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Abstract

Multi-channel synthetic aperture radar (SAR) allows for high-resolution wide-swath imagery thus over-
coming the inherent limitation of conventional SAR. To cope with a non-uniformly sampled data array in azi-
muth caused by variations of the pulse repetition frequency (PRF), such systems require appropriate coher-
ent processing as e.g. the multi-channel reconstruction algorithm. This paper presents the applicability of this
algorithm to airborne measured multi-channel X-band data. In this context, impact and performance of differ-
ent channel balancing methods are investigated. Furthermore, the analytic prediction of residual azimuth
ambiguities is verified by the measured data by means of a point target analysis.

I.  Introduction

A. Multi-Channel Reconstruction in Azimuth
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algorithm is required to deal with spatially un-
equally sampled multi-channel data. Such a “non-
uniform” sampling in azimuth results from a mis-
match between pulse repetition frequency (PRF)
and Rx aperture positions. The optimum PRF value entailing uniform sampling is given in (1), where v; is the
sensor velocity, and N the number of adjacent Rx sub-apertures of size d,, each.
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Fig. 1. Multi-channel SAR system for high-resolution wide-
swath imaging (left) and corresponding block diagram with
azimuth processing network (right).

A suitable processing strategy is given by the “multi-channel reconstruction algorithm” [2]. It is based on
an unambiguous recovery of the aliased azimuth spectrum, achieved by applying to each of the system’s
channels j, for a given PRF, a Doppler frequency f dependent filter function P;pre(f) (cf. Fig. 1, right). These
functions are obtained by inverting a matrix, which is governed by the system geometry as derived in [2].

B. Residual Azimuth Ambiguities after Multi-Channel Reconstruction

As shown in [2], the processing network impacts the residual azimuth ambiguities, i.e. the azimuth-
ambiguity-to-signal ratio in multi-channel systems depends on the weights P, pr-(f) (cf. (2)). After reconstruc-
tion, the signal S(f) in the denominator is governed by the normalized SAR signal U(f) that corresponds to
the azimuth signal envelope. A4(f) in the numerator defines the residual ambiguity of order k, where U(f) is
the k-th continuation of the signal spectrum after sampling, i.e. index k indicates a frequency shift by k-PRF.
H(f) basically describes the two-way path from transmitter to receiver j, and the functions P, prr (f) finally
represent the weighting by the processing filters. The azimuth system band [-N:PRF/2, N-PRF/2] is decom-
posed into N sub-bands of width PRF which are specified by the index m. Starting with (2) and then consid-
ering the focusing allows for predicting the azimuth ambiguity-to-signal ratio after multi-channel processing.
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Il. Reconstruction of Airborne Measured Multi-Channel Data

A. Multi-Channel F-SAR Data

German Aerospace Center's (DLR) state-of-the art airborne sensor F-SAR allows for the simultaneous
acquisition of multiple along-track channels [4]. In X-band, a single Tx antenna can be combined with four Rx
antennas operated in two receiver chains. In consequence, two channels each are switched continuously

from pulse to pulse yielding two pairs of alternately acquired channels
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B. Sub-Sampling, Multi-Channel Reconstruction and Signal Processing

As focus is on azimuth dimension, motion compensated and range compressed data are considered.
Since the data show high oversampling in azimuth, preliminary processing steps are required to generate
aliased channels.’ According to the processing scheme of Fig. 3, this is achieved by band-limiting the data in
azimuth to a bandwidth of B,,, followed by decimation leading to a reduced sampling rate PRF; according to
the decimation factor. Band limitation and decimation are adjusted to obtain sub-sampling in each of the N
channels but to ensure Nyquist-sampling for the combination of all channels, i.e. N-PRFqx = B,,. In the pre-
sent case, B,, = 625 Hz and Ky = 4 are chosen. Consequently, as shown in Fig. 3 on the left, each input
channel is decimated by a factor of N-K,. In a next step, the N aliased channels are combined by the multi-
channel reconstruction algorithm, yielding a single output channel of effective sampling N-PRF. In addition,
a reference image without aliasing — representing the ideal output of the reconstruction — and the image
obtained from an aliased single channel are presented. All data are focused using the conventional
monostatic Range Doppler Algorithm (RDA). Note that this includes the range cell migration correction
(RCMC), as phase errors introduced in the reconstruction by the RCM are negligible in this geometry.
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Fig. 3. Block diagram summarizing input data generation and SAR processing for different cases: reconstruction of
multi-channel data (left), ideal monostatic reference (middle) and image for a single aliased channel (right).

The relevant parameters for the airborne data and the processing are summarized in Table. 1. In the fol-
lowing, the combinations of two and four channels, respectively, are analyzed. The corresponding spatial
sample distribution in azimuth is illustrated in Fig. 4, where one recognizes for both scenarios a clearly non-
uniform sampling.?

'Azimuth ambiguities are a limiting factor to spaceborne high-resolution wide-swath SAR [2]. In contrast, airborne SAR data are in gen-
eral not affected by azimuth ambiguities. Thus, for reasons of demonstration, the ambiguities have to be “generated” artificially.

?Both scenarios are defined to show the same output PRF after multi-channel reconstruction. Since decimation varies with the number
of channels, the respective single-channel PRF is different for the two considered cases.



Parameter Symbol Value 2-20m Two Channels
Carrier frequency Mcy 9.65 [Hz] & = _—}‘: % * X
Platform velocity Vs 91.0 [m/s] V‘54=0_219m
Sensor height hs 2150 [m] ’; "2”; - —
Operational PRF PRF, 2500 [Hz] 020m
Azimuth Bandwidth B., 625 [HZ] *M
Processed Doppler Bandwidth By 365 [Hz] A _xl—xl_l o x
Processed Doppler centroid fye 130 [HZ] r 1
Number of channels N 2,4 Y5 =0.58m

Table. 1. Relevant system and processing parameters. Fig. 4. Azimuth spatial sampling for N=2 (top) and N=4 (bottom).

The results for N=2 channels are presented in Fig. 5. Left shows the SAR reference image free of ambi-
guities (top) and the slice of the azimuth impulse response of the corner reflector located on the runway (bot-
tom). Middle presents the aliased single channel resulting in degraded resolution &,, and a strongly ambigu-
ous image. For the corner reflector, the mean peak level of the ambiguities — marked by the circles — is 15.3
dB below the signal peak. Finally, the image obtained from the reconstruction of two aliased channels is
given on the right, showing clearly improved azimuth resolution and ambiguity suppression, with residual
mean ambiguity-to-signal peak level dropped to -35.6 dB.
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Fig. 5. Reference (left), aliased (middle) and reconstructed (right) images (top) and azimuth slices (bottom), for the
combination of N=2 channels.

C. Channel Balancing for Improved Multi-Channel Reconstruction

In a multi-channel system different Rx hardware causes gain and phase imbalances. In practice, this in-
troduces “unknown” differences between the channels, which are not considered by the multi-channel proc-
essing. As reported above, this leads to residual azimuth ambiguities demanding for balancing the channels.

An effective method for such a channel balancing is given by the “2D Adaptive Calibration”, which is ap-
plied in range Doppler domain and follows the rationale that remaining differences between well calibrated
channels are only due to their along track displacement [5]. Consequently, the technique removes as a pre-
liminary step the phase ramp due to baseline (“co-registration”), followed by an iterative minimization of the
integral of the square calibration error. In a second approach, the “2D Adaptive Calibration” strategy may be
complemented by the additional removal of a box-car averaged phase difference in time domain (“Averaging
Window Method”) [6], [7], accounting for the removal of cross-track baseline components and residual im-
balances. Note that — since the along-track baseline information needs to be preserved in the reconstruction
context — the detected phase ramp has to be re-introduced after calibration.

Applying in a first step the proposed channel balancing methods to the fully sampled data before decima-
tion in azimuth, one obtains for the reconstruction of N=2 channels the results summarized in Fig. 6. Without
any calibration (left), the mean peak ambiguity level is -35.6 dB compared to the target peak and the ambi-
guities marked by the circles are still visible. After the 2D Adaptive Calibration (middle), this value drops to -



39.8 dB, meaning they are hardly noticeable, and after the cascade (left), to -41.5 dB, with virtually inexistent
ambiguities. Hence, the compensation of channel imbalances — especially with regard to phase — clearly
improves the ambiguity suppression. The additional application of the Averaging Window method entails a
further improvement as it removes residual imbalances in the output of the 2D Adaptive Calibration. The
azimuth slices of the corner reflector are not shown explicitly as they have all the same appearance.

Fig. 6. Reconstructed images of N=2 channels without calibration (left), after 2D Adaptive Calibration (middle) and after
the cascade of the 2D Adaptive Calibration and the Averaging Window method (right).

In comparison to the two channels reconstructed above, the other channels show a larger phase imbal-
ance, consisting not only but primarily of a constant phase difference. This is the reason for the poor recon-
struction result when all four channels are combined without calibration, as shown in Fig. 7 on the left. Apply-
ing the cascade of 2D Adaptive Calibration and Averaging Window method leads to a clear improvement;
visually as well as in terms of resolution 6,, and a mean ambiguity level of -39.9 dB (cf. Fig. 7, right).
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Fig. 7. Reconstructed images of N=4 channels without calibration (left), after histogram based phase correction (mid-
dle) and complete calibration scheme, i.e. 2D Adaptive Calibration followed by Averaging Window method (right).

So far, calibration has been applied to the non-ambiguous signals before decimation, while in a real sys-
tem only sub-sampled channels are available which cause the 2D Adaptive Calibration to fail.

Based on the perception that channel imbalances are dominated by a constant phase offset, two different
approaches applicable to sub-sampled data are presented as follows. After removing the expected baseline,
the first method performs in range Doppler domain — extended to the full system band N-PRF — a histo-
gram analysis of the interferometric phase between the channels. Then the histogram’s maximum gives the
phase offset to be corrected for the respective channel, leading to the reconstruction as shown in Fig. 7,
middle, with a mean ambiguity level of -31.6 dB and a much improved aspect. This method turned out to
yield virtually the same result as the time domain calibration algorithm employed in [8], if additionally a pos-
sible Doppler centroid is considered. This is necessary to resolve a possible ambiguity of the estimated
phase caused by the sub-sampling of the individual channels. In either case, residual phase imbalances
remain, explaining the difference to the case after full calibration of the data before decimation.

The quantitative analysis of the residual ambiguities after coherent combination for different balancing
methods highlights the sensitivity of the algorithm to phase errors introduced by channel imbalances, which
may be — although not completely removed — clearly attenuated using the sub-sampled data. Given bal-
anced channels, the reconstructed images are virtually indistinguishable from the reference.



D. Residual Azimuth Ambiguities — Prediction and Measurement
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Fig. 8. Imposed sampling, N=4.
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Section I.B presented an analytical prediction of the residual ambiguity
levels depending on the spatial sampling conditions. The predicted behav-

evaluation
BN ior shall be verified by imposing a varying inter-element spacing Ax to the
1 t | four measured channels (cf. Fig. 8), where the respective shift is obtained

by interpolation of the fully sampled data. Afterwards, the channels are
reconstructed according to Fig. 3, but without band limitation to cause in-
herent sub-sampling in the recovered image. Further, By is increased to

625 Hz. After focusing, the residual ambiguities of the corner reflector are
evaluated with respect to their peak power. The measurements (cf. Fig. 9, solid lines) are compared to the
simulated prediction (‘+' symbols), obtained by means of a point target response which takes into account
the acquisition geometry, parameters and azimuth pattern. Ambiguities up to the fourth order are considered,
showing accurate match in the regions where the ambiguities are not masked by scene background or
noise. For the “intermediate” ambiguities of order 1 to N-1, one clearly recognizes the minimum at the opti-
mum spacing of v¢/ (PRF-N) = 14.5 cm, and the degradation for a spacing deviating from this value. In con-
trast, the first “regular” ambiguity, i.e. order N, remains constant independent of the spacing (cf. Fig. 9, right).
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Fig. 9. Comparison of predicted (‘+' symbols) and measured (solid lines) peak ratios of azimuth ambiguities to signal.
Ambiguities of order 1 to 3 vary strongly with the sample spacing, while “regular” ambiguity of order N remains constant.

. Summary

The paper demonstrates the applicability of the multi-channel reconstruction algorithm to measured multi-
channel X-band data. Up to four individual receiving channels, each sub-sampled, were combined to a single
channel, ideally free of aliasing but in reality showing residual azimuth ambiguities caused by channel imbal-
ances. Consequently, different channel balancing methods were presented, demonstrating improved ambi-
guity suppression. In a first step, channel balancing was applied to the data before decimation, in order to
show the impact of channel imbalances and to allow for a comparison of different approaches. As these
Doppler domain methods fail when applied to sub-sampled data after decimation, a second step derived a
new channel balancing approach applicable to aliased data. This histogram-based method in range-Doppler
allows for compensating a constant phase offset which represents the main cause of imbalances, by this
enabling a clearly better balancing and improved reconstruction results. The approach is comparable to a
time domain synchronization method [8], after a squint-angle pointing adaptation to account for the Doppler
centroid. Based on these promising results, future work will further elaborate channel balancing techniques
for sub-sampled data in order to derive suitable calibration strategies for future multi-channel systems.
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