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Abstract—In this paper, we seek to expand framework developed 
to control a single nonholonomic mobile robot to include the 
control of formations of multiple nonholonomic mobile robots.  A 
combined kinematic/torque control law is developed for 
leader-follower based formation control using backstepping in 
order  to accommodate the dynamics of the robots and the 
formation in contrast with kinematic-based formation controllers. 
The asymptotic stability of the entire formation is guaranteed 
using Lyapunov theory, and numerical results are provided.  The 
kinematic controller is developed around control strategies for 
single mobile robots and the idea of virtual leaders.  The virtual 
leader is replaced with a physical mobile robot leader and the 
assumption of constant reference velocities is removed.  An 
auxiliary velocity control is developed allowing the asymptotic 
stability of the followers to be proved without the use of Barbalat's 
Lemma which simplifies proving the entire formation is 
asymptotically stable. A novel approach is taken in the 
development of the dynamical controller such that the torque 
control inputs for the follower robots include the dynamics of the 
follower robot as well as the dynamics of its leader, and the case 
when all robot dynamics are known  is considered. 

  
Index Terms —Formation control, Lyapunov methods, 

kinematic/dynamic controller. 

I. INTRODUCTION 
 Over the past decade, the attention has shifted from the 
control of a single nonholonomic mobile robot [1-2] to the 
control of multiple mobile robots because of the advantages a 
team of robots offer such as increased efficiency and more 
systematic approaches to tasks like search and rescue 
operations, mapping unknown or hazardous environments, 
and security and bomb sniffing.   
 There are several methodologies [3-9] to robotic 
formation control which include behavior-based [3], 
generalized coordinates [4], virtual structures [5], and 
leader-follower [6-10] to name a few.  Perhaps the most 
popular and intuitive approach is the leader-follower method. 
In this method, a follower robot stays at a specified separation 
and bearing from a designated leader robot. 

In [6] and [9], local sensory information and a vision 
based approach to leader-following is undertaken 
respectively.  In both the approaches, the sensory information 
was used to calculate velocity control inputs.   A modified 
leader follower control is introduced in [7] where Cartesian 
coordinates are used rather than polar.  In [8], it is 
acknowledged that the separation-bearing methodologies of 
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leader-follower formation control closely resemble a tracking 
controller problem and a reactive tracking control strategy 
that converts a relative pose control problem into a tracking 
problem between a virtual robot and the leader is developed. 
A drawback of this controller is the need to define a virtual 
robot and the fact that dynamics are not considered.  A 
characteristic that is common in many formation control 
papers [6-9] is the design of a kinematic controller thus 
requiring a perfect velocity tracking assumption and 
formation dynamics are ignored.  

In this paper, we examine frame works developed for 
controlling single nonholonomic mobile robots and seek to 
expand them to be used in leader follower formation control.  
Specifically, we examine tracking controllers in the form of 
[1].  Like [8], we seek to convert a relative pose problem into 
a tracking control problem, but without the use a virtual robot 
for the follower.  We also seek to bring in the dynamics of the 
robots themselves thus incorporating the formation dynamics 
in the controller design.  In [10], the dynamics of the follower 
robot are considered, but the effect the leader's dynamics has 
on the follower (formation dynamics) is not incorporated.  
The leader's dynamics become apart of the follower robot's 
control torque input through the derivative of the follower's 
kinematic velocity control, which is a function of the leader's 
velocity.  In other words, the dynamical extension introduced 
in this paper provides a rigorous method of taking into 
account the specific vehicle dynamics to convert a steering 
system command into control inputs via backstepping 
approach. Both feedback velocity control inputs and velocity 
following control laws are presented for asymptotic stability 
of the formation. 

 

II. LEADER-FOLLOWER FORMATION CONTROL 
 

The two popular techniques in leader-follower formation 
control include separation-separation and separation-bearing 
[9].  The goal of separation-bearing formation control is to 
find a velocity control input such that 

0)(lim =−
∞→ ijijdt

LL and    0)(lim =Ψ−Ψ
∞→ ijijdt

       (1) 

where Lij and ψij are the measured separation and bearing of 
the follower robot with Lijd and ψijd represent desired distance 
and angles respectively [6][9]. Only separation-bearing 
techniques are considered, but our approach can be extended 
to separation-separation control.  

To avoid collisions, separation distances are measured 
from the back of the leader to the front of the follower, and 
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the kinematic equations for the front of the jth follower robot 
can be written as 
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where dj is the distance from the rear axle to the to front of the 
robot, jx , jy , and jθ  are actual Cartesian position and 

orientation of the physical robot, and jv , and jω  are linear 

and angular velocities respectively.  
Many robotic systems can be characterized as a robotic 

system having an n-dimensional configuration space C with 
generalized coordinates (q1,…qn) and subject to m constraints 
described in detail in [1] and mathematically after applying 
the transformation described in [1] as    

jjjdjjjjjmjjj qBvFvqqVvqM jj
ττ )()(),()(

______

=+++ && .      (3) 

where rxr
jM ℜ∈ is a symmetric positive definite inertia 

matrix, rxr
mjV ℜ∈ is the centripetal and coriolis matrix, 

1rx
jF ℜ∈ is the friction vector, djτ  represents unknown 

bounded disturbances, and 1rx
jj B ℜ∈= ττ is the input vector.  

It is important to highlight the skew symmetric property 
common to robotic systems [1] as 0),(2 =− jjmj qqVM

j
&& . 

 
A.  Controller Design 
 

The complete description of the behavior of a mobile 
robot is given by (2) and (3).  Standard approaches to leader 
follower formation control deal only with (2) and assume that 
perfect velocity tracking holds.  This paper seeks to remove 
that assumption by defining the nonlinear feedback control 
input 

))((1
djjjmjjjjj vFvVuMB ττ +++= −            (4) 

where uj is an auxiliary input. Applying this control law to (3) 
allows one to convert the dynamic control problem into the 
kinematic control problem [1] such that 
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                             (5) 

Backstepping Design:  Tracking controller frameworks have 
been derived for controlling single mobile robots, and there 
are many ways [1-2] to choose velocity control inputs vc(t) for 
steering system (2).  To incorporate the dynamics of the 
mobile platform, it is desirable to convert vc(t) into a control 
torque, τj(t) for the physical robot.  Contributions in single 
robot frameworks are now considered and expanded upon in 
the development a kinematic controller for the 
separation-bearing formation control technique.  Our aim to 
design a conventional computed torque controller such that 
(2) and (3) exhibit the desired behavior for a given control 
vc(t) thus removing perfect velocity tracking assumptions. 
 Consider the tracking controller error system presented in 
[1] used to control a single robot as 
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[ ]Trrrrrrrrrrrr yxqvyvx θωθθθ &&&&&&& ==== ,,sin,sin   (7) 

 
where xj, yj, and θj are actual position and orientation of the 
robot, and xr, yr, and θr are the positions and orientation of a 
virtual reference cart robot j seeks to follow [1].  

In single robot control, a steering control input vc(t) is 
designed to solve three basic problems: path following, point 
stabilization, and trajectory following such that 
limt→∞(qr-qj)=0  and limt→∞(vc-vj)=0 [1].   If the mobile robot 
controller can successfully track a class of smooth control 
velocity inputs, then all three problems can be solved with the 
same controller structure [1]. 

The three basic tracking control problems can be 
extended to formation control as follows.  The virtual 
reference cart is replaced with a physical mobile robot acting 
as the leader i, and xr and yr are defined as points at a distance 
Lijd and a desired angle ψijd from the lead robot. Now the three 
basic navigation problems can be introduced for 
leader-follower formation control as follows. 

 
Tracking:  Let there be a leader i for follower j such that 
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T
iijr vv ][ ω=                             (10) 

where vjr is the time varying linear and angular speeds of the 
leader such that 0>jrv  for all time.  Then define the actual 

position and orientation of follower j as 

jj

iijijiiij

iijijiiij

Ldyy
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)sin(sin
)cos(cos

        (11) 

where Lij and Ψij is the actual separation and bearing of 
follower j.  In order to solve the formation tracking problem 
with one follower, find a smooth velocity input vjc=f(ep, vjr, 
K) such that limt→∞(qjr-qj)=0, where ep, vjr, and K are the 
tracking position errors, reference velocity for follower j 
robot, and gain vector respectively.  Then compute the torque 
τj(t) for the dynamic system of (3) so that limt→∞(vjc-vj)=0.  
Achieving this for every leader i and follower j=1,2,..N 
ensures that the entire formation tracks the formation 
trajectory. 
 
Path Following:  Given a path Pi for leader i as well as the 
entire formation to follow, define a path Pj relative to Pi as the 
points at a distance Lijd and an  angle ψijd for the follower robot 
j to follow with a linear velocity vj(t).  Find a smooth velocity 
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control input vjc=f(ejθ, vjr, bji, K), where ejθ and bji(t) are the 
orientation and distance errors between a reference point of 
the follower robot j and path Pj, respectively, such that 
limt→∞(ejθ)=0 and limt→∞(bij)=0.  Then compute the torque 
τj(t) for the dynamic system given by (3) so that    
limt→∞(vjc-vj)=0.  Achieving this for every leader i and 
follower j=1,2,..N ensures that the entire formation follows a 
formation path Pi with a bounded error that is a function of Lijd 
and ψijd . 
 
Point Stabilization:  Given an arbitrary configuration of 
leader i denoted as qir, define a relative reference 
configuration for follower j as qjr.  Then find a smooth control 
velocity input vjc=f(ep, vjr, K,) such that limt→∞(qjr-qj)=0.  
Then compute the torque τj(t) for the dynamic system of (3) 
so that limt→∞(vjc-vj)=0.  Achieving this for every leader i and 
follower j=1,2,..N ensures the entire formation is stabilized 
about a reference point at the geometric center of the 
formation which is defined as the formation trajectory. 

 
Leader-Follower Trajectory Tracking:  Many solutions [6-9] 
to the leader-follower formation control problem of (1) and 
the kinematic model (2) have been suggested and smooth 
velocity control inputs for the follower have been derived.  
Unfortunately, dynamical models are rarely studied, and the 
effect of the dynamics of mobile robot leader i on follower j 
has not been well understood in the process of incorporating 
the dynamics of the formation.   This paper will now address 
these issues.  

The contribution in this paper lies in deriving an 
alternative control velocity, vjc(t), for separation-bearing 
leader follower formation control, and calculating the specific 
torque τj(t) to control (3) which accounts for the ith leader's 
dynamics as well as the jth follower's.  It is common in the 
literature to assume perfect velocity tracking which does not 
hold in real applications.  To remove this assumption, 
integrator backstepping is applied.   
 Using (9), (11) and simple trigonometric identities the 
error system (6) can be rewritten as 
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The transformed error system now acts as a formation 
tracking controller which not only seeks to remain at a fixed 
desired distance Lijd with a desired angle ψijd  relative to the 
lead robot i, but also achieves the same orientation as the lead 
robot which is desirable when ωi = 0.   
 In order to calculate the error dynamics given in (12), it is 
necessary to calculate the derivatives of Lij and ψij, and it is 
assumed that Lijd and ψijd are constant.  Consider the two robot 
formation depicted in Figure 1.  The x and y components of 
Lijd can be defined as 
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Figure 1:  Leader-follower formation control 

 
and the derivative of the x and y components of Lij can be 
found to be  
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it can be shown that derivatives of the separation and bearing 
are consistent with [6] and [9] even when using the 
kinematics described in (2) such that 
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where 3jijj e+Ψ=γ . 

 Now, using the derivative of (12), equation (15) and 
applying simple trigonometric identities, the error dynamics 
can be expressed as 
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 Examining (16) and the error dynamics of a tracking 
controller for a single robot in [1], one can see that dynamics 
of a single follower with a leader is similar to [1], except 
additional terms are introduced as a result of (2) and (15). 
 To stabilize the kinematic system, we propose the 
following velocity control inputs for follower robot j to 
achieve the desired position and orientation with respect to 
leader i as 
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where               )sin( 312 jdijdivjc eL +Ψ−= ωγ                    (18)  
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Comparing this velocity control with the tracking 
controller designed for a single robot in [1], one can see that 
the two are similar except for the novel auxiliary terms which 
ensure stability for the formation of two robots using 
kinematics alone.  Additionally, the design parameter kv was 
added to ensure asymptotic stability holds even when vi=0. 

MoA03.5

96



 

Before we proceed, the following assumptions are needed. 
Assumption 1. Complete knowledge of the jth follower and ith 
leader dynamics are known. 
Assumption 2. Each follower has full knowledge of its 
leader's dynamics. 
Assumption 3. Follower j is equipped with sensors capable of 
measuring the separation distance Lij and bearing Ψij and that 
both leader and follower are equipped with instruments to 
measure their linear and angular velocities as well as there 
orientations θi and θj.  
Assumption 4. Wireless communication is available between 
the jth follower and ith leader with communication delays 
being zero. 
Assumption 5. The ith leader communicates its linear and 
angular velocities vi, wi as well as its orientation θi and control 
torque τi(t) to its jth follower. 
Assumption 6. For the nonholonomic system of (2) and (3) 
with n generalized coordinates q, m independent constraints, 
and r actuators, the number of actuators is equal to the 
number of degrees of freedom ( mnr −= ).   
Assumption 7.  The reference linear and angular velocities 
measured from the leader i are bounded and 0)( ≥tv jr

for all t.   

Assumption 8. TkkkK ][ 321=  is a vector of positive 
constants. 
Assumption 9.  Let perfect velocity tracking hold such that 

jcj vv && = (this assumption is relaxed later). 

 
Theorem 1:  Given the nonholonomic system of (2) and 

(3) with n generalized coordinates q, m independent 
constraints, and r actuators, along with the leader follower 
criterion of (1), let Assumption 1-9 hold.  Let a smooth 
velocity control input vjc(t) for the jth follower be given by 
(17), (18), and (19).   Then the origin ej=0 consisting of the 
position and orientation error for the follower is 
asymptotically stable.   
 
Proof:  Consider the following Lyapunov function candidate 
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Clearly, Vj > 0 and Vj = 0 only when ej=0.   
Differentiating (20) and substitution of (16), (17), and (18) 
yields 
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which can be rewritten as 
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Clearly, the first three terms in (22) are strictly less than zero 
for 0≠je .  Now consider the last two terms of (22) in the 

inequality 
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Substitution of (19) into (23) reveals  
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Clearly 0<jV& for all 0≥iv , and the velocity control (17), 

(18) and (19) provides asymptotic stability for the error 
system (12) and (16) and 0→je  as ∞→t . 

 
Remark:  The asymptotic stability of the error system (12) 
and (16) is proved without the use of Barbalat's Lemma 
which is required in [1].  Proving the stability of the 
formation is greatly simplified without the need for Barbalat's 
Lemma for every follower robot. 
 Now assume that the perfect velocity tracking assumption 
does not hold making Assumption 9 invalid.  Define the 
velocity tracking error as 

jjcjc vve −=                            (25) 

Differentiating (25) and adding and subtracting 
cjj j

vqM &)( and jcjmj vqV )( to (3) allows the mobile robot 

dynamics to be written in terms of the velocity tracking error 
and its derivative as 

djjjcjjjmjjcjj xfeqqVeqM ττ ++−−= )(),()( &&&   (26) 

where     )(),()()( jjjcjjmjjcjjjj vFvqqVvqMxf ++= &&  (27) 

 
with ],,,,,,,,[ jjjjjiiiij eewvqvvx &&& ωω= .  The function 

fj(xj) in (27) will be used to bring in the dynamics of leader i 
through jcv& by observing that 

 ),,,,,( jjiiiivcjjc eevvfv &&&& ωω= .          (28) 

The leader i's dynamics can be written in the form of (3)  

))(),()(()(
____1__

ii
diiiiimiiiiii vFvqqVqBqMv ττ −−−=
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&&     (29) 

Substituting (29) into (28) results in the dynamics of the ith 
leader robot to become apart of jcv&  as 

),,,,,( jjiiiivcjjc eevfv && τθω=             (30) 

Under Assumptions 1-5, follower j is able to 
construct jcv& .  Defining the auxiliary control input uj from (5) 

to be [1] 
,4 jcjcj eKvu += &                       (31) 

the control torque for the jth follower robot can be written in 
the form 

))(( 4
1

jjjcjjj xfeKMB += −τ        (32) 

where K4 is a positive definite matrix defined by 
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K4 = k4I                               (33) 
Substituting (32) into the dynamics of follower robot j (3) 
produces the closed loop error dynamics shown below. 

 djcmjjjcj eVKMeM τ++−= )( 4&               (34) 

 
Remark: In [1], the reference velocity is considered to be 

constant, therefore the dynamics of the reference cart are 
never considered. That assumption is not be made here since 
the reference cart has been replaced by a physical robot i.  
Thus, the dynamics of leader robot i must be considered and 
become an important term in follower j's torque command. 
 
Theorem 2: Let Assumptions 1-8 hold, and let k4 in (33) be a 
sufficiently large positive constant.  Let a smooth velocity 
control input vjc(t) for the jth follower be defined by (17), (18) 
and (19).   Let the torque control for the jth follower robot (32) 
be applied to the mobile robot system (3).  Then the origin 
ej=0 and ejc=0 which are the position, orientation and velocity 
tracking errors for follower j are asymptotically stable.   
Proof :  Consider the following Lyapunov candidate: 

jcj
T
jcjj eMeVV

2
1

+=′                  (35) 

where Vj is defined as (20).  Differentiating yields 

jcj
T
jcjcj

T
jcjj eMeeMeVV &&&&

2
1

++=′      (36) 

In Theorem 1, it was proved that 0<jV& .  Assuming an ideal 

case such that the disturbance 0=dτ , substituting (34) into 
(36), and applying the skew symmetric property yields 

jcj
T
jcjj eKMeVV )( 4−=′ &&                    (37) 

Examining (37), it is clear that 0<′jV& and the position 

tracking error system ej=0 and velocity tracking error system 
ejc=0 are asymptotically stable. 
 
Leader Control Structure: In every formation, we assume 
there is leader i such that the following assumptions hold: 
Assumption 10. The formation leader follows no physical 
robots, but follows the virtual leader described in [1]. 
Assumption 11.  The formation leader is capable of measuring 
its absolute position via instrumentation like GPS so that 
tracking the virtual robot is possible. 
 
 The kinematics and dynamics of the formation leader i are 
defined similarly to (2) and (3) respectively. From [1], the 
leader tracks a virtual reference robot with the kinematic 
constraints of (7), and the control velocity vic(t) can be 
defined as 

⎥
⎦

⎤
⎢
⎣

⎡
++
+

=
3322

113

sin
cos

iiriiiriir

iiiir
ic evkevk

ekev
v

ω
                  (38) 

Using similar steps and justification to form (26) and (27), the 
leader's error system can be formed similarly to follower j's 
and the leader's torque iτ is defined as [1] 
                  ))()(( 4

1
iiimiiciciiii xFvVveKMB +++= − &τ             (39) 

where ice and Ki4 are defined similarly to (25) and (33).  The 
following additional mild assumptions are needed before 
proceeding. 
 
Assumption 12. The reference linear velocity vir is greater 
than zero and bounded and the reference angular velocity ωir 
is bounded for all t. 
Assumption 13. K=[ki1 ki2 ki3]T is a vector of positive 
constants. 
 
Theorem 3: Given the kinematic system of (8) and dynamic 
system in the form of (3) for leader i with n generalized 
coordinates qi, m independent constraints, and r actuators, let 
Assumptions 1-6 and Assumptions 10-13 hold. Let ki4 be a 
sufficiently large positive constant.  Let there be a smooth 
velocity control input vic(t) for the leader i given by (38), and    
let the torque control for the lead robot i (39) be applied to the 
mobile robot system in the form of (3).  Then the origin ei=0 
and eic=0 which are the position, orientation and velocity 
tracking errors for leader i are asymptotically stable.  This 
theorem is proved in [1]. 
 
Remark:  The asymptotic stability of a formation consisting of 
1 leader and N followers can be proved as well as the 
asymptotic stability of the formation for the case when 
follower j becomes a leader to follower j+1.   Proofs of these 
claims are not presented here due to length constraints, but 
they follow as a result of Theorems 2 and 3.  
 

III. SIMULATION RESULTS 
 

A wedge formation of five identical nonholonomic 
mobile robots is considered where leader's trajectory is the 
desired formation trajectory, and simulations are carried out 
in MATLAB under two scenarios.  First, only the kinematic 
steering system (2) under perfect velocity tracking such 
that jcj vv = and jcj vv && = is considered for the leader and 

its followers in the absence of all dynamics.  Then, the full 
dynamics as well as the kinematics of all the robots are 
considered.  Under both scenarios, the leader's reference 
linear velocity is 5 m/s while the reference linear velocity is 
allowed to vary.   Results for the leader's tracking ability are 
presented in [1] and are therefore not shown here. 

A simple wedge formation is considered such that 
follower j should track its leader at separation of L12d=2 
meters and a bearing of Ψ12d= o120± depending on the 
follower's location, and the formation leader is located at the 
apex of the wedge.  The following gains are utilized for the 
controllers: 
Leader Ki4=daig{40} Ki1=10 Ki2=5 Ki3=4  
Follower j  K4=diag{40} k1=10 k2=50 k3=.5 kv=1 
 The following robotic parameters are considered for the 
leader and its followers:  m=5 kg, I = 3 kg2, R=.175 m, r = 
0.08 m, and d=0.45 m.   Friction is added to both the leader's 
and its followers' dynamics and modeled as  
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⎥
⎦

⎤
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⎣

⎡
+

+
=

ωω 3.)(75.
25.)(5.

sign
vvsign

F   

Figure 2 shows the resulting trajectories for both scenarios.  
In both cases, the robots start in the bottom left corner of 
Figure 2 and travel toward the top right corner of the figure.  
A steering command in the form of angular acceleration is 
given to the formation at x=2 symbolizing an obstacle 
avoidance maneuver.  From Figure 2, it is apparent that the 
wedge formation can be achieved under both scenarios.   
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Figure 2: Trajectory when dynamics are included:  solid, Trajectory when 

only kinematics are considered: dashed 
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Figure 3:  Bearing Errors for Scenario 2 

 

2 4 6 8 10
-3
-2
-1
0

F1

Separation Tracking Errors Ld-L

2 4 6 8 10
-3
-2
-1
0

F2

2 4 6 8 10
-4
-2
0

F3

0 2 4 6 8 10
-1
0
1

F4

Time(Sec)
Figure 4:  Separation Errors for Scenario 2 

However, the formation trajectories are not the same.  
When the steering command is issued, the dynamics of the 
robots become an apparent influence on the formation 
trajectory.  This is an important result that displays the 
importance of incorporating the dynamics of the robots into 
the control law.  In an obstacle ridden environment, it is 
important that the formation follows a specific trajectory to 
ensure safe passage.  Ignoring the dynamics of the robots, one 
cannot guarantee the trajectory the formation follows is the 
desired trajectory.  

Figures 3 and 4 display the bearing and separation errors 
for the dynamical scenario.  It is evident that both the bearing 
errors and separation errors converge to zero very quickly and 
remain there so that the wedge formation is maintained. 

 
 

IV. CONCLUSION 
 

An asymptotically stable tracking controller for 
leader-follower based formation control was presented that 
considers the dynamics of the leader and the follower using 
backstepping.  The feedback control scheme is valid as long 
as the complete dynamics of the followers and their leader are 
known.  Numerical results were presented and the stability of 
the system was verified.  Simulation results verify the 
theoretical conjecture and expose the flaws in ignoring the 
dynamics of the mobile robots.  
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