the formation. The two communication struc-

tures considered are presented in Figure 4.1. The disconnected communication

graph presented in Figure 4.1(a) refers to completely uncoupled robots, i.e. the

case when robots cannot communicate with each other or sense each other by

measurements.

In the simulations throughout this section, various control parameters were tuned

to present the advantages of incorporating the coordination terms in the formation

control law, see Remark 3.3.1.

4.3.1 Tracking and Coordination

In this subsection, we illustrate the behaviour of robots controlled by the control

algorithm given in Theorem 4.2.1. In all simulations in this subsection, we use

the following desired trajectory for the virtual centre

xd
vc(t) = 3 sin θdvc(t) + 3.5,

ydvc(t) = 3 cos θdvc(t) + 0.5, (4.66)

θdvc(t) = 0.13t− π

2
,
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Robot number Control gains

Robot 1
cxe1 = 5 c

ye
1 = 30

cθ1 = 0.5cxσ12 = 50 c
yσ
12 = 120

cxσ13 = 0 c
yσ
13 = 0

Robot 2
cxe2 = 3 c

ye
2 = 30

cθ2 = 0.5cxσ21 = 50 c
yσ
21 = 120

cxσ23 = 45 c
yσ
23 = 110

Robot 3
cxe3 = 4 c

ye
3 = 29

cθ3 = 0.5cxσ31 = 0 c
yσ
31 = 0

cxσ32 = 45 c
yσ
32 = 110

Table 4.1: List of control parameters used in simulations in Subsections 4.3.1 and
4.3.2.

which is a circle with radius Rd
vc = 3, vdvc = 0.39 and ωd

vc = 0.13. Moreover, the

desired formation shape is time–invariant and forms an equilateral triangle, such

that the mobile robots maintain the Cartesian positions ld1 =
(
−0.3,− 0.3√

3

)T
, ld2 =

(
0.3,− 0.3√

3

)T
and ld3 =

(
0, 0.6√

3

)T
relative to the local coordinate frame associated

with the virtual centre of the formation.

Control parameters used in the simulations are given in Table 4.1. Note that

for the disconnected communication graph, we set all coupling gains cxσij and c
yσ
ij

to zero. In addition to the aforementioned simulation settings, the initial con-

ditions of robots are q1(0) = (4.65,−1.28, 0.43)T , q2(0) = (−2.24,−3.73, 0.62)T ,

q3(0) = (−2.43, 0.97, 0.52)T . Moreover, in both simulations we apply a perturba-

tion at t = 25, where t denotes simulation time, to observe robot behaviour after

the perturbation. This perturbation is equivalent to displacing the position of

Robot 1 along vector (δx, δy) = (1,−0.5) to observe the robots’ behaviour after

the perturbation.
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Figure 4.2: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph using the control
algorithm (4.13, 4.14). (a) paths between t = 0 and t = 2 (b) paths between
t = 2 and t = 24 (c) paths between t = 24 and t = 28 (d) paths between t = 28
and t = 50 (e) whole paths.
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Figure 4.3: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the control
algorithm (4.13, 4.14). (a) paths between t = 0 and t = 2 (b) paths between
t = 2 and t = 24 (c) paths between t = 24 and t = 28 (d) paths between t = 28
and t = 50 (e) whole paths.

146



4. COORDINATION–BASED CONTROL DESIGN FOR FORMATIONS OF UNICYCLE MOBILE ROBOTS

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

t

e ix

 

 
e

1
x

e
2
x

e
3
x

(a)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

t

e ix

 

 
e

1
x

e
2
x

e
3
x

(b)

Figure 4.4: Tracking errors (x – coordinate): (a) disconnected communication
graph (b) connected communication graph.
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Figure 4.5: Tracking errors (y – coordinate): (a) disconnected communication
graph (b) connected communication graph.
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Figure 4.6: Coordination errors (x – coordinate): (a) disconnected communica-
tion graph (b) connected communication graph.
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Figure 4.7: Coordination errors (y – coordinate): (a) disconnected communication
graph (b) connected communication graph.
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The simulation results are shown in Figures 4.2–4.7. In particular, in Figures 4.2

and 4.3 we present robot paths in the plane in the case of a disconnected and a

connected communication graph respectively. As shown in these figures, it can be

observed that robots converge to the desired formation geometry which is an equi-

lateral triangle. Moreover, when Robot 1 is perturbed and the communication

graph is disconnected, see Figure 4.2, none of the unperturbed robots in the for-

mation reacts to the perturbation to maintain the formation shape. In contrast,

when the communication graph is connected, see Figure 4.3, the two unperturbed

robots also diverge from their desired trajectories in favour of formation keeping.

Therefore, the formation shape is restored faster.

We can also observe the advantageous influence of the communication graph be-

ing connected in Figures 4.4–4.7 that show tracking and coordination errors in

x – and y – direction, respectively. It can be seen that the errors are not only

smaller when the communication graph is connected but it is also apparent that in

that case the robots aim to achieve coordination as well as tracking their desired

trajectories simultaneously. By comparing Figure 4.4 with Figure 4.6 and Figure

4.5 with Figure 4.7, we notice that for the connected communication graph, the

coordination errors in fact converge to zero faster than the tracking errors. In

other words, the tracking errors are in consensus with each other before they

jointly vanish. This may be compared to the phenomena observed by Rodriguez-

Angeles and Nijmeijer (2003, 2004) for fully actuated robotic manipulators. They

noticed that by coupling the robotic manipulators, the manipulators tend to act

in synchrony. We may observe a similar behaviour in our simulations. Due to the

connectivity of the communication graph, the robots restore their desired forma-
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tion geometry despite the lack of tracking of individual desired robot trajectories.

In Figures 4.4(b) and 4.5(b), we clearly see that tracking errors coincide with each

other before they converge to zero. According to the definition of the coordina-

tion in (4.11), coincidence of tracking errors denotes coordination of robots in

the formation. In other words, we see that because of strong coupling gains cxσij

and c
yσ
ij as compared to the tracking gains cxei and c

ye
i , see Table 4.1, the robots

aim to first restore the formation geometry before they return back to their de-

sired individual trajectories. Indeed, in Figures 4.3(a) and 4.3(c) it is seen that

robots converge to the desired formation shape before they converge together to

the desired trajectories.

4.3.2 Pure Coordination

In this section we present simulation results for a group of mobile robots under

the pure coordination control algorithm (4.33, 4.34). The control parameters are

again given in Table 4.1 where in the case of a disconnected communication graph

all communication links are disabled, i.e. for all i, j ∈ I, cxσij = 0 and c
yσ
ij = 0.

Moreover, all Cartesian tracking gains are zero, i.e. cxei = 0 and c
ye
i = 0, for all

i ∈ I, as per the requirements of the pure coordination algorithm.

As an illustration of the pure coordination control algorithm, the desired trajec-

tory of the virtual centre of the formation is taken to be a straight line given

by

xd
vc(t) = 0.5 + 0.4t,
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ydvc(t) = 0.5, (4.67)

θdvc(t) = 0,

where vdvc(t) = 0.4. To exhibit further advantages of the control algorithms

proposed in this chapter, the desired formation geometry is now time-varying, and

is created by coordinates ld1 = (0,−0.5− 0.2 sin(0.25t))T , ld2 = (0, 0)T and ld3 =

(0, 0.5 + 0.2 sin(0.25t))T . Moreover, the initial states of robots in the formation

are q1(0) = (−4.5,−1, π)T , q2(0) = (2.62,−4.45,−π
4
)T , q3(0) = (2.47, 0.98, π

3
)T .

The results of the simulations regarding the pure coordination control algorithm

are given in Figures 4.8–4.13. It can be seen that if the communication graph of

the formation is disconnected, robots neither track their individual trajectories,

nor are coordinated with each other, see Figure 4.8. However, due to the feedback

part concerning the angular error in the control algorithm, the robots’ heading

angles converge to their desired values. In contrast, when the communication

graph is connected, robots create a given desired formation shape, see Figure 4.9.

As seen in this figure, the robots do not track their desired trajectories since their

paths do not coincide with the desired paths. This might have been expected as we

are dealing with coordination only. Nonetheless, we can see that the robots indeed

form the desired formation shape, which is the objective of the pure coordination

control algorithm.

Similar conclusions can be drawn with the aid of Figures 4.10–4.13 that present

horizontal and vertical components of the tracking and coordination errors. We

can see that when the communication graph of the formation is disconnected
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Figure 4.8: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph using the control
algorithm (4.33, 4.34). (a) paths between t = 0 and t = 25 (b) paths between
t = 25 and t = 30 (c) whole paths.

and hence the robots cannot communicate with each other, the tracking errors

are nonzero and different from each other, as illustrated in Figures 4.10(a) and

4.11(a). Thus the coordination errors are also nonzero, see Figures 4.12(a) and

4.13(a). Conversely, when the communication graph is connected, the coordi-

nation errors go to zero, see Figures 4.12(b) and 4.13(b). Moreover, although

robots do not track their individual trajectories and hence the position errors do

not converge to zero, see Figures 4.10(b) and 4.11(b), we can distinctly see in
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Figure 4.9: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the control
algorithm (4.33, 4.34). (a) paths between t = 0 and t = 25 (b) paths between
t = 25 and t = 30 (c) whole paths.

these figures that the position errors reach consensus. This illustrates that in

order to achieve consensus of the tracking error variables robots need to be able

to sufficiently exchange information with each other.
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Figure 4.10: Tracking errors (x – coordinate): (a) disconnected communication
graph (b) connected communication graph.
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Figure 4.11: Tracking errors (y – coordinate): (a) disconnected communication
graph (b) connected communication graph.
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Figure 4.12: Coordination errors (x – coordinate): (a) disconnected communica-
tion graph (b) connected communication graph.
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Figure 4.13: Coordination errors (y – coordinate): (a) disconnected communica-
tion graph (b) connected communication graph.
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Robot number Control gains

Robot 1
cxe1 = 5 c

ye
1 = 30

cθ1 = 0.5cxσ12 = 30 c
yσ
12 = 160

cxσ13 = 0 c
yσ
13 = 0

Robot 2
cxe2 = 3 c

ye
2 = 30

cθ2 = 0.5cxσ21 = 40 c
yσ
21 = 160

cxσ23 = 35 c
yσ
23 = 150

Robot 3
cxe3 = 4 c

ye
3 = 29

cθ3 = 0.5cxσ31 = 0 c
yσ
31 = 0

cxσ32 = 35 c
yσ
32 = 150

Table 4.2: List of control parameters used in simulations in Subsection 4.3.3.

4.3.3 Saturated control

In this section we present simulation results of a group of three robots controlled

by the control law given in Theorem 4.2.8. In comparison to the simulations

presented in previous subsections of this section, we only give results for the

connected communication case as opposed to both connected and disconnected

cases. This is because the principles of operation of both the saturated controller

and the nominal controllers are the same so the influence of the connectivity of

communication graphs is the same. Having said that, the aim of this section is to

demonstrate the applicability of the formation control algorithm when actuators

are constrained. Therefore, in this section we also do not apply any perturbation

to any of the robots.

The control parameters are given in Table 4.2. Moreover, the robots’ initial states

are as follows: q1(0) = col(−0.65, 0.69, 0.43), q2(0) = col(−2.24,−3.73, 0.62),

q3(0) = col(−2.43, 0.97, 0.52). It is assumed that v̄i = 2 and ω̄i = 2. To this end,

in consideration of selected control parameters, we take αi(s) = 1.5 tanh(s) and
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Figure 4.14: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph using the saturated
control algorithm (4.42, 4.43). (a) paths between t = 0 and t = 10 (b) paths
between t = 10 and t = 30 (c) whole paths.
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βi(s) = 2.5 tanh(s) to ensure that the resulting control inputs vi and ωi in (4.48)

and (4.49) are guaranteed not to exceed v̄i and ω̄i, respectively.

The simulation results for the saturated controller in Theorem 4.2.8 are shown

in Figures 4.14–4.16. In particular, in Figure 4.14 we present robots paths in

the plane. As expected, robots create the desired formation shape – the equilat-

eral triangle and follow the desired circular trajectory. What is more interesting

though is what we can observe in Figures 4.15–4.16 which shows horizontal and

vertical components respectively of tracking and coordination errors. It can again

be seen that the coordination errors, see Figures 4.15(b) and 4.16(b), vanish faster

than the tracking errors, see Figures 4.15(a) and 4.16(a). This is on account of

the mutual coupling gains that prevail over the tracking gains and hence robots

prioritise coordination over tracking of individual trajectories. Indeed, in terms of

the tracking errors, we can observe consensus of the tracking errors as it happened

in the simulations for the nominal (non–saturated) controller.

4.4 Experimental results

In this section we present experimental results for the saturated formation con-

trol algorithm introduced in Section 4.2.4. The experiments were performed in

Eindhoven University of Technology and the experimental setup is presented in

Section 3.4.2.

In the experiments, we consider a formation consisting of four robots and two
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Figure 4.15: Horizontal components of (a) tracking errors and (b) coordination
error in the case of the saturated formation control algorithm (4.42, 4.43).
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Figure 4.16: Vertical components of (a) tracking errors and (b) coordination error
in the case of the saturated formation control algorithm (4.42, 4.43).
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communication structures. The first communication structure is when robots

cannot communicate with any other robots. This case relates to a pure trajectory

tracking algorithm with no coupling between robots. The second case refers to

full coupling, i.e. all robots communicate with all other robots.

The actuator bounds for the robots are v̄i = v̄ = 0.13 m
s
and ω̄i = ω̄ = 1.7 rad

s
,

as per the specification of the E-Puck robots, see Appendix D. For the resulting

control inputs vi and ωi to not exceed the bounds v̄i and ω̄i respectively, the

control parameters are as follows: cxei = 5, cyei = 100, cxσij = 30 and cxσij = 80

and the saturation functions are chosen to be αi(s) = α(s) = 0.05 tanh(s) and

βi(s) = β(s) = 0.1 tanh(s). The control parameters cxei , cyei , cxσij and cxσij were

chosen on the basis of presenting various features of the control algorithm, see

Remark 3.3.1 and using formulae (4.42, 4.43) so that the resulting control inputs

do not surpass v̄i and ω̄i. Moreover, the desired trajectory of the virtual centre

is a circle given by

xd
vc(t) = 0.9− 0.1 sin θdvc,

ydvc(t) = 0.1 cos θdvc, (4.68)

θdvc(t) = −0.1t− π

2
,

where xd
vc and ydvc are in meters and θdvc is in radians. Thus, the desired forward

speed of the virtual centre is vdvc = 0.01 m
s
and the desired angular velocity is

ωd
vc = −0.1 rad

s
. Furthermore, the desired formation shape, shown in Figure 4.17,

is such that the desired position of Robot 1 coincides with that of the virtual

centre. Subsequent robots are collinear with each other and are 0.2 m apart from
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R1R2R3R4

0.2 m

ld1 =

(
0
0

)

Figure 4.17: Desired formation geometry used in the experiments.

each other.

With a choice of the control parameters as mentioned above, the formation control

problem is solved and the control inputs vi and ωi respect the required bounds v̄i

and ω̄i, i ∈ I. We present the experimental results in Figures 4.18–4.21. It should

be noted here that due to the limitations of the experimental setup, the behaviour

of robots is only observed approximately. This is due to the occurrence of, for

example, noise. In Figure 4.18 we depict the robot paths in the plane when

robots are decoupled and in Figure 4.19 we show a corresponding graph for a

connected communication graph. In both cases robots eventually converge to the

desired formation shape and the formation as a whole tracks the desired trajec-

tory. Moreover, it is evidenced that when robots are not allowed to communicate

with each other and if any of the robots is perturbed, the unperturbed robots

do not react to the perturbation, see Figure 4.18. This is on account of robots

not being informed about any perturbation due to the lack of communication

links. On the contrary, when the communication graph is connected, the robots

try to keep the desired formation shape and thus temporarily leave their desired

individual trajectories after the perturbation. It is clearly visible in Figure 4.19

that indeed after the displacement of Robot 2, the remaining robots abandon

their desired individual trajectories to preserve the formation shape.
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Figure 4.18: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane obtained in experiments in the case of a disconnected communication
graph using the saturated control algorithm (4.42, 4.43). (a) paths between t = 0 s
and t = 17 s (b) paths after t = 17 s (c) whole paths.
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Figure 4.19: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane obtained in experiments in the case of a connected communication
graph using the saturated control algorithm (4.42, 4.43). (a) paths between t = 0 s
and t = 18 s (b) paths after t = 18 s (c) whole paths.
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Figure 4.20: Horizontal components of tracking errors for (a) decoupled robots
and (b) coupled robots in the case of the saturated formation control algorithm
(4.42, 4.43) obtained in experiments.
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Figure 4.21: Vertical components of tracking errors for (a) decoupled robots and
(b) coupled robots in the case of the saturated formation control algorithm (4.42,
4.43) obtained in experiments.
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As far as the formation geometry maintenance is concerned, we can also consider

Figures 4.20 and 4.21. These figures present the horizontal and vertical compo-

nents, respectively, of the tracking error variables in the case of a disconnected

and connected communication graph. It was pointed out earlier in this chap-

ter that the formation shape is kept if the tracking error variables given in the

world frame are in consensus with each other. In both cases of the disconnected

and connected communication graph, we manually displaced Robot 2 at around

t = 15 s. This displacement is to serve as a perturbation to demonstrate the re-

sponse from robots should a perturbation occur. When the communication graph

is disconnected, the unperturbed robots do not diverge from their desired trajec-

tories which is shown in Figures 4.20(a) and 4.21(a). Notice that the errors of the

unperturbed robots remain close to zero despite the perturbation occurring to

Robot 2. This is because of the lack of information exchange between the robots

which makes it impossible for other robots to sense the perturbation. In the op-

posite case when the communication graph is connected, we can see clearly that

after the perturbation the tracking error variables coincide with each other be-

fore they jointly vanish, see Figures 4.20(b) and 4.21(b). We can therefore again

confirm the benefits that communication between robots can bring about for the

cooperative behaviour of robots in the formation. As mentioned earlier, due to

the experimental setup limitations the phenomena of vanishing of the errors as

well as of consensus of the errors can only be viewed approximately. However,

the trend can still be clearly seen and as such the results still appear to validate

our theoretical claims.

In order to compare the experimental results obtained in this section with simula-
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tion results under similar settings, we give in Section 6.3 a simulation study based

on the scenario of the experiments in this section to allow a fair comparison.

4.5 Discussion

In this chapter we have studied a coordination control problem for nonholonomic

mobile robots with time-varying desired formation shapes. We have expressed

position tracking error variables in a common coordinate frame and, therefore,

we were able to show that the physical coordination of robots in the formation

relates to the consensus phenomenon of tracking error variables given in a common

coordinate system which in this work is the world frame. By combining terms in

the control law concerning both tracking of the desired trajectories of individual

robots and coordination with the robots’ neighbours, we have proposed a control

law that ensures both tracking and coordination simultaneously. Moreover, we

have observed that formation behaviour of multiple robots in the group can be

enhanced if robots can communicate with each other. If this is the case, robots

in the formation not only aim to track their individual trajectories but they also

explicitly act towards maintaining a desired formation shape.

Due to the separation of the two control objectives in the control law, i.e. individ-

ual trajectory tracking and maintaining formation, the control algorithm benefits

from the ability to influence the two control objectives separately. In particu-

lar, by increasing the tracking gains with respect to the coupling gains, one can

prioritise the trajectory tracking against the formation keeping, and vice versa.

172



4. COORDINATION–BASED CONTROL DESIGN FOR FORMATIONS OF UNICYCLE MOBILE ROBOTS

Moreover, we have shown that both control objectives can be achieved irrespec-

tive of one another. As shown in the simulations and experiments, in the extreme

cases, the robots either only track their individual desired trajectories with no

interactions with other robots, or achieve pure coordination. In particular, this

confirms that robots can form a desired formation geometry in spite of a nonzero

position tracking error.

Another contribution of this chapter is the saturated formation controller. For

this controller we can determine the maximum values of the resulting control in-

puts. The importance of studying the saturated version of the nominal formation

control algorithms is specifically apparent in practical implementation. Since ac-

tual robots cannot realise infinite inputs, actuator limitations should be indeed

considered and these are taken into account in the saturated formation controller.

An attractive feature of the results presented in this chapter is the fact that all

formation control algorithms are distributed, i.e. they are executed at a local level.

In other words, robots in the formation are only required to exchange information

with their neighbours. Therefore, there is no need for a global communication

network which is a highly beneficial property in practice.
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Chapter 5

Formation control of car–like

nonholonomic robots using the

backstepping approach

5.1 Introduction

There has been considerable research done in the field of formation control of

multiple mobile robots. However, to our knowledge, only little work regarding

formations of car–like nonholonomic mobile robots has been performed. Nonethe-

less, this is an important subject to study because it covers a more general type of

robots than the unicycle–type robots and therefore, further research is essential.

In the scope of tracking control of a single car–like mobile robot multiple re-
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sults have been proposed in the literature, including the backstepping approach

(Kumar and Sukavanam, 2008; Lefeber and Nijmeijer, 1999; Wang et al., 2006),

dynamic feedback linearisation (Yang et al., 2004) or control algorithm designed

for general nonholonomic systems in chained form, see eg. (De Luca et al., 1998;

Lefeber et al., 2000; Morin and Samson, 2006, 2008). Similarly, existing algo-

rithms to solve the formation control problem for a group of car–like mobile

robots also utilise these techniques. For example, the control algorithms pro-

posed in (Dong and Farrell, 2008; Dong et al., 2006) apply to formation control

of general nonholonomic systems; hence they can also be used to control a for-

mation consisting of car–like mobile robots. However, as mentioned in Section

1.5, the disadvantage of this approach is that only constant formation shapes are

allowed which poses a considerable limitation. Therefore, in our work we allow

for time–varying formation shapes.

In our contribution, we consider a formation consisting of N car–like mobile

robots with indices i ∈ I where I = {1, . . . , N}. The kinematics of a car–like

mobile robot with rear–wheel drive is assumed to be given by (cf. Section 2.1.2):

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i =
vi

l
tanϕi,

ϕ̇i = ωi,

(5.1)

where the state vector is qi(t) = (xi(t), yi(t), θi(t), ϕi(t))
T denoting Cartesian

position pi(t) = (xi(t), yi(t))
T , the heading angle of the robot θi(t) and the steering

angle of the front wheels ϕi(t). The control inputs are the forward velocity of the
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robot vi(t) and angular velocity of the front wheel ωi(t) and l is the length of the

robot. Having robot trajectories qi(t) at hand, the inputs vi(t) and ωi(t) can be

calculated as follows

vi =
√
(ẋi)

2 + (ẏi)
2
,

ωi = l
(
...
y iẋi −

...
x iẏi)

(
(ẋi)

2 + (ẏi)
2)− 3 (ẋiẍi + ẏiÿi) (ÿiẋi − ẍiẏi)

(
(ẋi)

2 + (ẏi)
2)−1/2

((
(ẋi)

2 + (ẏi)
2)3 + l2 (ÿiẋi − ẍiẏi)

2
) .

(5.2)

The formation control problem, as explained in Section 2.2, relies on robots cre-

ating a desired, possibly time–varying, formation shape and tracking a given

trajectory as a group. To this end, we again follow the virtual structure ap-

proach, see Section 2.2. Therefore, we define the so-called virtual centre and

prescribe a desired trajectory for the virtual centre to track to be qdvc(t) =

col(pdvc(t), θ
d
vc(t), ϕ

d
vc(t)) = col(xd

vc(t), y
d
vc(t), θ

d
vc(t), ϕ

d
vc(t)) such that the correspond-

ing forward velocity vdvc and angular velocity ωd
vc are bounded. These may be

calculated using expressions analogous to (5.2). We also define the desired time–

varying formation shape with the aid of vectors ldi (t) = col
(
ldix(t), l

d
iy(t)

)
such that

d
dt
(ldi (t)) are bounded, ∀i ∈ I, that give desired Cartesian positions of each robot

in reference to the virtual centre. Then, the desired orientations of robots are

defined using the nonholonomic constraint ẋ sin θ+ ẏ cos θ = 0. Consequently, we

define desired trajectories for all individual robots in the formation as

pdi = pdvc +R(θdvc)l
d
i , (5.3)

in which pdi = (xd
i , y

d
i )

T , ϕd
i = atan

(
l
θ̇di
vdi

)
and R(θdvc) is defined according to (2.32).

Moreover, we can calculate the desired forward and angular velocities associated
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with the desired trajectories (5.3) again using counterparts of (5.2). For the sake

of completeness we include the resultant expressions for vdi and ωd
i :

vdi =
√(

ẋd
i

)2
+
(
ẏdi
)2
,

ωd
i = l

(...
y d
i ẋ

d
i −

...
x d

i ẏ
d
i

)((
ẋd
i

)2
+
(
ẏdi
)2)− 3

(
ẋd
i ẍ

d
i + ẏdi ÿ

d
i

) (
ÿdi ẋ

d
i − ẍd

i ẏ
d
i

)

((
ẋd
i

)2
+
(
ẏdi
)2)−1/2

(((
ẋd
i

)2
+
(
ẏdi
)2)3

+ l2
(
ÿdi ẋ

d
i − ẍd

i ẏ
d
i

)2
) .

(5.4)

To accommodate for the singularity of the car–like mobile robot when ϕi = ±π
2
,

we state the following condition on desired trajectories of robots in the formation.

Assumption 1. All desired trajectories of robots satisfy ϕd
i ∈

(
−π

2
, π
2

)
.

We discuss in the sequel of this chapter how the condition ϕi 6= ±π
2
can also be

guaranteed for robot trajectories.

In view of the above description of the formation control problem, we now define

error variables between actual robot states and the desired states as (Kanayama

et al., 1990)



e
xy
i

θei


 =




cos θi sin θi 0

− sin θi cos θi 0

0 0 1







ei

θdi − θi


 , (i ∈ I), (5.5)

where ei = pdi − pi is the tracking error in the global coordinate frame and e
xy
i is

the tracking error variable in the robot-fixed coordinate frame. Using the notation

from the previous chapter, we have e
xy
i = R(−θi)ei.
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Differentiating (5.5) with respect to time leads to the following error dynamics

ė
xy
i = Ṙ(−θi)ei +R(−θi)ėi

=
(
−vi

l
tanϕi

)
SR(−θi)ei +R(−θi)



vdi cos θ

d
i − vi cos θi

vdi sin θ
d
i − vi sin θi




=
(
−vi

l
tanϕi

)
Se

xy
i +



vdi cos θ

e
i − vi

vdi sin θ
e
i


 , (5.6)

θ̇ei =
vdi
l
tanϕd

i −
vi

l
tanϕi, (5.7)

where S is the skew–symmetric matrix defined in (4.5). Note that we do not

calculate the error dynamics of ϕi but instead we consider the dynamics of ϕi

itself as in (5.1). In addition, in view of the earlier conditions on the feedforward

velocities of the virtual centre vdvc(t) and ωd
vc(t) and the desired formation shape

coordinate ldi (t) we conclude that the desired forward speed vdi (t), for all i ∈ I is

bounded. Assume moreover that vdi (t) is bounded away from zero, for all t, i.e.

there exists vdi > 0 such that

vdi (t) ≥ vdi , ∀t. (5.8)

As mentioned above, the control objective is twofold. First, we require the for-

mation as a whole to track a given trajectory. Secondly, we want robots in the

formation to create a desired formation shape. Both control objectives are sat-

isfied when robots in the formation track their individual trajectories. We now

explicitly define what the condition for the formation shape maintenance is re-
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gardless of the trajectory tracking component in the spirit of the developments

in Chapter 4. In particular, we consider the formation to be maintained if robots

create the given formation geometry, i.e. when

pi(t)− pvc(t) = R(θvc(t))l
d
i (t), ∀i ∈ I, (5.9)

for certain pvc(t) and θvc(t), or equivalently if

pdi (t)− pi(t) = pdj (t)− pj(t), ∀i, j ∈ I. (5.10)

Note that this allows for possible translations of the formation in the plane.

However, in comparison with the formation geometry maintenance index defined

in (3.54) the criterion above is more strict as no rotation or reflection of the whole

formation is permitted.

Now, we define a coordination error between a pair of robots i, j similarly to the

developments in the previous chapter and in (Kostić et al., 2010b; Sun et al.,

2009) to be

σij(t) = (pdi (t)− pi(t))− (pdj (t)− pj(t)). (5.11)

We then choose to redefine σij so that the coordination error between robot i and

its neighbours is expressed in the same coordinate system as the tracking error

variables exyi in (5.5). In the developments in Chapter 4, both the tracking error

and the coordination error associated with a particular robot were expressed

in the world frame. Hence, the coordinate frame was universal for all robots.

However, in this chapter we show that it suffices to have the tracking error and

179



5. FORMATION CONTROL OF CAR–LIKE NONHOLONOMIC ROBOTS USING THE BACKSTEPPING APPROACH

coordination errors of a robot i ∈ I in a common frame, as opposed to in the

world coordinate frame for all robots in the formation. The reason why we have

decided not to use errors given in the world frame is that it proved to simplify

the stability analysis. Having said that, error variables expressed in the world

frame still are partly used in the sequel of this chapter.

The coordination errors associated with robot i ∈ I expressed in the local coor-

dinate frame of robot i is

εij(t) = RT (θi)σij(t) = e
xy
i (t)− RT (θi − θj)e

xy
j (t). (5.12)

Accordingly, taking into account (5.12) and (5.6) it can be demonstrated that εij

satisfies

ε̇ij =
(
−vi

l
tanϕi

)
Sεij +



vdi cos θ

e
i − vi

vdi sin θ
e
i


− RT (θij)



vdj cos θ

e
j − vj

vdj sin θ
e
j


 , (5.13)

in which θij = θi − θj =
(
θdi − θei

)
−
(
θdj − θej

)
.

In the light of the introduced error variables, we may proceed with the problem

statement in terms of the stability of the origins of the error dynamics (5.6),

(5.7) and (5.13). Specifically, the formation control problem as defined above is

solved when the dynamics of the tracking error variables (5.6, 5.7) are globally

asymptotically stable for all robots in the formation. Of course, this implies

that the coordination error variables εij(t) also converge to zero, for all i, j ∈ I.

Moreover, although we do not pose any explicit condition on the convergence of

ϕi to ϕd
i , if all other error variables converge to zero, we can conclude that also
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ϕi → ϕd
i as t → ∞, i ∈ I.

In the remainder of this chapter, we use the backstepping approach as presented

for a single robot case by Lefeber and Nijmeijer (1999) to solve the formation

control problem. This control algorithm is the starting point for our study with

appropriate adjustments to accommodate for the formation control.

Similarly to the developments in the previous two chapters, the control algorithms

for formations of car–like mobile robots in this chapter is based on local interac-

tion between neighbouring robots. Therefore, they can be implemented locally

and there is no need for a global communication network, which is a desirable

feature in many practical applications. Our approach in this chapter mimics the

technique presented in the previous two chapters. In particular, we add mutual

coupling terms to facilitate the communication between robots so that each robot

in the formation is influenced by the behaviour of its neighbours. This, as shown

in the two previous chapters, enhances the ability of robots to explicitly act as

a formation as opposed to tracking individual trajectories and hence implicitly

fulfil the formation control problem specifications.

The outline of the rest of this chapter is as follows. First, in Section 5.2 we present

our main results - the formation control algorithm. In Section 5.3 we include a

simulation study and in Section 5.4 we discuss our results.
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5.2 Control design

In this section we design the formation control algorithm to solve the formation

control problem defined in the previous section by means of backstepping. For

details on this technique, the reader is referred to Appendix B.4.

Note that the control design method is motivated by the developments in (Lefeber

and Nijmeijer, 1999) in which a control strategy for a single robot is proposed.

Our modifications are triggered by the benefits for robots in the formation that

inter–robot communication provides. Consequently, the control law in (Lefeber

and Nijmeijer, 1999) was altered to facilitate for communication of robots with

their neighbours to enhance the formation behaviour.

In order to keep ϕi within (−π
2
, π
2
) as required given that ϕi(0) ∈ (−π

2
, π
2
), we

introduce a new variable µi = tanϕi, i ∈ I (cf. Yang et al., 2004). This implies

that ϕi = atanµi and therefore controlling µi results in ϕi ∈ (−π
2
, π
2
). Let

µ̇i = ξi, (5.14)

where ξi is an auxiliary control, i ∈ I. Once the control input for ξi is derived,

the original control input ωi can be retrieved from

ϕ̇i =
1

1 + µ2
i

ξi = ωi. (5.15)

To use the backstepping control design method, assume in the first instance that
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we can control θei directly through a virtual control µ̄i, i.e. the dynamics of θei is

given by

θ̇ei =
vdi
l
tanϕd

i − µ̄i. (5.16)

To find the control inputs vi and µ̄i stabilising the origin of the error dynamics

(5.6, 5.16), consider the Lyapunov function candidate

V (exyi , εij, θ
e
i ) =

N∑

i=1

[
cei (e

xy
i )T exyi +

1

2

∑

j∈Ni

cijε
T
ijεij + (θei )

2

]
. (5.17)

Calculating its time derivative along the dynamics (5.6, 5.16) yields

V̇ (exyi , εij, θ
e
i ) =

N∑

i=1


θ

e
i


vdi

(
cei (e

xy
i )T +

∑

j∈Ni

cijε
T
ij

)



cos θei − 1

θei
sin θei
θei


+

vdi
l
tanϕd

i − µ̄i




+(ceix
e
i +

∑

j∈Ni

cijε
x
ij)(v

d
i − vi)

]
.

(5.18)

Consider the temporary controller to be defined by

vi = vdi + χi(c
e
ix

e
i +

∑

j∈Ni

cijε
x
ij), (5.19)

µ̄i =
vdi
l
tanϕd

i + vdi

(
cei (e

xy
i )T +

∑

j∈Ni

cijε
T
ij

)



cos θei − 1

θei
sin θei
θei


+ cθi θ

e
i , (5.20)

where the function χi(·) is continuously differentiable and satisfies χi(x)x > 0 for

x 6= 0 and χi(·) < vdi , in which vdi is defined in (5.8). The reason for defining χi(·)

in this way is to ensure that vi 6= 0 and its importance becomes apparent later
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in this section. Clearly, with such a choice of χi(·), the resultant control input

vi is bounded with a bound that can be specified off-line beforehand. Yet, this

is a by-product of the control design as opposed to the control objective. Note

that the resultant input µ̄i does not possess such a feature and can be arbitrarily

large depending on the initial conditions.

The derivative of the Lyapunov function (5.18) when control inputs (5.19, 5.20)

are applied becomes

V̇ (exyi , εij, θ
e
i ) = −

N∑

i=1

[
cθi (θ

e
i )

2 + (ceix
e
i +

∑

j∈Ni

cijε
x
ij)χi(c

e
ix

e
i +

∑

j∈Ni

cijε
x
ij)

]
≤ 0.

(5.21)

Hence, by Theorem B.11 we can show that limt→∞ V̇ = 0. Therefore, we conclude

that as t → ∞ we have

θei → 0, (5.22)

and
(
ceie

xy
i +

∑

j∈Ni

cijεij

)

1

0


→ 0. (5.23)

Using the dynamic equation (5.16) for θei

θ̇ei = −vdi

(
cei (e

xy
i )T +

∑

j∈Ni

cijε
T
ij

)



cos θei − 1

θei
sin θei
θei


− cθi θ

e
i , (5.24)
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and Lemma A.6, we infer that also

(
ceie

xy
i +

∑

j∈Ni

cijεij

)

0

1


→ 0, (5.25)

which together with (5.23) implies

(
ceie

xy
i +

∑

j∈Ni

cijεij

)

=

(
ceie

xy
i +

∑

j∈Ni

cij
(
e
xy
i − RT (θij)e

xy
j

)
)

(5.26)

= RT (θi)

(
ceiei +

∑

j∈Ni

cij
(
ei −R(θj)e

xy
j

)
)

→ 0,

and consequently (
ceiei +

∑

j∈Ni

cij (ei − ej)

)
→ 0, (5.27)

when taking into account that the rotation matrix R(θi) is nonsingular for all θi.

Note that the last condition is given with respect to the tracking error ei in the

global coordinate frame as opposed to previously considered e
xy
i which is with

respect to a robot–attached moving frame. Now, we can write (5.27) in terms

of the horizontal and vertical components of the tracking error ei = (exi , e
y
i )

T for
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t → ∞




ce1 +
∑

j∈N1

c1j −c12 . . . −c1N

...
. . .

. . .
...

−cN−1,1
. . . ceN−1 +

∑

j∈NN−1

cN−1,j −cN−1,N

−cN1 −cN2 . . . ceN +
∑

j∈NN

cNj




ex → 0, (5.28)




ce1 +
∑

j∈N1

c1j −c12 . . . −c1N

...
. . .

. . .
...

−cN−1,1
. . . ceN−1 +

∑

j∈NN−1

cN−1,j −cN−1,N

−cN1 −cN2 . . . ceN +
∑

j∈NN

cNj




ey → 0, (5.29)

where ex = col(ex1 , . . . , e
x
n) and ey = col(ey1, . . . , e

y
n). From Lemma A.5 it is evident

that the matrices in (5.28) and (5.29) are nonsingular and hence ei → 0 as t → ∞.

Consequently e
xy
i → 0 and εij → 0 as t → ∞, for all i, j ∈ I.

Note that because of the assumptions on vdi and the conditions that we pose on

function χi, it can be assured that vi > 0.

Clearly, in reality we cannot control θei directly with µ̄i as the dynamics of θei is

given by (5.7). Therefore, using the backstepping technique as in (Lefeber and

Nijmeijer, 1999) we define a new error variable for all i ∈ I

zi = vdi tanϕ
d
i − viµi + vdi

(
cei (e

xy
i )T +

∑

j∈Ni

cijε
T
ij

)



cos θei − 1

θei
sin θei
θei


+ cθi θ

e
i . (5.30)
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Then, error dynamics of θei in (5.7) can be re–written to be

θ̇ei = −vdi

(
cei (e

xy
i )T +

∑

j∈Ni

cijε
T
ij

)



cos θei − 1

θei
sin θei
θei


− cθi θ

e
i +

1

l
zi

=
vdi
l
tanϕd

i − µ̄i +
1

l
zi,

(5.31)

and the dynamics of zi is assumed to be given by

żi = l ˙̄µi − v̇iµi − viξi. (5.32)

Let the Lyapunov function candidate be

V̄ = V +
1

2

N∑

i=1

z2i . (5.33)

Derivative of V̄ along system dynamics is given by

˙̄V = V̇ +

N∑

i=1

zi(θ
e
i

1

l
+ l ˙̄µi − v̇iµi − viξi). (5.34)

Therefore, allowing

ξi =
1

vi

(
θei
1

l
+ l ˙̄µi − v̇iµi + czi zi

)
, (5.35)

where from (5.19) it is clear that vi 6= 0, gives that ˙̄V = V̇ −
N∑

i=1

czi z
2
i . Con-

sequently, using the same lines of argument as above it can be shown that the

origin of the error dynamics of (exyi , θei , zi) is globally asymptotically stable.
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The actual control ωi is given by

ωi =
cos2 ϕi

vi

(
θei
1

l
+ l ˙̄µi − v̇iµi + czi zi

)
. (5.36)

It can be seen that ϕi ∈ (−π
2
, π
2
) is ensured by noticing that from (5.33) and

(5.34) we have that zi = 0 is stable and hence uniformly bounded. Therefore,

since vi 6= 0 from (5.30) it can be concluded that µi is also bounded. Therefore,

ϕi ∈ (−π
2
, π
2
). Indeed, for ϕi approaching ±π

2
, the control input ωi (5.36) tends

to 0. Hence, ϕi ∈ (−π
2
, π
2
) is an invariant set as required.

We formally state the conditions under which the controller in (5.19, 5.36) solves

the formation control problem in the following theorem.

Theorem 5.2.1. Consider a group of N car–like mobile robots, each of which is

described by the kinematic model (5.1), a desired trajectory of the virtual centre

qdvc(t) such that the associated feedforward velocities vdvc and ωd
vc are bounded. Let

the desired formation shape be defined using bounded vectors ldi (t), i ∈ I, subject

to
dldi (t)

dt
bounded. Moreover, denote by qdi (t) the desired individual trajectories

of robots with associated desired forward and angular velocities vdi (t) and ωd
i (t)

satisfying Assumption 1 and vdi > 0 and ωd
i is bounded. Let the formation control

law be defined by (5.19, 5.36) with cei > 0, cij = cji > 0, cθi > 0 and czi > 0.

Then, the origin of the closed–loop error dynamics (5.6, 5.19, 5.31, 5.32, 5.36)

is globally asymptotically stable and for all pairs of robots i, j ∈ I, εij → 0 as

t → ∞. Hence, the formation control problem is solved.
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Proof. Consider the Lyapunov function candidate

V (exyi , εij, θ
e
i , zi) =

N∑

i=1

[
cei (e

xy
i )T exyi +

1

2

∑

j∈Ni

cijε
T
ijεij + (θei )

2 +
1

l
z2i

]
. (5.37)

The time derivative of (5.37) along dynamics (5.6, 5.31, 5.32) with the controller

given by (5.19, 5.36) is

V̇ =
N∑

i=1

(
−cθi (θ

e
i )

2 +
1

l
θei zi +

czi
l
z2i −

1

l
θei zi − ηiχi(ηi)

)

= −
N∑

i=1

(
cθi (θ

e
i )

2 +
czi
l
z2i + ηiχi(ηi)

)
,

(5.38)

where ηi = ceix
e
i +

∑

j∈Ni

cijε
x
ij. Therefore, we have V̇ ≤ 0 and using Theorem B.11

leads to the conclusion that (5.22) and (5.23) are satisfied together with

zi → 0 as t → ∞. (5.39)

Therefore, applying Lemma A.6 leads again to (5.27) and, in terms of horizontal

and vertical components of the tracking error, to (5.28) and (5.29). As according

to Lemma A.5 the matrices in (5.28) and (5.29) are nonsingular, we have ei → 0

as t → ∞ which implies that also e
xy
i → 0 and εij → 0 as t → ∞, for all i, j ∈ I.

Hence, the formation control problem is solved.

Motivated by the results in the previous chapter, in the following corollary we give

some additional conditions under which we can obtain the coordination of robots

in the formation, see Section 4.2.2. The term coordination refers to relaxing the

requirement of the formation control problem in that we only want robots in the
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formation to create the desired formation shape but they are no longer required

to track the desired trajectory as a group.

Corollary 5.2.2. Consider a group of N car–like mobile robots, each of which is

described by the kinematic model (5.1). Let the desired trajectory of the virtual

centre be given by qdvc(t) with bounded corresponding feedforward terms vdvc and

ωd
vc. Furthermore, let the desired formation shape be defined with bounded vectors

ldi (t), i ∈ I such that
dldi (t)

dt
is also bounded. From the desired trajectory of the

virtual centre and the desired formation shape, the desired individual trajectories

of robots qdi (t) can be determined according to (5.3). Assume that for the resultant

trajectory qdi (t), the corresponding desired forward and angular velocities vdi (t) and

ωd
i (t) satisfy Assumptions 1 and vdi > 0, and ωd

i is bounded. Let the formation

control law be defined by (5.36) and a modification of (5.19) with all position

tracking gains set to zero cei = 0. Moreover, assume cij = cji > 0, cθi > 0 and

czi > 0. Then, if the communication graph of the formation is connected, the set

{ei, θei | i ∈ I, j ∈ Ni, (εij, θ
e
i ) = (0, 0)} is a globally attracting invariant set of

(5.6, 5.31, 5.32) for all robots and the desired formation shape is created by all

robots.

Proof. (Sketch) The proof is similar to the one for Theorem 5.2.1 with the dif-

ference that we have cei = 0, for all i ∈ I. Therefore, θei → 0 as t → ∞ and

matrices in (5.28) in (5.29) are Laplacian matrices, see Definition C.3. Clearly,

if the communication graph of the formation is connected, a Laplacian matrix

of this graph has a single zero eigenvalue associated with the right eigenvector

1N = col(1, . . . , 1) ∈ RN×1 (Olfati-Saber and Murray, 2004). Therefore, we con-

clude the consensus of the position tracking error variables given in the global
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coordinate system, which implies that for all i, j ∈ I, εij → 0 as t → ∞.

The attractive feature of the results presented in Theorem 5.2.1 is that we only

give mild conditions regarding control parameters cei > 0, cij = cji > 0, cθi > 0

and czi > 0. Therefore, they can be chosen in a way that is suitable for a particular

application. The meaning of these parameters is as follows. Tracking of individual

robot trajectories can be influenced by cei while to influence the formation shape

keeping then mutual coupling terms cij should be adjusted. One can also decide

if tracking of individual trajectories or formation shape keeping should be more

important. In the first case, the position tracking gains cei should dominate the

mutual coupling gains cij and vice versa. The remaining parameters cθi and czi

influence directly the convergence of θei and zi to zero respectively.

5.3 Simulation results

In this section we present the simulation results of the formation control algorithm

given in this chapter. As an illustrative example, we use a formation consisting

of four car–like robots whose length is l = 0.1. The desired formation shape

is a square, where the length of a side is equal to 0.15
√
2. It is defined by

ld1 = col(0.15, 0), ld2 = col(0,−0.15), ld3 = col(−0.15, 0) and ld4 = col(0, 0.15), as

depicted in Figure 5.1. In all simulations, t denotes simulation time.

As in the previous two chapters in the case of a unicycle mobile robot, also in this

work we study the influence of a disconnected and a connected communication
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Robot number Control gains

Robot 1
ce1 = 30
c12 = 91 cθ1 = 0.5 cz1 = 44
c14 = 85

Robot 2
ce2 = 30
c21 = 91 cθ2 = 0.5 cz2 = 44
c23 = 77

Robot 3
ce3 = 30
c32 = 77 cθ3 = 0.5 cz3 = 44
c34 = 81

Robot 4
ce4 = 30
c41 = 85 cθ4 = 0.5 cz4 = 44
c43 = 81

Table 5.1: List of control parameters used in simulations in. In the case of
a disconnected communication graph, all coupling gains are zero (completely
decoupled robots).

graphs on the formation performance. The disconnected communication topol-

ogy as shown in Figure 5.2(a) is in fact a completely decoupled case where there

is no interaction between robots in the formation. On the other hand, in the con-

nected communication topology all robots are assumed to have two neighbours,

see Figure 5.2(b).

The initial conditions of the four robots in the formation are the following: q1(0) =

col(0, 0.2, π
18
, 0), q2(0) = col(2.3,−0.05,−π

3
, 0), q3(0) = col(1.5, 0.6,−π

4
, 0) and

q4(0) = col(0.5,−1, π
4
, 0). The control parameters are given in Table 5.1 and

were selected as explained in Remark 3.3.1. Let us re–articulate that for the

disconnected communication graph, all coupling gains cij, i, j ∈ {1, 2, 3, 4}, are

equal zero. Moreover, for all robots the function χi(s) is assumed to be given by

χi(s) =
0.2
π
tan−1(s).
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b
Robot 3

b

b

b
ld3

ld1

ld2

Robot 1

Robot 2

Robot 4

ld4

Figure 5.1: Desired formation shape used in the simulations.

All simulations in this section are done for t ∈ [0, 30]. During that time, at

t = 21 we displace Robot 1 along (δx, δy) = (0.2, 0.35) to observe how robots in

the formation behave in face of a perturbation.

Simulation results are given in Figures 5.3–5.6. In Figures 5.3 and 5.4 we de-

pict robot paths in the plane for a disconnected and a connected communication

graph respectively. It can be seen that robots initially converge to the desired

formation shape. Then, owing to the perturbation occurring to Robot 1, the

formation shape temporarily ceases to be maintained. Here we need to consider

two instances: when the communication graph is disconnected and when it is

connected. In the first case, only the robots aware of the perturbation can react

to the perturbation. In the case presented in simulations, all robots are com-

pletely decoupled so no robot, except for the very perturbed one Robot 1, is
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R1 R2

R4 R3
(a)

R1 R2

R4 R3
(b)

Figure 5.2: Communication graph structures used in simulations: (a) discon-
nected graph (b) connected graph.

aware of the disturbance occurring to any other robot but themselves. Therefore,

no unperturbed robots (Robots 2, 3 and 4) diverge from their desired trajectories

in favour of formation shape preservation, see Figure 5.3. In contrast, when the

communication graph is connected, after the perturbation all unperturbed robots

diverge from their desired trajectories due to the connectivity of the communi-

cation graph of the formation. This means that because of the relatively strong

coupling gains cij as compared to the tracking gains cei , see Table 5.1, robots

act primarily towards maintaining formation shape as opposed to purely track-

ing their individual desired trajectories (irrespective of the behaviour of other

robots). For robots to be able to benefit from this mechanism, the communi-

cation graph of the formation needs to be connected as in such circumstances

robots work explicitly towards coordination of the group. This is despite the lack

of such a requirement in Theorem 5.2.1. Understandably, if robots face a pertur-

bation, all members of the formation need to be aware of it through inter–agent

communication to counteract the effect of the perturbation. This is shown in

Figure 5.4.
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Figure 5.3: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a disconnected communication graph. (a) paths
between t = 0 and t = 20 (b) paths between t = 20 and t = 30 (c) whole paths.
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Figure 5.4: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph. (a) paths between
t = 0 and t = 20 (b) paths between t = 20 and t = 30 (c) whole paths.
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Figure 5.5: Tracking errors in the global coordinate frame (x – coordinate): (a)
disconnected communication graph (b) connected communication graph.
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Figure 5.6: Tracking errors in the global coordinate frame (y – coordinate): (a)
disconnected communication graph (b) connected communication graph.
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In view of the developments from the previous chapter, where we established the

connection between maintaining the formation shape and the consensus phenom-

ena of the tracking error variables in the world frame, we can also study Figures

5.5–5.6. When robots are decoupled and hence unaware of each other, the track-

ing errors are inconsistent with respect to each other. In other words, there is

no priority for robots to maintain the desired formation shape. Instead, robots

purely track their individual trajectories, see Figures 5.5(a) and 5.6(a). Con-

versely, having in mind the relation between the tracking control gains cei which

are dominated by the coupling gains cij , i, j ∈ {1, 2, 3, 4}when the communication

graph is connected we expect to detect position error variables expressed in the

world frame to coincide with each other. Indeed, both the vertical and horizontal

coordinates of the position error variable are matching when the communication

graph is connected, see Figures 5.5(b) and 5.6(b).

5.4 Discussion

In this chapter we have studied the formation control problem for a group of

car–like mobile robots. We have proposed a formation control algorithm based

on the backstepping approach. In addition, we have also examined the coordi-

nation problem in which the formation does not track the desired trajectory but

it creates the desired formation shape and follows a trajectory that is ultimately

translated relative to the desired one. For this strategy to work, all robots in

the formation need to communicate with each other, possibly indirectly through

other robots. In other words, the communication graph of the formation needs
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to be connected. With respect to the results presented in the previous chapter,

we can again confirm the beneficial influence of the connectivity of the communi-

cation graph of the formation. More specifically, allowing robots to communicate

with each other assures that they implicitly act towards maintaining desired for-

mation geometry as opposed to only tracking their individual desired trajectories.

In particular, if the formation shape preservation is of importance, when some of

the robots face perturbation, the others can only counteract it when aware of the

perturbation through inter–robot communication.

Similarly to the formation control algorithms presented in the previous chapter,

here we also have a rather wide freedom of choice of the control parameters.

Therefore, the parameters can be selected in a way that would be most ad-

vantageous for a particular application, as discussed in previous chapters. More

specifically, the relation between the values of the tracking gains and the coupling

gains determines whether the formation shape maintenance or the individual tra-

jectories tracking would be the prevailing behaviour.
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Chapter 6

Comparison between the

behaviour of robots in a

formation under different control

algorithms

6.1 Introduction

In this chapter we present a simulation study for formations of unicycle robots and

for formations of car–like robots for various control algorithms introduced earlier

in the thesis. The simulation results included in each of the three proceeding

chapters serve well as the proof of concept to present various features of the
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control algorithms. The purpose of the analysis in this chapter is to provide

means of comparing the behaviour of robots in the formation when different

control algorithms are applied. To this end, we present three distinctive kinds

of simulations. The first set of simulations is similar to the experiments given in

Section 3.4. This means that the formation consists of three robots where the

desired formation shape is an equilateral triangle. We present simulation results

for this case in Section 6.2. The second set of simulations, given in Section 6.3, is

based on the experiment shown in Section 4.4. Therefore we consider a formation

consisting of four robots. In the last set of simulations presented in this chapter

we use a formation consisting of twelve robots. These simulation results are given

in Section 6.4. In all simulations, t denotes simulation time.

The three sets of simulations presented in this chapter are all performed for

different control algorithms for unicycle robots shown in Chapters 3 and 4, and

for the control algorithm for a formation of car-like robots in Chapter 5. This is

to allow objective comparison between the algorithms.

6.2 Simulations with three robots

In this section we give simulation results for simulations of a formation of three

robots. The desired formation shape is an equilateral triangle as shown in Figure

3.3, where ld1 =
(
−0.15,−0.15√

3

)T
, ld2 =

(
0.15,−0.15√

3

)T
and ld3 =

(
0, 0.3√

3

)T
. The

desired trajectory of the virtual centre is given by (3.56). To mimic the conditions

in experiments in Section 3.4, we also use corresponding or indeed identical control
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Figure 6.1: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(3.7). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole paths.

parameters. Accordingly, we use cxi = 1, cyi = 30 and cθi = 0.5, c̃xij = 2.5, c̃yij = 30

and c̃θij = 0.1 for the simulations concerning the control algorithm in Chapter 3.

For simulations with the use of the control algorithm defined in Chapter 4, we

use cxei = 1, cyei = 30 and cθi = 0.5, cxσij = 2.5, cyσij = 30. For the controller defined

in Chapter 5, we use cei = 30, cθi = 0.5 and c̃ij = 30 and χi(s) =
2
π
atan(s). The

saturation function for saturated controllers are α(s) = 0.05 tanh(s) and γ(s) =

0.1 tanh(s) for the controller proposed in Chapter 3 and α(s) = 0.05 tanh(s) and
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Figure 6.2: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph and controller (3.7).
(a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole paths.

β(s) = 0.1 tanh(s) for the controller defined in Chapter 4. For the purpose of

the pure coordination control scheme introduced in Chapter 4, we set all position

tracking gains cxi and c
y
i to zero. As in the experiments in Section 3.4 upon

which these simulations are based, we consider two communication structures: a

disconnected one and a connected one. The disconnected one refers to all coupling

gains set to zero, i.e. all robots are decoupled from each other. The connected

communication structure is such that all robots can communicate with all other
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Figure 6.3: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (3.7).

robots. In other words, this is an all-to-all communication structure.

As a measure of formation maintenance we calculate the formation geometry

maintenance index (3.54) to examine the influence of whether the communication

graph is disconnected or connected on the formation behaviour. Moreover, as in

previous simulation and experimental studies in this thesis, we use a perturbation

to be able to observe more properties of the control algorithms. The perturbation

is a displacement of Robot 3 at t = 30. The initial conditions are x1(0) = −1.25,

y1(0) = −0.76, θ1(0) = 0, x2(0) = −1.05, y2(0) = −0.60, θ2(0) = 0, x3(0) =

−1.25, y3(0) = −0.46, θ3(0) = 0 and in the case of the car-like robots, ϕi(0) = 0

for i ∈ I.

In the first instance we present the results for the controllers given in Chapter

3, see Figures 6.1–6.6. The first three figures, Figures 6.1–6.3, were produced
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Figure 6.4: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(3.38). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole paths.

using the controller in (3.7) while in simulations shown in Figures 6.4–6.6, the

saturated version of that control algorithm (3.38) was employed. The obvious

difference between the performance of the nominal controller (3.7) and the satu-

rated controller (3.38) is that the saturated controller yields slower convergence of

robots to their desired trajectories and to their desired positions within the forma-

tion. Indeed for the nominal case, we can observe the convergence to the desired

trajectories while for the saturated controller this is not yet seen. However, both
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Figure 6.5: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph and controller (3.38).
(a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole paths.

for the nominal and saturated controllers the robots benefit from communication

with other robots. When examining the formation geometry maintenance index,

see Figures 6.3 and 6.6 it can be concluded that when robots communicate with

other robots, the formation shape is better preserved than when no communica-

tion is allowed for both the nominal (3.7) and the saturated (3.38) controllers.

However, for the nominal controller, the formation geometry maintenance index

converges to zero much more rapidly, see Figures 6.3 and 6.6. On the other hand,
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Figure 6.6: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (3.38).

for the saturated controller the index reaches smaller maximum value after the

perturbation than when the nominal controller is used. This means that for the

nominal controller the robots temporarily diverge further from the desired shape

in order to counteract the perturbation and only after this brief transient, they

converge to the desired formation shape. For the saturated controller, when the

communication graph is connected, the robots slowly but consistently converge

back to the desired formation shape with smaller maximum value of the index I

after the perturbation but much longer transient.

As mentioned earlier, the experimental results in Section 3.4 were obtained in

similar conditions to the simulation results shown in Figures 6.1–6.6 including

the same control algorithm (3.7). This gives us an opportunity to evaluate the

accuracy of the simulation results in comparison to the results obtained in ex-

periments and hence judge upon practical applicability of the control algorithm.
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In the case of the control algorithm (3.7), an exponential convergence rate of the

error variables is shown theoretically in Chapter 3. The theoretical results are

illustrated in Figures 6.1 and 6.2, in which we can observe the quick occurrence

of robot paths coinciding with their desired paths, obtained in the simulations,

which is equivalent with vanishing of the error variables. In experiments, see

Figures 3.14 and 3.15, the convergence speed was not as rapid as in simulations,

supposedly due to the fact that although it was the nominal controller (3.7) that

was implemented, in real robots the actuators strength is limited. In comparison

to the saturated controller (3.38), see Figures 6.4–6.6 and Figures 3.14–3.16, the

results obtained in experiments exhibit faster convergence of robots trajectories

to their desired trajectories. As far as the formation geometry maintenance index

is concerned, the performance of the controller in experiments appears to lie again

somewhere in between the one obtained in simulations for the nominal controller

(3.7) and the saturated controller (3.38). Based on this discussion, in our view

the performance of the robots in the formation obtained in experiments closely

resembles the simulated one as seen in simulations, which supports the practical

applicability of the control algorithm (3.7).

After simulations for the control algorithms introduced in Chapter 3, we move on

to studying results obtained for the controllers given in Chapter 4. The simulation

results are presented in Figures 6.7-6.18. We first examine the behaviour of a

formation when controller (4.13, 4.14) is applied. We see that robots preserve

the desired formation shape to a greater extent when communication is enabled,

see Figure 6.9. Indeed when looking at robot paths, see Figures 6.7 and 6.8, it

can be seen that for a connected communication graph, after the perturbation
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Figure 6.7: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(4.13, 4.14). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

the unperturbed robots diverge from their desired paths in order to keep the

formation shape. For the disconnected communication case, no such thing can be

seen. A similar conclusion can be drawn for the saturated controller (4.42, 4.43),

see Figures 6.10– 6.12. In fact, in the disconnected communication case robots

have not managed to completely counteract the perturbation in the time of the

simulation due to the limited magnitude of the control gains generated by the

saturated controller. In the connected communication case, despite the limited

210



6. COMPARISON BETWEEN THE BEHAVIOUR OF ROBOTS UNDER DIFFERENT CONTROL ALGORITHMS

−1 −0.5 0

−0.8

−0.6

−0.4

−0.2

0

0.2

x

y

 

 
Robot 1
Robot 2
Robot 3

INITIAL
POSITIONS

POSITIONS at t=27

(a)

0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 

 

Robot 1
Robot 2
Robot 3POSITIONS at t=27

FINAL POSITIONS
PERTURBATION

(b)

−1 −0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

 

 

Robot 1
Robot 2
Robot 3

INITIAL POSITIONS

PERTURBATION

FINAL POSITIONS

(c)

Figure 6.8: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a connected communication graph and controller (4.13,
4.14). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole paths.

control inputs, the formation shape is restored after the perturbation within the

simulation time.

As far as the pure coordination control scheme is concerned, we can again confirm

the necessity for the communication graph to be connected for the pure coordina-

tion to be possible both for the nominal controller and the saturated controller, see

Figures 6.13-6.15 and 6.16-6.18. It is seen in these figures, that when the robots

do not communicate with other robots in the formation, the formation shape
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Figure 6.9: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (4.13, 4.14).

is not restored. Moreover, after the perturbation in the case of a disconnected

communication graph, the formation shape is disturbed to such an extent that

the formation geometry maintenance index I diverges. This illustrates the fact

that the formation shape is different than the desired one and the robots carry

on their motion in directions which further violate the formation shape. This

is particularly seen for the saturated controller, see Figure 6.18. Note however

that since it is the pure coordination controller, the robots do not aim to track

their desired trajectories and in fact the desired trajectories are not tracked both

for the nominal and saturated controller even when the communication graph is

connected.

In terms of a different performance yielded by the nominal and saturated con-

trollers, this can in truth be noticed. For example, we can see the difference

by comparing the graphs presenting robots paths for the nominal and saturated
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Figure 6.10: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(4.42, 4.43). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

versions of the controller in (4.13, 4.14), see Figures 6.7 and 6.8 and Figures

6.10 and 6.11. It can be viewed that in the saturated case the robot paths do

not coincide exactly with their desired paths, especially in the case of a discon-

nected communication graph. Interestingly, in terms of formation shape keeping,

this task is solved well for both the nominal and saturated controllers as long as

the communication between the robots is allowed, see Figures 6.9 and 6.12 and

Figures 6.15 and 6.18.
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Figure 6.11: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a connected communication graph and controller
(4.42, 4.43). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

To be able to analyse the various control algorithms presented in the thesis to

an even higher degree, we also performed simulations for a three robot formation

and all settings as listed above for a formation of car-like mobile robots. The

simulation results for this case are shown in Figures 6.19-6.21. Since the con-

trol parameters selected for the simulations satisfy all conditions mentioned in

Theorem 5.2.1, it is shown theoretically in Chapter 5 that for these control pa-

rameters, the controller (5.19, 5.36) solves the formation control problem. Indeed,
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Figure 6.12: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (4.42, 4.43).

the simulation results illustrate the theoretical claim, albeit the actual paths of

the robots obtained in simulations are still a bit off the desired trajectories, see

Figures 6.19-6.20. The difference can be particularly seen for the case of the

disconnected communication graph. A possible reason for the slower convergence

of the error variables to zero is the fact that in the control law (5.19, 5.36), the

forward speed of robots vi, i ∈ I is limited. Therefore, the robots may require

more time to correct their positions and achieve ideal tracking.

As far as the formation geometry maintenance index is concerned, it converges to

zero swiftly. We can again observe the advantage of robots being able to commu-

nicate with each other, see Figure 6.21. The discrepancy between the convergence

of the index for the connected and disconnected cases is especially visible after

the perturbation, when the index for the disconnected communication case takes

longer to vanish as opposed to the index for the connected communication case.
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Figure 6.13: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(4.33, 4.34). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

Overall, based on the simulation results given in this section, we conclude that

out of the two saturated controllers (3.38) and (4.42, 4.43), the controller in (4.42,

4.43) generates faster convergence to the desired trajectories and better formation

shape preservation, see Figures 6.4-6.6 and 6.10-6.12. On the contrary, the nom-

inal controllers (3.7) and (4.13, 4.14), both generates comparable performance.

This is with the exception for the disconnected case in which case the controller

(3.7) outperforms (4.13, 4.14).
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Figure 6.14: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a connected communication graph and controller
(4.33, 4.34). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

The behaviour obtained in simulations for car-like mobile robots shows slower

convergence to desired trajectories than in the case of simulations for unicycle

mobile robots. However, the desired formation shape is restored very well for the

connected communication graph. In Figure 6.22 we depict formation geometry

maintenance index for the connected communication graph and controllers (3.7),

(3.38), (4.13, 4.14), (4.42, 4.43), (5.19, 5.36). From that figure, we conclude

that the controller for car-like robot formations (5.19, 5.36) gives comparable
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Figure 6.15: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (4.33, 4.34).

convergence speed to the desired formation shape as controllers (3.7) and (4.13,

4.14). The advantage of controller (5.19, 5.36) is that analogously to controller

(3.38) it does not produces large overshoot after the perturbation. Conversely, for

both (5.19, 5.36) and (3.38) the robots systematically converge back to the desired

formation shape without diverging more from the desired formation shape. This

is not the case for the remaining three controllers for which the robots first violate

further the formation shape before they converge back to the required shape. It

needs to be remarked though that this transient behaviour is only brief since for

all controllers but (3.38) the convergence speed of the index I is fast.

Note that the control parameters used in this section were tuned for a controller

for unicycle robot (3.7) and as such may not be quite suitable for other kinds of

robots or even for different kinds of control algorithm for unicycle robots. From

this analysis, it is apparent that different control algorithms require different
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Figure 6.16: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(4.42, 4.43) with zero position tracking gains. (a) paths between t = 0 and t = 27
(b) paths after t = 27 (c) whole paths.

parameter tuning. The above simulations were performed for different control

algorithms but with the use of the same or possibly corresponding values of control

parameters. It is seen that the performance of the control algorithms varies and it

is plausible that if parameter tuning process was done individually for each control

algorithm, better performance might be obtained. Indeed, in earlier chapters of

this thesis, parameters were tuned for each of the algorithms individually and

in each case we were able to present satisfactory behaviour. In contrast, in this
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Figure 6.17: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a connected communication graph and controller
(4.42, 4.43) with zero position tracking gains. (a) paths between t = 0 and t = 27
(b) paths after t = 27 (c) whole paths.

section no more parameter tuning was done and control parameters were copied

from the ones used in experiments. Therefore, for some algorithms, one might

expect better results if parameter tuning for each particular case was not omitted.
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Figure 6.18: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (4.42, 4.43) with zero position tracking gains.

6.3 Simulations with four robots

In this section, we present simulation results based on the experiments given

in Section 4.4. Consequently, the formation consists of four robots which are

required to form the desired formation shape depicted in Figure 4.17 and the

desired trajectory of the virtual centre is (4.68). Having equal simulation and

experimental settings we compare in this section the experimental results with

the simulation results for controllers (3.7), (4.13, 4.14) and (5.19, 5.36). We also

compare simulation results for different controllers with each other.

The initial conditions used in the simulations are reproduced from the actual

initial positions of robots in experiments given in Section 4.4 and are as follows:

p1(0) = col(0.74, 0.00), p2(0) = col(0.56, 0.00), p3(0) = col(0.37, 0.00) and p4(0) =

col(0.18, 0.01). In addition, θi(0) = 0 and for car-like robots ϕi(0) = π
2
for
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Figure 6.19: Desired robot paths (solid line) and actual robots paths (dashed line)
in the plane in the case of a disconnected communication graph and controller
(5.19, 5.36). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

all robots i ∈ I. Also following the run of the experiments in Section 4.4, a

perturbation occurs to the formation. More specifically, Robot 3 is displaced

from its current place at t = 30.

Together with the initial conditions, also the control parameters to be used in

the simulations are copied as much as possible from the parameters used in the

experiments. For controller (3.7), the parameters are cxi = 5, cyi = 100, cθi = 1.5,
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Figure 6.20: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane in the case of a connected communication graph and controller
(5.19, 5.36). (a) paths between t = 0 and t = 27 (b) paths after t = 27 (c) whole
paths.

c̃xij = 30 and c̃xij = 80 and c̃θij = 0.1. For controller (4.13, 4.14), the parameters

are: cxei = 5, cyei = 100, cθi = 1.5, cxσij = 30 and cxσij = 80 . Furthermore, for

controller (5.19, 5.36) we choose cei = 100, czi = 50, cθi = 1.5, cij = 80 and

χi(s) = χ∗
i
2
π
atan(s), where χ∗

i = 0.2i − 0.11. As in the experiments, there are

two communication structures examined: a disconnected one in which there is no

communication links between any robots, and a connected one which corresponds

to an all-to-all communication.
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Figure 6.21: Comparison between formation geometry maintenance index I for a
connected and a disconnected communication graph for triangular formation and
controller (5.19, 5.36).
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Figure 6.22: Comparison between formation geometry maintenance index I for
a connected communication graph for triangular formation, and controller (3.7)
(Controller 1), controller (3.38) (Controller 2), controller (4.13, 4.14) (Controller
3), controller (4.42, 4.43) (Controller 4) and controller (5.19, 5.36) (Controller 5).
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In this section, conversely to the results in Section 6.2 where the formation ge-

ometry maintenance index (3.54) was used to verify formation shape keeping by

the robots in the formation, we examine the coordination error σi = ei − ej for

all pairs of robots in the formation, i, j ∈ I. Recall from Chapter 4 that when ei

is in consensus with ej for all i, j ∈ I, then the formation shape is attained. Con-

sequently, if in the simulation results we observe consensus of the error variables,

or in other words σij = 0 for all pairs of robots in the formation, we conclude

that the robots have reached the desired formation shape. Note that this does

not say anything on whether robots track their desired trajectories or not.

Simulation results for controller (3.7) are shown in Figures 6.23-6.25. It can be

seen that for the disconnected communication case, the tracking errors ei go to

zero rapidly, see Figures 6.24(a) and 6.25(a) and robots paths coincide with their

desired paths promptly, see Figure 6.23(a). This originates from the exponential

convergence rate of the controller. However, there is no priority for robots to keep

the desired formation shape so when the perturbation happens, the unperturbed

robots are unaware of it and cannot react. For the connected communication case,

it can be viewed that in the instance of perturbation, all unperturbed robots try

to adjust their positions to counteract the perturbation. When studying the paths

of robots in the plane, see Figure 6.23(b), it is noticeable that robots diverge from

their desired paths in order to keep the formation shape. However, in terms of

consensus of the tracking error variables ei, it is actually not immediately seen,

see Figures 6.24(b) and 6.25(b). That is because in the control law (3.7) the

coupling terms are of the form xe
i − xe

j and yei − yej , where the error variables

are given in local coordinate frames (3.5). It was discussed already in earlier
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Figure 6.23: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained using the control algorithm (3.7) in the case of (a) a
disconnected communication graph and (b) a connected communication graph.
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Figure 6.24: Horizontal components of tracking errors for (a) decoupled robots
and (b) coupled robots in the case of the formation control algorithm (3.7).
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Figure 6.25: Vertical components of tracking errors for (a) decoupled robots and
(b) coupled robots in the case of the formation control algorithm (3.7).
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chapters of the thesis that for controller (3.7) it may actually hinder convergence

when local coordinate frames of individual robots are adversely misaligned with

respect to each other and when the communication graph is connected.

Conversely, in the formula for controller (4.13, 4.14), the coupling terms are

expressed in the global coordinate frame. As such, the robots directly act towards

formation shape keeping regardless of the orientation of local coordinate frames.

Simulation results for this controller are presented in Figures 6.26-6.28. In this

case, there is no doubt that consensus of the error variables is reached before the

errors converge to zero, see Figures 6.27(b) and 6.28(b). One cannot see any such

thing when the communication graph is disconnected, see Figures 6.27(a) and

6.28(a). On the other hand, the tracking of individual trajectories is improved

when the communication graph is disconnected, see Figure 6.26. This is however

at the cost of robots maintaining the desired formation shape: while the robots

track the individual desired trajectories, the formation is not kept in face of a

perturbation.

When comparing experimental results in Section 4.4 with the results in Figures

6.26-6.28, it is apparent that in simulations the controller yields faster conver-

gence. However, it should be noted that in Section 4.4 the saturated version of

controller (4.13, 4.14) was used. Moreover, actuators of actual robots are by na-

ture limited. Therefore, while in simulations in theory an infinite control inputs

can be generated, in experiments only limited control inputs are realisable which

may slow down the convergence.

To summarise this section, simulation results for car-like mobile robots using
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Figure 6.26: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained using the control algorithm (4.13, 4.14) in the case
of (a) a disconnected communication graph and (b) a connected communication
graph.
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Figure 6.27: Horizontal components of tracking errors for (a) decoupled robots
and (b) coupled robots in the case of the formation control algorithm (4.13, 4.14).
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Figure 6.28: Vertical components of tracking errors for (a) decoupled robots and
(b) coupled robots in the case of the formation control algorithm (4.13, 4.14)
obtained in experiments.
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Figure 6.29: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained using the control algorithm (5.19, 5.36) in the case
of (a) a disconnected communication graph and (b) a connected communication
graph.
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Figure 6.30: Horizontal components of tracking errors for (a) decoupled robots
and (b) coupled robots in the case of the saturated formation control algorithm
(5.19, 5.36).
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Figure 6.31: Vertical components of tracking errors for (a) decoupled robots and
(b) coupled robots in the case of the saturated formation control algorithm (5.19,
5.36).

235



6. COMPARISON BETWEEN THE BEHAVIOUR OF ROBOTS UNDER DIFFERENT CONTROL ALGORITHMS

the controller in (5.19, 5.36) are given in Figures 6.29-6.31. In comparison to

previous results presented in this section, the controller (5.19, 5.36) with such

a choice of control parameters produces slower convergence. It is particularly

visible in Figures 6.30 and 6.31 where one can see that the error variables have

not vanished yet. Having said that, in the case of the connected communication

graph one can observe the trend of error variables tending towards consensus

which is tantamount to robots tending towards keeping the desired formation

shape. Moreover, the magnitude of individual tracking errors is also smaller

when robots can communicate with each other as opposed to the case when no

communication between the robots is enabled. It can also be confirmed when

looking at Figure 6.29: in the case of the connected communication case, robots

paths better match the desired paths. Therefore, we can again confirm that the

robots in the formation benefit from communicating with other robots, i.e. when

the communication graph is connected.

6.4 Simulations with twelve robots

In this section we present simulation results for controllers (3.7), (4.13, 4.14) and

(5.19, 5.36) with a formation of twelve robots. The motivation behind it is to

show an example of how the controllers work for larger formations, as opposed to

the other simulation results shown in the thesis where only three or four robots

were used.

The desired formation shape used in the simulations in this section is shown
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Figure 6.32: (a) desired formation geometry and (b) the communication structure
used in the simulations for a twelve-robot formation.

in Figure 6.32(a), where the desired positions of individual robots with respect

to the virtual centre are given by ld1 = col(0, 0.2), ld2 = col(0.15, 03), ld3 =

col(0,−0.2), ld4 = col(−0.15, 0), ld5 = col(0, 0.4), ld6 = col(0.3, 0), ld7 = col(0,−0.4),

ld8 = col(−0.3, 0), ld9 = col(0, 0.6), ld10 = col(0.45, 0), ld11 = col(0,−0.6) and

ld12 = col(−0.45, 0). Furthermore, the desired trajectory of the virtual centre

is given by

xd
vc(t) = 0.025t,

ydvc(t) = 0.015 sin(π
6
t).

In contrast to the simulation results earlier in this chapter, in this section we
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Figure 6.33: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained obtained using (3.7).
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Figure 6.34: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained obtained using (4.13, 4.14).
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Figure 6.35: Desired robot paths (solid line) and actual robots paths (dashed
line) in the plane obtained obtained using (5.19, 5.36).
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Figure 6.36: Comparison between formation geometry maintenance index I for a
formation consisting of twelve robots using controller (4.13, 4.14) (Algorithm 1),
(3.7) (Algorithm 2) and (5.19, 5.36) (Algorithm 3).

present simulation results for a connected communication case only. It is de-

picted in Figure 6.32(b). The initial conditions of the robots in the formation

are: p1(0) = col(−0.03, 0.24), p2(0) = col(0.17, 0.03), p3(0) = col(0.03,−0.22),

p4(0) = col(−0.17,−0.05), p5(0) = col(−0.06, 0.42), p6(0) = col(0.28, 0.08),

p7(0) = col(0.05,−0.39), p8(0) = col(−0.26, 0.03), p9(0) = col(−0.09, 0.59),

p10(0) = col(0.49, 0.02), p11(0) = col(0.05,−0.60) and p12(0) = col(−0.45,−0.04).

In addition, θi(0) = 0 and for car-like robots ϕi(0) =
π
2
for all robots i ∈ I. As

with the previous simulations in this section, we perturb one of the robots in the

formation to observe the reaction of other robots.

The control parameters chosen for the simulations in this sections are cxi = 20,

c
y
i = 100, cθi = 2.5, c̃xij = 30, c̃yij = 300 and c̃θij = 0.1 for the controller defined in

(3.7). For the controller in (4.13, 4.14), the parameters are: cxei = 20, cyei = 100,

cθi = 2.5, cxσij = 30 and cxσij = 300. Moreover, for controller (5.19, 5.36) we
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use cei = 100, czi = 60, cθi = 2.5, cij = 300 and χi(s) = χ∗
i
2
π
atan(s) in which

χ∗
i = 0.005. These control parameters were chosen on the basis of trial and error,

see Remark 3.3.1.

In Figures 6.33, 6.34 and 6.35 we plot the desired and actual paths in the case of

controller (3.7), (4.13, 4.14) and (5.19, 5.36) respectively. The results show again

that in face of perturbation, the unperturbed robots react to the perturbation

and thus leave their desired trajectories in order to keep the formation shape.

This is owing to the communication between the robots and is consistent with

previous results given in the thesis.

It can be seen that for controller (3.7) the convergence speed is less rapid than for

the other two controllers, particularly for Robots 1, 3, 5, 7, 9 and 11. It can be

explained by the fact that the convergence speed for controller (3.7) depends on

the value of the desired angular velocity of a robot. Therefore, since the desired

angular velocities of Robots 1, 3, 5, 7, 9 and 11 are small, see Figure 6.33, the

robots need more time to correct their tracking errors. In comparison, in Figure

6.34 it is seen that controller (4.13, 4.14) yields much faster convergence. In that

figure, one notices that both at the beginning of the simulation as well as after the

perturbation, robots quickly coincide with their desired trajectories. Somewhere

in between the performance generated by controller (3.7) and controller (4.13,

4.14) is the performance obtained in simulations for controller (5.19, 5.36). For

this controller, robots paths converge to their desired paths faster than for the first

controller (3.7) but not as swiftly as for controller (4.13, 4.14). This statement is

also confirmed by the results presented in Figure 6.36 which plots the formation
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geometry maintenance index for the three controllers. Indeed, for controller (4.13,

4.14), the index has the smallest value, then for controller (5.19, 5.36) it is bigger

except for just after the perturbation. For controller (3.7) the value of the index

has the largest value throughout the simulation.

6.5 Discussion

In this chapter we have presented three series of simulations for various control

algorithms given in the thesis. This was motivated by the need to more thor-

oughly analyse similarities and differences of the algorithms. It is noted that,

in line with previous findings in the individual chapters earlier in the thesis,

the communication between the robots enables the robots to concentrate on the

common formation goal – the formation shape maintenance as opposed to track-

ing individual robot trajectories. Indeed, the simulation results in this section

corroborate that claim and show that robots benefit from exchanging informa-

tion with other robots in the formation. However, for the robots to be able to

benefit from that mechanism to the greatest degree, an appropriate control al-

gorithm should be selected to control the robots as different control algorithms

have different strengths. Moreover, the simulation results show how important

parameter tuning for each controller is. Indeed, control parameters suitable for

one type of controller may prove unsatisfactory for other type of controller. What

is more, parameter tuning is also reliant on the various settings of the simulation,

e.g. on the desired trajectory of the formation and the desired formation shape.

Accordingly, it is best if the parameters are adjusted for each particular case.

243



6. COMPARISON BETWEEN THE BEHAVIOUR OF ROBOTS UNDER DIFFERENT CONTROL ALGORITHMS

It is also worth mentioning that while no collision occurred in the simulations

in this section, especially the simulation results in Section 6.4 advocate that it

is desirable to develop a collision avoidance scheme to be incorporated with the

existing formation control algorithms. Without a doubt, with a large number

of robots in the formation, collisions between the robots can take place unless a

proper collision avoidance scheme is introduced. Therefore, it is recommended

that such a formation control algorithm with a collision avoidance scheme is

worked on in the future.

In view of the simulation results in this chapter as well as in Chapters 3, 4 and 5,

we can reiterate the interpretation of the tracking control gains and the mutual

coupling gains. The simulation results confirm that by choosing stronger tracking

gains in comparison to the mutual coupling gains, the robots in the formation

focus on tracking of individual trajectories. Conversely, when the mutual coupling

gains dominate the tracking gains, the robots’ priority is to keep the desired

formation shape with less attention paid to tracking robots’ individual desired

trajectories.
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Chapter 7

Conclusions

In this chapter we summarise the developments of the thesis and state our rec-

ommendations for future work in the area of formation control. Our research

covered various proposed solutions to the formation control problem in which

multiple mobile robots in the formation are to create a desired formation shape

and follow a desired trajectory as a whole. In what follows, we review the results,

pointing out both the advantages as well as potential shortcomings of the intro-

duced formation control algorithms. Based on that we present the open questions

and research topics that we think are interesting to study in the future.

The first piece of work that is presented in this thesis is a formation control al-

gorithm based on the cascaded approach. The cascaded approach is very useful

in that it allows to split dynamic systems into separate systems in a cascaded

way. The principles are that the resulting decomposed systems are easier to
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analyse than the original system. In the settings studied in this thesis the ob-

tained systems are both relatively simple linear systems while the original system

was nonlinear. Hence, the application of the cascaded approach allowed the sta-

bility to be established in a more straightforward way. The control algorithm

is then assembled by adding so–called mutual coupling terms into an existing

trajectory tracking algorithm for a single robot. These mutual coupling terms

represent communication or any other kind of information exchange protocol be-

tween robots to enable robots to be aware of the performance of other robots in

the formation. The importance of providing robots with feedback information

regarding other robots in the formation is particularly noticeable when there is

a perturbation acting on one of the robots. Then through the communication

mechanism, the information about the perturbed robot is sent to all other robots

in the formation and the whole formation can counteract the perturbation to

try to keep the formation shape. The implied condition for this mechanism to

work is that the communication graph of the formation needs to be connected

so that robots are aware of the behaviour of the rest of the group. The basic

formation control algorithm is then extended in a twofold manner. First, we

introduced a dynamic formation control algorithm in which both robot kinemat-

ics and dynamics are considered. Another extension is the saturated formation

control algorithm which is particularly relevant in practical applications since it

involves taking into consideration robot actuator limitations.

The applicability of the aforementioned control algorithms is broad and only mild

conditions on the control parameters are imposed. However, a possible shortcom-

ing of these controllers is the property that trajectories which are straight lines
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are not feasible. This follows from the fact that the desired angular velocities of

robots in the formation need to satisfy the persistence of excitation condition.

A possible solution to this problem mentioned briefly by us after the introduc-

tion of the formation control algorithm consists of extending the definition of

a persistently exciting signal to a δ – persistently exciting signal (Loria et al.,

1999) and making some modifications to the formation control algorithm. In the

literature such a modification is available for a stabilisation task of a single non-

holonomic system. In the author’s point of view though this additional work to

allow robots to track trajectories like straight lines is not a major alteration in

terms of working principles but it would be nonetheless an interesting technical

extension. Note that such an issue does not exist in the other approach that we

present for unicycle mobile robots in Chapter 4 as in in the settings in Chapter 4

the angular velocities can indeed be zero.

Our work regarding the cascaded approach to the formation control problem can

also be continued by studying a saturated control law as in Chapter 3 in which also

the feedback term for the vertical position error variable yei is added in (3.37).

Yet again, arguably this would not appear to be a groundbreaking discovery

but rather an interesting technical extension. Of course, due to nonholonomic

constraints, if there are terms in the control law for the horizontal position error

variable xe
i and the angular error variable θei then also the vertical position error

variable yei converges to zero. Nonetheless, from a theoretical point of view, it

would be valuable to study the complete version of the saturated controller with

a correction term in terms of yei and then possibly compare the differences in

performance for both controllers.

247



7. CONCLUSIONS

Another possible disadvantage of the cascaded formation control algorithm is

the fact that all error variables are defined in local frames associated with each

individual robot. This means that also the feedback information sent to a robot’s

neighbours in the form of the mutual coupling terms consists of information

about the robot expressed in a local coordinate system of the sender robot, not

the receiving robot. This means that each robot uses information about their

neighbours expressed in a different coordinate system than its own error variables.

Thus, those quantities may not be truly relevant for the considered robot and

perhaps a different definition of coordination error would be more beneficial,

especially if robot trajectories are such that the local coordinate systems of robots

in the formation are misaligned considerably. In such circumstances, an error in a

local coordinate system of one robot may be small but in another coordinate frame

might be relatively large. To fix this issue, in the second approach studied in this

thesis we have decided to express the tracking error of a particular robot and the

coordination errors between this robot and its neighbours in the same coordinate

frame. In particular, in this research it was the world frame in which all error

variables – both tracking and coordination – are given. Hence all error variables

are ultimately expressed in identical coordinate frames. The employment of the

error variables in the world coordinate frame is unusual in the literature and plays

an important role in the analysis of the closed–loop behaviour of the formation.

In the scenario considered in Chapter 4 we propose a number of control algo-

rithms. The first control algorithm fulfils the formation control objectives men-

tioned earlier: robots create a desired formation geometry and such a geometrical

structure follows a given desired trajectory as a whole. The second major forma-
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tion control algorithm is designed to solve a restricted formation control problem.

In particular, in the restricted formation control problem robots are still required

to converge to a desired formation shape but trajectory tracking is not required.

This is what we call the Pure Coordination scheme as robots achieve coordina-

tion but not necessarily trajectory tracking. We also proposed an extension of

these formation control algorithms in which robot actuator limitations are taken

into consideration. This resulted in saturated formation controllers. Moreover,

we also discussed a leader–follower like strategy in which one selected robot –

the leader – aims to track the desired trajectory while the other robots – the

followers – only act towards coordination of the group. Then, if the formation

communication graph is connected, the formation control problem is solved.

Based on the simulation and experimental results, we concluded that it is benefi-

cial for robots in the formation if there is a sufficient level of information exchange

or communication between the robots. The intuitive reason for this is that the

formation behaviour is enhanced in the sense that robots could prioritise forma-

tion shape maintenance over individual trajectories tracking if robots are aware

of the behaviour of other robots in the formation and with appropriate choice of

the tracking and coordination control gains. In particular the balance between

the tracking gains and the coordination gains determines the kind of prevailing

behaviour of robots: tracking of individual trajectories or maintaining the de-

sired formation shape. The importance of the connectivity of the communication

graph is particularly visible when there are perturbations acting on robots in the

formation. More specifically, when the connectivity of the formation is assured,

should any disturbance occur to any member of the group, the rest of the robots
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can be made aware of the disturbance and try to counteract its effect. In the

case of the pure coordination controller as well as the leader–follower like con-

troller, the condition of the connectivity of the communication graph is made

explicit. However, also in other strategies when it is not directly required for

the communication graph of the formation to be connected, we have illustrated

in simulations and experiments that ensuring connectivity of the communication

graph may improve the coordinated behaviour of robots. The explanation be-

hind this phenomenon is that when the communication graph of the formation

is connected then the coupling between robots is a means to ensure consensus of

tracking error variables. This, as shown in the thesis, is tantamount to robots

converging to their desired formation shape. It therefore shows the importance

and benefits of including the mutual coupling in the formation control laws.

One possible extension of the results presented in Chapter 4 stems from Corol-

lary 4.2.3 regarding the synchronisation of angular errors. In particular, in our

current work, the coordination of robots in the formation holds only if the ac-

tual formation is translated with respect to the desired one as no rotation of the

formation is permitted. However, in the future it might be interesting to further

relax the definition of coordination of robots in the formation in such a way that

only the geometric shape that the robots form is verified. This would allow for a

possible translation as well as rotation of the whole formation on the plane. In

light of the synchronisation of angular errors, note that when mutual distances

between robots are identical to the desired distances and the formation is rotated

with respect to the desired one, the angular errors are synchronised with each

other. This further means that the heading angles are such that all robots in the
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formation proceed in the same direction. The starting point for advances in relax-

ing the definition of coordination of the formation is to redefine the coordination

error because in the way it is defined now, the angular errors need necessarily to

converge to zero for coordination in the Pure Coordination scheme to be ensured.

In Chapter 5 of the thesis we introduced a similar approach as in Chapter 4 to

solve the formation control problem for car–like mobile robots. The control law

was developed using the backstepping method. In comparison to the results from

Chapter 4, where all position error variables were expressed in the world frame,

it was shown in this chapter that in fact it suffices if the tracking error of each

particular robot is given in the same local coordinate frame as the coordination

errors of that robot and indeed the coordinate frame does not have to be common

for all robots in the formation. Therefore, in the work concerning car–like mobile

robots, we decided to express tracking and coordination of each robot in a local

coordinate system of that robot. In comparison to using the world frame to

express all error variables as in Chapter 4, here the utilisation of the local frames

lent itself to an arguably more straightforward stability analysis. However, the

condition for coordination or in other words formation shape maintenance is still

equivalent to consensus of the tracking error variables given in the world frame. To

validate the applicability of the proposed formation control law, we performed a

series of simulations. The conclusion that was drawn from the simulation results

is again the advantageous influence of the connectivity of the communication

graph of the formation on the cooperative behaviour of the robots.

One feature that could use some extra research in the area of formation control
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of car–like robots is finding a saturated control law in which upper bounds for

the magnitude of the control inputs vi and ωi can be pre-determined as needed,

regardless of the initial conditions. One way of doing it is as it is shown in

Chapter 3 and Chapter 4 in which the formation control algorithms are extended

to accommodate for the actuator limitations. Another way that we foresee might

possibly be helpful to solve the problem of accounting for actuator constraints is

a strategy based on an anti-windup like scheme (Tarbouriech and Turner, 2009;

Wu and Lin, 2010, 2011). However, a more extensive examination of this issue is

unquestionably necessary.

Some of the remaining issues in the area of formation control that deserve further

consideration are as follows.

1. The first, possibly most striking issue which is lacking in the formation con-

trol literature is a formation control algorithm for nonholonomic robots en-

suring collision avoidance of robots in the formation. Indeed, there is quite

an abundance of results for formation control with collision avoidance for

single or double integrator agents, including (De Gennaro and Jadbabaie,

2006; De Gennaro et al., 2005; Dimarogonas and Kyriakopoulos, 2005, 2006;

Tanner, 2004). Here, in principle, the collision avoidance is implemented by

minimising a potential function in the sense that should a possible collision

be detected, a repulsive behaviour is activated. For unicycle robots, the

formation control problem with collision avoidance was studied by (Mas-

tellone et al., 2007, 2008). The results in (Mastellone et al., 2007, 2008)

also incorporated the error variables in the global coordinate frames but
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the approach as such is completely different to what we study in this thesis.

The proposed control algorithm was also based on potential functions and

achieved trajectory tracking of the formation and convergence of robots to a

desired location within the formation as well as collision avoidance between

the robots. However, there was no communication between robots except

for calculating the collision avoidance term while it was shown in our work

that cooperative behaviour can be improved considerably when robots in the

formation are allowed to exchange information with each other. Moreover,

there are some technical issues with these papers. Namely, it is assumed

that the desired trajectory of a robot is rendered constant when another

robot is sensed in the detection region. This appears problematic as the

desired trajectory of each robot should rather stem directly and solely from

the desired trajectory of the whole formation and the desired formation

shape. Arguably, such a desired trajectory of a robot is not to be tam-

pered with despite a possible detection of a collision. It appears that it is

rather the control inputs of the robots that robots might use when they de-

tect a possible collision to act against it. Therefore, further research is still

needed. Here, the results in (De Gennaro and Jadbabaie, 2006; De Gennaro

et al., 2005; Dimarogonas and Kyriakopoulos, 2005, 2006; Mastellone et al.,

2007, 2008; Tanner, 2004) can very well be considered as the first step in

the development of a collision avoidance mechanism for formation control

of nonholonomic robots.

2. It would also be interesting to design a control algorithm that would work

for a more general type of robot, possibly utilising the chained form of a
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mobile robot like in (Dong and Farrell, 2008; Dong et al., 2006). The appeal

of such a research direction is in that this would be covering many types of

robots including unicycle robots, car–like robots and robots with trailers.

Having said that, although the results in (Dong and Farrell, 2008; Dong

et al., 2006) would be possible to be applied to such systems, they only allow

for constant formation shapes, which might be a serious limitation in some

circumstances. Moreover, the chained form of many nonholonomic systems

proposed in the literature to date are only defined locally, see Section 2.1.3.

Therefore, the control algorithms would automatically also be burdened

with singularities. Hence, research is not only needed on the design of a

formation control algorithm for chained nonholonomic systems but also on

investigation on whether global transformations of the kinematic models of

robots into chained forms do exist.

3. Even though all the results in this thesis are distributed and hence require

robots to communicate with their neighbours only, the set of neighbours

of each robot is predetermined offline, before the start of an experiment.

However, this is a bit unrealistic as in real life sets of neighbours of robots

are likely to change as robots move. Therefore, an extension of the re-

sults presented in the thesis is necessary. However, this is a nontrivial task,

because the stability analysis of the origin of a switched system relies on

finding a common strict Lyapunov function if possible. For systems that

do not admit a common strict Lyapunov function (or such a function can-

not be easily found), the complexity of stability analysis rises considerably

(Branicky, 1998; Hespanha, 2004; Hespanha et al., 2005; Lu and Brown,
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2010). The problem is further complicated by the fact that the systems in

the thesis are in general nonlinear and moreover time–varying.

Some interesting results on the influence of switching graph topologies

on the formation behaviour in case of flocking were developed by Jad-

babaie et al. (2003) which, nonetheless, was concerned with single inte-

grator agents. Therefore, these results cannot be directly applied to sys-

tems with more complicated dynamic models such as nonholonomic systems

are. The same issue arises for the results in (Tanner, 2004). However, the

methodology presented in the aforementioned papers can perhaps help to

elucidate the problem of switching graph topologies in formation control

of nonholonomic robots when appropriate modifications are implemented.

Nevertheless, this remains an open question for future research.

4. Another issue that might be interesting to investigate is to allow new robots

to join an existing formation or leave a formation as well as for two groups to

merge or for a formation to split into two groups. Such a feature was studied

in (Chung and Slotine, 2009; Hsu and Liu, 2005). Nonetheless these papers

did not consider the formation control problem as studied in this thesis but

the synchronisation control problem (Chung and Slotine, 2009) or indeed

the formation control problem but using the behavioural approach (Hsu

and Liu, 2005).

In the scenarios considered in the thesis, this additional feature would re-

quire redefining the formation control problem. This is because the problem

we study now is highly reliant on the number of robots in the formation

since the desired formation shape is given explicitly and depends on the
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number of robots. To study a task in which group merging and splitting is

allowed as well as allowing for individual robots to join or leave a forma-

tion, the formation control problem might still consist of following a desired

trajectory as a whole and a more vague definition of the desired formation

shape as compared to the current rather precise definition of the formation

shape. Nonetheless, further research both in terms of technical realisation

of such a feature as well as an adequate redefinition of the formation control

problem is crucial.

5. It has been shown in the literature that the formation behaviour can be

improved and in particular the convergence speed of the error variables can

be increased if the formation control law is supplemented with a predic-

tive mechanism, see (Chen et al., 2010; Huijberts et al., 2007; Voss, 2000;

Zhang et al., 2008). The aim of the predictive mechanism is for agents to

anticipate the future state of the other members of the group. Then, in the

settings of the formation control problem studied in the thesis, robots may

converge faster to their desired trajectories or create more rapidly the de-

sired formation geometry in the transient or after a perturbation. However,

for this mechanism to be enabled, more research is needed which remains

for future investigation.

6. All our results apply to formations consisting of identical robots. However,

it would be interesting to see how similar formation control algorithms

work for formations of heterogenous robots. To that end, dynamics of

such heterogenous formations need to be studied. It is believed that the

general concepts of the results presented in the thesis may be suitable for
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this extended case. Yet, further research to tackle all technical problems is

required.
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Appendix A

Mathematical preliminaries –

basic definitions

This appendix is to present some mathematical preliminaries that are used through-

out the thesis.

Definition A.1. (Khalil, 1996) Consider a vector w ∈ Rn and a scalar p ∈ R+.

Then the p-norm ‖w‖p of w is defined by

‖w‖p =
( n∑

i=1

|wi|p)
1

p . (A.1)

For p = 2, one obtains the so–called Euclidean norm denoted in this thesis as

‖w‖.

Definition A.2. (cf. (Alvarez Aguirre, 2011; Ioannou and Sun, 1995; Khalil,

1996; Lefeber, 2000; Narendra and Annaswamy, 1989)) A vector signal W (t) is
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said to be persistently exciting if, for some constants 0 < α1 ≤ α2 and γ > 0, the

following is true

∀t ≥ 0 α1I ≤
∫ t+γ

t

W (τ)W T (τ)dτ ≤ α2I. (A.2)

The following definitions are taken verbatim from (Khalil, 1996).

Definition A.3. (Khalil, 1996) A continuous function β(·) : R+ → R+ is said to

be of class K if it is strictly increasing and β(0) = 0. In addition, if β(p) → ∞

as p → ∞, it is said to belong to class K∞.

Definition A.4. (Khalil, 1996) A continuous function β : [0, a)×[0,∞) → [0,∞)

is said to belong to to class KL if, for each fixed s, the mapping β(r, s) belongs to

class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing

with respect to s and β(r, s) → 0 as s → ∞.

The following lemma presents certain properties of a class of matrices that is

exploited extensively in the thesis.

Lemma A.5. Consider a square matrix A of the following form

A =




α1 +
∑

j∈I
j 6=1

α1j −α12 . . . −α1n

...
. . .

. . .
...

−αn−1,1 . . . αn−1 +
∑

j∈I
j 6=n−1

αn−1,j −αn−1,n

−αn1 −αn2 . . . αn +
∑

j∈I
j 6=n

αnj




(A.3)
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in which I = {1, . . . , n} and for all i, j ∈ I we have αi > 0 and αij ≥ 0. Then A

is of full rank and all eigenvalues of A have positive real parts. Furthermore, if

αij = αji ∀i, j ∈ I, i 6= j, then A is a positive definite matrix.

Proof. Follows straightforwardly from the Geršgorin disc theorem (Horn and

Johnson, 1990).

The following lemmas are taken verbatim from (Jiang and Nijmeijer, 1997) and

(Kostić et al., 2009, 2010b) respectively.

Lemma A.6. (Jiang and Nijmeijer (1997, Lemma 2), cf. Micaelli and Samson

(1993, Lemma 1)) Consider a scalar system

ẋ = −αx+ β(t) (A.4)

where α > 0 and β(t) is a bounded and uniformly continuous function. If, for any

initial time t0 ≥ 0 and any initial condition x(t0), the solution x(t) is bounded

and converges to 0 as t → ∞, then

lim
t→∞

β(t) = 0. (A.5)

Lemma A.7. (Kostić et al., 2009, 2010b, Lemma 1) Consider a scalar system

ẋ = −α(x) + β(t) (A.6)

where α and β are bounded and uniformly continuous functions in x and t,

respectively, such that α(0) = 0 and xα(x) > 0 if x 6= 0. If, for any t0 ≥ 0 and
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any initial condition x(t0), the solution x(t) is bounded and limt→∞ x(t) = 0, then

lim
t→∞

β(t) = 0. (A.7)
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Appendix B

Stability of dynamic systems

This appendix is based on the results provided in (Khalil, 1996; Sastry, 1999;

Slotine and Li, 1991; Sørdalen and Egeland, 1995) and the reader is referred to

these references for further details.

We consider a dynamic system given in the general form of a first order differential

equation

ẋ = f(t, x), (B.1)

in which x ∈ Rn, x(t0) = x0 and t ≥ t0, t0 and x0 are initial conditions and f(t, x)

is continuous in t and smooth in x. Let us denote by x(t, t0, x0) the unique solution

of (B.1) at time t ≥ t0 starting at x0 = x(t0). Further, let us assume that f(t, x)

is complete and hence solutions are defined for all t. If f(t, x) = f(x), the system

is called autonomous or time-invariant, otherwise it is named non-autonomous

or time varying. Moreover, system (B.1) is called linear, if f(t, x) = A(t)x+ b(t),
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where A(t) : R → Rn×n and b(t) : R → Rn or nonlinear, whenever this statement

does not hold.

Definition B.1. A state xe is said to be an equilibrium state of (B.1) if

f(xe) = 0 or f(t, xe) = 0 ∀t, (B.2)

for an autonomous or a non-autonomous system respectively.

In the rest of this appendix, it is assumed that the equilibrium point of (B.1) is

xe = 0, i.e. f(t, 0) = 0.

Definition B.2. The equilibrium point xe = 0 of (B.1) is

• stable if

(∀ t0 ≥ 0)(∀ ǫ > 0)(∃ δ > 0) (‖x0‖ < δ =⇒ ‖x(t, t0, x0)‖ < ǫ, ∀ t ≥ t0),

(B.3)

• uniformly stable if

(∀ ǫ > 0)(∃ δ > 0)(∀ t0 ≥ 0) (‖x0‖ < δ =⇒ ‖x(t, t0, x0)‖ < ǫ, ∀ t ≥ t0),

(B.4)

• globally asymptotically stable if it is stable and

(∀ t0 ≥ 0)(∀x0 ∈ R
n)(‖x(t, t0, x0)‖ → 0 as t → ∞), (B.5)
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• globally uniformly asymptotically stable if it is globally asymptotically sta-

ble and there exists a class KL function β such that

(∀ t0 ≥ 0)(∀x0 ∈ R
n)(‖x(t)‖ ≤ β(‖x0‖, t− t0), ∀ t ≥ t0), (B.6)

• globally exponentially stable if it is globally asymptotically stable and there

exist k > 0, γ > 0 such that

(∀ t0 ≥ 0)(∀x0 ∈ R
n)(‖x(t)‖ ≤ k‖x0‖e−γ(t−t0), ∀ t ≥ t0), (B.7)

• globally K–exponentially stable if it is globally asymptotically stable and

there exist a class K function h and a positive constant γ such that

(∀ t0 ≥ 0)(∀x0 ∈ R
n)(‖x(t)‖ ≤ h(‖x0‖)e−γ(t−t0), ∀ t ≥ t0). (B.8)

B.1 Lyapunov’s direct method and extensions

Hereinafter, we denote by B(x, h) a ball centred at x with radius h > 0.

Definition B.3. A continuous function V (t, x) : R × Rn → R+ is called locally

positive definite if

(∃β ∈ K, h > 0)
(
V (t, 0) = 0 and V (t, x) ≥ β(‖x‖) ∀x ∈ B(0, h) ∀t ≥ 0

)

(B.9)

Additionally, if the above statement holds for all x ∈ Rn and if β ∈ K∞, then
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V (t, x) is called positive definite.

Definition B.4. A function V (t, x) : R×Rn → R+ is said to be locally decrescent

if it is continuous and if there exists β ∈ K such that

(∃h > 0)(∀t > 0)(∀x ∈ B(0, h)) (V (t, x) ≤ β(‖x‖)) (B.10)

Furthermore if h may be chosen arbitrarily, V (t, x) is called semiglobally decres-

cent. Moreover, if (B.10) holds for h → ∞, hence ∀x ∈ Rn then V (t, x) is said to

be globally decrescent.

In the sequel, we define the derivative of V (t, x) along solutions of (B.1) by

V̇ (t, x) = ∂V
∂t
(t, x(t)) + ∂V

∂x
f(t, x(t)).

Theorem B.5. Consider (B.1) and a function V (t, x) along with its derivative,

V̇ (t, x), calculated along trajectories of (B.1). Then, the following holds.

1. If V (t, x) is locally positive definite and there exists h > 0 such that

V̇ (t, x) ≤ 0 for x ∈ B(0, h), then xe = 0 is stable.

2. If V (t, x) is locally positive definite and decrescent and there exists h > 0

such that V̇ (t, x) ≤ 0 for x ∈ B(0, h), then the equilibrium point xe = 0 is

uniformly stable.

3. If V (t, x) is locally positive definite and decrescent and −V̇ (t, x) is locally

positive definite, then the equilibrium point xe = 0 of (B.1) is uniformly

asymptotically stable.
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4. If V (t, x) is positive definite and decrescent and −V̇ (t, x) is positive definite,

then the equilibrium point xe = 0 of (B.1) is globally uniformly asymptot-

ically stable.

Theorem B.6. xe = 0 is a locally exponentially stable equilibrium point of

(B.1) if and only if there exist h > 0 and positive constants α1, α2, α3, α4 and a

continuously differentiable function V (t, x) such that for all x ∈ B(0, h)

α1‖x‖2 ≤ V (t, x) ≤ α2‖x‖2

V̇ (t, x) ≤ −α3‖x‖2 (B.11)
∥∥∥∥∥
∂V (t, x)

∂x

∥∥∥∥∥ ≤ α4‖x‖

in which time derivatives of V (t, x) are calculated along solutions of (B.1). Fur-

thermore, if the conditions in (B.11) hold for all x ∈ Rn, xe = 0 is a globally

exponentially stable equilibrium point of (B.1).

The Lyapunov method for analysing asymptotic stability of dynamic systems

requires −V̇ (t, x) to be (locally) positive definite. However, it is not a trivial

problem to find such a Lyapunov function. Therefore, an extension to this method

that allows for this condition to be relaxed is provided by the LaSalle Invariance

Principle, first introduced by LaSalle (1960), (see also Khalil, 1996; LaSalle and

Lefschetz, 1961; Sastry, 1999; Slotine and Li, 1991).

Definition B.7. A subset M ⊂ Rn of (B.1) is called an (positively) invariant

set if

(∀t0 ∈ R)(∀x0 ∈ R
n)
(
(x0 ∈ M) =⇒ (∀t ≥ t0)(x(t, x0) ∈ M)

)
. (B.12)
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Note that given a set S containing an equilibrium, there exists a non–empty

largest invariant set M contained in S.

Theorem B.8. Consider (B.1) where f(t, x) = f(x) (autonomous case), a smooth

function V (x), its derivative V̇ (x) along the dynamics (B.1) and a set Ωc defined

by

Ωc =
{
x ∈ R

n
∣∣∣ V (x) ≤ c

}
. (B.13)

Suppose that Ωc is bounded and that for all x ∈ Ωc, V̇ (x) is nonpositive. Further-

more, define a subset S ⊂ Ωc containing elements of Ωc, for which V̇ (x) vanishes,

i.e. S =
{
x ∈ Ωc

∣∣ V̇ (x) = 0
}
. If M is the largest invariant set in S then

(∀t0 ∈ R)(∀x0 ∈ R
n)
(
(x0 ∈ Ωc) =⇒ (∀t ≥ t0)(x(t, t0, x0) → M as t → ∞)

)
.

(B.14)

Corollary B.9. If there exists h > 0 such that M ∩ B(0, h) = {0}, then the

origin of (B.1) is an asymptotically stable equilibrium point.

The above proposition is useful in the case of autonomous systems. For time

varying systems, we may employ Barbalat’s lemma .

Lemma B.10. (verbatim (Khalil, 1996)) Let φ : R → R be a uniformly con-

tinuous function on [0,∞). Suppose that limt→∞
t∫
0

φ(τ) dτ exists and is finite.

Then

φ(t) → 0 as t → ∞. (B.15)

To illustrate the Barbalat’s lemma, consider φ(t) such that
∫∞
0

φ(τ)dτ = 2t+5
3t+2

− 5
2
.

The limit limt→∞
(
2t+5
3t+2

− 5
2

)
exists and is finite and can easily be calculated as
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limt→∞
(
2t+5
3t+2

− 5
2

)
= 2

3
− 5

2
= −11

6
. Therefore, by Barbalat’s lemma we conclude

that φ(t) converges to 0 as t → ∞. Indeed, by differentiation of
∫∞
0

φ(τ)dτ we

have φ(t) = d
dt

(
2t+5
3t+2

− 5
2

)
= −11

(3t+2)2
which clearly vanishes as t goes to ∞.

Barbalat’s lemma itself is a useful result but it requires checking uniform conti-

nuity which may not be straightforward. The following theorem - the invariance

principle equivalent for non-autonomous systems - is a consequence of Barbalat’s

lemma in which the uniform continuity is not explicitly required.

Theorem B.11. (Khalil, 1996) Consider system (B.1), where f(t, x) is globally

Lipschitz in x, uniformly in t and piecewise continuous in t. Denote by V (t, x) a

continuously differentiable function satisfying

W1(x) ≤ V (t, x) ≤ W2(x),

V̇ (t, x) ≤ −W (x),
(B.16)

where W1(x) and W2(x) are continuous positive definite functions, W1(x) is ra-

dially unbounded and W (x) is a continuous positive semidefinite function. Then

all solutions x(t) of (B.1) fulfil

W (x) → 0 as t → ∞. (B.17)

In the following theorem we study stability of an equilibrium point of a linear

time varying system

ẋ = A(t)x, y = Cx (B.18)

in which x ∈ Rn, y ∈ Rp, A(t) is continuous and C ∈ Rp×n. For this sys-
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tem, we define the observability Gramian of the pair (A(t), C) as W (t, t + δ) =
∫ t+δ

t
ΦT (τ, t)CT (τ)C(τ)Φ(τ, t)dτ , in which Φ(τ, t) is the state transition matrix

of (B.18) (see (Rugh, 1993)).

Theorem B.12. (Khalil, 1996) Consider a linear time–varying system (B.18).

Let V (t, x) be a continuously differentiable Lyapunov function candidate and

furthermore, let us denote its derivative calculated along solutions of (B.18) by

V̇ (t, x), i.e. V̇ (t, x) =
∂V

∂t
(t, x(t)) +

∂V

∂x
A(t)x. Assume that

k1‖x‖2 ≤ V (t, x) ≤ k2‖x‖2 (B.19)

V̇ (t, x) = −xTCTCx ≤ 0 (B.20)

W (t, t+ δ) ≥ k3I (B.21)

where k1, k2 and k3 are positive constants, I is the identity matrix of appropriate

dimensions and W (t, t + δ) is the observability Gramian of the pair (A(t), C).

Then the origin of (B.18) is a globally exponentially stable equilibrium point.

Remark B.13. Condition (B.21) is satisfied if the pair (A(t), C) is completely

uniformly observable, see (Khalil, 1996).
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B.2 Stability of invariant sets

In this section we are concerned with some additional properties of the dynamic

system (B.1) in which x = col(z, y) and the dynamics can be written as

ż = fz(t, z, y),

ẏ = fy(t, z, y),
(B.22)

where fy(t, z, 0) = 0. In particular, we are interested in partial stability of (B.22)

that is the stability of an invariant set {x = col(z, y) | y = 0}. In other words,

the stability property refers to a part of the variables only, see (Fradkov et al.,

1999; Shiriaev and Fradkov, 2001).

Definition B.14. (Fradkov et al., 1999; Shiriaev and Fradkov, 2001) The origin

of (B.22) is y-stable or in other words the set {x = col(z, y) | y = 0} is stable if

(∀ǫ > 0) (∀t0 ≥ 0) (∃δ(ǫ, t0) > 0) (‖x(t0)‖ ≤ δ =⇒ (∀t ≥ t0)(‖y(t, t0, x(t0))‖ ≤ ǫ)).

(B.23)

Definition B.15. (Bernfeld et al., 2003) The set {x = col(z, y) | y = 0} is

globally asymptotically stable if it is stable and for all x(t0)

lim
t→∞

‖y(t, t0, x(t0))‖ = 0. (B.24)

A convenient method of investigating stability of invariant sets is the Lyapunov

function approach. It is described in the following lemma.

Lemma B.16. (Fradkov et al., 1999; Shiriaev and Fradkov, 2001) Consider the
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dynamic system (B.22), where x = col(z, y). If there exists a Lyapunov function

candidate V (t, x) such that V (t, x) ≤ W1(y), where W1(·) is a positive definite

function, and V̇ (t, x) ≤ 0 then the set {x = col(z, y) | y = 0} is stable. If in

addition V̇ (t, x) ≤ W2(y) < 0, for y 6= 0 and where W2(·) is positive definite,

then the set {x = col(z, y) | y = 0} is globally asymptotically stable.

As with the Lyapunov method for stability of an equilibrium point of a dynamic

system, it is not trivial in many cases to find a strict Lyapunov function. However,

asymptotic stability of an invariant set can be established with the aid of a weak

Lyapunov function and then using Barbalat’s lemma (Lemma B.10) or the results

in Theorem B.11, to demonstrate attractivity (B.24).

B.3 Stability of cascaded systems

This section is concerned with stability analysis of a cascaded system of the

following form

ẋ1 = f1(t, x1) + g(t, x1, x2)x2,

ẋ2 = f2(t, x2),
(B.25)

where x1 ∈ Rp, x2 ∈ Rr. The vector field f1(t, x1) is smooth while both f2(t, x2)

and g(t, x1, x2) are continuous in t and locally Lipschitz continuous in x2 while

g(t, x1, x2) is in addition continuous in x1. Moreover, assume that f1(t, 0) = 0

and f2(t, 0) = 0.

The following theorem is based on the results of Panteley and Loria (1998); Pan-
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teley et al. (1998) and Aneke (2003).

Theorem B.17. Assume the following

1. the equilibrium point x1
e = 0 of the subsystem ẋ1 = f1(t, x1) is globally

uniformly asymptotically stable,

2. the equilibrium point x2
e = 0 of the subsystem ẋ2 = f2(t, x2) is globally

uniformly asymptotically stable,

3. the matrix function g(t, x1, x2) satifies ‖g(t, x1, x2‖ ≤ k1(‖x2‖)+k2(‖x2‖)‖x1‖,

where k1, k2 : R
+
0 → R

+
0 .

Then, the origin of the system (B.25) is globally uniformly asymptotically stable.

Corollary B.18. If both ẋ1 = f1(t, x1) and ẋ2 = f2(t, x2) are globally exponen-

tially stable and Assumption 3 in Theorem B.17 holds for g(t, x1, x2), the origin

of the cascaded system (B.25) is globally K–exponentially stable.

The following proposition considers a special case of a globally uniformly asymp-

totically stable nominal system that is perturbed with a signal vanishing at the

origin. We use this result for stability analysis of the origin of a cascaded system.

It is taken verbatim from (Panteley et al., 2001, Proposition 3). In this result, by

‖φ(t)‖1 we denote an L1 norm of a time signal φ(t) defined by

‖φ(t)‖1 =
∞∫

t0

‖φ(τ)‖dτ. (B.26)
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Proposition B.18.1. Consider the system

ẋ = F0(t, x) +K(t, x), (B.27)

and suppose the origin is uniformly globally stable. Suppose also that

1. F0 is locally Lipschitz, F0(·, t) is locally Lipschitz uniformly if t, and the

origin of the system ẋ = F0(t, x) is globally uniformly asymptotically stable;

2. K : R+
0 × Rn → Rn is continuous and there exist a continuous function

h : Rn → Rm, nondecreasing functions β, k1, k2 : R
+
0 → R

+
0 , a class K∞

function k, and a continuous positive definite function γ such that

‖K(t, x)‖ ≤ k1(‖x‖)k(‖h(t, x)‖), (B.28)

‖h(t, x)‖ ≤ k2(‖x‖), (B.29)

and such that for all (t0, x0) ∈ R
+
0 × Rn, and defining h̄(t) := h(t, x(t)), all

solutions of (B.27) satisfy

‖γ(‖h̄‖)‖1 ≤ β(‖x0‖). (B.30)

Under these conditions, the origin of the system (B.27) is globally uniformly

asymptotically stable.

273



B. STABILITY OF DYNAMIC SYSTEMS

B.4 Backstepping

The backstepping technique (Khalil, 1996) is a very useful tool in designing

asymptotically stabilising controllers for certain types of systems. We discuss

this technique for the simplest type of system to which it can be applied. We

consider a system of the following form

ẋ = f(x) + g(x)y,

ẏ = u,
(B.31)

where x ∈ Rn, y ∈ R, f(x), g(x) are smooth vector fields, f(0) = 0 and u ∈ R.

The main idea of backstepping is to consider each subsystem of (B.31) separately.

Assume that there exists a function Φ(x) satisfying Φ(0) = 0 such that the origin

is asymptotically stable for the first part of (B.31) with y = Φ(x):

ẋ = f(x) + g(x)Φ(x). (B.32)

Hence, there exists a smooth positive definite function V (x) such that V̇ (x) =

∂V
∂x

[
f(x) + g(x)Φ(x)

]
< 0 outside the origin. While y is unavailable to be set as

y = Φ(x), the following is true

ẋ =
[
f(x) + g(x)Φ(x)

]
+ g(x)

(
y − Φ(x)

)
:=
[
f(x) + g(x)Φ(x)

]
+ g(x)z, (B.33)

where the equilibrium point of ẋ =
[
f(x) + g(x)Φ(x)

]
is known to be asymptot-

ically stable by definition of Φ(x). Using (B.33), system (B.31) may be trans-
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formed into

ẋ =
[
f(x) + g(x)Φ(x)

]
+ g(x)z,

ż = v,
(B.34)

where v = u− Φ̇(x, z). Consequently, consider the Lyapunov function candidate

V (x, z) = V (x) + 1
2
z2 with its time derivative along solutions of (B.34) with

v = −∂V
∂x

g(x)z − kz given by

V̇ =
∂V

∂x

[
f(x) + g(x)Φ(x)

]
+
(∂V
∂x

g(x) + v
)
z ≤ ∂V

∂x

[
f(x)+ g(x)Φ(x)

]
− kz2 ≤ 0,

(B.35)

where k > 0. By Lyapunov’s direct method, the origin of (B.34) is asymptotically

stable and since Φ(0) = 0, we have that the origin of (B.31) is also asymptotically

stable with

u = v + Φ̇ = −
(∂V
∂x

g(x) + k
)(

y − Φ(x)
)
+

∂Φ

∂x

(
f(x) + g(x)y

)
. (B.36)
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Appendix C

Graph theory

We employ the following graph theory definitions from (Godsil and Royle, 2001)

in the thesis.

Definition C.1. A graph G is a triple G = (V,E,A) where V is an index set

representing vertices, E ⊂ V×V denotes edges such that an ordered pair (i, j) ∈ E

iff there is an edge between two vertices i, j ∈ V, and A is the adjacency matrix

which has entries aij such that

aij =






wij if (i, j) ∈ E,

0 otherwise,
(C.1)

in which wij > 0 is a weight. Hence, for all i, j ∈ V we have (i, j) ∈ E iff aij 6= 0.

Definition C.2. Ni ⊂ V is the set of neighbours of vertex i ∈ V defined by

Ni =
{
j ∈ V

∣∣ j 6= i and aij 6= 0
}
. (C.2)
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Definition C.3. The Laplacian matrix L associated with the graph G is an n×n

matrix whose elements lij are defined as follows

lij =






n∑
k=1
k 6=i

aik if j = i,

−aij otherwise.

(C.3)

Definition C.4. A graph G is called undirected if (i, j) ∈ E whenever (j, i) ∈ E.

It is said to be connected if any two vertices may be connected by a path regardless

of the sequence of the vertices involved en route. Otherwise the graph is said to

be disconnected.
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Appendix D

E-Puck mobile robot

The information in this appendix is based on (Mondada and Bonani, 2007; Mon-

dada et al., 2009).

The E-Puck mobile robot, see Figure D.1, is an educational unicycle-type mobile

robot developed at École Polytechnique Fédérale de Lausanne. It was built in

response to the need for a desktop size, open source hardware and software robot

which is reasonably priced and is user-friendly.

The E-Puck design consists of a Microchip dsPIC microcontroller which has a

CPU running at 64 MHz and is fitted with a version of a GCC C compiler. The

RAM available on E-Pucks is 8 kB and the flash memory is 144 kB. The E-Pucks

are also equipped with eight IR proximity sensors for the robot to be able to sense

other E-Pucks as well as any other obstacles. Moreover, a 3D accelerometer is

mounted, which might be used to verify the angle of inclination as well as, for
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D. E-PUCK MOBILE ROBOT

Figure D.1: E-Puck robot. Photo from (Mondada and Bonani, 2007).

instance, to recognise a possible collision. The robot is differentially driven by

means of two stepper motors which are such that a single revolution of a robot’s

wheel is made out of 1000 steps of the motor. Moreover, the robot is furnished

with three microphones and a camera.

The user interface includes two LEDs to indicate the battery status of the robot

and an RS232 input to connect the robot to a PC. As an alternative, a BlueTooth

communication link is provided to be used for connection of the robots with a

PC. This also allows for a robot to communicate with up to 7 other E-Pucks.

The diameter of an E-Puck robot is 75 mm and the height is about 50 mm with

the addition of the size of the various extensions used (e.g. a camera, an IR

distance scanner). The main body of the robot is made out of injected plastic

parts which surround the battery. The maximum applicable forward speed is

0.13 m
s
and the maximum angular velocity is 1.7 rad

s
.
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