458 research outputs found

    Advanced Multi-Channel SAR Imaging - Measured Data Demonstration

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-established technique for remote sensing of the Earth. However, conventional SAR systems relying on only a single transmit and receive aperture are not capable of imaging a wide swath with high spatial resolution. Multi-channel SAR concepts, such as systems based on multiple receive apertures in azimuth, promise to overcome these restrictions, thus enabling high-resolution wide-swath imaging. Analysis revealed that these systems imperatively require sophisticated digital processing of the received signals in order to guarantee full performance independently of the spatial sample distribution imposed by the applied pulse repetition frequency (PRF). A suitable algorithm to cope with these challenges of multi-channel data is given by the “multi-channel reconstruction algorithm”, which demonstrated in comprehensive analysis and system design examples its potential for high perform-ance SAR imaging. In this context, various optimization strategies were investigated and aspects of operating multi-channel systems in burst modes such as ScanSAR or TOPS were discussed. Furthermore, a first proof-of-principle showed the algorithm’s applicability to measured multi-channel X-band data gathered by the German Aerospace Cen-ter’s (DLR) airborne F-SAR system. As a next step in the framework of multi-channel azimuth processing, this paper builds on the results recalled above and continues two paths. Firstly, focus is turned to further optimization of the proc-essing algorithm by investigating the classical Space-Time Adaptive Processing (STAP) applied to SAR. Secondly, attention is turned to the analysis of the measured multi-channel data by elaborating the impact and compensation of channel mismatch and by verifying the derived theory

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Staggered Coprime Pulse Repetition Frequencies Synthetic Aperture Radar (SCopSAR)

    Get PDF

    Monostatic Airborne Synthetic Aperture Radar Using Commercial WiMAX Transceivers In the License-exempt Spectrum

    Get PDF
    The past half-century witnessed an evolution of synthetic aperture radar (SAR). Boosted by digital signal processing (DSP), a variety of SAR imaging algorithms have been developed, in which the wavenumber domain algorithm is mature for airborne SAR and independent of signal waveforms. Apart from the algorithm development, there is a growing interest in how to acquire the raw data of targets’ echoes before the DSP for SAR imaging in a cost-effective way. For the data acquisition, various studies over the past 15 years have shed light on utilizing the signal generated from the ubiquitous broadband wireless technology – orthogonal frequency division multiplexing (OFDM). However, the purpose of this thesis is to enable commercial OFDM-based wireless systems to work as an airborne SAR sensor. The unlicensed devices of Worldwide interoperability for Microwave Access (WiMAX) are the first option, owing to their accessibility, similarity and economy. This dissertation first demonstrates the feasibility of applying WiMAX to SAR by discussing their similar features. Despite the similarities they share, the compatibility of the two technologies is undermined by a series of problems resulted from WiMAX transceiver mechanisms and industrial rules for radiated power. In order to directly apply commercial WiMAX base station transceivers in unlicensed band to airborne SAR application, we propose a radio-frequency (RF) front design together with a signal processing means. To be specific, a double-pole, double-throw (DPDT) switch is inserted between an antenna and two WiMAX transceivers for generating pulsed signal. By simulations, the transmitted power of the SAR sensor is lower than 0dBm, while its imaging range can be over 10km for targets with relatively large radar cross section (RCS), such as a ship. Its range resolution is 9.6m whereas its cross-range resolution is finer than 1m. Equipped with the multi-mode, this SAR sensor is further enhanced to satisfy the requirements of diversified SAR applications. For example, the width of the scan-mode SAR’s range swath is 2.1km, over five times the width of other modes. Vital developed Matlab code is given in Appendix D, and its correctness is shown by comparing with the image of chirped SAR. To summarize, the significance of this dissertation is to propose, for the first time, a design of directly leveraging commercial OFDM-based systems for airborne SAR imaging. Compared with existing designs of airborne SAR, it is a promising low-cost solution

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmĂ€ĂŸige und großflĂ€chige ĂŒberwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale AktivitĂ€ten rechtzeitig zu erkennen. Heutzutage werden dafĂŒr ĂŒberwiegend das automatische Identifikationssystem (AIS) und stationĂ€re Radarstationen an den KĂŒsten eingesetzt. Luft- und weltraumgestĂŒtzte Radarsensoren, die unabhĂ€ngig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergĂ€nzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationĂ€ren AIS- und Radarstationen befinden. LuftgestĂŒtzte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von rĂ€umlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestĂŒtzte Radare eine große rĂ€umliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept fĂŒr die Verarbeitung von Radardaten fĂŒr die Schiffsverkehr-ĂŒberwachung mit luftgestĂŒtzten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen fĂŒr die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell fĂŒr zukĂŒnftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. DarĂŒber hinaus eignen sich die Algorithmen auch fĂŒr beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenĂŒber LagewinkelĂ€nderungen, die wĂ€hrend der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die fĂŒr die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-VerhĂ€ltnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollstĂ€ndig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg fĂŒr zukĂŒnftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohĂ€renten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusĂ€tzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das VerhĂ€ltnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hĂ€ngt stark von der QualitĂ€t der von der MeeresoberflĂ€che rĂŒckgestreuten Radardaten ab, die fĂŒr die SchĂ€tzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert fĂŒr eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten fĂŒr die StatistikschĂ€tzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. WĂ€hrend des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfĂ€higes datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschĂ€tzt wurden. Es werden verschiedene Methoden zur SchĂ€tzung der DOA-Winkel fĂŒr ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Get PDF
    Modern communication systems provide myriad opportunities for passive radar applications. OFDM is a popular waveform used widely in wireless communication networks today. Understanding the structure of these networks becomes critical in future passive radar systems design and concept development. This research develops collection and signal processing models to produce passive SAR ground images using OFDM communication networks. The OFDM-based WiMAX network is selected as a relevant example and is evaluated as a viable source for radar ground imaging. The monostatic and bistatic phase history models for OFDM are derived and validated with experimental single dimensional data. An airborne passive collection model is defined and signal processing approaches are proposed providing practical solutions to passive SAR imaging scenarios. Finally, experimental SAR images using general OFDM and WiMAX waveforms are shown to validate the overarching signal processing concept

    Remote Vibration Estimation Using Displaced Phase Center Antenna SAR in a Strong Clutter Environment

    Get PDF
    Synthetic aperture radar (SAR) is a ubiquitous remote sensing platform that is used for numerous applications. In its most common con\ufb01guration, SAR produces a high resolution, two-dimensional image of a scene of interest. An underlying assumption when creating this high resolution image is that all targets in the ground scene are stationary throughout the duration of the image collection. If a target is not static, but instead vibrating, it introduces a modulation on the returned radar signal termed the micro-Doppler e\ufb00ect. The ability to estimate the targets vibration frequency and vibration amplitude by exploiting the micro-Doppler e\ufb00ect, all while in a high clutter environment can provide strategic information for target identi\ufb01cation and target condition/status. This thesis discusses one method that processes the non-stationary signal of interest generated by the vibrating target in displaced phase center antenna (DPCA)-SAR in high clutter. The method is based on the extended Kalman \ufb01lter (EKF) \ufb01rst proposed by Dr. Wang in his PhD dissertation titled Time-frequency Methods for Vibration Estimation Using Synthetic Aperture Radar [24]. Previously, EKF method could accurately estimate the target\u27s vibration frequency for single component sinusoidal vibrations. In addition, the target\u27s vibration amplitude and position could be tracked throughout the duration of the aperture for single component sinusoidal vibrations. This thesis presents a modi\ufb01cation to the EKF method, which improves the EKF method\u27s overall performance. This modi\ufb01cation improves the tracking capability of single component vibrations and provides reliable position tracking for several other di\ufb00erent types of vibration dynamics. In addition, the EKF method is more reliable at higher noise levels. More speci\ufb01cally, for a single component vibration, the mean square error (MSE) of the original method is .2279, while the MSE of the method presented in this paper is .1503. Therefore, the method presented in this paper improves the position estimate of the vibrating target by 34% when SNR = 15 dB. For the multicomponent vibrations, the mean square error of the estimated target position is reduced b 76% when SNR = 15 dB. The original EKF method and the modi\ufb01ed EKF method as well as simulations for various target vibration dynamics are provided in this thesis.\u2

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed
    • 

    corecore