85 research outputs found

    GibbsST: a Gibbs sampling method for motif discovery with enhanced resistance to local optima

    Get PDF
    BACKGROUND: Computational discovery of transcription factor binding sites (TFBS) is a challenging but important problem of bioinformatics. In this study, improvement of a Gibbs sampling based technique for TFBS discovery is attempted through an approach that is widely known, but which has never been investigated before: reduction of the effect of local optima. RESULTS: To alleviate the vulnerability of Gibbs sampling to local optima trapping, we propose to combine a thermodynamic method, called simulated tempering, with Gibbs sampling. The resultant algorithm, GibbsST, is then validated using synthetic data and actual promoter sequences extracted from Saccharomyces cerevisiae. It is noteworthy that the marked improvement of the efficiency presented in this paper is attributable solely to the improvement of the search method. CONCLUSION: Simulated tempering is a powerful solution for local optima problems found in pattern discovery. Extended application of simulated tempering for various bioinformatic problems is promising as a robust solution against local optima problems

    Scoring functions for transcription factor binding site prediction

    Get PDF
    BACKGROUND: Transcription factor binding site (TFBS) prediction is a difficult problem, which requires a good scoring function to discriminate between real binding sites and background noise. Many scoring functions have been proposed in the literature, but it is difficult to assess their relative performance, because they are implemented in different software tools using different search methods and different TFBS representations. RESULTS: Here we compare how several scoring functions perform on both real and semi-simulated data sets in a common test environment. We have also developed two new scoring functions and included them in the comparison. The data sets are from the yeast (S. cerevisiae) genome. Our new scoring function LLBG (least likely under the background model) performs best in this study. It achieves the best average rank for the correct motifs. Scoring functions based on positional bias performed quite poorly in this study. CONCLUSION: LLBG may provide an interesting alternative to current scoring functions for TFBS prediction

    WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Get PDF
    BACKGROUND: This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. RESULTS: We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. CONCLUSION: Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes

    The role of rare codons in protein expression

    Get PDF
    That the flow of information from gene sequence to protein sequence depends on the translation of a code that could literally be described as digital is a truly incredible feat of nature. However, the process of translation is a noisy, stochastic, kinetic process that depends on many factors. The redundancy in the genetic code allows the transmission of additional, analogue information by varying some of these factors. How organisms use the redundancy is termed codon usage, and rare codons are those that are typically shunned in favour of other synonymous options. Synonymous variations to the codon usage pattern of a gene have been linked to disease, and can have huge effects on the functionality and quantity of protein produced from a gene, but the nature of these variations is complex and poorly understood. In some cases, rare codons appear to have a beneficial influence on expression. This thesis investigates the phenomenon of rare codons and attempts to elucidate their evolutionary role in optimal gene expression. It begins with the design of a novel statistical algorithm, which is used to generate a dataset of interesting genetic locations. The dataset is the subject of a hypothesis-driven investigation to discover meaningful biological correlates, and this is complemented by experimental work, to attempt to provide conclusive validation of the approach

    Genomic DNA k-mer spectra: models and modalities

    Get PDF
    Tetrapods, unlike other organisms, have multimodal spectra of k-mers in their genome

    생물학적 서열 데이터에 대한 표현 학습

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2021.8. 윤성로.As we are living in the era of big data, the biomedical domain is not an exception. With the advent of technologies such as next-generation sequencing, developing methods to capitalize on the explosion of biomedical data is one of the most major challenges in bioinformatics. Representation learning, in particular deep learning, has made significant advancements in diverse fields where the artificial intelligence community has struggled for many years. However, although representation learning has also shown great promises in bioinformatics, it is not a silver bullet. Off-the-shelf applications of representation learning cannot always provide successful results for biological sequence data. There remain full of challenges and opportunities to be explored. This dissertation presents a set of representation learning methods to address three issues in biological sequence data analysis. First, we propose a two-stage training strategy to address throughput and information trade-offs within wet-lab CRISPR-Cpf1 activity experiments. Second, we propose an encoding scheme to model interaction between two sequences for functional microRNA target prediction. Third, we propose a self-supervised pre-training method to bridge the exponentially growing gap between the numbers of unlabeled and labeled protein sequences. In summary, this dissertation proposes a set of representation learning methods that can derive invaluable information from the biological sequence data.우리는 빅데이터의 시대를 맞이하고 있으며, 의생명 분야 또한 예외가 아니다. 차세대 염기서열 분석과 같은 기술들이 도래함에 따라, 폭발적인 의생명 데이터의 증가를 활용하기 위한 방법론의 개발은 생물정보학 분야의 주요 과제 중의 하나이다. 심층 학습을 포함한 표현 학습 기법들은 인공지능 학계가 오랫동안 어려움을 겪어온 다양한 분야에서 상당한 발전을 이루었다. 표현 학습은 생물정보학 분야에서도 많은 가능성을 보여주었다. 하지만 단순한 적용으로는 생물학적 서열 데이터 분석의 성공적인 결과를 항상 얻을 수는 않으며, 여전히 연구가 필요한 많은 문제들이 남아있다. 본 학위논문은 생물학적 서열 데이터 분석과 관련된 세 가지 사안을 해결하기 위해, 표현 학습에 기반한 일련의 방법론들을 제안한다. 첫 번째로, 유전자가위 실험 데이터에 내재된 정보와 수율의 균형에 대처할 수 있는 2단계 학습 기법을 제안한다. 두 번째로, 두 염기 서열 간의 상호 작용을 학습하기 위한 부호화 방식을 제안한다. 세 번째로, 기하급수적으로 증가하는 특징되지 않은 단백질 서열을 활용하기 위한 자기 지도 사전 학습 기법을 제안한다. 요약하자면, 본 학위논문은 생물학적 서열 데이터를 분석하여 중요한 정보를 도출할 수 있는 표현 학습에 기반한 일련의 방법론들을 제안한다.1 Introduction 1 1.1 Motivation 1 1.2 Contents of Dissertation 4 2 Background 8 2.1 Representation Learning 8 2.2 Deep Neural Networks 12 2.2.1 Multi-layer Perceptrons 12 2.2.2 Convolutional Neural Networks 14 2.2.3 Recurrent Neural Networks 16 2.2.4 Transformers 19 2.3 Training of Deep Neural Networks 23 2.4 Representation Learning in Bioinformatics 26 2.5 Biological Sequence Data Analyses 29 2.6 Evaluation Metrics 32 3 CRISPR-Cpf1 Activity Prediction 36 3.1 Methods 39 3.1.1 Model Architecture 39 3.1.2 Training of Seq-deepCpf1 and DeepCpf1 41 3.2 Experiment Results 44 3.2.1 Datasets 44 3.2.2 Baselines 47 3.2.3 Evaluation of Seq-deepCpf1 49 3.2.4 Evaluation of DeepCpf1 51 3.3 Summary 55 4 Functional microRNA Target Prediction 56 4.1 Methods 62 4.1.1 Candidate Target Site Selection 63 4.1.2 Input Encoding 64 4.1.3 Residual Network 67 4.1.4 Post-processing 68 4.2 Experiment Results 70 4.2.1 Datasets 70 4.2.2 Classification of Functional and Non-functional Targets 71 4.2.3 Distinguishing High-functional Targets 73 4.2.4 Ablation Studies 76 4.3 Summary 77 5 Self-supervised Learning of Protein Representations 78 5.1 Methods 83 5.1.1 Pre-training Procedure 83 5.1.2 Fine-tuning Procedure 86 5.1.3 Model Architecturen 87 5.2 Experiment Results 90 5.2.1 Experiment Setup 90 5.2.2 Pre-training Results 92 5.2.3 Fine-tuning Results 93 5.2.4 Comparison with Larger Protein Language Models 97 5.2.5 Ablation Studies 100 5.2.6 Qualitative Interpreatation Analyses 103 5.3 Summary 106 6 Discussion 107 6.1 Challenges and Opportunities 107 7 Conclusion 111 Bibliography 113 Abstract in Korean 130박

    D-AREdevil: a novel approach for discovering disease-associated rare cell populations in mass cytometry data

    Get PDF
    Background: The advances in single-cell technologies such as mass cytometry provides increasing resolution of the complexity of cellular samples, allowing researchers to deeper investigate and understand the cellular heterogeneity and possibly detect and discover previously undetectable rare cell populations. The identification of rare cell populations is of paramount importance for understanding the onset, progression and pathogenesis of many diseases. However, their identification remains challenging due to the always increasing dimensionality and throughput of the data generated. Aim: This study aimed at implementing a straightforward approach that efficiently supports a data analyst to identify disease-associated rare cell populations in large and complex biological samples and within reasonable limits of time and computational infrastructure. Methods: We proposed a novel computational framework called D-AREdevil (disease- associated rare cells detection) for cytometry datasets. The main characteristic of our computational framework is the combination of an anomaly detection algorithm (i.e. LOF, or FiRE) that provides a continuous score for individual cells with one of the best performing and fastest unsupervised clustering methods (i.e. FlowSOM). In our approach, the LOF score serves to select a set of candidate cells belonging to one or more subgroups of similar rare cell populations. Then, we tested these subgroups of rare cells for association with a patient group, disease type, clinical outcome or other characteristic of interest. Results: We reported in this study the properties and implementation of D-AREdevil and presented an evaluation of its performances and applications on three different testing datasets based on mass cytometry data. We generated data mixed with one or more known rare cell populations at varying frequencies (below 1%) and tested the ability of our approach to identify those cells in order to bring them to the attention of the data analyst. This is a key step in the process of finding cell subgroups that are associated with a disease or outcome of interest, when their existence and identification is not previously known and has yet to be discovered. Conclusions: We proposed a novel computational framework with demostrated good sensitivity and precision in detecting target rare cell poopulations present at very low frequencies in the total datasets (<1%). -- Contexte: Les avancées en technologies sur cellules individuelles telles que la cytométrie de masse offrent une meilleure résolution de la complexité des échantillons cellulaires, permettant aux chercheurs d’étudier et de comprendre plus en profondeur l’hétérogénéité cellulaire et éventuellement de détecter et découvrir des populations de cellules rares auparavant indétectables. L’identification de populations de cellules rares est importante pour comprendre l’apparition, la progression et la pathogenèse de nombreuses maladies. Cependant, leur identification reste difficile en raison de la haute dimensionnalité et du débit toujours croissants de données générées. But: Cette étude met en œuvre une approche simple et efficace pour identifier des populations de cellules rares associées à une maladie dans des échantillons biologiques vastes et complexes dans des limites de temps et d’infrastructure de calcul raisonnables. Méthodes: Nous proposons un nouveau cadre de calcul appelé D-AREdevil (détection de cellules rares associées à une maladie) pour l’analyse de données de cytométrie de masse. La principale caractéristique de notre cadre computationnel est la combinaison d’un algorithme de détection d’anomalies (LOF ou FiRE) qui fournit un score continu pour chaque cellule avec l’une des méthodes de regroupement non-supervisé les plus performantes et les plus rapides (FlowSOM). Dans notre approche, le score LOF sert à sélectionner un ensemble de cellules candidates appartenant à un ou plusieurs sous-groupes de populations de cellules rares similaires. Ensuite, nous testons ces sous-groupes de cellules rares pour déterminer s’ils sont associées avec un groupe de patients, un type de maladie, un résultat clinique ou une autre caractéristique d’intérêt. Résultats: Dans cette étude, nous avons rapporté les propriétés et l’implémentation de D-AREdevil, et présenté une évaluation de ses performances et applications sur trois jeux de données différents de cytométrie de masse. Nous avons généré des données mélangées contenant une ou plusieurs populations de cellules rares connues à des fréquences variables (inférieures à 1%) et nous avons testé la capacité de notre approche à identifier ces cellules afin de les porter à l’attention de l’analyste. Il s’agit là d’une étape clé dans le processus de recherche de sous-groupes de cellules qui sont associés à une maladie ou à un résultat d’intérêt qui est encore inconnu. Conclusions: Nous proposons un nouveau cadre de calcul avec une bonne sensibilité et une bonne précision dans la détection de cellules rares qui sont présentes à de très basses fréquences dans l’ensemble des données (<1%)

    Regulatory modules discovery and mesenchymal stem cells characterization from high-throughput cancer genomics data

    Get PDF
    2013/2014Il tumore è una malattia caratterizzata da un’estrema complessità molecolare. Gli approcci di tipo “omic”, collezionando dati sull’intero genoma, sui trascritti e proteine in dataset pubblici, permettono di superare questa complessità e di trovare moduli funzionali che eseguono le funzioni coinvolte nei processi tumorali. Ad esempio, i profili di espressione genica da tessuti vengono usati per definire firme di geni e testarne la rilevanza clinica. Ho usato questo tipo di informazione per caratterizzare specifici geni di interesse in modelli di tumore al seno. Uno dei più recenti progetti di tipo “omic” è il FANTOM5. Questo progetto ha generato una risorsa unica: il primo atlante di espressione in mammifero basato su sequenziamento a singola molecola. Il sistema CAGE (Cap Analysis of Gene Expression) è stato usato per misurare i siti di inizio trascrizione (TSS) e l’utilizzo dei promotori in una collezione di campioni umani: in questo modo sono stati misurati i livelli di espressione di gran parte dei trascritti codificanti e non-codificanti nel genoma umano. Ho usato questo tipo di informazione per caratterizzare una linea staminale mesenchimale/stromale (MSC) derivante da tumori sierosi ovarici di alto grado (HG-SOC-MSCs) o da tessuti normali (N-MSCs) inclusi nel dataset FANTOM5. Ho messo in luce programmi funzionali condivisi tra le due linee cellulari e osservato che le differenze principali tra le funzioni attivate nelle due linee sono di tipo quantitativo più che qualitativo. I risultati suggeriscono inoltre che le HG-SOC-MSCs sono simili alle cellule mesoteliali e alle cellule del tessuto muscolare liscio. Inoltre, ho analizzato l’intero dataset usando ScanAll, un nuovo software utile a predire ab initio la presenza di elementi arricchiti nelle regioni geniche che circondano i promotori trovati del progetto FANTOM5. Ho individuato moduli di regolazione, ossia gruppi di motif che si trovano a distanze predefinite sul genoma uno rispetto all’altro. Questi moduli sono arricchiti in regioni del genoma co-espresse rispetto a sequenze generate casualmente. Infine ho creato un compendio di fattori di trascrizione espressi e che partecipano ad interazione proteina-proteina.Cancer is a disease characterized by an extreme molecular complexity. Omics approaches, collecting data in public databases for all the genome, transcripts and proteins, attempt to overcome this complexity and find the functional modules that perform the functions involved in tumour related processes. For instance, cancer tissues gene expression profiles are widely used to define genes signatures and test their clinical relevance. I used this kind information in order to characterise interesting genes in breast cancer models. On the other hand, cellular models datasets could provide data that permits to focus on specific molecular mechanisms and probe the effects of molecules in a specific cancer model. One of the most recent omics project is the FANTOM5 project, that has generated a unique resource, the first single molecule sequencing-based expression atlas in mammalian systems. Cap analysis of gene expression (CAGE) was used to measure transcription start sites (TSS) and promoter usage across a wide collection of human samples thereby identifying and measuring levels of the majority of coding and non-coding transcripts in the human genome. I used this information to characterize a mesenchymal/stromal stem cell line (MSC) derived from high-grade serous ovarian cancer (HG-SOC-MSCs) or derived from normal tissue (N-MSCs) included in the entire FANTOM5 human dataset. I highlighted shared functional programs between HG-SOC-MSCs and N-MSCs suggesting that the global differences between the two cell lines are based on quantitative levels of transcriptional output rather than on qualitative differences. The results suggested that HG-SOC-MSCs are close relatives of mesothelial cells and smooth muscle cells. Furthermore, we analysed the entire dataset using ScanAll, a newly developed software, to ab initio predict the presence of enriched elements in the genomic regions surrounding FANTOM5 promoters. I pinpointed regulatory modules, i.e. groups of enriched motifs co-occurring in co-expressed regions within a fixed distance. These modules are enriched in the co-expressed sequences in each sample respect to random generated sequences. Finally, I created a Compendium of putative expressed and directly interacting transcription factors.XXVII Ciclo198

    Novel Algorithm Development for ‘NextGeneration’ Sequencing Data Analysis

    Get PDF
    In recent years, the decreasing cost of ‘Next generation’ sequencing has spawned numerous applications for interrogating whole genomes and transcriptomes in research, diagnostic and forensic settings. While the innovations in sequencing have been explosive, the development of scalable and robust bioinformatics software and algorithms for the analysis of new types of data generated by these technologies have struggled to keep up. As a result, large volumes of NGS data available in public repositories are severely underutilised, despite providing a rich resource for data mining applications. Indeed, the bottleneck in genome and transcriptome sequencing experiments has shifted from data generation to bioinformatics analysis and interpretation. This thesis focuses on development of novel bioinformatics software to bridge the gap between data availability and interpretation. The work is split between two core topics – computational prioritisation/identification of disease gene variants and identification of RNA N6 -adenosine Methylation from sequencing data. The first chapter briefly discusses the emergence and establishment of NGS technology as a core tool in biology and its current applications and perspectives. Chapter 2 introduces the problem of variant prioritisation in the context of Mendelian disease, where tens of thousands of potential candidates are generated by a typical sequencing experiment. Novel software developed for candidate gene prioritisation is described that utilises data mining of tissue-specific gene expression profiles (Chapter 3). The second part of chapter investigates an alternative approach to candidate variant prioritisation by leveraging functional and phenotypic descriptions of genes and diseases from multiple biomedical domain ontologies (Chapter 4). Chapter 5 discusses N6 AdenosineMethylation, a recently re-discovered posttranscriptional modification of RNA. The core of the chapter describes novel software developed for transcriptome-wide detection of this epitranscriptomic mark from sequencing data. Chapter 6 presents a case study application of the software, reporting the previously uncharacterised RNA methylome of Kaposi’s Sarcoma Herpes Virus. The chapter further discusses a putative novel N6-methyl-adenosine -RNA binding protein and its possible roles in the progression of viral infection
    corecore