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Abstract

Synthetic aperture radar (SAR) is a ubiquitous remote sensing platform that is used

for numerous applications. In its most common configuration, SAR produces a high-

resolution, two-dimensional image of a scene of interest. An underlying assumption

when creating this high resolution image is that all targets in the ground scene are

stationary throughout the duration of the image collection. If a target is not static,

but instead vibrating, it introduces a modulation on the returned radar signal termed

the micro-Doppler effect. The ability to estimate the target’s vibration frequency and

vibration amplitude by exploiting the micro-Doppler effect, all while in a high clut-

ter environment can provide strategic information for target identification and target

condition/status. This thesis discusses one method that processes the non-stationary

signal of interest generated by the vibrating target in displaced phase center antenna

(DPCA)-SAR in high clutter. The method is based on the extended Kalman filter

(EKF) first proposed by Dr. Wang in his PhD dissertation titled Time-frequency
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Methods for Vibration Estimation Using Synthetic Aperture Radar [24]. Previously,

EKF method could accurately estimate the target’s vibration frequency for single

component sinusoidal vibrations. In addition, the target’s vibration amplitude and

position could be tracked throughout the duration of the aperture for single compo-

nent sinusoidal vibrations. This thesis presents a modification to the EKF method,

which improves the EKF method’s overall performance. This modification improves

the tracking capability of single component vibrations and provides reliable position

tracking for several other different types of vibration dynamics. In addition, the

EKF method is more reliable at higher noise levels. More specifically, for a single

component vibration, the mean square error (MSE) of the original method is .2279,

while the MSE of the method presented in this paper is .1503. Therefore, the method

presented in this paper improves the position estimate of the vibrating target by 34%

when SNR = 15 dB. For the multicomponent vibrations, the mean square error of

the estimated target position is reduced by 76% when SNR = 15 dB. The original

EKF method and the modified EKF method as well as simulations for various target

vibration dynamics are provided in this thesis.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a ubiquitous coherent imaging radar that generates

high resolution images. SAR operates by illuminating the target scene with electro-

magnetic radiation, typically in the microwave band, and measures the strength of

the return signal. The final product is a two-dimensional image where each pixel

in the image represents the reflectivity of a region with respect to the transmitted

frequency [8]. Since SAR relies on active illumination, it can create high-resolution

images in all-weather environments. Consequently, SAR imaging has some distinct

advantages over optical images, as the quality of optical images is dependent on the

current weather conditions and the time of day. This is because optical sensors are

passive sensors where the region of interest is illuminated by an external source such

as the sun or moon. The typical range of these systems can be anywhere from 25

km for the Lynx radar [21] to well over 800 km for the RADARSAT-2 [4]. These

collection platforms can generate images at a variety of resolution scales. The Lynx

radar has the ability to generate .1 m (4 in.) resolution images [21]. Figure 1.1a is

an example of a 1 ft resolution SAR image [21]. Figure 1.1b is an optical image from

Google Maps of the same geographical location. Please note these two images were

not taken at the same time. Therefore, there are, assuredly, some differences in the

1



Chapter 1. Introduction

(a) 1 ft. SAR image of a railroad bridge near
Belen, NM over the Rio Grande river. The
image was taken with the Lynx radar [21].

(b) Optical image of a railroad bridge near
Belen, NM over the Rio Grande river. The
image is from Google Maps.

Figure 1.1: There is a clear difference between the prominent features in a SAR
image and the prominent features in an optical image. For example, the train tracks
are more eye-catching in the SAR image, while the dirt roads are more pronounced
in the optical image.

water level of the river. Regardless, one can still observe clear differences between

the prominent features in a SAR image and the prominent features in an optical

image. For example, the train tracks are more eye-catching in the SAR image, while

the dirt roads are more pronounced in the optical image.

While SAR is adept at creating high resolution images, it is not limited to this

single application. SAR is also proficient at collecting coherent data for a variety of

other applications such as creating digital elevation maps, tracking temporal changes

in a region of interest (also known as coherent change detection), detecting moving

targets, terrain motion mapping, or determining oceanic surface conditions, to name

a few [10]. Lastly, to demonstrate SAR’s prominence and versatility, a SAR system

was placed on the Lunar Reconnaissance Orbiter to provide a detailed terrain map

of the moon to help plan for a future lunar base [3].

2



Chapter 1. Introduction

1.1 SAR Vibrometry

For common imaging applications, a typical airborne SAR platform illuminates the

ground scene for at least several seconds to create a single SAR image. During the

data-collection process, the image formation algorithm, often polar format algorithm

(PFA), assumes all targets in the ground scene are stationary. This assumption

makes SAR particularly sensitive to low-level target vibrations [1,2,13,15–17,19,30].

More specifically, ground target vibrations introduce a phase modulation, termed the

micro-Doppler effect [2], into each returned SAR signal. Any vibrating target, with a

strong radar cross section (RCS) relative to its surroundings will produce observable

artifacts in the image called ghost targets. These ghost targets degrade the image

quality, as it is impossible to distinguish real objects from ghost targets. An example

of these ghost target’s is shown in Fig. 1.2. While ground target vibrations affect the

quality of a SAR image [15], [2], the image can contain vital information about the

target’s vibration frequency and vibration amplitude, if reliably detected. In turn,

this vibration history could possibly identify the target and determine its current

state or operating condition. Therefore, it is beneficial to have the capability of

remotely estimating target vibrations, especially when physical or direct access to

these objects is not possible.

It is important to reemphasize that SAR’s sensitivity to low level target vibra-

tions infers that it already has the inherent capability for remote vibration estimation.

However, SAR systems are typically not designed to enhance or improve this modal-

ity. Moreover, this modality is hardly ever used or exploited. This thesis outline’s

the system parameters and the processing algorithm that will optimize the utility of

this vibrometry modality.

3



Chapter 1. Introduction

Figure 1.2: In the bottom right part of the image is a vibrating corner reflector with
a lateral length of .53 m (21 in). This target had a vibration amplitude in the range
direction of 1.5 cm (.59 in.) and a vibration frequency of 0.8 Hz. The ghost targets
are spread in azimuth at the same range line. The other bright spots in the image are
from static corner reflectors. The image was generated by the GA-ASI Lynx SAR
system in collaboration with the University of New Mexico for various vibromtery
experiments. The image has a .3 m (1 ft.) resolution.

1.2 Current SAR Vibrometry Methods

Previously, a remote vibration estimation technique that utilizes the Discrete Frac-

tional Fourier Transform (DFrFT) on complex SAR images was introduced by the

4



Chapter 1. Introduction

Radar Vibrometry Group at the University of New Mexico. [25–28]. Using a complex

image created through spotlight-mode SAR, the DFrFT method can accurately esti-

mate a target’s instantaneous acceleration, when the vibration of interest occurs in

the range direction. This DFrFT method exploits the micro-Doppler effect that all

vibrating targets engender onto the returned SAR signal. The micro-Doppler man-

ifests itself as an instantaneous linear chirp in the slow-time signal. This technique

is valuable as spotlight-mode SAR is utilized for a plethora of applications to create

high-resolution 2-dimensional images. Incorporating radar vibrometry analysis on

these images, the 2-dimensional complex SAR image becomes a 3-dimensional data

set. The additional dimension contains the vibration information of each target in

the ground scene, thus increasing the types of analysis performed on a single image.

While the DFrFT is an effective remote vibration estimation tool, when the vibrating

target is in a high clutter environment, signal to clutter ratio (SCR) ≤ 8 dB, the

DFrFT does not always provide reliable results [29]. Therefore, an accurate remote

vibration estimation in a high clutter environment is a necessity. The purpose of this

thesis is to continue to refine and enhance an existing method for remote vibration

estimation in a high clutter environment for numerous vibrating dynamics.

1.3 DPCA-SAR

Another ubiquitous remote sensing technique is the displaced phase center antenna

for ground moving target applications (DPCA-GMTI). DPCA-GMTI is capable of

characterizing and exploiting the Doppler shift caused by moving targets to deter-

mine the moving target’s position and velocity, while in a high clutter environment.

Although a typical SAR image collect lasts several seconds, DPCA-GMTI only lasts

a small fraction of one second. Since the imaging time is significantly less for DPCA-

GMTI, the resolution with be much finer than that of a SAR image. Therefore, to

5



Chapter 1. Introduction

have the Doppler resolution of SAR image with the robustness to clutter offered by

the DPCA-GMTI, this thesis proposes performing DPCA-GMTI using SAR. The

acronym DPCA-SAR, it used to represent this process. DPCA-SAR is a single-pass

collection platform where, in effect, two SAR images, having only a temporal sepa-

ration, are combined to provide a ground moving target indicator (GMTI) system.

DPCA-SAR systems are robust in high clutter environments, a notable advantage

over spotlight-mode SAR. Thus, DPCA-SAR is a particularly appealing platform

for SAR vibrometry. However, while DPCA-SAR is robust in high clutter environ-

ments, the process of combining the two images to remove the static background

(clutter) also removes the instantaneous linear chirp. Without this linear chirp in

the slow-time signal, the DFrFT cannot be utilized for SAR vibrometry. Therefore,

an alternative SAR vibrometry technique is required.

1.4 MDV and MMVF

As mentioned previously, DPCA is often used for GMTI applications. Therefore,

this system is adept at processing Doppler signals generated from moving targets.

A fundamental characterization of a GMTI system is its minimum detectable ve-

locity (MDV). It is important to note that this minimum velocity is a minimum

radial velocity difference between target and nominal clutter in the center of the

antenna illumination, where the collection platform is viewed as the origin. Also, it

is mandatory the target must be located inside the radar beam. A non-stationary

target, which has total net velocity much greater than the MDV, but whose radial

velocity is much smaller than MDV will not be reliably detected.

Since the collection platform is moving, all objects in the ground scene are going to

create a Doppler shift on the incident signal. This Doppler shift is a function of range,

azimuth, and the collection geometry. The collection of Doppler frequencies that has

6



Chapter 1. Introduction

Figure 1.3: Range-Doppler map showing relationship between various GMTI param-
eters and measures. Data was collected at broadside geometry, [7].

significant energy from stationary targets is termed the endo-clutter region. The

collection of Doppler frequencies that has negligible energy from stationary targets

is termed the exo-clutter region [7]. If the moving target is moving faster than

the MDV, then the moving target’s reflected energy is shifted from the endo-clutter

region and placed into the exo-clutter region. When the target’s energy is placed

in the exo-clutter region, its position and velocity can be more reliably determined.

The endo-clutter region and the exo-clutter region can be visualized in Fig. 1.3. Fig.

1.3 is provided from [7], page 54.

For a single component, sinusoidal displacement, the maximum vibrational ve-

7



Chapter 1. Introduction

locity can be described as,

vd = 2πfvrd, (1.1)

where fv is the vibration frequency, rd is the vibration displacement, and vd is the

vibration velocity. Then, the minimum measurable vibration frequency (MMVF) is

fv =
vd

2πrd
. (1.2)

Note the single-beam, or single phase-center, Lynx radar system has a stated MDV

of 5.8 kts or 2.984 m/s [21]. Then, set vd = 2.984 m/s, and rd = .001 m. Substituting

these system parameters into (1.2), then MMVF is

MMVFGMTI = 475Hz. (1.3)

Any vibrating target with an amplitude of 1 mm and a vibration frequency less than

475 Hz, will have its energy centralized in the endo-clutter region. This makes it in-

credibly difficult to reliably determine any of its vibration characteristics. Therefore,

in its single-channel GMTI applications, the Lynx radar system can only detect very

high frequency vibrations, unless the target is significantly brighter than the sur-

rounding clutter. Therefore, an alternative method for remote vibration estimation

for lower frequencies is required.

References herein to the Lynx radar assume a single-beam, or single phase-center,

mode of operation, as is customary for its SAR modes. While current versions of

the Lynx radar offer multiple beams, allowing for clutter cancellation, these are con-

ventionally used only in GMTI modes, and not for SAR modes. However, typically

there is an increased Doppler frequency resolution in SAR modes over GMTI mode.

Therefore, once again, combining the multiple beam characteristics of the GMTI

mode while leveraging the Doppler frequency resolution in SAR is desired.

8



Chapter 1. Introduction

1.5 The Extended Kalman Filter Method

While low level vibrations cannot be reliably detected when in GMTI mode, DPCA-

SAR’s robustness in high clutter environments still makes it incredibly attractive for

vibrometry applications. In this thesis, one method is revisited for remote vibrometry

using DPCA-SAR. The method is based on the extended Kalman filter (EKF), which

exploits both the magnitude and phase of the DPCA-SAR slow time signal. This

method is used as a remote vibration estimation technique on DPCA-SAR platforms

in high clutter environments.

In Dr. Qi Wang’s PhD dissertation titled Time-frequency Methods for Vibra-

tion Estimation Using Synthetic Aperture Radar at the University of New Mexico

in December 2012 [24], he initially proposed and discussed the EKF method for

SAR vibrometry. For the EKF method, Dr. Wang introduced the method and gave

examples of the method being applied to single component vibrations and multicom-

ponent vibrations. The EKF method was very effective at determining the vibrating

frequency and tracking the position of the vibrating target for single component vi-

brations. In addition, EKF method was sometimes able to estimate the frequencies of

multicomponent vibrations. However, the EKF method did not always yield reliable

results for estimating the target’s position of multicomponent, linearly increasing,

and linearly decreasing vibrations. Furthermore, the EKF method was susceptible

to the state estimate diverging from the true state of the vibrating target.

1.6 Contributions of this Thesis

The emphasis of this thesis is refining and enhancing the EKF method first proposed

by Dr. Wang [24]. This improvement is accomplished by introducing a state estimate

averaging technique when linearizing the observation function. This modification

9



Chapter 1. Introduction

makes the EKF method more robust at lower SNR levels. This robustness decreases

the likelihood of the state estimates diverging from the true state of the vibrating

target. In some cases, the chances of a diverging solution is reduced by 60% (when

SNR = 8 dB). In addition, the position of the vibrating target can be tracked more

precisely. The enhanced EKF method is applied to sinusoidal vibrations, linearly

increasing vibrations, linearly decreasing vibrations, and multicomponent vibrations.

In each of the aforementioned vibration dynamics, the modified EKF method can

track the position of the vibrating target and estimate the vibration frequency with

greater accuracy than the original EKF method. For single component vibrations,

the mean square error of the estimated target position is reduced by 34% when

SNR = 15 dB. For the multicomponent vibrations, the mean square error of the

estimated target position is reduced by 76% when SNR = 15 dB. The comparison

to the modified EKF method presented in this thesis and the original EKF method

proposed by Dr. Wang are displayed throughout the thesis. Lastly, the range of

measurable vibration frequencies are characterized in terms of system parameters.

1.7 Organization of this Thesis

This thesis is organized as follows: the signal model for spotlight-mode SAR is de-

fined and the signal model for DPCA-SAR is defined. In Dr. Wang’s dissertation,

he introduced a second vibrometry technique titled the magnitude method [24]. The

magnitude method is reviewed here to provide motivation for the EKF method and

the necessity of EKF method’s improvement. With the necessary background es-

tablished, the EKF method Dr. Wang developed is introduced. With Dr. Wang’s

method in hand, the modifications of EKF method are described and detailed. Fi-

nally, simulations and results of the modified EKF method are discussed.
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Chapter 2

Signal Model

2.1 Signal model for spotlight-mode SAR

Throughout this thesis it is assumed the SAR collection system is operating in spot-

lightmode. In spotlight-mode SAR, the image is typically formed using the polar-

format algorithm (PFA) [10]. In the PFA, the returned SAR signal is first demod-

ulated and low-pass filtered. This is followed by a polar-to-rectangular re-sampling,

which is applied to the SAR phase history to correct for irregular sample spacing

due to the collection geometry. Next, an auto-focus method is usually applied to the

reformatted SAR phase history to improve the quality of the SAR image [10]. Range

compression is then applied to the SAR phase history to focus the targets on their

correct range positions. The slow-time, τ , is defined as

τ = u/Va, (2.1)

where u is the distance, in the azimuthal direction, from the antenna to the center

of the ground scene and Va is the speed of the SAR collection platform. The range-

11
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compressed signal at a specified range can be written as

x(τ) ≈
∑
i

σi exp[jkyyiτ − j
4π

λ
fcri + jφi] + w̃(τ), (2.2)

where σi is the average reflectance of the ith target, yi is the azimuthal position of

the ith target, λ is the wavelength of the carrier frequency of the sent pulse, fc is the

carrier frequency of the sent pulse, ri is range of the ith target, and φi is the initial

phase of the ith target. The scalar, ky, is a scaling parameter

ky ≈
4πfcVa
cR0fprf

, (2.3)

where c is the propagation speed of the sent pulse, R0 is the distance from the scene

center to the mid-aperture, and fprf is the pulse-repetition frequency (PRF). The

additive noise w̃(τ) is modeled as white zero-mean circularly-symmetric complex

Gaussian (ZMCSCG) noise.

The range-compressed slow-time signal defined in (2.2) is valid only for static

targets. When a vibrating target is present, yi and ri are no longer fixed and are

functions of τ . Typically for an airborne system, R0 is tens of kilometers making ky

much smaller than 4πfc/c. Thus, the phase modulation caused by changes in yi are

negligible and are, therefore, ignored. For completeness, yi will denote the average

cross-range position of the vibrating scatterer. By the same tack, small changes in

ri cause large fluctuations to the Doppler frequency, fyyi. This vibration-induced

phase modulation is termed the micro-Doppler effect. The range compressed signal

for a vibrating target is written as,

x(τ) = σv exp[−jkyyvτ − j
4π

λ
xv(τ) + jφv], (2.4)

where σv is the average reflectance of the vibrating target, yv is the average azimuthal

position of the vibrating target, xv(τ) is the position of the vibrating target in the

range direction, and φv is the initial phase of the vibrating target.

12
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The range-compressed signal with the vibrating target and the collection of static

targets is defined as the SAR signal of interest (SoI), is written as [19], [2], [27]

s̃(τ) = d̃(τ) + c̃(τ) + w̃(τ)

≈ σv exp[−jkyyvτ − j
4π

λ
xv(τ) + jφv] + c̃(τ) + w̃(τ)

(2.5)

Signals from static targets on the ground are represented collectively by c̃(τ). Con-

ventionally c̃(τ) is referred to as the clutter signal or simply clutter.

2.2 Signal Model for Displaced Phase

Center-Synthetic Aperture Radar

Fig. 2.1 shows the data-collection geometry of the DPCA-SAR operating in ping-

pong mode [31]. The baseline, B, is defined as the along-track spacing between the

fore-antenna and the aft-antenna on the collection platform. In ping-pong mode, the

fore-antenna collects data at a given location u∗, while the aft-antenna is off. Then

the aft-antenna collects at the same location, u∗, with a time delay τB = B/Va, while

the fore-antenna is off. This process repeats for the duration of the entire synthetic

aperture. In this model, clutter is defined as any static target illuminated in the

ground scene. For a particular range line, the slow-time clutter signal collected by

the fore-antenna can be written as

c1(τ) =
∑
i

σi exp[−jkyyiτ − j
4π

λ
fcri + jφi]. (2.6)

Since the clutter is static and the aft-antenna is illuminating the ground scene from

the same location as the fore-antenna, the clutter will remain constant at every

collection point u∗ throughout the entire synthetic aperture. Therefore, for the same

given range line, the slow-time clutter signal collected by the aft-antenna is the same

13
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Figure 2.1: Data-collection geometry of the DPCA-SAR operating in ping-pong
mode. The baseline, B, is defined as the distance between the fore-antenna and
the aft-antenna. The aft-antenna collects the data from the same points as the
fore-antenna with a time delay of τB = B/Va

clutter signal collected by the fore-antenna with a known time delay, τB,

c2(τ) = c1(τ − τB)

=
∑
i

σi exp[−jkyyi(τ − τB)− j 4π

λ
fcri + jφi],

(2.7)

or equivalently,

c2(τ + τB) = c1(τ)

=
∑
i

σi exp[−jkyyi(τ)− j 4π

λ
fcri + jφi].

(2.8)

Now consider a single vibrating target at a given range line. From the definition

of the SAR SoI (2.5), the slow-time signal from a vibrating target collected by the

14
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fore-antenna is

d1(τ) = σv exp[−jkyyvτ − j
4π

λ
xv(τ) + jφv]. (2.9)

Consequently, we can write the slow-time signal from the vibrating target collected

by the aft-antenna, d2(τ), as

d2(τ) = σv exp[−jkyyv(τ − τB)− j 4π

λ
xv(τ) + jφv]. (2.10)

The first phase term of d2(τ) is −jkyyv(τ − τB) as shown in the case of clutter.

However, the second phase term of d2(τ) remains the same as that for d1(τ) because

the aft-antenna also observes the instantaneous vibration displacement xv(τ) at time

τ . Equivalently, we have

d2(τ + τB) = σv exp[−jkyyv(τ)− j 4π

λ
xv(τ + τB) + jφv]. (2.11)

In summary, the two slow-time signals collected by the fore-antenna and the aft-

antenna, from a ground scene containing a single vibrating target in clutter, can be

written as

s1(τ) = d1(τ) + c1(τ) + w1(τ) (2.12)

and

s2(τ) = d2(τ) + c2(τ) + w2(τ), (2.13)

where d1 and d2 represent the signal from the vibrating target, c1 and c2 represent the

clutter signal, and w1 and w2 represent the additive noise due to electronic error and

quantization error, etc. Just as in the spotlight mode SoI, w1 and w2 are modeled

as ZMCSCG noise.

Recall the clutter signal collected by the fore-antenna is the same as the clutter

signal collected by the aft-antenna separated by a time delay, τB (2.7). By taking the
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difference of the signals collected by the two antennas at the same collection location

u∗, the clutter signal is totally removed and we obtain a signal that is modulated by

the vibration dynamics in a non-linear manner. The difference signal s(τ), which is

the DPCA SoI, is given by

s(τ) = s2(τ + τB)− s1(τ )

= d2(τ + τB) + c2(τ + τB) + w2(τ + τB)−(
d1(τ) + c1(τ) + w1(τ)

)
= d2(τ + τB)− d1(τ) + w2(τ + τB)− w1(τ).

(2.14)

The operation represented by (2.14) is the DPCA technique [5]. In real-world applica-

tions, the removal of the clutter signal is subject to the noise floor of the DPCA-SAR

system [5]. If we define

d(τ) = d2(τ + τB)− d1(τ) (2.15)

and

w(τ) = w2(τ + τB)− w1(τ), (2.16)

the DPCA-SAR SoI can be recast succinctly as

s(τ) = d(τ) + w(τ). (2.17)

2.3 Displaced Phase Center Antenna Synthetic

Aperture Radar Signal of Interest

For a typical DPCA-SAR collection platform, τB is no more than a few millisec-

onds. If τB is much shorter than the duration of the vibration of interest, then the

instantaneous vibration displacement approximation is

xv(τ + τB) ≈ xv(τ) + Vv(τ)τB, (2.18)
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where Vv(τ) is the instantaneous vibration velocity. With this assumption, d(τ) can

be expressed, after some manipulations, as

d(τ) ≈ 2σv(τ) sin

(
2πτBVv(τ)

λ

)
×

exp

[
−j 2π

λ
(2xv(τ) + τBVv(τ))− j π

2

]
,

(2.19)

where

σv(τ) = σv exp[−jkyyvτ + jφv]. (2.20)

The complex-valued target reflectance σv(τ) can be estimated from the complex-

valued SAR image [6, 10, 18]. The slow-time signal, s(τ), collected by the SAR

platform is automatically sampled with the PRF. Therefore, the observed DPCA-

SAR SoI can be written in discrete time as

s[n] = d[n] + w[n], n = 1, . . . , N, (2.21)

and

σv[n] = σv exp[−jkyyvn+ jφv], (2.22)

where

d[n] = 2σv[n] sin

(
2πτBVv[n]

λ

)
×

exp

[
−j 2π

λ
(2xv[n] + τBVv[n])− j π

2

]
,

(2.23)

and N is the total number of the observed signal samples. The sampling interval, ∆t,

is the pulse-repetition interval (PRI) of the SAR system. The SNR of the DPCA-

SAR SoI is defined as

SNR = 10 log10

(
σ2
v

σ2
w

)
, (2.24)

where σ2
w is the variance of w[n]. Equations (2.21)-(2.24) will be used in the observa-

tion model for the problem of vibration estimation using the DPCA-SAR platform.
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There are two major differences between the DPCA-SAR SoI shown in (2.21) and

the SAR SoI shown in (2.5) (also see (9) in [27]). First, both the magnitude and phase

of d[n] in the DPCA-SAR SoI are non-linearly modulated by the vibration dynamics.

However, only the phase of d̃[n] in the SAR SoI is linearly modulated by the vibration

displacements. The DFrFT-based method is applicable when the magnitude of d̃[n]

remains the same (or changes very slowly compared to the vibration) [27], [29],

and [22]. This is not the case for the DPCA-SAR SoI because the magnitude of

d[n] in the DPCA-SAR SoI changes as fast as the vibration velocity. Therefore, the

DFrFT-based method is generally not applicable to the DPCA-SAR SoI. Second,

the clutter signal is removed entirely from the DPCA-SAR SoI, while the SAR SoI

suffers from the clutter signal. Because the DPCA-SAR SoI is only corrupted by

additive noise as the clutter signal is removed, one can apply general signal estimation

methods to the DPCA-SAR SoI for extracting xv[n] and Vv[n]. In this thesis, these

vibration dynamics are estimated from the DPCA-SAR SoI using a method based

on the extended Kalman filter (EKF). To achieve this, the EKF method will exploit

information contained in both the envelope and the phase of the DPCA-SAR SoI.
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Magnitude Method

This chapter begins by reviewing the magnitude method first introduced by Dr.

Wang [24]. Recall, both the magnitude and phase of d[n] in the DPCA-SAR SoI are

non-linearly modulated by the vibration dynamics of a vibrating target. Consider,

for a moment, only the non-linearly modulated magnitude and disregard the phase.

Then, the magnitude of d[n] can be written as

|d[n]| = 2σv

∣∣∣∣sin(2πτB
λ

Vv[n]

)∣∣∣∣ . (3.1)

The instantaneous velocity Vv[n] of a single-component sinusoidal vibration is

Vv[n] = Mv cos(2πfv∆tn+ ψv) (3.2)

where Mv is the magnitude of the velocity, fv is the frequency of the vibration, ∆t

is the PRI, and ψv is the initial phase of the vibrating target. It is assumed that

Mv ≤
λ

4τB
, (3.3)

or equivalently

−π
2
≤ 2πτB

λ
Vv[n] ≤ π

2
. (3.4)
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When this assumption holds, there is a one-to-one correspondence between Vv[n]

and |d[n]| when Vv[n] > 0 and there is the same one-to-one correspondence between

−Vv[n] and |d[n]| when Vv[n] ≤ 0. Therefore, the vibration behavior dictates that

|d[n]| repeats itself twice as fast as Vv[n]. Consequently, |s[n]| also repeats itself

twice as fast as Vv[n], neglecting any interference from the additive noise. Provided

that the SNR is sufficiently high, fv can be estimated as half the frequency of |s[n]|.

Because this method only requires the magnitude of the DPCA-SAR, we define it as

the magnitude method.

The magnitude of the velocity of low-level vibration is usually quite small. For

instance, the magnitude of the velocity of a 1 mm, 10 Hz vibration is approxi-

mately 0.0628 m/s. On the other hand, the maximum measurable vibration velocity

(MMVV) is, λ/4τB. For the Lynx radar system, this is approximately 0.2888 m/s.

The maximum measurable vibration frequency (MMVF) is

MMV F =
λ

4τB

1

2πrd
, (3.5)

where rd is the vibration displacement. For the Lynx radar system this is approxi-

mately 45 Hz. Therefore, the constraint in (3.4) can be satisfied for low-level vibra-

tions of interest. Whenever Mv > λ/τB, the mapping from Vv[n] to |d[n]|, for either

Vv[n] > 0 or Vv[n] ≤ 0, is no longer bijective. In addition, harmonic frequencies of

fv appear in the spectrum of |d[n]| that cause ambiguity in the estimated frequency.

3.1 Magnitude Method Simulations and Results

The proposed magnitude method in this thesis is validated by simulating the DPCA-

SAR SoI (the returned observed SAR difference signal) in MATLAB. The simulated

DPCA-SAR system is operating in the Ku-band. All of the key system parameters

are listed in Table 6.1. These system parameters are chosen in part to mimic the
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Table 3.1: Performance Limits of the magnitude method DPCA-SAR Vibration Es-
timation

parameter quantity

Required SNR 4 dB

Frequency Resolution 1
fprfN

MMVV λ
4τB

MMVF λ
4τB

1
2πrd

Lynx radar [21]. The baseline, B and the platform velocity, Va are, however, notional

values of a DPCA-SAR system. The DPCA-SAR SoI was generated using the model

defined in (2.21) and (2.23).

Table 3.2: DPCA-SAR System Parameters Used In Simulations

parameter quantity

center frequency 16 GHz
effective PRF 487 Hz

propagation velocity 3× 108 m/s
platform velocity 175 m/s

slant range 10 km
azimuth resolution .33 m

aperture length 363 m
SNR 11 dB

Baseline 0.3596 m

3.2 Sinusoidal vibration simulation

For the first set of simulations, consider a vibrating target whose displacement is

described through a sinusoidal vibration with a constant frequency. The target had

a 8 Hz oscillation with an amplitude of 1 mm. Fig. 3.1 shows the simulated DPCA-

SAR signal. From the DPCA-SAR SoI, the target velocity is estimated using (3.1).
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Figure 3.1: The top subplot is the magnitude of the DPCA-SAR SoI. The DPCA-
SAR SoI was corrupted with ZMCSCG noise with a SNR of 4 dB. The bottom
subplot is the power spectrum of the DPCA-SAR SoI. There is a distinct peak at
16.02 Hz. Since the SoI oscillates twice as fast as the vibrating target, the estimated
vibration frequency is 8.01 Hz. Recall, the true target vibration is 8 Hz.

Fig. 3.2 shows the estimated target velocity. While the magnitude method estimates

the vibration frequency quite well, it has difficulty estimating the target velocity

accurately.

In an attempt to improve the estimated target velocity, the estimated velocity

from the magnitude method is sent through a low pass filter. In particular, a 6 order

Cheby2 with a stopband attenuation of 10 dB and a stopband edge frequency of 50 Hz

was used from the MATLAB library. While Cheby2 filtered out the high frequency

content, the estimated velocity is still unreliable. Fig. 3.3 shows the filtered velocity
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Figure 3.2: The estimated target velocity and the true target velocity are shown.

signal. The velocity estimate does not improve as the SNR increases.

Fig. 3.4 shows how the magnitude method performs under various SNR levels.

The SNR is defined as

SNR = 10 log10

(
σ

σw

)
, (3.6)

where σ2
w is variance of the noise. With the target dynamics described above, 1,000

simulated slow-time DPCA-SAR SoIs were generated. Each realization of the slow-

time signal was corrupted with ZMCSCG noise. Then, the aforementioned magnitude

method was applied to each slow-time signal. If magnitude method reliably estimated

the frequency of the vibrating target within 0.5 Hz, the estimation was considered

to have converged. Otherwise, the method was considered to have diverged.
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Figure 3.3: The estimated target velocity and the true target velocity are shown
after applying a low pass filter.

3.3 Multicomponent vibration

The magnitude method is, in general, not applicable to multi-component vibrations.

For instance, we can write |d[n]| for a two component sinusoidal vibration as∣∣d[n]
∣∣ = 2σv

∣∣∣ sin(k1v1[n] + k2v2[n])
∣∣∣, (3.7)

or equivalently,∣∣d[n]
∣∣ = 2σv

∣∣∣ sin(k1v1[n]) cos(k2v2[n]) + cos(k1v1[n]) sin(k2v2[n])
∣∣∣, (3.8)

where k1 and k2 are known scalars and v1[n] and v2[n] are the instantaneous velocities

of the two vibrating components. The relation between the frequencies of v1[n] and

v1[n] to the frequencies of |d[n]| is not trivial. Thus, the magnitude method only

works for fixed sinusoidal vibrations.
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Figure 3.4: Success percentage of reliably estimating the frequency of the vibrating
target within 0.5 Hz over 1,000 SoI for a given SNR. The vibrating target had a
frequency of 8 Hz and a magnitude of 1 mm.

3.4 Summary

When considering a single component, sinusoidal vibration, the magnitude method

can successfully estimate the frequency of a vibrating target as sufficient SNR levels.

However, the magnitude method cannot reliably estimate the velocity of the vibrating

target at a given time during the image collection. If the vibration frequency is

all the information that is necessary from a vibrating target, then the magnitude

method works well, even at low SNR. The magnitude method is unable to estimate

the frequency of multicomponent or non-stationary sinusoidal vibration.
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Vibration Estimation using the

Extended Kalman Filter

4.1 Review of the Kalman Filter

The Kalman Filter, a minimum mean-square error estimator, is a well-established lin-

ear estimation technique. Often used in guidance or navigation systems, the Kalman

Filter is able to take in noisy data and provide accurate estimates of unknown vari-

ables, such as position and velocity. It’s popularity is due in part to its computation-

ally efficient algorithm. The Kalman Filter consists of a linear state-transition model

and a linear observation model. Both the state-transition model and the observation

model must be known a priori in order to provide an accurate state estimation. A

recursive algorithm, the Kalman Filter has two distinct steps: prediction step and

the correction step. In the prediction step, the state-transition model is used to

predict the state variables at the next time step, while the correction step uses the

observation model to measure the state variables and update the predicted state

estimate. Often, however, the observation is corrupted by noise and the observed
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state variables do not reflect the true state variables. This is where the Kalman gain

comes into play. The Kalman gain weights how much to trust the system model or

the observed states based on the system noise and the observation noise. When the

Kalman gain is zero, the algorithm no longer trusts the observations and only trusts

the system model. Moreover, when the Kalman gain is 1, the algorithm completely

trusts the observations and not the system model. This entire process is optimal

when the model matches the real system, the noise is white, and the covariance of

the noise is known [14].

In following the section it is shown that the observation model is non-linear with

respect to the state variables. This non-linearity makes it impossible to apply the

Kalman filter directly as the Kalman Filter was derived by assuming both a linear

system and linear observations [14]. However, if the observation model is linearized at

each state estimate before applying the Kalman filter, an accurate variable estimation

can be achieved. This process is typically called the extended Kalman filter (EKF).

While the EKF is generally sub-optimal for nonlinear estimation problems, it is

widely used for well-defined transition models and is largely considered the de facto

standard in nonlinear estimation [11,23]. The EKF is what is used in the DPCA-SAR

SoI for remote vibration estimation.

4.2 The Extended Kalman Filter Model for

DPCA-SAR

The EKF filter model discussed here was first proposed by Dr. Wang [24]. To begin,

the state vector is defined as,

Xn = (xv[n], Vv[n])T , (4.1)

27



Chapter 4. Vibration Estimation using the Extended Kalman Filter

where n is each slow time step. Recall, xv and Vv are the vibrating target’s position

and velocity in the range direction, respectively. Let Av[n] denote the instantaneous

acceleration, in the range direction, of the vibrating target. Av can be viewed as an

input to the state-transition model. Then, the state-transition model can be written

as,

Xn+1 = FXn + GAv[n]. (4.2)

where,

F =

1 τB

0 1

 (4.3)

and

G = (0, τB)T . (4.4)

In order for this state-transition model to be valid, the input, Av[n], must be an

independent sequence of zero-mean Gaussian vectors. Av[n] is assumed be an in-

dependent sequence of zero-mean Gaussian vectors. Note that the state transition

model (4.2) did not make any assumptions about the vibration behavior of the vi-

brating target other than it must obey Newton’s Laws of Motion. Moreover, this

model applies for vibrations that increase or decrease in frequency during the col-

lection process. One example of a nonstationary sinusoidal vibration is an engine

revving up or down.

Assume, for the moment, a single component sinusoidal vibration. Then the

acceleration signal, Av[n], has the form

A(τ) = A0 cos(ω0τ + Θ), (4.5)

where ω0 = 2πfv, with fv being a uniform random variable with support in [1] Θ

is a uniform random variable with support in [−π, π], and A0 is a uniform random
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variable with support in [0, 2πfvAv], withAv being the amplitude of the displacement.

Then the auto-covariance of A(t) is

RAA(τ) = A2
0 cos(2πfvτ). (4.6)

Set τ = nTs where Ts is the sampling period. (4.6) is maximized when 2πf0nTs =

π/2. Recall, the auto-covariance of a Gaussian random variable is a delta function.

The auto-covariance of A(τ) is a symmetrical decaying sinusoid with the apex cen-

tered in the middle of the domain. With the appropriate sampling frequency and

vibration frequency, RAA approaches a delta function. Therefore, it is not entirely

unreasonable to have sinusoidal accelerations be an input to the equation.

The observation model is given by,

s[n] = d[n] + w[n]

≡ h(Xn) + w[n].
(4.7)

From (2.23), it is clear the observation model is non-linear with respect to the state

vector X. To linearize h, take the gradient of h with respect to X = (X(1),X(2))T ,

∇h(X) =
(

4κσv sin (κτBX(2)) ejΦ−jπ/2,

2κτBσv cos (κτBX(2)) ejΦ − 2κτBσv sin (κτBX(2)) ejΦ−jπ/2
)
,

(4.8)

where

κ =
2π

λ
(4.9)

and

Φ = −kyyvn+ φv − κ(2X(1) + τBX(2))− π

2
. (4.10)

In the EKF, the observation matrix Hn is defined as

Hn = ∇h |X=X̂n|n−1
, (4.11)
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where X̂n−1 is the estimation of Xn−1. As such, the linearized observation model can

be written as

s[n] = HnXn + w[n], (4.12)

Hn =

(
4κσv sin

(
κτBX̂n−1(2)

)
ejΦ−jπ/2,

2κτBσv cos
(
κτBX̂n−1(2)

)
ejΦ−

2κτBσv sin
(
κτBX̂n−1(2)

)
ejΦ−jπ/2

)
,

(4.13)

and

Φn = −kyyvn∆t+ φv −
2π

λ
(2X̂n−1(1)

+ τBX̂n−1(2))− π

2
.

(4.14)

It is assumed that the variance of the noise w[n] is known. With the state-transition

model given in (4.2) and the linearized observation model given in (4.12), the Kalman

filter can be used described in [14] and [12] to estimate the vibration dynamics with

an initial condition. The solution to the vibration-estimation problem using the

Kalman filter is given as follows. Define,

sji = (s[i], . . . , s[j])T , i < j and 0 ≤ i, j ≤ N. (4.15)

Let X̂n+1|n and X̂n|n be the predicted and corrected state estimates, respectively.

Then the state estimates X̂n+1|n
.
= E[Xn+1 | sn0 ] and X̂n|n

.
= E[Xn | sn0 ] are given

recursively by,

X̂n+1|n = FX̂n|n, n = 1, 2, . . . (4.16)

and

X̂n|n = X̂n|n−1 + Kn(s[n]−HnX̂n|n−1), n = 1, 2, . . . (4.17)

with the initialization X̂0|−1 = E[X0]. In this thesis it is assumed any vibrating target

has symmetrical displacements and velocities with respect to the target’s neutral or
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static position. Therefore, X̂0|−1 = E[X0] = 0. The Kalman gain, Kn, given by

Kn = Σn|n−1H
T
n (HnΣn|n−1H

T
n + σ2

w)−1, (4.18)

where Σn|n−1
.
= Cov(Xn | sn−1

0 ) and HT
n is the transpose of Hn. The covariance

matrix, Σn|n−1, can be computed jointly with Σn|n
.
= Cov(Xn | sn0 ) from the following

recursion

Σn|n = Σn|n−1 + KnHnΣn|n−1, n = 1, 2, . . . (4.19)

and

Σn+1|n = FΣn|n + FTGQnH
T , n = 1, 2, . . . (4.20)

with the initialization Σ0|−1
.
= Cov(X0) where Qn is the covariance matrix of the in-

stantaneous vibration acceleration Av[n]. Fig. 4.1 shows the diagram of the Kalman

filter for the vibration estimation problem. For a more complete review of the Kalman

filter refer to [14] and [20].
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Figure 4.1: Diagram of the Kalman filter for vibration estimation in DPCA-SAR.
s[n] is the DPCA-SAR SoI, Kn is the Kalman gain, Hn is the linearized observation
matrix, and Fn is the state-transition matrix.
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Chapter 5

Observation Noise Immunity by

Averaging Over Several State

Estimates

5.1 Motivation

Recall, when the state transition model was defined, no assumptions were made

about the vibration behavior of the vibrating target other than it must obey the

classical laws of motion. Defining the state-transition model in this manner permits

the vibration dynamics of the vibrating target to change drastically between each

slow-time step. However, while it is not constrained in the state transition model, it

was assumed that the PRI was significantly shorter than the period of the vibration

of interest. With this assumption, it is not physically possible for the vibration

dynamics of the vibrating target to change drastically between each slow-time step.

Therefore, any nontrivial changes in the vibration dynamics of the vibrating target in

the observed signal, s[n], between successive slow time steps are caused solely by the
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observation noise. Since the state transition model does not account for this and since

the observations are linearized at each slow-time step, the standard implementation

of the EKF is very susceptible to observation noise. This susceptibility to noise can

lead to incorrect state-variable estimates and misleading vibration behavior. If the

observation noise is suppressed, the EKF becomes much more accurate and stable.

To increase the model’s robustness against noise, this thesis proposes averaging

over several state estimates to obtain a revised state estimate that more accurately

represents the state variables. To motivate this averaging approach, consider, for

a moment, a stationary target. Each time this stationary target is observed, the

observation noise is going to randomly place this stationary target at the incorrect

position in the ground scene. If this stationary object is repeatedly observed over an

extended period of time, each observation will create a set of different possible target

locations. This set of all observations will be a scattering of locations, centralized

and symmetric around the true target location. The centralized and symmetric

scattering of observations is because the noise is assumed to be ZMCSCG. As the

number of observations get large, the expected value of the set of all the observations

will approach the true target location. Thus, resilience to noise is directly related to

the number of averaged state estimates.

However, in this thesis, all the targets of interest are vibrating. Thus, averaging

over too many state estimates, while suppressing the noise it will also suppress the

vibration behavior and only the average target position will remain. Therefore, it

is critical to average over as many state estimates as possible to suppress the noise,

while not averaging over too many state estimates to ensure retention of the vibration

behavior of the target. An analytical expression to determine the number of points

to average over is developed below.

If fv is the vibration frequency of the target of interest, then 1
fv

is the time

needed for a single complete vibration cycle, or period, M is the number of averaged
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points for noise suppression, and ∆t is the PRI. Then, the state estimates are being

averaged over the time interval, M∆t. Taking the ratio of these quantities gives the

percentage of a single vibration the state estimates are estimated over,

M∆t
1
fv

= β. (5.1)

Setting β ≈ .125 insures the average is taken over at most 1/8 of the vibrating period.

Averaging over 1/8 or less of the vibrating period appears to ensure the vibration

dynamics are not substantially suppressed. This value holds many different target

dynamics: sinusoidal and stationary vibrations, sinusoidal and linearly increasing in

frequency vibrations, and multicomponent sinusoidal vibrations. These results are

shown the Simulation and Results section. While any β ≤ .125 is sufficient to retain

the vibration behavior, increasing the time of the averaging will increase the noise

immunity. Therefore, M should as large as possible, while ensuring β ≈ .125. Or

equivalently,

M = max

{
n ∈ N : n ≤ .125

∆tfv

}
. (5.2)

Note that for a given vibration frequency, as the PRF increases (∆t decreases), the

number of state estimates that can be averaged, M, increases. Therefore, a higher

PRF (low ∆t) increases noise immunity for a given target vibration frequency and

a given SNR level. Refer to the Noise Requirements section and Fig. 5.4 for more

information. The improvement of state estimate averaging is shown in Fig. 5.2. Fig.

5.2. is a comparison of the ground truth, applying the EKF directly, and applying the

EKF while implementing the state estimate averaging. For a complete description

of the state estimate averaging, refer to the Modification of EKF for Increased Noise

Immunity section.
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Figure 5.1: Estimated position of a 1 mm, 8 Hz vibrating target using with SNR
= 15 dB. State estimate averaging improves the estimated position of the vibrating
target significantly when using the EKF based method. More specifically, the MSE
is reduced by 34%.

5.2 Determining an Approximate fv A Priori

One of the potential stumbling blocks of the state estimate averaging method is that

it depends on having some a priori knowledge of the vibration frequency of the target

of interest. However, this is not an entirely unreasonable assumption. The vibration

dynamics of a target are dependent on the material, geometry, and the machinery

that is generating the vibrations. If a corporation does remote monitoring of its own

systems, it will have access to the material, geometry, and the machinery that is

generating the vibrations. Therefore, a range of expected vibration frequencies will

be known. If fmax(v) is the maximum expected vibration frequency of a given target,
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Figure 5.2: Estimated position of a multicomponent vibration. The components are
1 mm, 5 Hz and .75 mm and 12 Hz, with SNR = 15 dB. State estimate averaging
improves the estimated position of the vibrating target significantly when using the
EKF based method. More specifically, the MSE is reduced by 76%.

then (5.2) can be updated to

M = max

{
n ∈ N : n ≤ .125

∆tfmax(v)

}
. (5.3)

In other scenarios, the geometry, material, and machinery can sometimes be

determined with other remote sensing techniques such as optical, infrared, and multi-

spectral, to name a few. Therefore, a maximum expected vibration frequency, fmax(v),

can be estimated.

Lastly, if working with a single component, sinusoidal vibration, the magnitude

method could be first used to estimate fv. Once fv is determined, then the modified

EKF can be applied.
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5.3 Modification of EKF for Increased Noise Im-

munity

Recall, it is the effect of observation noise in the EKF model, rather than the system

noise, being mitigated with the state estimate averaging. Thus, the state-transition

model, as defined in (4.1), remains unchanged as this is an accurate description for

the vibration behavior. Any changes to the state-transition model in an attempt

to gain noise immunity would lead to an incorrect state model. In addition, the

observation model defined in (4.7) remains unchanged as the DPCA-SAR collection

platform has a fixed imaging procedure that cannot be altered. The modification

occurs in the linearization of the observation model, as it is the linearization that is

susceptible to the observation noise.

As described in the EKF section, the observation matrix, Hn, is defined as

Hn = ∇h |X=X̂n|n−1
, (5.4)

where X̂n|n−1 is the estimation of Xn. In addition, the initialization of the state

estimates is X̂0|−1 = E[X0].

Now, let N1 be the total number of state estimates being averaged, where N1 is

determined by (5.2). Then the observation matrix, Hn, is now defined as

Hn = ∇h |X=X̂ave(n)
, (5.5)

where

X̂ave(n) =
X̂n|n−1 + X̂n−1|n−2 + · · ·+ X̂n−N1+1|n−N1

N1

. (5.6)

Then, the initialization of the state estimates are

X̂N1−1|N1−2 = · · · = X̂1|0 = X̂0|−1 = E[X0] = 0. (5.7)
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This is the sole location in the EKF algorithm that an average of state estimates is

used to provide noise immunity. The remainder of the EKF algorithm remains as

defined from (4.12) to (4.20). A comparison of the linearizied state observation with

state estimate averaging and without state estimate averaging are shown in Fig. 6.2

and Fig. 6.1, respectively.

5.4 Noise Requirements

One of the potential challenges when implementing the EKF is that under certain

conditions, the state estimations provided through the EKF algorithm can diverge

from the actual state variables. This divergence is typically caused by the estimated

state error covariance matrix becoming extremely and unrealistically small. When

the covariance matrix is very near to zero, the Kalman Gain places unreasonable

trust in the state prediction and ignores subsequent observations [9]. When this

occurs, the vibrational dynamics of targets cannot be reliably determined. There-

fore, for accurate vibrometry, it is necessary to characterize the pervasiveness of this

divergence and determine how to reduce the divergence to negligible levels.

An example of what happens to the state estimate when the estimated state error

covariance becomes unrealistically small is shown in Fig. 5.3. It is clear that EKF no

longer trusts the observations and the vibrating target’s state estimates are updated

only using the predicted state estimate from the state transition model.

For the noise characterization, the vibrating target is assumed to have a steady

(constant frequency) sinusoidal motion of 8 Hz with a 1 mm displacement. The sys-

tem parameters used for this characterization are described in Table 6.1. For further

explanation refer to the Simulations and Results section. With these target dynam-

ics, 1,000 simulated slow-time DPCA-SAR SoIs were generated. Each realization of

the slow-time signal was corrupted with ZMCSCG noise. Then, the aforementioned
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Figure 5.3: Estimated position and estimated frequency of a 1 mm, 8 Hz vibrating
target using the EKF with SNR = 11 dB. Strong successive noisy observations cause
the Kalman gain to place unreasonable trust in the predicted state estimates and
not trust the observations.

EKF method was applied to each slow-time signal. If EKF method reliably estimated

the frequency of the vibrating target within 1 Hz, the estimation was considered to

have converged. Otherwise, the method was considered to have diverged. The ratio

of converging solutions to the total number of slow-time SoI was taken. This process

was repeated for integer SNR values ranging from 1 to 15. The SNR is defined as

SNR = 10 log10

(
σ

σw

)
, (5.8)

where σ2
w is variance of the observation noise. This entire procedure was done with the

averaging for noise immunity method and without the averaging for noise immunity

method. The results are shown in Fig. 5.4.
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Table 5.1: Performance Limits of the EKF method DPCA-SAR Vibration Estimation

parameter quantity

Required SNR 15 dB

Frequency Resolution 1
fprfN

MMVV λ
4τB

MMVF theoretically
fprf

2
; with state averaging

fprf
2N1

Fig. 5.4 shows for a given SNR level, the state estimate averaging for noise

immunity increases the occurrence of converging solutions. For example, when the

SNR = 8 dB, diverging solutions occur 60% less often when the state estimates are

averaged compared without any state estimate averaging. Therefore, for the minimal

computational effort, averaging provides not only increased confidence in vibration

behavior, but also decreases the likelihood of a diverging solution when SNR < 15

dB. When the SNR exceeds 15 dB, it appears divergence is no longer a concern.

5.5 Signal to Clutter Ratio

In a general sense, clutter can be defined as the collection of all targets or objects

that engender undesired reflections in the radar’s return signal. These undesired

reflections often degrade the performance of the radar system as the target of interest

cannot be separated from the background. Clutter can be placed into one of two

categories: surface clutter and airborne clutter. Some examples of surface clutter

include vegetation, ground terrain, ocean surface condition, and jungle canopies.

Airborne clutter, sometimes termed volume clutter, typically refers to rain, insects,

or birds. In this study, only ground clutter is considered. Since the SAR system is

designed to be an all weather imaging system, the majority of airborne clutter only

has negligible affects on the quality of the SAR image.
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Figure 5.4: Estimated position and estimated frequency of a 1 mm, 8 Hz vibrating
target using the EKF with SNR = 11 dB.

Recall, one of the distinct advantages of the DPCA-SAR systems is that it per-

forms quite well when introduced into a high clutter environment. In real-world

applications, the removal of the clutter signal is subject to the noise floor of the

DPCA-SAR system [5]. When the noise increases, uncanceled or residual clutter will

be present. However, this residual clutter will be indistinguishable from the noise

signal. This noise is generated from any incoherence between the two antennas,

in addition to the thermal noise. This incoherence is generated from a variety of

imperfections in the collection platform, as well as natural background radiation.

One example that causes the stated incoherence are imperfections in the flight

path. Often the collection flight path is irregular due to turbulence. This irregular

flight path causes the aft antenna to be in a slightly different collection location than

the fore antenna. This causes the differing clutter signals between antennas and
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some clutter cannot be canceled. On board the there typically is a GPS and some

type of inertial measurement unit (IMU) or guidance system. These systems track

the position of the collection platform for the duration of the flight. The GPS and

IMU typically help to compensate for the irregular flight path, however their success

is limited by their own error margins. Since turbulence can be viewed as a random

process and the GPS and IMU errors are random, this incoherence can be viewed as

noise.

A second example that causes incoherence are inconsistencies between the fore

and aft antennas. Any misalignments in phase result in a corresponding range error.

With the same clutter signal mapped to a different range line for each antenna, there

is no way these clutter signals can be removed. Since this phase error is due to real

world system limitations, it is random and can also be viewed as noise.

Therefore, the clutter can only be canceled down to the noise level. Therefore,

the DPCA-SAR signal of interest to residual clutter ratio (SCR) is for all intents

and purposes equivalent to the signal to noise ratio. The SCR may in fact be worse

than the SNR. However, the SCR cannot be better than the SNR.
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Simulations and Results

The proposed method in this thesis is validated by simulating the DPCA-SAR SoI

(the returned observed SAR difference signal) in MATLAB. The simulated DPCA-

SAR system is operating in the Ku-band. All of the key system parameters are

listed in Table 6.1. These system parameters are chosen in part to mimic the Lynx

radar [21]. The baseline, B and the platform velocity, Va are, however, notional

values of a DPCA-SAR system. The DPCA-SAR SoI was generated using the model

defined in (2.21) and (2.23).

6.1 Sinusoidal Vibration Simulation

For the first set of simulations, consider a vibrating target whose displacement is

described through a sinusoidal vibration of a constant frequency. The target had a

8 Hz oscillation with an amplitude of 1 mm. Fig. 6.1 shows the results of the EKF

method estimating the position of a vibrating target without using the state estimate

averaging technique described in the Observation Noise Immunity By Averaging Over

Several State Estimates section. Fig. 6.2 show the results of the EKF method esti-
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Table 6.1: DPCA-SAR System Parameters Used In Simulations

parameter quantity

center frequency 16 GHz

effective PRF 487 Hz

propagation velocity 3× 108 m/s

platform velocity 175 m/s

slant range 10 km

azimuth resolution .33 m

aperture length 363 m

SNR 15 dB

Baseline 0.3596 m

mating the position of a vibrating target with the state estimate averaging. In this

case, the state estimate averaging occurred over 10 consecutive terms. It is clear

from the Fig. 6.2 that the state estimate average improves the position estimate of

the vibrating target and more energy is localized for the estimated frequency.

6.2 Linearly Increasing Frequency Vibration

For the next set of simulations, consider a vibrating target whose displacement is

described through a sinusoidal vibration that linearly increases in frequency through-

out the duration of the aperture. The target oscillations began at 10 Hz and linearly

increased to 17 Hz. The target’s displacement was set to 1 mm. The position esti-

mation for the linear increasing vibration is show in Fig. 6.3. As with the constant

frequency sinusoidal vibration, after about two complete oscillations the estimated

target position converges to the true target position.
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Figure 6.1: Estimated position and estimated frequency of a 1 mm, 8 Hz vibrating
target using the EKF with SNR = 15 dB.

6.3 Linearly Decreasing Frequency Vibration

Now consider a vibrating target whose displacement is described through a sinu-

soidal vibration that linearly decreases in frequency throughout the duration of the

aperture. The target oscillations began at 16 Hz and linearly decreased to 8 Hz.

The target’s displacement was set to 1 mm. The position estimation for the linear

increasing vibration is shown in Fig. 6.4. Again, after approximately two oscillations

the estimated position of the vibrating target converges to the true target position.
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Figure 6.2: Estimated position and estimated frequency of a 1 mm, 8 Hz vibrating
target using the EKF with SNR = 15 dB. The state estimates were linearized over
7 terms for noise suppression.

6.4 Multicomponent Vibration

Lastly, consider a vibrating target whose displacement is described as a superposition

of two sinusoids. The first frequency component has a 5 Hz vibration frequency with

a displacement of 1 mm. The second frequency component has a 12 Hz vibration

frequency with a displacement of .75 mm. The position estimation for the multi-

component vibration without state estimate averaging is shown in Fig. 6.5. The

position estimation for the multicomponent vibration with state estimate averaging

is shown in Fig. 6.6. Fig. 6.6 shows that state estimate averaging is required for

accurate position estimation of the vibrating target. Even with the additional vi-

bration component, the estimated position closely matches the true target position.

47



Chapter 6. Simulations and Results

Figure 6.3: Position Estimation using EKF of a target’s vibration frequency increas-
ing linearly from 10 Hz to 17 Hz. The amplitude of the vibration was 1 mm. The
state estimates were linearized over 10 terms for noise suppression.

Since the highest frequency component is 12 Hz, the state estimates are averaged

over 5 consecutive terms.

6.5 Results

The modified EKF method has the ability to estimate not only a vibrating target’s

frequency, but it can also determine its position and velocity at any given time during

the collection process. The modified EKF method is no longer restricted to a signal

component, sinusoidal vibration. It is now possible to accurately track the position

of the target for multicomponent vibrations. In addition, the modified EKF method
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Figure 6.4: Position Estimation using EKF of a target’s vibration frequency decreas-
ing linearly from 16 Hz to 8 Hz. The amplitude of the vibration was 1 mm. The
state estimates were linearized over 10 terms for noise suppression.

presented here works for vibrations that increase linearly or decrease linearly during

the collection process. The success was highly dependent on implementing the state

estimate averaging. The mean square error (MSE) of the original method is .2279,

while the MSE of the method presented in this paper is .1503. Therefore, the method

presented in this paper improves the position estimate of the vibrating target by 34%

when SNR = 15 dB. For the multicomponent vibrations, the mean square error of

the estimated target position is reduced by 76% when SNR = 15 dB.

In addition, the state estimate averaging technique decreased the likelihood of the

EKF solution from diverging from the true position of the vibrating target. When

the SNR = 8 dB, this divergence was decreased by 60%.
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Figure 6.5: Position Estimation using EKF of a target’s multicomponent vibration
frequency of 5 Hz and 12 Hz. No state estimate averaging. SNR = 15 dB.
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Figure 6.6: Position Estimation using EKF of a target’s multicomponent vibration
frequency of 5 Hz and 12 Hz. 5 state estimate terms were averaged. SNR = 15 dB.
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Conclusion

SAR is a universally accepted remote sensing platform that is used for a variety of

applications. Typically, SAR produces a high-resolution, two-dimensional image of a

scene of interest. An underlying assumption when creating this high resolution image

is that all targets in the ground scene are stationary. If a target is not static, but

instead vibrating, it introduces a modulation on the returned radar signal termed

the micro-Doppler effect. The ability to estimate the target’s vibration frequency

and vibration amplitude by exploiting the micro-Doppler effect, all while in a high

clutter environment can provide strategic information for target identification and

target condition/status. This thesis improved one method that processes the non-

stationary signal of interest generated by the vibrating target in DPCA-SAR in high

clutter.

This thesis began by introducing some of the basic processing performed in SAR.

After the basic signal processing techniques are established, the DPCA-SAR is in-

troduced. It is then demonstrated how DPCA-SAR works particularly well in a high

clutter environment and how this technique can be exploited.

Then the magnitude method, first developed by Dr. Wang [24] is introduced for
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context and motivation for the EKF method. For a single component, sinusoidal

vibration, the magnitude method can estimate the frequency of the vibrating target

when the SNR is greater or equal to 4 dB. The magnitude method, however, could

not estimate the velocity or position of the vibrating target at any time during the

collection process. The magnitude method cannot be expanded to more complex

vibrations, such as multicomponent vibrations or vibrations that evolve over time.

After the EKF method was given, a modified version of the EKF method is pre-

sented. This modification implemented a state estimate averaging technique when

linearizing the observation function of the EKF algorithm. This state estimate av-

eraging technique, while computationally inexpensive, made a profound impact on

the performance of the EKF method.

The modified EKF method is capable of estimating not only a vibrating target’s

frequency, but it could also determine its position and velocity at any given time

during the collection process. The modified EKF method is no longer restricted to

a signal component, sinusoidal vibration. It can now accurately track the position

of the target for multicomponent vibrations. In addition, the modified EKF method

presented here works for vibrations that increase linearly or decrease linearly during

the collection process. The success was highly dependent on implementing the state

estimate averaging. The mean square error (MSE) of the original method is .2279,

while the MSE of the method presented in this paper is .1503. Therefore, the method

presented in this paper improves the position estimate of the vibrating target by 34%

when SNR = 15 dB. For the multicomponent vibrations, the mean square error of

the estimated target position is reduced by 76% when SNR = 15 dB. Finally, the

state estimate averaging technique decreased the likelihood of the EKF solution from

diverging from the true position of the vibrating target. When the SNR = 8 dB, this

divergence was decreased by 60%.
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Future Work

The next steps for these techniques is to test and validate them on a real world SAR

system such as the Lynx SAR system operated by General Atomics-Aeronautical

Systems Inc. To make this a possibility, the University of New Mexico’s Radar Vi-

brometry Team would have to have access to GA-ASI engineering system as this

technique cannot be directly applied to current standard production systems. The

Radar Vibrometry Team is currently looking at imaging the Ford Utility Building on

main campus. The Ford Utility Building provides electricity, cooling, and hot water

across main and north campus. This facility had a variety of vibrating ventilation

stacks placed inside a high clutter environment. After acquiring the vibrating dy-

namics of the individual vent stacks, the team will try to identify which machinery

is operating inside the Ford Utility Building.
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A MATLAB Code for Magnitude Method

B MATLAB Code for EKF Method

55



Appendix A

MATLAB Code for Magnitude

Method

The magnitude method for Single Component Vibration

15 June 2016, UNM RADAR Vibrometry, JBC

Here the magnitude method is used for remote vibration estimation of a single

vibrating target in a simulated SAR image. It is assumed that all clutter is removed

in this simulation by exploiting the dual beam antenna. There is, however, white

noise that is added to the SoI.

Contents

• Begin Program

• Initializing Parameters

• Target Information
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• Target’s Vibration information

• Simulating the observations

• Plot Dual-Beam SoI

• Target’s vibration frequency estimation from SoI

• Estimate position from estimated frequency

Begin Program

clc;

clear;

close all;

Initializing Parameters

fc = 1.6e10; % Center frequency

c = 3e8; % Propagation Velocity

lambda_c = c / fc; % Wavelength

V = 175; % Platform Velocity (meters)

Rc = 10000; % Range to image center (meters)

N = 1000; % Number of samples

rhoy = 0.33; % Azimuth res

diameter.y = rhoy * N; % Azimuth physical size

%ka = 1.58; % Armin reference (effective prf paper

ka = 2;

prf = V*ka*diameter.y/(lambda_c*Rc); % Pulse Repetition Frequency

ts = 1 / prf; % PRI (pulse repetition interval)

% Frequently used constants
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PI2 = pi * 2;

PI4 = pi * 4;

PI2_lambda = PI2 / lambda_c;

PI4_lambda = PI4 / lambda_c;

ky = (PI4*fc*V)/(c*Rc*prf); % scaling parameter

Target Information

tgt.sigma = 1e-4; % Reflectance magnitude

tgt.y = 3; % Azmmith Position

tgt.phi = 0.1 * pi; % Initial phase

% Total Reflectance

tgt_phs_ref = -ky * tgt.y * (1:N) + tgt.phi; %

tgt_ref = tgt.sigma * exp(1j * tgt_phs_ref); %

Target’s Vibration information

vib.amp = 1e-3; % 1 mm vibration amplitude

vib.frq = 8; % vibration frequency of 8 Hz

vib.phi = 0; % zero initial vibration displacement

vib.y = 0 + diameter.y / 2; % target postion

M_b = 10; % SAR carrier baseline

t_b = M_b * ts; % time delay between two antennas

st = (1:N) * ts + t_b; % timing of pulses
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vib_dis = vib.amp * sin(PI2 * vib.frq * (st) + vib.phi);

vib_vlc = vib.amp * PI2 * vib.frq * cos(PI2 * vib.frq * (st) + vib.phi);

% figure(01010)

% subplot(2,1,1)

% plot(vib_dis);

% xlabel(’slow time’);

% ylabel(’Displacement (mm)’);

% title(’Sinusodal Target Vibration-Displacement’);

% subplot(2,1,2)

% plot(vib_vlc);

% xlabel(’slow time’);

% ylabel(’Velocity (mm/s)’);

% title(’Sinusodal Target Vibration-Velocity’);

Simulating the observations

soi_dualbeam = zeros(N,1);

for i = 1:N

tau = i * ts;

dis2 = vib.amp * sin(PI2 * vib.frq * (tau+t_b) + vib.phi);

dis1 = vib.amp * sin(PI2 * vib.frq * (tau) + vib.phi);

soi_dualbeam(i) = tgt_ref(i) * (exp(-1j* PI4_lambda * dis2) - ...

exp(-1j* PI4_lambda * dis1));

end

% figure(9999)
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% plot(imag(soi_dualbeam))

% hold on

% soi_dualbeam_pure = soi_dualbeam;

% xlabel(’slow time’);

% ylabel(’Magnitude (AU)’);

% title(’DPCA-SAR Signal of Interest’);

snr = 4; % Signal to Noise Ratio

var_w = tgt.sigma^2 / 10^(snr/10); % variance of the noise (def of SNR)

w = sqrt(var_w/2) * randn(N,1) + 1j * sqrt(var_w/2) * randn(N,1);

% Complex valued white Gaussian noise

soi_dualbeam = soi_dualbeam + w;

Plot Dual-Beam SOI

figure(10)

subplot(2,1,1)

plot(abs(soi_dualbeam));

xlabel(’slow time’);

ylabel(’Magnitude (AU)’);

title(’DPCA-SAR Signal of Interest’);

subplot(2,1,2)

est_spc_mag = abs(fft(abs(soi_dualbeam)-mean(abs(soi_dualbeam))));

spc_upper = 200;

plot((0:spc_upper-1)/N*prf, est_spc_mag(1:spc_upper));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);
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Target’s vibration frequency estimation from SoI

zulu2 = est_spc_mag(1:spc_upper)’;

[alpha3,bravo3] = max(zulu2);

charlie2 = (0:spc_upper)/N*prf;

est_frq1 = charlie2(bravo3);

est_frq1 = est_frq1/2;

zulu2(:,bravo3) = 0;

[alpha4,bravo4] = max(zulu2);

est_frq2 = charlie2(bravo4);

est_frq2 = est_frq2/2;

if abs(bravo3-bravo4) < 4

tot_est_frq = (est_frq1 + est_frq2)/2;

else

if alpha3>alpha4

tot_est_frq = charlie2(bravo3);

tot_est_frq = tot_est_frq/2;

else

tot_est_frq = charlie2(bravo4);

tot_est_frq = tot_est_frq/2;

end

end

disp(’Target’’s estimated vibration frequency from postion estiamtes: ’)

disp(tot_est_frq)

Target’s estimated vibration frequency from postion estiamtes:

8.0080
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Estimate position from estimated frequency

est_vlc = asin(soi_dualbeam/(2*tgt.sigma))*((lambda_c)/(2*pi*t_b));

est_vlc = est_vlc - mean(est_vlc);

figure

plot(imag(est_vlc))

hold on;

plot(vib_vlc,’k-.’);

xlabel(’slow time’);

ylabel(’Velocity (mm/s)’);

title({’Estimated velocity of a 1 mm, 8 Hz vibrating target’, ...

’using the \textit{magnitude method} with SNR = 4 dB’})

legend(’Est. Target Velocity’, ’True Target Velocity’)

%[b,a] = butter(6,0.073,’low’);

%[b,a] = cheby1(6,10,0.073,’low’);

[b,a] = cheby2(6,10,0.08,’low’);

dataIn = est_vlc;

dataOut = filter(b,a,dataIn);

dataOut = dataOut - mean(dataOut);

figure

plot(imag(dataOut))

hold on;

plot(vib_vlc,’k-.’);

xlabel(’slow time’);

ylabel(’Velocity (mm/s)’);

title({’Estimated velocity of a 1 mm, 8 Hz vibrating target’, ...
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’using the \text{magnitude method}with SNR = 4 dB’})

legend(’Est. Target Velocity’, ’True Target Velocity’)
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MATLAB Code for EKF Method

The Extended Kalman Filter Single Component Vi-

bration

18 November 2015, UNM RADAR Vibrometry, JBC

Here the extended Kalman filter is used for remote vibration estimation of a

single vibrating target in a simulated SAR image. It is assumed that all clutter is

removed in this simulation by exploiting the dual beam antenna. There is, however,

white noise that is added to the SoI.

First written by Qi Wang: 11 July 2012

Contents

• Begin Program
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• Initializing Parameters

• Target Information

• Target’s Vibration information

• Simulating the observations

• Plot Dual-Beam SoI

• Start the Kalman Filtering

• In these simulations we assume the prf is significantly faster than the

• State equation parameters.

• Estimated Velocity

• Plot estimated position

• Target’s vibration frequency estimation from position estiamtes

Begin Program

clc;

clear;

close all;

Initializing Parameters

fc = 1.6e10; % Center frequency

c = 3e8; % Propagation Velocity

lambda_c = c / fc; % Wavelength

V = 175; % Platform Velocity (meters)

Rc = 10000; % Range to image center (meters)

N = 1000; % Number of samples

rhoy = 0.33; % Azimuth res

diameter.y = rhoy * N; % Azimuth physical size
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ka = 1.58; % Armin reference (effective prf paper)

%ka = 2;

prf = V*ka*diameter.y/(lambda_c*Rc); % Pulse Repetition Frequency

ts = 1 / prf; % PRI (pulse repetition interval)

% Frequently used constants

PI2 = pi * 2;

PI4 = pi * 4;

PI2_lambda = PI2 / lambda_c;

PI4_lambda = PI4 / lambda_c;

ky = (PI4*fc*V)/(c*Rc*prf); % scaling parameter

Target Information

tgt.sigma = 1e-4; % Reflectance magnitude

tgt.y = 3; % Azmmith Position

tgt.phi = 0.1 * pi; % Initial phase

% Total Reflectance

tgt_phs_ref = -ky * tgt.y * (1:N) + tgt.phi; %

tgt_ref = tgt.sigma * exp(1j * tgt_phs_ref); %

Target’s Vibration information

vib.amp = 1e-3; % 1 mm vibration amplitude

vib.frq = 8; % vibration frequency of 8 Hz
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vib.phi = 0; % zero initial vibration displacement

vib.y = 0 + diameter.y / 2; % target postion

M_b = 10; % SAR carrier baseline

t_b = M_b * ts; % time delay between two antennas

st = (1:N) * ts + t_b; % timing of pulses

vib_dis = vib.amp * sin(PI2 * vib.frq * (st) + vib.phi);

vib_vlc = vib.amp * PI2 * vib.frq * cos(PI2 * vib.frq * (st) + vib.phi);

% figure(01010)

% subplot(2,1,1)

% plot(vib_dis);

% xlabel(’slow time’);

% ylabel(’Displacement (mm)’);

% title(’Sinusodal Target Vibration-Displacement’);

% subplot(2,1,2)

% plot(vib_vlc);

% xlabel(’slow time’);

% ylabel(’Velocity (mm/s)’);

% title(’Sinusodal Target Vibration-Velocity’);

Simulating the observations

soi_dualbeam = zeros(N,1);

for i = 1:N

tau = i * ts;

dis2 = vib.amp * sin(PI2 * vib.frq * (tau+t_b) + vib.phi);
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dis1 = vib.amp * sin(PI2 * vib.frq * (tau) + vib.phi);

soi_dualbeam(i) = tgt_ref(i) * (exp(-1j* PI4_lambda * dis2) - ...

exp(-1j* PI4_lambda * dis1));

end

% figure(9999)

% plot(imag(soi_dualbeam))

% hold on

% soi_dualbeam_pure = soi_dualbeam;

snr = 11; % Signal to Noise Ratio

var_w = tgt.sigma^2 / 10^(snr/10); % varance of the noise (def of SNR)

w = sqrt(var_w/2) * randn(N,1) + 1j * sqrt(var_w/2) * randn(N,1);

% Complex valued white Gaussian noise

soi_dualbeam = soi_dualbeam + w;

Plot Dual-Beam SOI

figure(10)

subplot(2,1,1)

plot(abs(soi_dualbeam));

xlabel(’slow time’);

ylabel(’Magnitude (AU)’);

title(’DPCA-SAR Signal of Interest’);

subplot(2,1,2)

est_spc_mag = abs(fft(abs(soi_dualbeam)-mean(abs(soi_dualbeam))));

spc_upper = 200; %??
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plot((0:spc_upper-1)/N*prf, est_spc_mag(1:spc_upper));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

Start the Kalman Filtering

X = zeros(2,1,N+1); % State of the vibrating target [ pos., vel. ]

Y = soi_dualbeam; % Observation (range compressed slow time signal)

EX = zeros(2,1,N); % State estimate (correction)

PX = zeros(2,1,N+5); % State prediction

MPX = zeros(2,1,N+1); % State prediction average over several pulses

CEX = zeros(2,2,N); % system error covariance (correction)

CPX = zeros(2,2,N+1); % system error covariance (prediction)

%X(:,:,1) = [0;vib.amp*vib.frq*PI2]; % the initial target state ...

X(:,:,1) = [0;0]; % the initial target state ...

PX(:,:,1) = X(:,:,1);

In these simulations we assume the prf is significantly faster that the

target’s vibration fequency. Therefore, the target’s state (position, velocity) will re-

mained relatively unchanged between several successive pulses. Therefore, I intialize

the first couple of terms with the same values.

Position is kinda orthogonal to velocity. Recall target displacement is 1 mm

cvp = 1e-6/2; % co-variance of the target position

69



Appendix B. MATLAB Code for EKF Method

cvv = cvp * PI2^2 * (vib.frq)^2;% co-variance of the target velocity derivative of position

CPX(:,:,1) = [cvp, 0; 0, cvv]; % co-variance of the intial vib. pos.

CPX(:,:,2) = CPX(:,:,1);

CPX(:,:,3) = CPX(:,:,1);

CPX(:,:,4) = CPX(:,:,1);

CPX(:,:,5) = CPX(:,:,1);

CPX(:,:,6) = CPX(:,:,1);

CPX(:,:,7) = CPX(:,:,1);

CPX(:,:,8) = CPX(:,:,1);

CPX(:,:,9) = CPX(:,:,1);

CPX(:,:,10) = CPX(:,:,1);

var_u = cvp * PI2^4 * vib.frq^4;% co-variance of the input (acceleration) derivative of velocity

State equation parameters.

x: state; x = [P, V]’: the position and velocity of the target. u: input; the acceleration

of the target x(M+1) = F * x(M) + G * u(M)

F = [1, t_b; 0, 1]; % time-invariant state transition model

G = [0; t_b]; % time-invariant control input model

H = zeros(1,2); % time-variant observation model

K = zeros(2,1,N); % Kalman gain

% Start the Kalman filter recursion; n = i-1;

for i = 11:1:N-1

% Linearization of the observation function.

% NOTE: The observation function depends on the observations!
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% Therefore, the Kalman Gain, the state estimates, and the estimate of

% the covariance of the state error are also functions of the

% observations.

% % complex-value case

% % no averaging of prediction points

% MPX(:,1,i+1) = (PX(:,1,i+1));

% % average two concevative points

% MPX(:,1,i+1) = (PX(:,1,i+1)+PX(:,1,i))/2;

% % average 5 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

% PX(:,:,i-3))/5;

% % average 6 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+ ...

% PX(:,:,i-3)+PX(:,:,i-4))/6;

% % average 7 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

% PX(:,:,i-3)+PX(:,:,i-4)+PX(:,:,i-5))/7;

% average eleven consecutive points

MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

PX(:,:,i-3) +PX(:,:,i-4)+PX(:,:,i-5)+ ...

PX(:,:,i-6)+PX(:,:,i-7)+PX(:,:,i-8))/10;

% % average 20 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+ ...

% PX(:,:,i-3)+PX(:,:,i-4)+PX(:,:,i-5)+PX(:,:,i-6)+PX(:,:,i-7) ...

% + PX(:,:,i-8)+PX(:,:,i-9)+ PX(:,:,i-10)+PX(:,:,i-11)...

% + PX(:,:,i-12)+PX(:,:,i-13)+ PX(:,:,i-14)+PX(:,:,i-15) ...

% + PX(:,:,i-16)+PX(:,:,i-17)+ PX(:,:,i-18))/20;
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tmp_exp = exp(-1j * PI2_lambda * (2 * MPX(1,1,i+1) + t_b * ...

MPX(2,1,i+1)) - 1j * pi /2);

H(1,1) = 4 * PI2_lambda * tgt_ref(i+1) * sin(PI2_lambda * t_b * ...

MPX(2,1,i+1)) * tmp_exp * exp(-1j*pi/2);

H(1,2) = 2 * PI2_lambda * t_b * tgt_ref(i+1) * cos(PI2_lambda * ...

t_b * MPX(2,1,i+1)) * tmp_exp - 2* PI2_lambda * t_b * ...

tgt_ref(i+1) * sin(PI2_lambda * t_b * MPX(2,1,i+1)) * ...

tmp_exp * exp(-1j*pi/2);

% real part case

% tmp_phs = -PI2_lambda * (2 * PX(1,1,i+1) + t_b * PX(2,1,i+1)) ...

% - pi / 2;

% H(1,1) = 2 * tgt.sigma * PI4_lambda * sin(PI2_lambda * t_b * ...

% PX(2,1,i+1)) * sin(tmp_phs + tgt_phs_ref(i+1));

% H(1,2) = 2 * tgt.sigma * PI2_lambda * t_b * cos(PI2_lambda * ...

% t_b * PX(2,1,i+1)) * cos(tmp_phs+ tgt_phs_ref(i+1)) ...

% + 2 * tgt.sigma * PI2_lambda * t_b * sin(PI2_lambda *...

% t_b * PX(2,1,i+1)) * sin(tmp_phs+ tgt_phs_ref(i+1));

% Kalman Gain

K(:,:,i+1) = (CPX(:,:,i+1) * H’) / (H * CPX(:,:,i+1) * H’ + var_w);

% Updated State

EX(:,:,i+1) = PX(:,:,i+1) + K(:,:,i+1) * (Y(i+1) - H * PX(:,:,i+1));

% Predicted State
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PX(:,:,i+1+1) = F * EX(:,:,i+1);

% Updated Covariance of System Error

CEX(:,:,i+1) = CPX(:,:,i+1) - K(:,:,i+1) * H * CPX(:,:,i+1);

% Predicted Covariance of System Error

CPX(:,:,i+1+1) = F * CEX(:,:,i+1) * F’ + G * var_u * G’;

end;

Estimated Velocity

est_v = reshape(real(EX(2,1,:)),N,1);% estimated target velocity

est_v = est_v-mean(est_v); % estimated target velocity w/out bias

est_spc_ekf = abs(fft(est_v)); % periodicity of target velocities

% Plot estimated velocity

figure(110)

subplot(2,1,1);

plot(est_v); %??

hold on;

plot(vib_vlc,’k-.’);

xlabel(’slow time’);

ylabel(’Velocity (mm/s)’);

title({’Estimated velocity of a 1 mm, 8 Hz vibrating target’, ...

’using the EKF with SNR = 11 dB’,...

’10 term avg. for noise suppression’});
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legend(’Est. Target Velocity’, ’True Target Velocity’)

subplot(2,1,2);

plot((1:spc_upper-1)/N*prf, est_spc_ekf(1:spc_upper-1));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

title(’Target’’s Estimated Vibrating Frequency’)

% Target’s vibration frequency estimation from velocity estimates

zulu1 = est_spc_ekf(1:spc_upper)’;

[alpha1,bravo1] = max(zulu1);

charlie = (0:spc_upper)/N*prf;

est_v1 = charlie(bravo1);

zulu1(:,bravo1) = 0;

[alpha2,bravo2] = max(zulu1);

est_v2 = charlie(bravo2);

if abs(bravo1-bravo2) < 4

tot_est_v = (est_v1 + est_v2)/2;

else

if alpha1>alpha2

tot_est_v = charlie(bravo1);

else

tot_est_v = charlie(bravo2);

end

end

disp(’Target’’s estimated vibration frequency from velocity estiamtes: ’)

disp(tot_est_v)
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Target’s estimated vibration frequency from velocity estiamtes:

8.0296

Plot estimated position

est_p = reshape(real(EX(1,1,:)),N,1); % etimated target position

est_p = est_p - mean(est_p); % etimated target pos. w/out bias

est_spc2_ekf = abs(fft(est_p)); % periodicity of target position

figure(120)

subplot(2,1,1);

plot(est_p,’r’);

hold on;

plot(vib_dis,’k-.’);

xlabel(’slow time’);

ylabel(’Displacement (m)’);

title({’Estimated position’}) %with SNR = 11 dB’,...

% ’20 term avg. for noise suppression’});

legend(’Est. Target Position’, ’True Target Position’)

axis([0 N -.005 .005])

subplot(2,1,2);

plot((0:spc_upper-1)/N*prf, est_spc2_ekf(1:spc_upper),’r’);

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

title(’Target’’s Estimated Vibrating Frequency’)
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Target’s vibration frequency estimation from position estiamtes

zulu2 = est_spc2_ekf(1:spc_upper)’;

[alpha3,bravo3] = max(zulu2);

charlie2 = (0:spc_upper)/N*prf;

est_p1 = charlie2(bravo3);

zulu2(:,bravo3) = 0;

[alpha4,bravo4] = max(zulu2);

est_p2 = charlie2(bravo4);

if abs(bravo3-bravo4) < 4

tot_est_p = (est_p1 + est_p2)/2;

else

if alpha3>alpha4

tot_est_p = charlie2(bravo3);

else

tot_est_p = charlie2(bravo4);

end

end

disp(’Target’’s estimated vibration frequency from postion estiamtes: ’)

disp(tot_est_p)

Target’s estimated vibration frequency from postion estiamtes:

8.0296

tot_est_frq = (tot_est_v + tot_est_p)/2;

disp(’Target’’s estimated vibration frequency averaging the velocity and ’)

disp(’postion estimates: ’)

disp(tot_est_frq)
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Target’s estimated vibration frequency averaging the velocity and

postion estimates:

8.0296

Extended Kalman Filter for Multicomponent Vi-

brations

Contents

• Extended Kalman Filter for DPCA-SAR

• Begin Program

• Initializing Parameters

• Target Information

• Target’s Vibration information

• Simulating the observations

• Start the Kalman Filtering

• In these simulations we assume the prf is significantly faster than the

• State equation parameters.

Extended Kalman Filter for DPCA-SAR

% Multi-component sinusoidal vibration

% increasing linear chirp

% Qi Wang; July 11, 2012

% Justin Campbell; May 25, 2016
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Begin Program

clc;

clear;

close all;

Initializing Parameters

fc = 1.6e10; % Center frequency

c = 3e8; % Propagation Velocity

lambda_c = c / fc; % Wavelength

V = 175; % Platform Velocity (meters)

Rc = 10000; % Range to image center (meters)

N = 1000; % Number of samples

rhoy = 0.33; % Azimuth res

diameter.y = rhoy * N; % Azimuth physical size

ka = 1.58; % Armin reference (effective prf paper)

%ka = 2;

prf = V*ka*diameter.y/(lambda_c*Rc); % Pulse Repetition Frequency

ts = 1 / prf; % PRI (pulse repetition interval)

% Frequently used constants

PI2 = pi * 2;

PI4 = pi * 4;

PI2_lambda = PI2 / lambda_c;

PI4_lambda = PI4 / lambda_c;
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ky = (PI4*fc*V)/(c*Rc*prf); % scaling parameter

Target Information

tgt.sigma = 1e-4; % Reflectance magnitude

tgt.y = 3; % Azmmith Position

tgt.phi = 0.1 * pi; % Initial phase

% Total Reflectance

tgt_phs_ref = -ky * tgt.y * (1:N) + tgt.phi;

tgt_ref = tgt.sigma * exp(1j * tgt_phs_ref);

Target’s Vibration information

vib.amp1 = 1e-3; % 1 mm vibration amplitude

vib.frq1 = 5; % vibration frequency 5 Hz

vib.phi1 = 0; % zero initial vibration displacement

vib.amp2 = .75e-3; % .75 mm vibration amplitude

vib.frq2 = 12; % vibration frequency 12 Hz

vib.phi2 = pi/2; % zero initial vibration displacement (opposite amp)

M_b = 10; % determined by the baseline, V and prf

t_b = M_b * ts; % time delay between two antennas

st = (1:N) * ts + t_b; % timing of pulses

vib_dis = vib.amp1 * sin(PI2 * vib.frq1 * (st) + vib.phi1) + vib.amp2 * ...

sin(PI2 * vib.frq2 * (st) + vib.phi2);

vib_vlc = vib.amp1 * PI2 * vib.frq1 * sin(PI2 * vib.frq1 * (st) + ...
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vib.phi1) + vib.amp2 * PI2 * vib.frq2 * sin(PI2 * vib.frq2 * ...

(st) + vib.phi2);

Simulating the observations

soi_dualbeam = zeros(N,1);

for i = 1:N

tau = i * ts;

dis2 = vib.amp1 * sin(PI2 * vib.frq1 * (tau+t_b) + vib.phi1) + ...

vib.amp2 * sin(PI2 * vib.frq2 * (tau+t_b) + vib.phi2);

dis1 = vib.amp1 * sin(PI2 * vib.frq1 * (tau) + vib.phi1) + ...

vib.amp2 * sin(PI2 * vib.frq2 * (tau) + vib.phi2);

soi_dualbeam(i) = tgt_ref(i) * (exp(-1j* PI4_lambda * dis2) - ...

exp(-1j* PI4_lambda * dis1));

end

soi_dualbeam_pure = soi_dualbeam;

snr = 15;

var_w = tgt.sigma^2 / 10^(snr/10);

w = sqrt(var_w/2) * randn(N,1) + 1j * sqrt(var_w/2) * randn(N,1);

soi_dualbeam = soi_dualbeam + w;

figure(1)

subplot(2,1,1)

plot(abs(soi_dualbeam));

xlabel(’Time (s)’);

ylabel(’Magnitude (AU)’);
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title({’Est. a multiple-component vibration’});

subplot(2,1,2)

est_spc_mag = abs(fft(abs(soi_dualbeam)-mean(abs(soi_dualbeam))));

spc_upper = 200;

plot((0:spc_upper-1)/N*prf, est_spc_mag(1:spc_upper));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

Start the Kalman Filtering

X = zeros(2,1,N+1); % State of the vibrating target [ pos., vel. ]

Y = soi_dualbeam; % Observation (range compressed slow time signal)

EX = zeros(2,1,N); % State estimate (correction)

PX = zeros(2,1,N+5); % State prediction

MPX = zeros(2,1,N+1); % State prediction average over several pulses

CEX = zeros(2,2,N); % system error covariance (correction)

CPX = zeros(2,2,N+1); % system error covariance (prediction)

% Initial conditions

%X(:,:,1) = [0;vib.amp*vib.frq*PI2]; % the initial target state ...

X(:,:,1) = [0;0]; % the initial target state ...

PX(:,:,1) = X(:,:,1);

In these simulations we assume the prf is significantly faster than the

target’s vibration fequency. Therefore, the target’s state (position, velocity) will re-
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mained relatively unchanged between several successive pulses. Therefore, I intialize

the first couple of terms with the same values.

Position is kinda orthogonal to velocity. Recall target displacement is 1 mm cvp

= 1e-6/2; cvv = cvp * PI2ˆ2 * 30ˆ2; CPX(:,:,1) = [cvp, 0; 0, cvv]; % co-cvariance

of the intial vib. pos. var u = cvv * PI2ˆ4 * 30ˆ4;

cvp = (vib.amp1+vib.amp2)^2;

cvv = cvp * PI2^2 * (vib.frq1^2 + vib.frq2^2);

CPX(:,:,1) = [cvp, 0; 0, cvv]; % co-cvariance of the intial vib. pos.

var_u = cvp * PI2^4 *(vib.frq1^2 + vib.frq2^2);

State equation parameters.

x: state; x = [P, V]’: the position and velocity of the target. u: input; the acceleration

of the target x(M+1) = F * x(M) + G * u(M)

F = [1, t_b; 0, 1]; % time-invariant state transition model

G = [0; t_b]; % time-invariant control input model

H = zeros(1,2); % time-variant observation model

K = zeros(2,1,N); % Kalman gain

% Start the Kalman filter recursion; n = i-1;

for i = 11:1:N-1

% Linearization of the observation function.

% NOTE: The observation function depends on the observations!

% Therefore, the Kalman Gain, the state estimates, and the estimate of
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% the covariance of the state error are also functions of the

% observations.

% complex-value case

% no averaging of prediction points

% MPX(:,1,i+1) = (PX(:,1,i+1));

% % average two concevative points

% MPX(:,1,i+1) = (PX(:,1,i+1)+PX(:,1,i))/2;

% % average 5 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

% PX(:,:,i-3))/5;

% % average 6 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+ ...

% PX(:,:,i-3)+PX(:,:,i-4))/6;

% average 7 consecutive points

MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

PX(:,:,i-3)+PX(:,:,i-4)+PX(:,:,i-5))/7;

% % average ten consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+...

% PX(:,:,i-3) +PX(:,:,i-4)+PX(:,:,i-5)+ ...

% PX(:,:,i-6)+PX(:,:,i-7)+PX(:,:,i-8))/10;

% % average 20 consecutive points

% MPX(:,:,i+1) = (PX(:,:,i+1)+PX(:,:,i)+PX(:,:,i-1)+PX(:,:,i-2)+ ...

% PX(:,:,i-3)+PX(:,:,i-4)+PX(:,:,i-5)+PX(:,:,i-6)+PX(:,:,i-7) ...

% + PX(:,:,i-8)+PX(:,:,i-9)+ PX(:,:,i-10)+PX(:,:,i-11)...

% + PX(:,:,i-12)+PX(:,:,i-13)+ PX(:,:,i-14)+PX(:,:,i-15) ...

% + PX(:,:,i-16)+PX(:,:,i-17)+ PX(:,:,i-18))/20;
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% tmp_exp = exp(-1j * (-ky*tgt.y*i*ts + vib.phi - PI2_lambda* ...

% (2*MPX(1,1,i+1) + t_b * MPX(2,1,i+1)) - pi/2));

tmp_exp = exp(-1j * PI2_lambda * (2 * MPX(1,1,i+1) + t_b * ...

MPX(2,1,i+1)) - 1j * pi /2);

H(1,1) = 4 * PI2_lambda * tgt_ref(i+1) * sin(PI2_lambda * t_b * ...

MPX(2,1,i+1)) * tmp_exp * exp(-1j*pi/2);

H(1,2) = 2 * PI2_lambda * t_b * tgt_ref(i+1) * cos(PI2_lambda * ...

t_b * MPX(2,1,i+1)) * tmp_exp - 2* PI2_lambda * t_b * ...

tgt_ref(i+1) * sin(PI2_lambda * t_b * MPX(2,1,i+1)) * ...

tmp_exp * exp(-1j*pi/2);

% Kalman Gain

K(:,:,i+1) = (CPX(:,:,i+1) * H’) / (H * CPX(:,:,i+1) * H’ + var_w);

% Updated State

EX(:,:,i+1) = PX(:,:,i+1) + K(:,:,i+1) * (Y(i+1) - H * PX(:,:,i+1));

% Predicted State

PX(:,:,i+1+1) = F * EX(:,:,i+1);

% Updated Covariance of System Error

CEX(:,:,i+1) = CPX(:,:,i+1) - K(:,:,i+1) * H * CPX(:,:,i+1);

% Predicted Covariance of System Error

CPX(:,:,i+1+1) = F * CEX(:,:,i+1) * F’ + G * var_u * G’;
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end;

est_v = reshape(real(EX(2,1,:)),N,1);

est_v = est_v - mean(est_v);

est_spc_ekf = abs(fft(est_v));

figure(11)

subplot(2,1,1);

plot(est_v);

hold on;

plot(vib_vlc,’k-.’);

xlabel(’Time (s)’);

ylabel(’Velocity (m/s)’);

title({’Estimated velocity of a multiple-component vibration’ ...

’(1 mm, 5 Hz and 0.5 mm, 12 Hz)\newline using the EKF with SNR = 15 dB’});

subplot(2,1,2);

plot((0:spc_upper-1)/N*prf, est_spc_ekf(1:spc_upper));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

est_p = reshape(real(EX(1,1,:)),N,1);

est_p = est_p - mean(est_p);

est_spc2_ekf = abs(fft(est_p));

figure(12)

subplot(2,1,1);

plot(est_p);

hold on;

plot(vib_dis,’k-.’);
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xlabel(’Time (s)’);

ylabel(’Displacement (m)’);

title({’Estimated Position’ ...

’multiple-component vibration’});

legend(’Est. Target Position’,’True Target Position’)

subplot(2,1,2);

plot((0:spc_upper-1)/N*prf, est_spc2_ekf(1:spc_upper));

xlabel(’Frequency (Hz)’);

ylabel(’Magnitude (AU)’);

title(’Target’’s Estimated Vibrating Frequency’)

zulu2 = est_spc2_ekf(1:spc_upper)’;

[alpha3,bravo3] = max(zulu2);

charlie2 = (0:spc_upper)/N*prf;

est_p1 = charlie2(bravo3);

zulu2(:,bravo3) = 0;

[alpha4,bravo4] = max(zulu2);

est_p2 = charlie2(bravo4);

% if abs(bravo3-bravo4) < 4

% tot_est_p = (est_p1 + est_p2)/2;

% else

% if alpha3>alpha4

% tot_est_p = charlie2(bravo3);

% else

% tot_est_p = charlie2(bravo4);

% end

% end
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disp(’Target’’s estimated vibration frequency from postion estiamtes: ’)

disp(est_p1)

disp(’and’)

disp(est_p2)

Target’s estimated vibration frequency from postion estiamtes:

4.8664

and

12.1660
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